
University of Palermo
PhD joint program:

University of Catania - University of Messina
XXXVI CYCLE

Doctoral Thesis

On nilpotent Leibniz algebras,
Lie biderivations and related

topics

Author:
Gianmarco La Rosa

Supervisor:
Prof. Giovanni Falcone

Co-Supervisor:
Prof. Alfonso Di Bartolo

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Mathematics and Computational Sciences

http://www.unipa.it
https://www.researchgate.net/profile/Gianmarco-La-Rosa-3
https://orcid.org/0000-0003-1047-5993
https://www.unipa.it/persone/docenti/f/giovanni.falcone
https://orcid.org/0000-0002-5210-5416
https://www.unipa.it/persone/docenti/d/alfonso.dibartolo
https://orcid.org/0000-0001-5619-2644




iii

Declaration of Authorship
I, Gianmarco La Rosa, declare that this thesis titled, “On nilpotent Leibniz
algebras, Lie biderivations and related topics” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

Gianmarco La Rosa
12/02/2024





v

“I was within and without, simultaneously enchanted and repelled by the inex-
haustible variety of life.”

Fitzgerald F. Scott, The Great Gatsby





vii

UNIVERSITY OF PALERMO

Abstract
Department of Mathematics and Computer Sciences

Doctor of Philosophy

On nilpotent Leibniz algebras, Lie biderivations and related topics
by Gianmarco La Rosa

This thesis classifies two-step nilpotent Leibniz algebras, with a specific emphasis
on the real and complex cases of Heisenberg Leibniz algebras. It demonstrates a
global integration property for nilpotent real Leibniz algebras, explores integra-
tion in specific scenarios and solves the coquecigrue problem by integrating into a
Lie rack. It investigates Lie algebras of derivations in two-step nilpotent algebras
and describes isotopism classes of nilpotent Leibniz algebras and introduces
new invariants. Biderivations of complete Lie algebras are also described, with
attention given to both symmetric and skew-symmetric cases. Furthermore, it
provides isomorphism results for non-nilpotent non-Lie Leibniz algebras with a
one-dimensional derived subalgebra.

HTTP://WWW.UNIPA.IT
http://department.university.com




ix

Acknowledgements
The completion of this thesis owes gratitude to the invaluable support of numer-
ous individuals, both within and beyond the academic sphere.

I cannot begin these acknowledgements without mentioning my supervisors,
Prof. Giovanni Falcone and Prof. Alfonso Di Bartolo.

The first of them believed in me and my ideas from the start, always encour-
aging me to do better and more (where possible). His expertise and valuable
insights have been instrumental in assisting me with writing articles and fur-
thering my understanding within this field of study. No less significant, he was
readily available if I required academic or other guidance. I am also grateful
for the support and guidance provided by Prof. Di Bartolo throughout my
academic journey. My admiration for him dates back to my first year during
the Geometry 1 course and has continued to grow over time. At the conclusion
of my master’s studies, I even considered him to be the most appropriate candi-
date to advise me on my master’s thesis due to his exceptional availability and
consistent accommodation of my research interests. Furthermore, his expertise
and experience enabled him to enhance my academic work, including this thesis,
with the intention of fostering my growth as a mathematician. I am proud to
have collaborated with him on a scholarly article, which I never thought possible.

Staying within the halls of the University, I would like to express my grat-
itude to Prof. Claudio Bartolone, whom I met in the courses of Geometry 2
and Topological Groups and Lie Groups. He has demonstrated exceptional
teaching skills as well as experience in mathematics. Prof. Bartolone consistently
imparted passion and knowledge to his students, and his lecture notes were so
precious and indispensable for all. He has always been approachable for students,
and he made no exception in my case whenever I needed assistance.

Before leaving the Department, I wish to express my gratitude to Dr. Mario
Galici and Dr. Manuel Mancini. Both were my colleagues during my master’s
studies and the doctorate, although thinking of them solely as colleagues would
be inaccurate. We shared journeys, conferences, seminars, talks, and doctoral
courses. I am grateful for their mutual support, which was accompanied by both
laughter and anxiety throughout this journey. Furthermore, Manuel served as
a co-author for the majority of the works that I created. Without him, they
probably wouldn’t have been as numerous and of such high quality.

It is important to acknowledge Dr. Giuseppe Filippone, a skilled and en-
thusiastic computer scientist, for the invaluable discussions we had during our
three-year o�ce sharing arrangement. Our conversations went beyond pure
mathematics, and I am grateful to him not only for his technical competence
but also for sharing his insights and viewpoints with me.

In no particular order, these acknowledgments wouldn’t be complete without
Giuseppe Failla, Alessandro Dioguardi Burgio, Federica Piazza, and Lydia Cas-
tronovo. With you, the past few months of hard work have been lighter, highly



x

stimulating (not only mathematically), and enjoyable.

My academic journey has not only taken place in Italy. I have been involved
in study and research activities abroad twice. Therefore, I would like to ex-
press my sincere gratitude to Prof. Markus Linckelmann of City, University of
London, and Prof. Gábor P. Nagy of the University of Szeged. In London, I
was welcomed into a serene and stimulating environment immediately. I was
honoured to attend a course on Homological Algebra with Prof. M. Linckelmann
at De Morgan House, the headquarters of the London Mathematical Society.
In Szeged, I experienced the warmth of a small town. Although my time in
Hungary with Prof. G.P. Nagy was brief, it was intense and productive. We had
previously collaborated on an article, and his continued trust and esteem in my
abilities meant a lot to me.

My friends have also supported me and believed in me. I o�er my sincere
thanks to Francesco Puglia and Giorgio Zaccardo for their willingness to pa-
tiently listen to my grievances and provide invaluable advice during times of
hardship. Their assistance has played a vital role in my progress, and for that, I
express my gratitude.

Finally, I express my gratitude to my family for their unwavering support
and belief in me. Their love has been the healing balm for every wound, enabling
me to develop both as a mathematician and an individual. Hence I thanks to
my father, mother, sister, and grandmother for their invaluable contributions.

Lastly, I would like to express my gratitude to all those who supported and
assisted me both directly and indirectly during my doctoral studies.



xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Introduction 1

1 Brief introduction to Leibniz algebras 3
1.1 Basic definitions and examples . . . . . . . . . . . . . . . . . . . 3
1.2 The tensor complex associated to a Leibniz algebra . . . . . . . 7
1.3 Leibniz kernel and centers of a Leibniz algebra . . . . . . . . . . 11
1.4 Nilpotency and solvability . . . . . . . . . . . . . . . . . . . . . 16
1.5 Classification of low-dimensional Leibniz algebras . . . . . . . . 22

1.5.1 One-dimensional Leibniz algebra . . . . . . . . . . . . . 23
1.5.2 Two dimensional Leibniz algebras . . . . . . . . . . . . . 23
1.5.3 Three-dimensional Leibniz algebras . . . . . . . . . . . . 24

2 Two-step nilpotent algebras and their integration 27
2.1 Kronecker Modules . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Kronecker modules associated to nilpotent Leibniz alge-
bras L with dimF L

Õ = 1 . . . . . . . . . . . . . . . . . . 29
2.2 Complex and Real Heisenberg Leibniz algebras . . . . . . . . . . 33

2.2.1 The case F = C . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 The case F = R . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Integration of two-step nilpotent Leibniz algebra . . . . . . . . . 36
2.3.1 Lie Racks . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Derivations and isotopisms 53
3.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Derivations of the Heisenberg Leibniz algebras lA2n+1 . . . 53
3.1.2 The complex case . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 The real case . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.4 Derivations of the Kronecker Leibniz algebra kn . . . . . 63
3.1.5 Derivations of the Dieudonné Leibniz algebra dn . . . . . 68
3.1.6 Almost inner derivations of nilpotent Leibniz algebras with

one-dimensional commutator ideal . . . . . . . . . . . . . 73
3.2 Isotopisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Isotopisms of algebras . . . . . . . . . . . . . . . . . . . 75
3.2.2 Isotopisms of Leibniz algebras and racks . . . . . . . . . 79



xii

3.2.3 Isotopisms of two-step nilpotent Leibniz algebras and Lie
racks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Non-nilpotent Leibniz algebras with one-dimensional derived
subalgebra 89
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 S is a Lie algebra . . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 S is not a Lie algebra . . . . . . . . . . . . . . . . . . . . 92

4.2 Derivations, automorphisms and biderivations of Ln . . . . . . . 94
4.3 The integration of the Leibniz algebra Ln . . . . . . . . . . . . . 95

5 Biderivations of complete Lie algebras 97
5.0.1 A matricial approach for the study of biderivations of Lie

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1 Biderivations of complete Lie algebras . . . . . . . . . . . . . . . 103

5.1.1 Symmetric and skew-symmetric biderivations of complete
Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Lie algebras 111
A.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2 Homomorphisms of Lie Algebras . . . . . . . . . . . . . . . . . . 114

A.2.1 Structure Constants . . . . . . . . . . . . . . . . . . . . 115
A.3 Sum of Ideals, Quotient Algebras, and Isomorphism Theorems . 116
A.4 Direct Sum of Lie Algebras . . . . . . . . . . . . . . . . . . . . . 119
A.5 Lie Algebras of Dimension Æ 3 . . . . . . . . . . . . . . . . . . . 124
A.6 Solvable and Nilpotent Lie Algebras . . . . . . . . . . . . . . . . 124
A.7 Cartan’s Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 131



xiii

List of Figures

2.1 Reflection rack. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Tangent space of a rack R in its identity. . . . . . . . . . . . . . 42





xv

List of Tables

1.1 Isomorphism classes of three-dimensional Leibniz algebras. . . . 25

A.1 Isomorphism classes of Lie Algebras of Dimension Æ 3 . . . . . . 124





xvii

Dedicated to my family and to anyone who cares about
me. . .





1

Introduction

This dissertation is the product of research conducted over the past three years.
The aim was to gather articles and preprints produced during this period ([58],
[57], [72], [31], and [31]), combining them to form a coherent thesis. The research
primarily focuses on the structure of nilpotent Leibniz algebras, their derivations,
and the biderivations of Lie algebras.

Leibniz algebras are a generalization of Lie algebras, first introduced by A.
Blokh in 1965 (see [10]). The title of the work, "A generalization of the concept
of a Lie algebra" is a clear and suggestive choice. The author introduces a new
algebraic structure, called D-algebras (distributive algebras), which satisfy a
certain identity. Roughly speaking, the concept requires multiplication on a
vector space that acts on left as a derivation (left di�erential identity).

Subsequently, J.-L. Loday introduced the same algebraic structure in a
paper from 1993 entitled "Une version non commutative des algèbres de Lie: les
algèbres de Leibniz" ([62]). These algebraic structures emerged in homological
algebra in order to construct new chain complexes. Previously, the chains of
Chevalley-Eilenberg of Lie algebras involved the tensor product, but J.-L. Loday
used the exterior product instead. For some time, these algebraic structures
were known as Loday algebras, which may be due to the limited availability of A.
Blokh’s russian article. However, modern literature consistently uses the term
Leibniz algebras to refer to these algebraic structures.

These introductory topics will be thoroughly covered in chapter 1. While
some content needed to be trimmed and certain details skimmed over, the
chapter is coherent and self-contained, and includes all the necessary definitions
and results for proceeding with subsequent reading.

The first mentioned work is presented in chapter 2. The research centres on
the examination of two-step nilpotent Leibniz algebras with a one-dimensional
commutator ideal, and their subsequent integration. Three classifications of
Leibniz algebras of this nature are introduced: Heisenberg, Kronecker and
Dieudonné. A brief introduction to Lie racks is provided, and the correspondence
between Leibniz algebras and Lie racks is explored in depth.

Chapter 3 presents a synthesis of the results derived from two distinct
papers. In the initial section of the chapter derivations of the classes of Leibniz
algebras found in the second chapter, while the subsequent part examines
the isomorphisms of these classes. These maps, which can be thought as a
generalization of the concept of isomorphism between two algebraic constructions,
have been proven to be more advantageous in outlining the classes of Leibniz
algebras found in the first of the aforementioned works.

The recent preprint seeks to complete the classification of Leibniz algebras
with a commutator ideal of dimension one. It contains essential findings on this
subject, forming chapter 4, which classifies non-nilpotent Leibniz algebras of
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this type. Additionally, a prior classification is extended to a generic field with
a characteristic di�ering from two.

Finally, the last chapter examines biderivations of complete Lie algebras.
They may be seen as a generalization of the concept of derivation. Therefore,
we will describe all the biderivations of complete Lie algebras, i.e., Lie algebras
with trivial center and inner derivations, such as the semisimple ones. Finally,
we will describe the symmetric and skew-symmetric biderivations of a complete
Lie algebra.
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Chapter 1

Brief introduction to Leibniz
algebras

This first chapter is devoted to the study of Leibniz algebras. We will give
first definitions and fundamental results. Many of these (and much more) can
be found in [6], a reference text for the composition of this chapter, to which
we refer the reader for further details. Unless stated otherwise, every Leibniz
algebra will be of finite dimension.

1.1 Basic definitions and examples
Definition 1.1.1. A left Leibniz algebra L over a field F is a vector space over
F, equipped with a F-bilinear map [≠, ≠] : L ◊ L æ L satisfying the Leibniz
identity

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] , (1.1)

for all x, y, x œ L. L is said to be a right Leibniz algebra over F if

[[x, y] , z] = [[x, z] , y] + [x, [y, z]] , (1.2)

for all x, y, x œ L.
A Leibniz algebra that is both left and right is called symmetric.

According to the first definition given by A. Blokh in 1965 [10], the identity
1.1 is called left di�erential identity, while 1.2 is called right di�erential identity.
Throughout this thesis we will be working with left Leibniz algebras unless
otherwise specified. It is worth noting that results which are applicable to
left Leibniz algebras also hold to right Leibniz algebras, given appropriate
reformulation. Given a left Leibniz algebra (L, [·, ·]), it is easy to define a new
product on L, namely {·, ·}, on the same vector space defined by {x, y} = [y, x]
(opposite product). In this way (L, {·, ·}) is a right Leibniz algebra. In addition
we note that the versions

[[x, y] , z] = [x, [y, z]] ≠ [y, [x, z]] , for all x, y, z œ L, (1.3)

and
[x, [y, z]] = [[x, y] , z] ≠ [[x, z] , y] , for all x, y, z œ L, (1.4)

of the identities 1.1 and 1.2 are also often used.
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Definition 1.1.2. Let L be a left Leibniz algebra and let K be a subspace of
L. K is said to be a Leibniz subalgebra of L (K Æ L) if it is closed under the
Leibniz bracket, i.e., if x, y œ K then [x, y] œ K.

The following identity will prove useful later.

Lemma 1.1.3. Let L be a left Leibniz algebra. Then, we have

[[x, y] , z] = ≠ [[y, x] , z] ,

for any x, y, z œ L

Proof. By Equation (1.3), for each z œ L we have

[[x, y] , z] = [x, [y, z]] ≠ [y, [x, z]] = ≠([y, [x, z]] ≠ [x, [y, z]]) = ≠ [[y, x] , z] .

Before we proceed with further definitions and initial properties of these
algebraic structures, we shall look at some examples.

Example 1.1.3.1. The first example of a Leibniz algebra is a Lie algebra.
Indeed, a Lie algebra g is a Leibniz algebra with an alternative product, i.e ,
with [x, x] = 0, for each x œ L.

This example shows how a Leibniz algebra is a possible generalization of a
Lie algebra, but it also hides deeper and non-trivial observations which we will
discuss later.

Example 1.1.3.2. This example shows how to defined a Leibniz algebra struc-
ture on a Lie module with an equivariant linear map. Let g be a Lie algebra
and M be a g-module. Let f : M æ g be a g-equivariant linear map, i.e.

f(x · m) = [x, f(m)] for all m œ M and x œ g.

We now show that the bracket [·, ·]M defined by [l, m]M := f(l) · m provides a
Leibniz algebra structure on M . Indeed, we have

[l, [m, n]M ]M = [l, f(m) · n]M = f(l) · (f(m) · n)
= f(m) · (f(l) · n) + [f(l), f(m)] · n

= [m, f(l) · n]M + f (f(l) · m) · n

= [m, [l, n]M ]M + [[l, m]M , n]M ,

for every l, m, n œ M .

Example 1.1.3.3. In this example we define a Leibniz algebra structure over a
direct sum of a Lie algebra and its Lie module. Let g be a Lie algebra and M a
g-module. We consider the multiplication

[x + l, y + m]Q = [x, y] + x · m,
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where x, y œ g and l, m œ M , defined on the vector space Q = g ü M . This
multiplication provides a Leibniz algebra structure on Q. Indeed, we have
Ë
x + l, [y + m, z + n]Q

È

Q
= [x + l, [y, z] + y · n]Q = [x, [y, z]] + x · (y · n)

= [[x, y] , z] + [y, [x, z]] + [x, y] · n + y · (x · n)
= [[x, y] , z] + [x, y] · n + [y, [x, z]] + y · (x · n)
= [[x, y] + x · m, z + n]Q + [y + m, [x, z] + x · n]

=
Ë
[x + l, y + m]Q , z + n

È

Q
+

Ë
y + m, [x + l, z + n]Q

È

Q
,

for every x + l, y + m, z + n œ Q.

Example 1.1.3.4. Unlike the previous one, where a Leibniz algebra was con-
structed using both a Lie algebra and a Lie module, this example demonstrates
how such a construction can be achieved starting only from a Lie algebra. Let g
be a Lie algebra and let L = g ¢ g. We define on L the following bracket

[x ¢ y, a ¢ b]L = [a, [x, y]] ¢ b + a ¢ [b, [x, y]]

where x ¢ y, a ¢ b œ L. We verify that L with this bracket is a Leibniz algebra,
that is

[x ¢ y, [a ¢ b, s ¢ t]L]L = [[x ¢ y, a ¢ b]L , s ¢ y]L + [a ¢ b, [x ¢ y, s ¢ t]L]L ,

for every x ¢ y, a ¢ b, s ¢ t œ L. On one hand,

[x ¢ y, [a ¢ b, s ¢ t]L] = [x ¢ y, [s, [a, b]] ¢ t + s ¢ [t, [a, b]]]L
= [x ¢ y, [s, [a, b]] ¢ t]L + [x ¢ y, s ¢ [t, [a, b]]]
= [[s, [a, b]] , [x, y]] ¢ t + [s, [a, b]] ¢ [t, [x, y]]
+ [s, [x, y]] ¢ [t, [a, b]] + s ¢ [[t, [a, b]] , [x, y]] .

On the other hand,

[[x ¢ y, a ¢ b]L , s ¢ t]L = [[a, [x, y]] ¢ b + a ¢ [b, [x, y]] , s ¢ t]L
= [[a, [x, y]] ¢ b, s ¢ t]L + [a ¢ [b, [x, y]] , s ¢ t]L
= [s, [[a, [x, y]] , b]] ¢ t + s ¢ [t, [[a, [x, y]] , b]]
+ [s, [a, [b, [x, y]]]] ¢ t + s ¢ [t, [a, [b, [x, y]]]]

and

[a ¢ b, [x ¢ y, s ¢ t]]L = [a ¢ b, [s, [x, y]] ¢ t + s ¢ [t, [x, y]]]L
= [a ¢ b, [s, [x, y]] ¢ t]L + [a ¢ b, s ¢ [t, [x, y]]]L
= [[s, [x, y]] , [a, b]] ¢ t + [s, [x, y]] ¢ [t, [a, b]]
+ [s, [a, b]] ¢ [t, [x, y]] + s ¢ [[t, [x, y]] , [a, b]] .
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Now we conclude by using anti-symmetry and the Jabobi identity of the Lie
algebra g. Indeed, we obtain

[[s, [a, b]] , [x, y]] = [s, [[a, b] , [x, y]]] + [[s, [x, y]] , [a, b]]
= [s, [a, [b, [x, y]]]] + [s, [[a, [x, y]] , b]] + [[s, [x, y]] , [a, b]]

and

[[t, [a, b]] , [x, y]] = [t, [[a, b] , [x, y]]] + [[t, [x, y]] , [a, b]]
= [t, [a, [b, [x, y]]]] + [t, [[a, [x, y]] , b]] + [[t, [x, y]] , [a, b]] .

Example 1.1.3.5. Given an associative algebra A and a linear map D : A æ A

such that

D(aD(b)) = D(a)D(b) = D(D(a)b) for all a, b œ A,

it is possible to define a Leibniz bracket in A as follows

[a, b]D = bD(a) ≠ D(a)b.

Indeed, we have

[a, [b, c]D]D = [a, cD(b) ≠ D(b)c]D
= (cD(b) ≠ D(b)c)D(a) ≠ D(a)(cD(b) ≠ D(b)c)
= cD(b)D(a) ≠ D(b)cD(a) ≠ D(a)cD(b) + D(a)D(b)c,

[[a, b]D , c]D = [bD(a) ≠ D(a)b, c]D
= cD(bD(a) ≠ D(a)b) ≠ D(bD(a) ≠ D(a)b)c
= cD(bD(a)) ≠ cD(D(a)b) ≠ D(bD(a))c + D(D(a)b)c

and

[b, [a, c]D]D = [b, cD(a) ≠ D(a)c]D
= (cD(a) ≠ D(a)c)D(b) ≠ D(b)(cD(a) ≠ D(a)c)
= cD(a)D(b) ≠ D(a)cD(b) ≠ D(b)cD(a) + D(b)D(a)c.

Some examples of the map D are:

• a derivation D of an associative algebra such that D
2 = 0;

• an endomorphism D such that D
2 = D.

Example 1.1.3.6 (Direct sum of Leibniz algebras). Let (L1, [·, ·]1) and (L2, [·, ·]2)
be left Leibniz algebras. The direct sum of L1 and L2 is the left Leibniz algebra
defined on the vector space L = L1 ◊ L2, denoted as L1 ü L2, with the following
bracket

[(x1, x2), (y1, y2)] = ([x1, y1]1 , [x2, y2]2),

for every (x1, x2), (y1, y2) œ L.
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1.2 The tensor complex associated to a Leibniz
algebra

Before delving into further definitions and basic results on Leibniz algebras, it
is worth briefly explaining the context in which Leibniz algebras in the sense
of Loday (Loday algebras) arose (again after Blokh). In 1993, J.-L. Loday
introduced several classes of algebras in [62], which have captured the interest
of researchers in the field for subsequent years, enabling ongoing research that
continues to this day. New algebraic structures include associative, dendriform,
and Zinbiel algebras, as well as Leibniz algebras. It has been observed that if
a Chevalley-Eilenberg chain complex of a Lie algebra one replaces the exterior
product with the tensor product, imposing the Leibniz identity alone is su�cient
to prove that it is a chain complex. More precisely, given the Chevalley-Eilenberg
chain complex of a Lie algebra g, that is the sequence of chain modules

w úg : · · · ·n+1g ·ng ·n≠1g · · ·dn+2 dn+1 dn dn≠1

and buondary operator dn : ·n g æ ·n≠1g classically defined by

dn(x1 · x2 · · · · · xn) :=
ÿ

i<j

(≠1)i+j+1 [xi, xj] · x1 · · · · · x̂i · · · · · x̂j · · · · xn,

the property dn ¶ dn+1 = 0, wich makes this sequence a chain complex, is
proved by using the antisymmetry x · y = ≠y · x of the exterior product,
the Jacobi identity [[x, y] , z] + [[y, z] , x] + [[z, x] , y] = 0 and the antisymmetry
[x, y] = ≠ [y, x] of the Lie bracket given on g. We will construct a chain complex
using the tensor product and define the Chevalley-Eilenberg chain complex and
the boundary operator for an algebra A as follows:

o úA : · · · A
¢(n+1)

A
¢n

A
¢(n≠1) · · ·dn+2 dn+1 dn dn≠1

and

dn(x1 ¢ x2 ¢ · · · ¢ xn) :=
ÿ

1Æi<jÆn

(≠1)j
x1 ¢ · · · ¢ xj · xi ¢ · · · ¢ x̂j ¢ · · · xn. (1.5)

Note that the product xj · xi is at the place inf(i, j). This element appears
as the first entry for i = 1, dn is well-defined for every n œ N. Our purpose
is to prove that the boundary operator defined above satisfies the condition
dn ¶ dn+1 = 0.

From this point onward, we assume that A is a left Leibniz algebra, thus
Equation (1.5) holds and rather than having the product of two elements, we
will have the bracket. Before we proceed, it is necessary to provide the following
definition in order to enhance our understanding of Loday’s construction and
for our discussion to be comprehensive in general.

Definition 1.2.1. Let V be a vector space over a field F and let L be a
left Leibniz algebra. A Leibniz representation of L is a triple (V, l, r), where
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l, r : L æ gl(V ) are linear maps such that, for all x, y œ L, the following equalities
hold:

i) l[x,y] = [lx, ly]

ii) r[x,y] = [lx, ry]

iii) rylx = ≠ryrx.

Remark 1.2.1. It is noteworthy to highlight the contrast between the definitions
of a Leibniz representation (of a Leibniz algebra) and that of a Lie algebra
representation (or Lie representation). Indeed, if a Lie algebra and one of its Lie
representation are given, we can construct a Leibniz representation of it in several
ways. For instance, if a Lie algebra g has a Lie representation fl : g æ gl(V ), we
can obtain a Leibniz representation by setting l = fl and r = ≠fl, or by setting
l = fl and r = 0. This implies that, in this case, l is an homomorphism of Lie
algebras, just as we would expect. However, while l is always an homomorphism
of Leibniz algebras (by condition i)), r is not in general.

Definition 1.2.2. Let L be a Leibniz algebra over a field F and let V be a
vector space over the same field. We define V to be an L-module equipped with
two bilinear maps (actions)

[·, ·] : L ◊ V æ V, [·, ·] : V ◊ L æ V

such that the identity

[x, [y, z]] = [[x, y] , z] + [y, [x, z]]

holds whenever one (any) of the variables is in V , and the other two are in L.

Just as in the case of Lie algebras (and not only), the definitions of a
representation of L and an L-module are equivalent to each other. Indeed,
the last definition says that the following equations must be true for every
x, y œ L, v œ V :

[x, [y, v]] = [[x, y] , v] + [y, [x, v]] (1.6)
[x, [v, y]] = [[x, v] , y] + [v, [x, y]] (1.7)
[v, [x, y]] = [[v, x] , y] + [x, [v, y]]. (1.8)

Thus, if we have a representation (V, l, r) of L, we define

[x, v] = lx(v) [v, x] = rx(v).

By computation one can easily obtain from Equations 1.6 and 1.7 respectively
i) and ii). Equation (1.8) reads

r[x,y] = ryrx(v) + lxry(v).

By ii) we have r[x,y](v) = (lxry ≠ rylx)(v) and hence we obtain Equation (1.8).
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Remark 1.2.2. Every left (right) Leibniz algebra L can be thought as a L-
module. Indeed, just consider lx(y) = [x, y] and rx(y) = [y, x]. By doing this,
conditions i)-iii) directly follow from the left (right) di�erential identity.

Now we are ready for the following observation. We can think of the tensor
algebra A

¢n as an A-module with the following left action:

[x, x1 ¢ · · · ¢ xn] =
nÿ

i=1
x1 ¢ · · · ¢ [x, xi] ¢ · · · ¢ xn. (1.9)

So the right linear map is naturally defined, and A
¢n is indeed an A-module

since A itself is (see the last Remark).
The next result directly follows from Equation (1.5) and the previous equa-

tion.

Lemma 1.2.3. Let dn+1 : A
¢(n+1) æ A

¢n be the boundary operator 1.5. Then
for all x1, . . . , xn+1 œ A the following equation holds

dn+1(x1 ¢ · · ·¢xn+1) = dn(x1 ¢ · · ·¢xn)¢xn+1 +(≠1)n+1 [xn+1, x1 ¢ · · · ¢ xn] .

Lemma 1.2.4. For all x, x1, . . . , xn+1 œ A, we have

[x, x1 ¢ · · · ¢ xn+1] = [x, x1 ¢ · · · ¢ xn] ¢ xn+1 + x1 ¢ · · · ¢ xn ¢ [x, xn+1] .

Proof. On one hand, by Equation (1.9), we have

[x, x1 ¢ · · · ¢ xn+1] =
n+1ÿ

i=1
x1 ¢ · · · ¢ [x, , xi] ¢ · · · ¢ xn+1.

On the other hand

[x, x1 ¢ · · · ¢ xn] ¢ xn+1 =
nÿ

i=1
x1 ¢ · · · ¢ [xj, xi] ¢ · · · ¢ xn ¢ xn+1.

Now we need a last result.

Proposition 1.2.5. Let dn+1 : A
¢(n+1) æ A

¢n be the boundary operator 1.5.
Then

dn+1 [x, x1 ¢ · · · ¢ xn+1] = [x, dn+1(x1 ¢ · · · ¢ xn+1)] (1.10)

holds for all x, x1, . . . , xn+1 œ A.

Proof. We prove the above relation by induction on n. The equality is trivial
for n = 0. For n = 1 it is precisely the equation Equation (1.1) since

d2 [x, x1 ¢ x2] = d2([x, x1] ¢ x2 + x1 ¢ [x, x2])
= ≠ [[x, x1] , x2] ≠ [x1, [x, x2]]

and
[x, d2(x1 ¢ x2)] = ≠ [x, [x1, x2]] .
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Suppose that Equation (1.10) is true for n. We prove the statement for n + 1.
By Lemma 1.2.3, Lemma 1.2.4, Equation (1.9), and induction on n we have that

dn+1 [x, x1 ¢ · · · ¢ xn+1]

is equal to

dn+1 ([x, x1 ¢ · · · ¢ xn] ¢ xn+1 + x1 ¢ · · · ¢ xn ¢ [x, xn+1])
= dn ([x, x1 ¢ · · · ¢ xn]) ¢ xn+1 + (≠1)n+1 [xn+1, [x, x1 ¢ · · · ¢ xn]]

+ dn(x1 ¢ · · · ¢ xn) ¢ [x, xn+1] + (≠1)n+1 [[x, xn+1] , x1 ¢ · · · ¢ xn]
= dn ([x, x1 ¢ · · · ¢ xn]) ¢ xn+1 + dn(x1 ¢ · · · ¢ xn) ¢ [x, xn+1]

+ (≠1)n+1 ([xn+1, [x, x1 ¢ · · · ¢ xn]] + [[x, xn+1] , x1 ¢ · · · ¢ xn])
= [x, dn(x1 ¢ · · · ¢ xn)] ¢ xn+1 + dn(x1 ¢ · · · ¢ xn) ¢ [x, xn+1]

+ (≠1)n+1 ([xn+1, [x, x1 ¢ · · · ¢ xn]] + [[x, xn+1] , x1 ¢ · · · ¢ xn])
= [x, dn(x1 ¢ · · · ¢ xn) ¢ xn+1] ≠ dn(x1 ¢ · · · ¢ xn) ¢ [x, xn+1]

+ dn(x1 ¢ · · · ¢ xn) ¢ [x, xn+1] + (≠1)n+1 [x, [xn+1, x1 ¢ · · · ¢ xn]]
=

Ë
x, dn(x1 ¢ · · · ¢ xn) ¢ xn+1 + (≠1)n+1 [xn+1, x1 ¢ · · · ¢ xn]

È

= [x, dn+1(x1 ¢ · · · ¢ xn+1)] ,

for all x œ A, x1 ¢ · · · ¢ xn+1 œ A
¢(n+1).

Proposition 1.2.6. Let dn+1 : A
¢(n+1) æ A

¢n be the boundary operator 1.5.
Then the condition

dn ¶ dn+1 = 0

holds for all x, x1, . . . , xn+1 œ A.

Proof. We prove this relation by induction on n. For n = 1 is trivial. Suppose
that Equation (1.10) is true for n. We shall now prove it for n + 1. Thus by
Lemma 1.2.3 and induction on n we have

dn ¶ dn+1(x1 ¢ · · · ¢ xn+1) = dn(dn(x1 ¢ · · · ¢ xn) ¢ xn+1

+ (≠1)n+1 [xn+1, x1 ¢ · · · ¢ xn])
= dn≠1dn(x1 ¢ · · · ¢ xn) ¢ xn+1

+ (≠1)n [xn+1, dn(x1 ¢ · · · ¢ xn)]
+ (≠1)n+1 [xn+1, dn(x1 ¢ · · · ¢ xn)]

= 0.

This slight homological deviation indicates how the left di�erential identity
alone is su�cient to construct a new chain complex using the tensor product
instead of the exterior product. Moreover, we note that the tensor product’s
natural surjection to the exterior product induces the following commutative
diagram for any Lie algebra g:
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g¢n+1 g¢n

·n+1g ·ng.

dn+1

dn+1

1.3 Leibniz kernel and centers of a Leibniz al-
gebra

Now, we define a subset of crucial importance for Leibniz algebras.

Definition 1.3.1. Let L be a left Leibniz algebra. The Leibniz kernel, denoted
by Leib(L), is the subspace of L spanned by squares of elements of the algebra
L, i.e.

Leib(L) = È[x, x] | x œ LÍ.

Definition 1.3.2. Let I be a vector subspace of a Leibniz algebra L. I is a left
ideal (right ideal) of L if, for every i œ I, x œ L, [x, i] œ I ([i, x] œ I).

I is a two-sided ideal if it is a left ideal that is also a right ideal.

We note that, as in the Lie case, a left or a right ideal of L is in particular a
subalgebra. From this point forward, the term two-sided ideal will be referred
to as simply ideal.

Proposition 1.3.3. Let I, J be left ideals of a left Leibniz algebra L. Then
I fl J, I + J and [I, J ] = span {[x, y] | x œ I, y œ J} are left ideals.

Proof. I fl J and I + J are trivially left ideal of L. Now, clearly [I, J ] is a
subspace of L. Let x œ L, i œ I and j œ J , then we have

[x, [i, j]] = [[x, i] , j] + [i, [x, j]] œ [I, J ] .

This result also holds for a general linear combination of vectors in [I, J ].

Remark 1.3.1. The last result is true only with left ideals (of a left Leibniz
algebra). In the same way, for a right Leibniz algebra L, the constructions above
are right ideals only if I, J are right ideals of L.

Proposition 1.3.4. Let I, J be right ideal of a left Leibniz algebra L. If
[I, J ] = [J, I], then [I, J ] is a right ideal.

Proof. Let x œ L, i œ I and j œ J , then we have

[[i, j] , x] = [i, [j, x]
¸ ˚˙ ˝

œJ

]

¸ ˚˙ ˝
œ[I,J ]

≠ [j, [i, x]
¸ ˚˙ ˝

œI

]

¸ ˚˙ ˝
œ[J,I]

.

Corollary 1.3.5. L
Õ = [L, L] is an ideal of L.
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Proposition 1.3.6. Let L be a left Leibniz algebra. The subspace Leib(L) is an
ideal of L.

Proof. For every x, y œ L we have

[[y, y] , x] = [y, [y, x]] ≠ [y, [y, x]] = 0 = [0, 0] .

Since [x, x] , [[y, y] , [y, y]] œ Leib(L) and [[y, y] , x] = 0, we have

[x + [y, y] , x + [y, y]] = [x, x] + [x, [y, y]] + [[y, y] , x] + [[y, y] , [y, y]]

and therefore

[x, [y, y]] = [x + [y, y] , x + [y, y]] ≠ [x, x] ≠ [[y, y] , [y, y]] œ Leib(L).

Definition 1.3.7. Let L be a left Leibniz algebra and let I be an ideal of L.
The quotient Leibniz algebra L/I is the left Leibniz algebra defined over the
space {x + I | x œ L}, consisting of the cosets x + I = {x + i | i œ I} with the
following bracket:

[x + I, y + I] = [x, y] + I,

for all x, y œ L.

We must demonstrate that the bracket above is well-defined. Bilinearity and
the left Leibniz di�erential identity ensue from those of L. Let x, x

Õ
, y, y

Õ œ L

such that
x + I = x

Õ + I and y + I = y
Õ + I,

then x ≠ x
Õ œ I and y ≠ y

Õ œ I. Hence, we have

[x, y] = [xÕ + (x ≠ x
Õ), y

Õ + (y ≠ y
Õ)]

= [xÕ
, y

Õ] + [x ≠ x
Õ
, y

Õ] + [xÕ
, y ≠ y

Õ] + [x ≠ x
Õ
, y ≠ y

Õ] ,

and since I is an ideal of L, [x ≠ x
Õ
, y

Õ] , [xÕ
, y ≠ y

Õ] , [x ≠ x
Õ
, y ≠ y

Õ] œ I. Therefore,
[x + I, y + I] = [xÕ

, y
Õ] + I and this proves that the bracket on the quotient is

well-defined.
If L was a Lie algebra, the Leibniz kernel would be the null subspace. This

demonstrates the trivial nature of defining such a subspace for a Lie algebra.
Additionally, this concept can be referred to as a "liezator"1, a subspace consisting
only of the zero vector if the algebra is a Lie algebra. However, for non-Lie
Leibniz algebras, this subspace would contain at least one nonzero element.
Furthermore, the Leibniz kernel Leib(L) is the smallest ideal of L such that
the quotient algebra becomes a Lie algebra. Indeed, it is easy to observe that
this is a Lie algebra since, for every element in L/ Leib(L), the bracket is
alternating, and the Jacobi identity holds (which follows from alternativity and
the left di�erential identity). This quotient algebra is frequently denoted as
LLie := L/ Leib(L). The upcoming elementary result holds generally for any

1
Termed by Gorbatsevich in [43].
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class of algebras. Nevertheless, for completeness, we will give a specific proof in
the context of Leibniz algebras.

Theorem 1.3.8 (Correspondence Theorem). Let L be a left Leibniz algebra
and let I be an ideal of L. Every subalgebra of the quotient algebra L/I is of
the form K/I = {k + I | k œ K}, where I Æ K Æ L. Conversely, if I Æ K Æ L,
then K/I Æ L/I.

Proof. Let K
Õ a subalgebra of L/I. We define the subset f(K Õ) ™ L as

f(K Õ) = {x œ L | x + I œ K
Õ} .

Clearly, I ™ f(K Õ). Thus, for every x, y œ f(K Õ) we have

x + I, y + I œ K
Õ ∆ [x + I, y + I] = [x, y] + I œ K

Õ ∆ [x, y] œ f(K Õ).

Then f(K Õ) is a subalgebra of L that contains I and K
Õ = f(K Õ)/L.

Conversely, let K be a subalgebra of L such that I Æ K Æ L. Let K/I =
{k + I | k œ K} ™ L/I. Since

[k1 + I, k2 + I] = [k1, k2] + I œ K/I,

for all k1, k2 œ K, then K/I Æ L/I.

Notice that the correspondence theorem can be applied to either a left or
a right ideal. Thus, each left (respectively right) ideal of the quotient Leibniz
algebra L/I takes the form K/I, where K is a left (right) ideal that contains I,
and vice versa.

Definition 1.3.9. Let (L1, [·, ·]1) and (L2, [·, ·]2) be two left Leibniz algebras
over the same field F. Then „ : L1 æ L2 is a homomorphism of left Leibniz
algebras if „ is a linear map and if it satisfies

„([x, y]1) = [„(x), „(y)]2 for all x, y œ L1.

The same isomorphism theorems that apply to Lie algebras (or groups) also
hold for Leibniz algebras, and the proof is the classical one.

Theorem 1.3.10 (Isomorphism Theorems).

1. Let „ : L1 æ L2 be a homomorphism of Leibniz algebras. Then ker „ is an
ideal of L1, Im „ is a subalgebra of L2, and

L1/ ker „ ≥= Im „.

2. If I and J are two ideals of a Leibniz algebra, then (I + J)/J ≥= I/(I fl J).

3. Suppose that I and J are ideals of the Leibniz algebra L such that I ™ J .
Then J/I is an ideal of L/I and

(L/I)/(J/I) ≥= L/J.
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The quotient mapping fi : L æ LLie is a (surjective) homomorphism of
Leibniz algebras. In other words, one has an exact sequence of Leibniz algebras

0 Leib(L) L LLie 0.
i fi

As we have already seen, many definitions provided for Leibniz algebras are
not significantly di�erent from those given for Lie algebras, and the next one is
no exception.

Definition 1.3.11. A linear transformation d : L æ L is a derivation if

d([x, y]) = [d(x), y] + [x, d(y)] for allx, y œ L.

For a left Leibniz algebra L and for every x œ L the operator Lx : L æ L,

Lx : y ‘æ [x, y] ,

for every y œ L, is a derivation of L. Respectively, for a right Leibniz algebra L

and for every x œ L the operator Rx : L æ L,

Rx : y ‘æ [y, x]

is a derivation of L. So, left Leibniz algebras are characterized by this property,
namely that every left (right) multiplication is a derivation. It is well-known
that the set of derivations of a Lie algebra is still a Lie algebra. However, for a
Leibniz algebra L, the set of derivations Der(L) (with the usual bracket, namely
[d1, d2] = d1d2 ≠ d2d2 for all d1, d2 œ Der(L)) forms a specific type of Leibniz
algebra, which is, in fact, a Lie algebra. We recall that this fact is true for any
class of algebras. Left and right multiplications are called inner derivations on
L, and the set of inner derivations is denoted as L(L) (as R(L) if L is a right
Leibniz algebra). As in the Lie case, this set is an ideal of Der(L).

The center of a Lie algebra is defined as the subalgebra of elements that
commute with every other element in the algebra, meaning that the Lie bracket
of those elements with any element in the algebra is zero. Clearly, for Leibniz
algebras, there is a similar notion that extends the concept of the center of
a Lie algebra, with some predictable di�erences. Notice that in the following
definition, it does not matter whether the algebra is on the left or on the right.

Definition 1.3.12. Let L be Leibniz algebra. The left center and the right
center of L are defined, respectively, as

Zl(L) = {x œ L | [x, y] = 0, ’y œ L} and Zr(L) = {x œ y | [y, x] = 0, ’y œ L} .

The center of L is the subspace Z(L) = Zl(L) fl Zr(L).

Clearly, for a Lie algebra, the left and the right center coincide.
We immediately see a result that helps us understand how these two centers

are slightly di�erent from the center of a Lie algebra in general. In the case of
Lie algebras, it is well-known that the center is an ideal. Here, however, we have
the following.
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Proposition 1.3.13. Let L be a left Leibniz algebra. Then Zl(L) is an ideal of
L.

Proof. By Equation (1.3) and Equation (1.1) we have, respectively,

[[x, z] , y] = [x, [z, y]] ≠ [z, [x, y]] = 0 ≠ 0 = 0,

and
[[z, x] , y] = [z, [x, y]] ≠ [x, [z, y]] = 0 ≠ 0 = 0,

for all x, y œ L and z œ Zl(L)

The surprising thing is that, for a left Leibniz algebra, the left center is a
two-sided ideal, while the right center may not even be a subalgebra. For a right
Leibniz algebra is exactly the opposite. Additionally, the left and right center
center are di�erent, even they might have di�erent dimensions.

Example 1.3.13.1. Let L = Èe1, e2, e3Í with non-zero brackets [e1, e1] = e2 and
[e1, e2] = e3. L is a left Leibniz algebra. From Leibniz brackets, we observe that
the left center Zl(L) = Èe2, e3Í. The right center Zr(L) is generated by e3. Indeed
x = x1e1 +x2e2 +x3e3 œ Zr(L) if and only if, for every y = y1e1 +y2e2 +y3e3 œ L,
we have [y, x] = 0, that is

[y1e1 + y2e2 + y3e3, x1e1 + x2e2 + x3e3] = y1x1e2 + y1x2e3 = 0.

Thus, for every y1 œ F, we have
Y
]

[
y1x1 = 0
y1x2 = 0

and then x1 = x2 = 0. Clearly, in this case Zr(L) is a subalgebra of L since is
abelian. Nevertheless, its dimension is di�erent from that of the left center:

dim Zr(L) = 1 < 2 = dim Zl(L).

Proposition 1.3.14. The Leibniz kernel Leib(L) is contained in the left center
Zl(L).

Proof. For every x, y œ L, we have

[x, [x, y]] = [[x, x] , y] + [x, [x, y]] ,

and then [[x, x] , y] = 0.

Corollary 1.3.15. The Leibniz kernel Leib(L) is an abelian ideal of L:

Recall that, for a left Leibniz algebra L, Der(L) is a Lie algebra. We denote
with L(L) = {Lx | x œ L} (R(L) = {Rx | x œ L}) the set of all left (right)
multiplication operators.

Proposition 1.3.16. Let L be a left (right) Leibniz algebra. L/ Zl(L) (respec-
tively, L/ Zr(L)) is (anti)isomorphic to L(L) (respectively, R(L)).
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Proof. We define the linear map

Ï : L/ Zl(L) æ L(L)
x + Zl(L) ‘æ Lx.

This map is well-defined since, for every x + Zl(L), y + Zl(L) œ L/ Zl(L), x +
Zl(L) = y + Zl(L) implies that x ≠ y œ Zl(L), then [x ≠ y, z] = 0 for all z œ L,
and [x, z] = [y, z] .

Surjectivity is trivial, and injectivity follows from

Ï(x + Zl(L)) = 0 ∆ [x, z] = 0, ’z œ L ∆ x œ Zl(L).

Finally, Ï([x, y] + Zl(L)) = L[x,y] and, for every z œ L, by Equation (1.3)
follows that

L[x,y](z) = [[x, y] , z]
= [x, [y, z]] ≠ [y, [x, z]]
= (LxLy ≠ LyLx)(z)
= [Lx, Ly] (z).

If L is a right Leibniz algebra, the linear map is

Ï : L/ Zr(L) æ R(L)
x + Zr(L) ‘æ Rx.

and by similar arguments one can prove that Ï is well-defined, injective and
surjective. To prove the anti-isomorphism we have to show that Ï([x, y] +
Zr(L)) = [Ï(y), Ï(x)]. Indeed, by Equation (1.4), we have

R[x,y](z) = [z, [x, y]]
= [[z, x] , y] ≠ [[z, y] , x]
= (RyRx ≠ RxRy)(z)
= [Ry, Rx] (z),

for all z œ L.

1.4 Nilpotency and solvability
The definitions of nilpotency and solvability for Leibniz algebras are analogous
to those for Lie algebras.

Definition 1.4.1. The lower central series of L is defined recursively as follows

L
1 = L, L

k+1 = [L, L
k], k Ø 1.

L is said to be nilpotent, if there exists n œ N such that L
n = 0. The minimal

number n with such property is said to be the index of nilpotency of the algebra
L. Equivalently, the Leibniz algebra L is said n-step nilpotent.
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Example 1.4.1.1.

• Every nilpotent Lie algebra is nilpotent as a Leibniz algebra.

• Let L be the left Leibniz algebra with basis {e1, e2, . . . , en} and non-zero
brackets as below:

i) Y
__]

__[

[e1, ei] = ei+1 1 Æ i Æ n ≠ 3,

[en≠1, e1] = e2 + en

[en≠1, ei] = ei+1 2 Æ i Æ n ≠ 3,

ii) Y
]

[
[e1, ei] = ei+1 1 Æ i Æ n ≠ 3,

[en≠1, e1] = en.

In each case L is nilpotent.

In order to prove that the direct sum of two nilpotent left Leibniz algebras
is nilpotent, we will prove the following results.

Lemma 1.4.2. Let L1 and L2 be left Leibniz algebras and L = L1 ü L2. Then,
for all k Ø 1,

L
k = L

k
1 ü L

k
2.

Proof. We will prove the statement by induction on k. For k = 1 is trivial. Then
we suppose the formula above holds for k ≠ 1. Thus, we have

L
k =

Ë
L1 ü L2, (L1 ü L2)k≠1

È

=
Ë
L1 ü L2, L

k≠1
1 ü L

k≠1
2

È

=
Ë
L1, L

k≠1
1

È
ü

Ë
L2, L

k≠1
2

È

= L
k
1 ü L

k
2.

Proposition 1.4.3. Let L1 and L2 be nilpotent left Leibniz algebras. Then
L = L1 ü L2 is nilpotent.

Proof. Let k1 and k2 the indices of nilpotency respectively of L1 and L2. We set
k := max {k1, k2}. Hence, by the previous lemma, L

k = L
k
1 ü L

k
2 = 0.

Definition 1.4.4. The derived series of L is defined recursively as follows

L
(1) = L, L

(k+1) = [L(k)
, L

(k)], k Ø 1.

L is said to be solvable, if there exists n œ N such that L
n = 0. The minimal

number n with such property is said to be the index of solvability of the algebra
L. Equivalently, the Leibniz algebra L is said n-step solvable.

Example 1.4.4.1.
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• Every solvable Lie algebra is solvable as a Leibniz algebra.

• The direct sum of solvable Leibniz algebras is solvable.

• Let L be the left Leibniz algebra with basis {e1, e2, . . . , en, x} and non-zero
brackets as below:

Y
__]

__[

[e1, ei] = ei+1 1 Æ i Æ n ≠ 1,

[e1, x] = e1

[ei, x] = ≠iei 1 Æ i Æ n.

L is solvable.
Obviously,

L
1 ´ L

2 ´ · · · ´ L
i ´ · · · ,

and
L

(1) ´ L
(2) ´ · · · ´ L

(i) ´ · · · .

Moreover, as L
(i) ™ L

i, it follows that every nilpotent Leibniz algebra is solvable.
As in the Lie case, the converse is not true.

The Engel’s theorem is certainly one of the most classic criteria for the
nilpotency of Lie algebras. This result has its version for Leibniz algebras. In [5],
[43], and [68], the reader can find many results on Leibniz algebras, especially
for the nilpotent ones. In order to prove Engel’s theorem for Leibniz algebras,
we look at some results that we need.
Lemma 1.4.5. Let L be a left Leibniz algebra and let I be an ideal of L. Then,
for all k Ø 1, we have

(L/I)k = (Lk + I)/I.

Proof. We prove this relation by induction on k. For k = 1, the result is trivial.
Suppose that the statement is true for k ≠ 1. We shall prove it for k. Hence we
have

(L/I)k =
Ë
L/I, (L/I)k≠1

È
=

Ë
L/I, (Lk≠1 + I)/I

È
.

Now let y œ I, x œ L, and xk≠1 œ L
k≠1. Thus,

[x + I, xk≠1 + y + I] = [x, xk≠1] + [x, y] + [x, I] .

Clearly, [x, xk≠1] œ L
k. Since I is an ideal of L, then [x, y] œ I and [x, I] ™ I.

Corollary 1.4.6. For all k Ø 1, we have

(L/ Zl(L))k = (Lk + Zl(L))/ Zl(L).

Lemma 1.4.7. Let I be an ideal of L such that I ™ Zl(L). If L/I is nilpotent,
then L is nilpotent.
Proof. By the previous lemma, if (L/I)m = 0, then

(Lm + I)/I = 0 ∆ L
m ™ I ™ Zl(L) ∆ L

m+1 = 0.
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This result is equivalent to the following.
Lemma 1.4.8. A central extension of a nilpotent Leibniz algebra by a nilpotent
Leibniz algebra is nilpotent.
Theorem 1.4.9. Let L be a left Leibniz algebra. If all operators Lx of left
multiplication are nilpotent, then the algebra L is nilpotent.
Proof. Since L/ Leib(L) is a Lie algebra, then the result holds. For every x œ L,
Lx is nilpotent by hypothesis, then Lx+Leib(L) is nilpotent. Then, every left
multiplications of the Lie algebra L/ Leib(L) is nilpotent and by Engel’s theorem
we have that L/ Leib(L) is a nilpotent Lie algebra. Since Leib(L) ™ Zl(L), by
Lemma 1.4.7 we conclude the proof.

Definition 1.4.10. The maximal nilpotent ideal of a Leibniz algebra is said to
be the nilradical of L, further denoted by N .
Proposition 1.4.11. For any left Leibniz algebra L, there exists a maximal
nilpotent ideal containing all nilpotent ideals of L.
Proof. Since L/ Leib(L) is a Lie algebra, then the result holds and there exists
a maximal nilpotent ideal N Õ Æ L/ Leib(L). By the Correspondence Theorem
1.3.8, there exists an ideal Leib(L) ™ N ™ L such that N / Leib(L) = N Õ. Since
N Õ is nilpotent and Leib(L) ™ Zl(L), then N is nilpotent. This is the maximal
ideal of L with this property. Indeed, if an ideal M existed in L with M � N ,
then M/I � N /I would hold, where N /I is the maximal nilpotent ideal of
L/I, resulting in an absurdity.

Proposition 1.4.12. Let L be a left Leibniz algebra. If all left multiplication
operators are nilpotent, then all right multiplication operators are also nilpotent.
Proof. We will prove this result by proving the following equation

R
n
x = (≠1)n≠1

RxL
n≠1
x ,

for every x œ L and n Ø 2. By induction, for n = 2 we have R
2
x(y) = ≠RxLx(y),

for every x, y œ L, since [[x, y] , x] = ≠ [[y, x] , x] (Lemma 1.1.3 with z = x). We
now suppose the formula above is true for n ≠ 1, i.e.

R
n≠1
x = (≠1)n≠2

RxL
n≠2
x ,

and we will prove it for n. Then, for every x, y œ L, by induction and the
Lemma 1.1.3, we have

R
n
x(y) =

Ë
R

n≠1
x (y), x

È
=

Ë
(≠1)n≠2

RxL
n≠2
x (y), x

È

= (≠1)n≠2
ËË

L
n≠2
x (y), x

È
, x

È

= (≠1)n≠1
ËË

x, L
n≠2
x (y)

È
, x

È

= (≠1)n≠1
RxL

n≠1
x (y).
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For the purpose of demonstrating the Lie’s theorem for Leibniz algebras as
well, let us explore some results on solvability.

Lemma 1.4.13. Let Ï : L1 æ L2 be an epimorphism of left Leibniz algebras,
Then

Ï(L(k)
1 ) = L

(k)
2 ,

for every k Ø 1.

Proof. We prove this relation by induction on k. For k = 1 is trivial. Suppose
the result holds for k ≠ 1, i.e. Ï(L(k≠1)

1 ) = L
(k≠1)
2 . Hence, we have

Ï(L(k)
1 ) = Ï(

Ë
L

(k≠1)
1 , L

(k≠1)
1

È
)

=
Ë
Ï(L(k≠1)

1 ), Ï(L(k≠1)
1 )

È

=
Ë
L

(k≠1)
2 , L

(k≠1)
2

È
= L

(k)
2 .

Lemma 1.4.14. Let L a left Leibniz algebra.

i) If L is solvable, then every subalgebra and every homomorphic image of L

are sovable.

ii) Suppose that L has an ideal I such that I and L/I are solvable. Then L

is solvable.

iii) If I and J are solvable ideals of L, then I + J is a solvable ideal of L.

Proof.

i) If L1 is a subalgebra of L, then for each k it is clear that L
(k)
1 ™ L

(k),
so if L

(k) = 0, then also L
(k)
1 = 0. The second statement follows by

Lemma 1.4.13.

ii) Applying the same lemma with the canonical homomorphism fi : L æ L/I,
we obtain (L/I)(k) = (L(k) + I)/I. If L/I is solvable, then for some m Ø 1
we have (L/I)(m) = 0, that is L

(m) + I = I and therefore L
(m) ™ I. If I is

also solvable, then I
(k) = 0 for some k Ø 1 and hence (Lm)(k) ™ I

(k) = 0.
By definition, we have (L(m))(k) = L

(m+k) and this concludes the proof.

iii) By the second isomorphism theorem (I + J)/I ≥= J/I fl J , so it is solvable
by i), Since I is also solvable, ii) implies that I + J is solvable.

Corollary 1.4.15. For any left Leibniz algebra L, there exists a maximal solvable
ideal containing all solvable ideals of L.

Proof. Let R be a solvable ideal of largest possible dimension. Suppose that
I is any solvable ideal. By iii) of the previous lemma, we know that R + I is
a solvable ideal. Now R ™ R + I and hence dim R Æ dim(R + I) and hence
R = R + I.
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Definition 1.4.16. The maximal solvable ideal of a Leibniz algebra is said to
be the radical of L (or solvable radical), further denoted by R or Rad(L).

Theorem 1.4.17. Let L be a left Leibniz algebra. Then there exists a complete
flag of subspaces wich is invariant under the left multiplication operator Lx, for
every x œ L.

Proof. For Lie algebras this theorem is well known. Now let L be an arbitrary
solvable Leibniz algebra. Since the Leibniz kernel Leib(L) is central, then the
solvability of the Leibniz algebra L is equivalent to the solvability in the quotient
space L/ Leib(L) and by lifting and considering the flag space of ideal, one may
present L itself as a full flag space. By the classical Lie theorem L/ Leib(L) has
a complete flag, which is invariant under the multiplication (both left and right).
Let x be an element of L. Its right action on Leib(L) is trivial and therefore in
Leib(L) there exists a complete flag, which is invariant under left multiplication.
Extending it to the full invariant flag in the quotient space until the full flag in L,
we obtain a complete flag in L, which is invariant under the left multiplication
operator.

This result is equivalent to say that there is a basis of L such that the matrix
associated with Lx with respect to such a basis is upper triangular, for every
x œ L. Indeed, suppose that

{0} µ L1 µ L2 µ · · · µ Ln = L

is a complete flag of subspaces of L, with dim Li = i, for every 1 Æ i Æ n. Li is
invariant under the left multiplications and without loss of generality we suppose
that {e1, e2, . . . , ei} is a basis of Li and therefore B = {e1, e2, . . . , en} is a basis
of L. Hence the matrix associated with Lx with respect to B is upper triangular.
The converse is trivial.

Now, let us examine the following connection between the radical and the
nilradical.

Proposition 1.4.18. Let R be the radical of a left Leibniz algebra L and let N
be the nilradical of L. Then [L, R] ™ N .

Proof. The assertion is true for Lie algebras. Let L be a left Leibniz algebra.
Then Leib(L) ™ N ™ R and Leib(L) ™ Zl(L). Consider the Lie algebra
LLie = L/ Leib(L). From the definitions of the radical and nilradical it follows
that RLie = R/ Leib(L) and NLie = N / Leib(L) are the radical and nilradical
of the Lie algebra LLie, respectively. Since LLie is a Lie algebra we have
[LLie, RLie] µ NLie. Then, by the inclusions Leib(L) ™ N ™ R, we obtain
[L, R] ™ N .

Corollary 1.4.19. [R, R] µ N . In particular, [R, R] is nilpotent.

Corollary 1.4.20. A left Leibniz algebra L is solvable if and only if [L, L] is
nilpotent.
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Proof. In one direction the statement is given in the last corollary. The converse
is proved as follows. If L = R, we are done. Next suppose that R ( L. As
[L, L] is nilpotent, the ideal [L, L] + R is solvable and

(L/R)Õ = ([L, L] + R) /R

is solvable. Now, the Lie algebra L/R is semisimple because it does not contain
any non-zero solvable ideal. Thus ([L, L] + R) /R is the zero ideal of L/R, that
is [L, L] ™ R and L/R is a non-zero abelian Lie algebra. This is a contradiction
to the fact that L/R is semisimple.

1.5 Classification of low-dimensional Leibniz
algebras

Before we delve into the significance of classifying Lie and Leibniz algebras, it is
essential to outline one of the fundamental theorems in the field of Lie algebras.

Theorem 1.5.1 (Levi’s Theorem). Every Lie algebra g is the semi-direct sum
of its radical Rad(g) and a semisimple subalgebra s such g = Rad(L) ü s as a
vector space.

This result was first conjectured by W. Killing and É. Cartan, and later
proven by E. Levi in 1905 (see [60]). This result can be extended to Leibniz
algebras (see [7]).

Theorem 1.5.2. Let L be a finite-dimensional Leibniz algebra over a field of
characteristic 0 and let R be its soluble radical. There exists a semi-simple
subalgebra S of L such that L = S + R and S fl R = 0.

The classification of Lie algebras and Leibniz algebras is of fundamental and
crucial interest for a better understanding of these algebraic structures. However,
along with the strength of these results comes a high level of di�culty. To better
understand, the problem of classifying Lie algebras can be divided into three
parts:

1. classification of nilpotent Lie algebras;

2. description of solvable Lie algebras with given nilradical;

3. description of Lie algebras with given radical.

The initial problem is undoubtedly the most challenging of the three. It should
be noted that, currently, the classification of nilpotent Lie algebras is only known
up to dimension 7. (see [27]). This section is devoted to the classification of
Leibniz algebras in low dimensions. In dimension 3, just a summary table is
given showing all isomorphism classes for complex Leibniz algebras of dimension
3.
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1.5.1 One-dimensional Leibniz algebra
Theorem 1.5.3. Let L be a (left or right) Leibniz algebra over a field F. If
dimF L = 1, then L is abelian.

Proof. Let x œ L be a non-zero element of L such that L = ÈxÍ. Suppose that
L is not abelian, thus [x, x] ”= 0 and there exists – œ Fú such that [x, x] = –x.
If L is a left Leibniz algebra, by Equation (1.1) we have

[x, [x, x]] = [[x, x] , x] + [x, [x, x]]
– [x, x] = – [x, x] + – [x, x]
– [x, x] = 0.

This would imply that – = 0, which is a contradiction. If L is a right Leibniz
algebra, by Equation (1.2) we obtain the same and this completes the proof.

1.5.2 Two dimensional Leibniz algebras
C. Cuvier classified two-dimensional Leibniz algebras in [28] in 1994. In this
theorem, we summarize this classification. We also propose a proof that is
di�erent from the one found in the original work of C. Cuvier.

Theorem 1.5.4. Let L be a left Leibniz algebra over a field F. If dimF L = 2,
with L = Èe1, e2Í, then L is isomorphic to one of the following algebras:

L1 : abelian algebra
L2 : [e1, e2] = e2, Lie algebra
L3 : [e2, e2] = e1

L4 : [e2, e1] = [e2, e2] = e1

Proof. If L is abelian, then L = L1. So, let L be a left a non-abelian Leibniz
algebra, with L = Èe1, e2Í and the following brackets:

[e1, e1] = –1e1 + –2e2 [e1, e2] = —1e1 + —2e2,

[e2, e1] = “1e1 + “2e2, [e2, e2] = ”1e1 + ”2e2,

where –i, —i, “i, ”i œ F, i = 1, 2. By Proposition 1.3.14 we have Leib(L) ™ Zl(L)
and dimF Zl(L) Æ 1 since L is not abelian. If dimF Zl(L) = 0, hence Leib(L) = 0
and L is the two-dimensional non-abelian Lie algebra L2. Now let dimF Zl(L) = 1,
then Leib(L) ”= 0. If not, L would be a two-dimensional Lie algebra with center
Z(L) of dimension 1 but this algebra does not exist. Without loss of generality,
let Leib(L) = Zl(L) = Èe1Í, hence –i = —i = 0, i = 1, 2 and we have

[e2, e1] = “1e1 + “2e2, [e2, e2] = ”1e1.



24 Chapter 1. Brief introduction to Leibniz algebras

By Equation (1.1) we have

[e2, [e1, e2]] = [[e2, e1] , e2] + [e1, [e2, e2]]
[[e2, e1] , e2] = 0

“2”1e1 = 0.

If ”1 = 0, then Leib(L) = 0 and this is a contradiction. Hence we must have
“2 = 0 and

[e2, e1] = “1e1, [e2, e2] = ”1e1.

If “1 = 0 we obtain the symmetric Leibniz algebraL3 = ÈeÕ
1, e

Õ
2Í with non-

zero bracket [eÕ
2, e

Õ
2] = e

Õ
1 by the basis transformation e

Õ
1 = ”1e1, and e

Õ
2 = e2.

Otherwise, if “1 ”= 0, by the basis transformation e
Õ
1 = ”1

“2
1
e1, and e

Õ
2 = 1

“1
e2 we

obtain the left Leibniz L4 with non-zero brackets

[eÕ
2, e

Õ
1] = e

Õ
1, and [eÕ

2, e
Õ
2] = e

Õ
1.

Remark 1.5.1. The Leibniz algebra L4 is only left, unlike of the symmetric
Leibniz algebra L3. Indeed, by a direct computation of right di�erential identity
1.2 for the triple {e2, e2, e2}, we have

[[e2, e2] , e2] = [[e2, e2] , e2] + [e2, [e2, e2]]
[e1, e2] = [e1, e2] + [e2, e1]

0 ”= e1.

1.5.3 Three-dimensional Leibniz algebras
A list of complex Leibniz algebras of dimension 3, up to isomorphism, can be
found in [4] or [19]. A classification of these algebras over an arbitrary field
of di�erent characteristic than two is also known (see [70] and [6]). The latter
classification is accomplished utilizing case-by-case considerations, with respect
to isomorphism invariants such as dimF Zl(L) and dimF L

k.
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Algebra Multiplication Table Classification
L1(–)
– ”= 0
– œ C

[e1, e1] = e3, [e1, e2] = e2 + e3
[e1, e3] = –e3

Solvable
Leibniz

L2 [e1, e1] = e3, [e1, e2] = e2 + e3 Solvable
Leibniz

L3 [e1, e2] = e3, [e1, e3] = ≠2e3
[e2, e3] = 2e3

Simple
Lie

L4(–) [e1, e1] = e3, [e1, e2] = ≠e2
[e1, e3] = –e3, [e2, e1] = e2

Solvable
Leibniz

L5 [e1, e1] = e3, [e1, e3] = e3
[e1, e2] = e3

Solvable
Leibniz

L6 [e1, e3] = e2, [e1, e1] = e3 Nilpotent
Leibniz

L7 [e1, e2] = e3, [e1, e3] = e3
[e2, e2] = e3, [e2, e3] = e3

Solvable
Leibniz

L8 [e1, e1] = e2, [e1, e2] = e2 Solvable
Leibniz

L9(–)
– ”= 0, 1
– ¡ –

≠1

[e1, e2] = e2, [e1, e3] = –e3 Solvable
Lie

L10 [e1, e2] = e2 Solvable
Lie

L11 [e1, e2] = e2, [e1, e3] = e2 + e3 Solvable
Lie

L12(–)
– œ C

[e1, e1] = –e3, [e1, e2] = e3
[e2, e2] = e3

Nilpotent
Leibniz

L13 [e2, e2] = e1, [e2, e3] = e1
[e3, e2] = e1

Nilpotent Leibniz

L14 [e1, e1] = e3, [e1, e2] = e2
[e1, e3] = e3

Solvable
Leibniz

L15 [e1, e1] = e2
Composable,

Nilpotent Leibniz

L16 [e1, e2] = e2, [e1, e3] = e3 Solvable
Lie

L17 [e1, e2] = e3 Nilpotent Lie
L18 - Abelian

Table 1.1: Isomorphism classes of three-dimensional Leibniz

algebras.
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Chapter 2

Two-step nilpotent algebras and
their integration

The content of this chapter is predominantly derived from a collaborative paper
in which I have co-authored [58].

Let us begin this chapter by demonstrating how it is possible to associate
bilinear forms with the Leibniz bracket and how to reduce them to their canonical
representation. Let L be a two-step nilpotent left Leibniz algebra and suppose
that dimF [L, L] = t, then let {z1, . . . , zt} be a basis of [L, L]. For any x, y œ L

we have
[x, y] = –1z1 + · · · + –tzt,

for suitable –1, . . . , –t œ F. We can thus associate, for all i = 1, . . . , t, a
bilinear form „i : L ◊ L æ F for any x, y œ L, which maps (x, y) to the
scalar –i. It is noteworthy that if L were a Lie algebra, the bilinear forms
defined above would be skew-symmetric. Let now L be a nilpotent Leibniz
algebra with dimF [L, L] = 1 with [L, L] = spanF {z}, where z œ L is fixed.
According to the above considerations, for any x, y œ L, [x, y] = „(x, y)z, where
„ : L ◊ L æ F is a bilinear form. We note that, if L is not a Lie algebra, then
Leib(L) = [L, L] ™ Zl(L).

The bilinear form „ can be decomposed into its symmetric and skew-
symmetric parts, that are respectively

‡ = „ + „
t

2 and – = „ ≠ „
t

2 ,

where „
t is the transpose of „, that is „

t(x, y) = „(y, x) for every x, y œ L. By
fully classifying this pair of bilinear forms, it is possible to obtain a classification
of this class of Leibniz algebras. Now our claim is to reduce simultaneously such
pair of bilinear forms into a canonical form. Valuable contributions regarding
this have been provided by Kronecker in [56] and Dieudonné in [34]. We recall
here some definitions and some results from these works. A short overview on
this subject can be found in [37].

2.1 Kronecker Modules
The problem of simultaneously reducing a pair of symmetric bilinear forms over
a given field is a classical one. In 1868, K. Weierstrass initially solved this
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problem for fields of characteristic zero under the assumption that both forms
are non-degenerate. K. Kronecker ([56], 1890) and L. E. Dickson ([33], 1909)
have provided a complete answer for fields of characteristic zero. J. Williamson
([83], 1935 and [82], 1945) extended these results to fields of characteristic not
equal to 2, requiring the condition that at least one form is non-degenerate. W.
Waterhouse ([80], 1976) solved the cases where both forms are degenerate, in
addition to the case of symmetric bilinear forms (even degenerate) over a field
with characteristic 2 ([81], 1977).

P. Gabriel [42] and R. Scharlau [75] published papers in the 1970s highlighting
the fundamental role J. Dieudonné’s ([34], 1946) classification of pairs of linear
mappings or Kronecker modules plays in the study of pairs of bilinear forms. R.
Scharlau provided a complete answer for a pair of alternating bilinear forms, as
noted by W. Waterhouse. The question of one form being symmetric and the
other alternating has been addressed by various authors, including C. Riehm
[71] and P. Gabriel [42], but their arguments no longer involve the theory of
Kronecker modules.

Definition 2.1.1. A Kronecker module over a field F is a quadruple � =
(V1, V2; f1, f2), where V1, V2 are vector spaces over F and f1, f2 : V1 æ V2 are
linear maps. An isomorphism ÿ : � æ � from � onto the Kronecker module
� = (W1, W2; g1, g2) is a pair of bijective linear mappings ÿ = (ÿ1, ÿ2), where
ÿk : Vk æ Wk, such that ÿ2fk = gkÿ1, with k = 1, 2.

Starting from a Kronecker module, it is possible to obtain two further
Kronecker modules. The opposite Kronecker module of � is

�¶ := (V1, V2; f2, f1)

and the transpose Kronecker module of �

t� := (V ú
2 , V

ú
1 ; t

f1,
t
f2)

where we denote by t
f the transpose of the linear map f : V1 æ V2, a linear map

from the dual vector space V
ú

2 of V2 into the dual vector space V
ú

1 of V1, defined
by

t
f(xú

2)(x1) = x
ú
2(f(x1))

for all x1 œ V1 and x
ú
2 œ V2. A Kronecker module � is self-transpose if there

exists an isomorphism � æ t�.
Decomposing a Kronecker module into the direct sum of indecomposable

submodules allows for multiple possibilities, and the Krull-Remak-Schmidt The-
orem holds true for two distinct decompositions (see [48] p.83, Theorem 3.3).
This means that � = �1

m · · · m �t for a fixed number t of indecomposable
submodules �i, determined up to permutations and isomorphisms. As previ-
ously mentioned, Kronecker and Dieudounné classified the Kronecker modules
respectively in [56] and [34]. Let

�f (Fn
,Fn; id, f), n Ø 0, f œ EndFFn

�n(Fn
,Fn+1; f1, f2), n Ø 0,
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where

f1 : (x1, . . . , xn) ‘æ (x1, . . . , xn, 0) (2.1)
f2 : (x1, . . . , xn) ‘æ (0, x1, . . . , xn). (2.2)

Then, for a suitable endomorphism f œ EndFFn wich makes Fn an indecom-
posable F[f ]-module, an indecomposable Kronecker module is isomorphic to one
of �n, t�n, �f or �¶. Note that �f is self-transpose, while �n is not. Therefore,
� is self-transpose if and only if dimF V1 = dimF V2.

The Krull–Remak–Schmidt Theorem has the following useful corollary.
Corollary 2.1.2 (Exchange Theorem). Let � = �1

m �2 and � = �1
m �2

be two decompositions of �. If no indecomposable component �1 (resp. �1)
is isomorphic to any indecomposable component of �2 (resp. �2), then � =
�1

m �2 = � = �1
m �2.

2.1.1 Kronecker modules associated to nilpotent Leibniz
algebras L with dimF L

Õ = 1
Before associating a Kronecker module with a Leibniz algebra and, consequently,
with the bilinear forms – and ‡, it is necessary to see how this is done for two
generic symmetric or skew-symmetric forms. Furthermore, we will present some
helpful results for our purpose.

Let f1, f2 : V ◊ V æ F be a pair of bilinear forms defined on a F-vector
space V , each being symmetric or skew-symmetric. We can associate to the
triple F = (V ; f1, f2) the self-transpose Kronecker module �(F) = (V, V

ú; f̄1, f̄2),
where, for x œ V , f̄i(y) is the mapping y ‘æ fi(x, y), for i = 1, 2. For a nontrivial
subspace U of V we can set

U
‹ = {v œ V | f1(u, v) = f2(u, v) = 0 for any u œ U} ,

that is the orthogonal space of U with respect to both f1 and f2.
Definition 2.1.3. The triple F is decomposable if V = U ü U

‹.
Manifestly, any decomposition of V into the direct sum of two subspaces U1

and U2, orthogonal with respect to both f1 and f2, provides a decomposition
of �(F). The converse, in general, is not true. The canonical identification
of V = V

úú implies the subsequent identification �(F) = t�(F). Therefore,
the number of components of �(F) isomorphic to �n is the same as the ones
isomorphic to t�n. This leads to a decomposition of t� into self-transpose
submodules, with no isomorphic components in common. Consequently, this
provides an orthogonal decomposition of V , as claimed by the following lemma.
Lemma 2.1.4. Let �(F) = �1

m �2 with self-transpose �i, i = 1, 2. Assume
that no component �1 is isomorphic to any component of �2, then F decomposes.

In view of the above lemma, indecomposable F correspond to Kronecker
modules �(F) isomorphic to either (�f )r or (�¶

f )r, or (�n)s m(t�n)s. Moreover,
according to [80], [81], [71], and [75], direct computations on the bases show
that s = 1 and
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• r = 1 for an indecomposable pair of symmetric forms,

• r = 1, 2 for an indecomposable pair, where one is symmetric and the other
is alternating,

• r = 1 for an indecomposable pair of alternating bilinear forms.

There we have the following result.

Theorem 2.1.5. Let F be indecomposable. Then the Kronecker module �(F)
is isomorphic to either �f or �¶

f , or �n
m t�n.

Finally, we present a result proven by both Scharlau [75] and Waterhouse
[80], [81]. The former proved it for pairs of alternating forms, while the latter,
using di�erent techniques, proved it for pairs of symmetric forms.

Theorem 2.1.6. Let F be an indecomposable pair of degenerate bilinear forms
on a F-vector space V , each being symmetric or alternating. Then, V has odd
dimension 2n + 1 over F and F has representation

A
D1 J1

(±1)J t
1 0

B

,

A
D2 J2

(±1)J t
2 0

B

for suitable diagonal matrices D1, D2, where

J1 =

Q

cca

1 0
. . .

.

.

.

1 0

R

ddb and J2 =

Q

cca

0 1
.
.
.

. . .

0 1

R

ddb .

Moreover, if the characteristic of F is not 2, there exists a representation with
D1 = D2 = 0.

Now let ‡ and – be the pair of bilinear forms defined above. We observe
that, if v œ U

‹ and the characteristic of F is not 2, then „(u, v) = 0. Generally,
the converse is not true.

We will now demonstrate how to associate a Kronecker module to a Leibniz
algebra L, considering the aforementioned results. Let L

ú the dual vector space
of L and, for every x, y œ L, let –̄(x) and ‡̄(y) be the linear maps defined by

–̄(x) : z ‘æ –(x, z), ‡̄(y) : z ‘æ ‡(y, z), ’z œ L.

From the previous results, the indecomposable module (L, L
ú
, –̄, ‡̄) turns

out to be one of the following three pairs:
A

0 In

≠In 0

B

,

A
0 A

A
t 0

B

(2.3)
A

0 A

≠A
t 0

B

,

A
0 In

In 0

B

(2.4)
A

0 J1
≠J

t
1 0

B

,

A
0 J2
J

t
2 0

B

(2.5)
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where A œ Mn(F), and J1, J2 are the matrices associated with the linear appli-
cations 2.1. The following outcome provides a helpful instrument in the classifi-
cation of indecomposable nilpotent Leibniz algebras featuring a one-dimensional
derived subalgebra.

Proposition 2.1.7. Let L1 and L2 be Leibniz algebras of dimension n with
one-dimensional commutator ideals [L1, L1] = Fz1 and [L2, L2] = Fz2, and let
„1 and „2 be the bilinear forms associated with L1 and L2 respectively. One can
fix bases of L1 and L2 such that, if �1 and �2 are the matrices of „1 and „2
respectively, then L1 is isomorphic to L2 if and only if �1 is congruent to �2.

Proof. Let Ï : L1 æ L2 be a Leibniz algebras isomorphism and let {e1, . . . , en≠1, z1}
be a basis of L1. Then Ï(z1) = kz2, for some k œ Fú, and {Ï(e1), . . . , Ï(en≠1), kz2}
is a basis of L2 such that the associated matrix is �1. Then there exists a matrix
P œ GLn(F) such that P�2P

t = �1.
Conversely, we suppose that there exists P œ GLn(F) such that P�1P

t = �2.
�1 and �2 are matrices associated with bilinear forms, so P induces a change
of basis {e1, . . . , en≠1, z1} æ {e1, . . . , en≠1, kz1}, with k œ Fú, of L1. Thus the
isomorphism between L1 and L2 is given by the linear map

Ï(ei) = e
Õ
i, ’i = 1, . . . , n ≠ 1, Ï(kz1) = z2,

where
Ó
e

Õ
1, . . . , e

Õ
n≠1, z2

Ô
is a basis of L2.

Lemma 2.1.8. If A, B œ Mn(F) are similar matrices, then there exists a change
of basis that transforms the pairs 2.3 and 2.4 respectively in

A
0 In

≠In 0

B

,

A
0 B

B
t 0

B

and A
0 B

≠B
t 0

B

,

A
0 In

In 0

B

Proof. Let X œ GLn(F) such that B = XAX
≠1. Then the matrix

A
X 0
0 (X≠1)t

B

induces a change of basis that transforms the canonical pairs 2.3 and 2.4 respec-
tively in A

0 In

≠In 0

B

,

A
0 XAX

≠1

(XAX
≠1)t 0

B

and A
0 XAX

≠1

≠ (XAX
≠1)t 0

B

,

A
0 In

In 0

B

.

The first two canonical pairs showed above may be presented in a simpler
form. If A œ Mn(F) is not the zero matrix and L is indecomposable, A is the
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matrix of a power of a monic irreducible polynomial f(x) œ F[x] (see [50] or
Appendix A).

The next result states that, under a certain condition, the canonical pairs
2.3 and 2.4 can be transformed into each other. Before proceeding, we should
recall a definition of the congruence of n-tuples of matrices ([65], Chapter VI).

Definition 2.1.9. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bk) be two k-tuples
of matrices, with Aj, Bj œ Mn(F) for all j = 1, . . . , k. A and B are called
congruent provided there is a non-singular matrix P with Bj = PAjP

t for
j = 1, . . . , k.

Lemma 2.1.10. Let A œ Mn(F) be a non-singular matrix. Then the pair 2.3 is
congruent to the pair 2.4.

Proof. It is su�cient to show that
A

A
≠1 0
0 In

B A
0 A

≠A
t 0

B A
A

≠1 0
0 In

Bt

=
A

0 In

≠In 0

B

A
A

≠1 0
0 In

B A
0 In

In 0

B A
A

≠1 0
0 In

Bt

=
A

0 A
≠1

(A≠1)t 0

B

.

Otherwise, if we represent a singular matrix as an n ◊ n Jordan block with
an eigenvalue zero, we obtain a unique Kronecker module of type 2.4 up to
isomorphisms.

Definition 2.1.11. Let f(x) œ F [x] be a monic irreducible polynomial. Let
k œ N and let A be the companion matrix of f(x)k. We define the Heisenberg
Leibniz algebra lA2n+1 as the (2n+1)-dimensional indecomposable Leibniz algebra
with associated Kronecker module of type 2.3.

In general, for A = (aij) œ Mn(F) and suitable basis {e1, . . . , en, f1, . . . , fn, h}
of lA2n+1 the list of non-trivial commutators between basis elements amounts to

[ei, fj] = (”ij + aij) h, [fj, ei] = (≠”ij + aij) h, ’i, j = 1, . . . , n,

so we can associate with lA2n+1 the following structure matrix
Q

ccccccccccccca

0

0 In + A
.
.
.

0
0

≠In + A
t 0

.

.

.

0
0 · · · 0 0 · · · 0 0

R

dddddddddddddb

Notice that, if (aij) is the zero matrix, then we obtain the classical Heisenberg
algebra h2n+1.
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Definition 2.1.12. Let n œ N and let A be the companion matrix of the
polynomial x

n. We define the Kronecker Leibniz algebra kn as the (2n + 1)-
dimensional indecomposable Leibniz algebra with associated Kronecker module
of type 2.4.

Definition 2.1.13. We define the Dieudonné Leibniz algebra dn to be the
(2n + 2)≠dimensional Leibniz algebra with associated Kronecker module of type
2.5.

Remark 2.1.1. For every n œ N, the Kronecker Leibniz algebra kn and the
Dieudonné Leibniz algebra dn are not Lie algebras and they are unique up to
isomorphism, because of the unicity of the Kronecker modules of type 2.4 and
2.5.

2.2 Complex and Real Heisenberg Leibniz al-
gebras

Now we want to describe in detail the indecomposable Heisenberg Leibniz
algebras in the case the field F is C or R.

2.2.1 The case F = C
Let k œ N and let f(x) = x ≠ a œ C[x]. Then the companion matrix of f(x)k is

A =

Q

ccccccccca

0 · · · · · · 0 ≠ck

1 . . .
.
.
. ≠ck≠1

0 1 . . .
.
.
.

.

.

.

.

.

.
. . .

. . . 0
.
.
.

0 · · · 0 1 ≠c1

R

dddddddddb

œ Mk(C),

where cj =
1

k
j≠1

2
(≠a)k≠j+1, for every j = 1, . . . , k. In this case, however, it is

more convenient to use the Jordan canonical form. Indeed, it is well known that
the matrix A is similar to the k ◊ k Jordan block of eigenvalue a

Ja =

Q

ccccccccca

a 0 0 · · · 0

1 . . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

.

.

.
. . .

. . . 0
0 · · · · · · 1 a

R

dddddddddb

.
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Thus lA2k+1
≥= lJa

2k+1 and the Leibniz bracket is given by

[e1, fj] =”1,j(1 + a)h
[ei, fj] =(”i,j(1 + a) + ”i≠1,j)h, ’i = 2, . . . , k;
[fj, ei] =(”i,j(≠1 + a) + ”i,j+1)h, ’j = 1, . . . , k ≠ 1
[fk, ei] =”i,k(≠1 + a)h,

where {e1, . . . , en, f1, . . . , fn, h} is a basis of lJa
2k+1.

Proposition 2.2.1. Let a œ C. The Heisenberg-Leibniz algebras lJa
2k+1 and lJ≠a

2k+1
are isomorphic.

Proof. The algebras lJa
2k+1 and l≠Jt

a
2k+1 are isomorphic via the linear map Ï defined

by
Ï(ei) = f

Õ
i , Ï(fi) = e

Õ
i, Ï(h) = ≠h

Õ
, ’i = 1, · · · , n

where {e1, · · · , en, f1, · · · , fn, h} and {e
Õ
1, · · · , e

Õ
n, f

Õ
1, · · · , f

Õ
n, h

Õ} are bases of lJa
2k+1

and l≠Jt
a

2k+1 respectively. Moreover, the matrix ≠J
t
a is similar to the n ◊ n Jordan

block J≠a.
Thus lJa

2k+1
≥= lJ≠a

2k+1.

Regarding the quest for a necessary and su�cient condition for the iso-
morphism class of Heisenberg Leibniz algebras, the problem remains unsolved.
In Section 3.2, we will delve into recent achievements made in this direction.
However, it is crucial to emphasize that when k = 1, the problem has been
completely resolved.

Proposition 2.2.2. Let a, a
Õ œ C. The Heisenberg Leibniz algebras la3 and la

Õ
3

are isomorphic if and only if a
Õ = ±a.

Proof. It is easy to check that the matrix
Q

ca
0 1 0
1 0 0
0 0 ≠1

R

db

defines a Leibniz algebras isomorphism Ï between la3 and l≠a
3 . Indeed, the

determinant of the above matrix is 1,

Ï([e1, f1]) = Ï((1 + a)z) = ≠(1 + a)zÕ

[Ï(e1), Ï(f1)] = [f Õ
1, e

Õ
1] = (≠1 ≠ a)zÕ

and

Ï([f1, e1]) = Ï((≠1 + a)z) = (1 ≠ a)zÕ

[Ï(f1), Ï(e1)] = [eÕ
1, f

Õ
1] = (1 ≠ a)zÕ

.

Conversely, let Ï : la3 æ la
Õ

3 be a Leibniz algebra isomorphism defined by

Ï(x) = –x
Õ + —y

Õ + “z
Õ
, Ï(y) = –

Õ
x

Õ + —
Õ
y

Õ + “
Õ
z

Õ
, Ï(z) = kz

Õ
,
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where {x, y, z} and {x
Õ
, y

Õ
, z

Õ} are basis of la3 and la
Õ

3 respectively. Thus

0 = Ï([x, x]) = [Ï(x), Ï(x)] = –— (1 + a
Õ ≠ 1 + a

Õ) z
Õ = 2–—a

Õ
z

Õ
,

0 = Ï([y, y]) = [Ï(y), Ï(y)] = –
Õ
—

Õ (1 + a
Õ ≠ 1 + a

Õ) z
Õ = 2–

Õ
—

Õ
a

Õ
z

Õ
,

k (1 + a) z
Õ = Ï([x, y]) = [Ï(x), Ï(y)] = (–Õ

— (1 + a
Õ) + –—

Õ (≠1 + a
Õ)) z

Õ
,

k (≠1 + a) z
Õ = Ï([y, x]) = [Ï(y), Ï(x)] = (–—

Õ (1 + a
Õ) + –

Õ
— (≠1 + a

Õ)) z
Õ
.

We have that (–Õ
, —) = (0, 0) or (–, —

Õ) = (0, 0). In the first case Ï is the
identity map and a = a

Õ. In the second case Ï is defined by Ï(x) = y
Õ
, Ï(y) = x

Õ

and Ï(z) = ≠z
Õ, thus a

Õ = ≠a.

2.2.2 The case F = R
Irreducible polynomials in R[x] have degree one or two. Let f(x) œ R[x] be an
irreducible monic polynomial. If f(x) = x ≠ a, then we obtain the same results
of the previous case. So we suppose that f(x) = x

2 + bx + c, with b
2 ≠ 4c < 0.

Let z = – + i— œ C be a root of f(x). Then f(x) = (x ≠ z)(x ≠ z̄) and the
companion matrix A of f(x)k in similar to the 2k ◊ 2k real block matrix

JR =

Q

ccccca

R 0 · · · 0
I2 R · · · 0
.
.
.

. . .
. . .

.

.

.

0 · · · I2 R

R

dddddb
,

where
R = R–,— =

A
– —

≠— –

B

is the realification of the complex number z (see Appendix A). Thus lA4k+1
≥= lJR

4k+1
and the structure matrix is given by

Q

ccccccccccccca

0

0 In + JR

.

.

.

0
0

≠In + J
t
R 0

.

.

.

0
0 · · · 0 0 · · · 0 0

R

dddddddddddddb
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In the case that k = 1, the real Heisenberg Leibniz algebra lR5 is the realifica-
tion of the complex algebra lz3. Thus we can conclude that

Proposition 2.2.3. Let f(x), g(x) œ R[x] be two irreducible monic polynomials
of degree two and let z, z

Õ œ C be roots of f(x) and g(x) respectively. Let
R, R

Õ œ M2(R) be the realification of the complex numbers z and z
Õ. Then

lR5
≥= lR

Õ
5 if and only if R

Õ = ±R.

Proof. The algebras lR5 and lR
Õ

5 are the realification of the complex Heisenberg
Leibniz algebras lz3 and lz

Õ
3 respectively. From Proposition 3.2 we know that

lz3
≥= lz

Õ
3 if and only if z = ±z

Õ. Moreover, these are R-linear isomorphisms
because the matrix associated with the isomorphism Ï : lz3 ⌧ l≠z

3 is the rotation
Q

ca
0 1 0
1 0 0
0 0 ≠1

R

db œ SO(3).

Thus lR5
≥= lR

Õ
5 if and only if R = ±R

Õ.

2.3 Integration of two-step nilpotent Leibniz
algebra

The "coquecigrue problem" was initially proposed by J.-L. Loday in [62]. Its aim
is to find algebraic structures that play a similar role for Leibniz algebras as Lie
groups play for Lie algebras. In essence, the goal is to extend the validity of the
Lie’s third theorem to Leibniz algebras. Here we present a modern and global
version of the Lie’s third theorem. It is stated that for each finite-dimensional
real Lie algebra g, there is a Lie group G with a Lie algebra isomorphic to g
(refer to [45] for further details).

Theorem 2.3.1 (Lie’s third theorem). If g is any finite-dimensional, real Lie
algebra, there exists a connected Lie subgroup G of GLn(C) whose Lie algebra is
isomorphic to g.

The group-like objects will be referred to as "coquecigrues" with precise
definition, but their properties remain largely unknown [62]. Past e�orts to
address the coquecigrue problem have involved the study of non-associative
multiplications defined on reductive homogeneous spaces associated with Leibniz
algebras [55]. However, these methods did not o�er a satisfactory solution,
especially when the Leibniz algebra is a Lie algebra. After studying the proof
that the tangent space at the unit element of a Lie group forms a Lie algebra, it
becomes clear that the essential properties related to the Jacobi identity lie in
conjugation rather than in group multiplication. This observation leads to the
study of Lie racks, which are manifolds equipped with a smooth left distributive
binary operation. These algebraic structures extend the concept of Lie groups.
Unless stated otherwise, the real numbers are considered as the underlying field
of any vector space.
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2.3.1 Lie Racks
The concept of a rack was initially presented in 1992 by R. Fenn and C. Rourke
[41] to provide a thorough and sophisticated algebraic structure for studying links,
knots and 3-manifolds. Numerous scholars have since studied racks, frequently
employing diverse terminology to describe them.

In the following discussion, we will present only those concepts that are
relevant to racks; for the sake of conciseness, definitions of operator group,
associated group, orbits, stabiliser, and the like will be excluded.

Definition 2.3.2. A (left) rack is a set X with a binary operation ⇤ : X ◊X æ
X such that

• for all x, y, z œ X, x ⇤ (y ⇤ z) = (x ⇤ y) ⇤ (x ⇤ z) (left distributivity)

• for all x, z œ X there is a unique y œ X such that z = x ⇤ y.

A rack is said to be pointed if there exists an element 1 œ X, called the unit,
such that 1 ⇤ x = x and x ⇤ 1 = 1 for all x œ X.

The two preceding conditions can be substituted with equivalent versions
that may be more useful, depending on the context in which they are used. The
second axiom is equivalent to saying that the function x ⇤ ≠ : X ◊ X æ X

(left multiplication) is a bijection for all x œ X. Moreover, the two axioms
together are equivalent to the statement that the multiplication on the left is an
automorphism. To be more precise, let Aut(X) denote the set of permutations
of a magma (X,⇤) that preserve ⇤. A permutation Â of X is in Aut(X) if
and only if Â(x ⇤ y) = Â(x) ⇤ Â(y) for all x, y œ X. If we denote the left
translations in a rack (X,⇤) by „(x)y := x ⇤ y, then the left distributive axiom
simply asserts that „(x) œ Aut(X) for all x œ X. When defining new algebraic
structures, their morphisms are also defined.

Definition 2.3.3. A pointed rack homomorphism is a map f : X æ Y such
that f(x ⇤ y) = f(x) ⇤ f(y), for all x, y œ X and such that f(1X) = 1Y .

Below are a few examples of racks. The first of these examples, the conjugation
rack, is the most prevalent and the motivations lie in what was mentioned above
regarding the properties related to the Jacobi identity.

Example 2.3.3.1 (Conjugation Rack). Let G be a group. The conjugation
G defines a rack operation on G. That is, we set x ⇤ y := x

≠1
yx and the left

multiplication is manifestly an automorphism. Then (G,⇤) is the conjugation
rack of G and it is denoted by Conj(G). In other words, every group endowed
with the conjugation is a pointed rack, so there is a functor Conj : Grp æ Rack,
between the category Grp of groups and the category Rack of racks.

This functor has a left adjoint As : Rack æ Grp defined by

As(X) = F(X)/È{xyx≠1 (x ⇤ y≠1) | xy œ X}Í,

where F(X) is the free group generated by X.
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Example 2.3.3.2 (Dihedral Rack). Let Rn = {fli}i=1,...,n≠1 be the set of the
reflections in the dihedral group Dn, the group of symmetries of a regular
n-gon. That is, Dn = {r0 = 1, r1, . . . , rn≠1, s, sr1, . . . , srn≠1} where, for every
i = 0, . . . , n ≠ 1, ri are the rotations, s is the reflection across a line through a
vertex and fli = sri are the reflections of the n-gon. Then Rn forms a rack of
order n. Since fliflj = ri≠j (mod n) for all i, j = 1, . . . , n ≠ 1, then

fli ⇤ flj = fl
≠1
i fljfli = fl

≠1
i ri≠j = r

≠1
i s

≠1
ri≠j (mod n)

= r
≠1
i sri≠j (mod n) = sris

≠1
rri≠j (mod n)

= srisri≠j (mod n) = flifli≠j (mod n) = fl2i≠j (mod n).

For this reason, the dihedral rack is often referred to as Rn = {0, 1, . . . , n≠1}
with i ⇤ j = 2i ≠ j (mod n) ([49], [73]).

Example 2.3.3.3 (Reflection Rack). Let P , Q be points of the plane and define
Q ⇤ P to be the point P reflected in Q. Since Q is the midpoint of the segment
from P to Q ⇤ P , in vector notation we have Q ⇤ P = 2Q ≠ P . Then, for all
Q, P1, P2 on the plane, we have on one hand

Q ⇤ (P1 ⇤ P2) = Q ⇤ (2P1 ≠ P2) = 2Q ≠ (2P1 ≠ P2) = 2(Q ≠ P1) + P2

and,on the other hand,

(Q ⇤ P1) ⇤ (Q ⇤ P2) = (2Q ≠ P1) ⇤ (2Q ≠ P2) = 2(2Q ≠ P1) ≠ (2Q ≠ P2)
= 4Q ≠ 2P1 ≠ 2Q + P2 = 2(Q ≠ P1) + P2.

The Figure 2.1 shown below proves the same statement.

P1 P2

Q

P1 ⇤ P2

Q ⇤ (P1 ⇤ P2) = (Q ⇤ P2) ⇤ (Q ⇤ P1)Q ⇤ P1Q ⇤ P2

Figure 2.1: Reflection rack.

Example 2.3.3.4 (Alexander Rack). Let R be the ring of Laurent polynomials
Z[t, t

≠1] in the variable t. Given elements a, b œ M , where M is an R-module, we
can define a⇤ b as tb+(1≠ t)a, where t is the variable in the Laurent polynomial
ring R = Z[t, t

≠1]. This operation makes M into a rack. For example, letting
M be the plane and the action of t multiplication by ≠1, yelds the reflection
rack of the previous example.
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Now let us provide a definition that will be useful down the line.

Definition 2.3.4. A rack (X,⇤) is a quandle if x ⇤ x = x, for every x œ X.

Informally, a rack is a quandle if the rack multiplication ⇤ is idempotent.
In the few examples above, each rack shown is a quandle. This term is due to
D. Joyce [52]. In order to solve the "coquecigrue problem", the next definition
extends the notion of Lie group, as racks extend the notion of groups.

Definition 2.3.5. A Lie rack is a pointed rack (X,⇤, 1) such that X is a
smooth manifold, ⇤ is a smooth map and such that for all x œ X x ⇤ ≠ is a
di�eomorphism.

If G is a Lie group in Example 2.3.3.1, then (G,⇤) is a Lie rack. Here is
another example.

Example 2.3.5.1 (Linear Lie Rack). Let H be a Lie group and let V be an
H-module. On X := V ◊ H, define a binary operation ⇤ by

(u, A) ⇤ (v, B) := (Av, ABA
≠1) (2.7)

for all u, v œ V , A, B œ H. Setting 1 = (1, 0), we have that (X,⇤, 1) is Lie
rack. Indeed, the binary operation ⇤ : X ◊ X æ X is manifestly a smooth
map. Then for any (u, A) œ X, the map „(u, A) : X æ X which sends (v, B) to
(u, A) ⇤ (v, B) is invertible with smooth inverse1

„
≠1(u, A) = „(u, A

≠1).
We will demonstrate that the right self-distributivity condition holds true. Let
(u, A), (v, B), (w, C) œ X. Then we have

(u, A) ⇤ ((v, B) ⇤ (w, C)) = (u, A) ⇤ (Bw, BCB
≠1)

= (A(Bw), A(BCB
≠1)A≠1),

and

((u, A) ⇤ (v, B)) ⇤ ((u, A) ⇤ (w, C)) = (Av, ABA
≠1) ⇤ (Aw, ACA

≠1)
= (ABA

≠1(Aw), ABA
≠1

ACA
≠1(ABA

≠1)≠1)
= (A(Bw), A(BCB

≠1)A≠1).

M. K. Kinyon showed in [54] that for every Lie rack X there exists a distinct
tangent space T1Q with its unique algebraic structure. In his approach, the basic
concept involves di�erentiating the conjugation operation to obtain the adjoint

1
Let x = (u, A) ⇤ (v, B) œ X. Indeed, we have

„(u, A≠1
)(x) = (u, A≠1

) ⇤ ((u, A) ⇤ (v, B))

= (u, A≠1
) ⇤ (Av, ABA≠1

)

= (A≠1
(Av), A≠1

(ABA≠1
)A)

= (v, B),

and then

„≠1
(u, A)(x) = (v, B).
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representation of the group, and then performing a secondary di�erentiation
to establish a mapping, which is then used to define the Lie bracket. This
process leads to the adjoint representation of the Lie algebra. We will now try
to summarize this process.

Suppose that R is a Lie rack. Let „(x) the automorphism of R, for each
x œ R, defined by „(x)y = x⇤y, for all y œ R. Then „(x)1 = x⇤1 = 1 since that
rack R is pointed. So we may apply the tangent functor T1 to „(x) : R æ R to
obtain a linear mapping �(x) := T1„(x) : T1R æ T1R. Since „(x) is invertible for
each x œ R, we have each �(x) œ GL(T1R). Now the mapping � : R æ GL(T1R)
satisfies �(1) = I, where I œ GL(T1R) is the identity mapping. Thus we may
di�erentiate again to obtain a mapping ad: T1R æ gl(T1R), that is

ad(X)Y = d

dt

-----
t=0

�(“(t))(Y ),

for all X, Y œ T1R, where “ : ] ≠ ‘, ‘[æ R is a smooth path in R such that
“(0) = 1 and “

Õ(0) = X. As usual we identify the tangent space at the identity
element of GL(V ) for a vector space V with the general linear algebra gl(V ).

Now we set
[X, Y ] := ad(X)Y

for all X, Y œ T1R. In terms of the left multiplication „(x), the left distributive
property of racks can be expressed by the equation

„(x)„(y)z = „(„(x)y)„(x)z. (2.8)

Let X, Y, Z œ T1R, and let “X , “Y , and “Z smooth paths in R such that

“X(0) = “Y (0) = “Z(0) = 1

and
ˆ

ˆr

-----
r=0

“X(r) = X,
ˆ

ˆs

-----
s=0

“Y (s) = Y,
ˆ

ˆt

-----
t=0

“Z(t) = Z.

In order to study the algebraic structure of T1R we di�erentiate Equation (2.8)
at 1 œ R, first respect to z (then respect to t in t = 0), then with respect to y

(then respect to s in s = 0) and finally respect to x (then respect to r in r = 0).
Let us start with the left side of Equation (2.8), then we have

ˆ

ˆt

-----
t=0

“X(r) ⇤ (“Y (s) ⇤ “Z(t)) = ˆ

ˆt

-----
t=0

„(“X(r))„(“Y (s))“Z(t)

= �(“X(r))�(“Y (s))Z.

By di�erentiating with respect to y we have

ˆ

ˆs

-----
s=0

�(“X(r))�(“Y (s))Z = �(“x(r))ad(Y )Z,
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and by di�erentiating with respect to x we finally have

ˆ

ˆr

-----
r=0

�(“X(r))ad(Y )Z = ad(X)ad(Y )(Z). (2.9)

Now, if we consider the right side of Equation (2.8) equation, we have

ˆ

ˆt

-----
t=0

(“X(r) ⇤ “Y (s)) ⇤ (“X(r) ⇤ “Z(t)) = ˆ

ˆt

-----
t=0

„(“X(r) ⇤ “Y (s))„(“X(r))“Z(t)

= �(“X(r) ⇤ “Y (s))�(“X(r))Z
= �(„(“X(r))“Y (s))�(“X(r))Z.

By di�erentiating with respect to y we have

ˆ

ˆs

-----
s=0

�(„(“X(r))“Y (s))�(“X(r))Z = ad(�(“X(r))Y )�(“X(r))Z.

We remind that if r = 0, then “X(0) = 1 and �(1) = 1. By di�erentiating with
respect to x we finally have

ˆ

ˆr

-----
r=0

ad(�(“X(r))Y )�(“X(r))Z = ad(ad(X)Y )Z + ad(Y )ad(X)Z (2.10)

Therefore, by comparing equations 2.10 and 2.9 we obtain

ad(X)ad(Y )(Z) = ad(ad(X)Y )Z + ad(Y )ad(X)Z,

that is equivalent to

[X, [Y, Z]] = [[X, Y ] , Z] + [Y, [X, Z]] .
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Figure 2.2: Tangent space of a rack R in its identity.

In summary, we have shown the following.

Theorem 2.3.6. Let (R,⇤, 1) be a Lie rack, and let g = T1R. Then there exists
a bilinear mapping [·, ·] : g ◊ g æ g such that

• (g, [·, ·]) is a left Leibniz algebra;

• for each x œ R, the tangent mapping �(x) = T1„(x) is an automorphism
of (g, [·, ·]);

• if ad: g æ gl(g) is defined by X ‘æ ad(X), where ad(X) : Y ‘æ [X, Y ],
then ad = T1�.

From now on, we will say g = T1R is the tangent Leibniz algebra of the rack
R, that is the Leibniz algebra structure on the tangent space at the distinguished
element 1 of the Lie rack R.

The converse problem, i.e. to find a manifold endowed with a smooth opera-
tion such that the tangent space at the distinguished point, endowed with the
di�erential of this operation, gives a Leibniz algebra isomorphic to the given one,
is the coquecigrue problem mentioned above. In [54] M. K. Kinyon also provides
a solution of the coquecigrue problem for the class of split Leibniz algebras. We
will now describe it in more detail.

Definition 2.3.7. Let g be a Leibniz algebra, let S = Leib(g) be the Leibniz
kernel of g, and let E ™ g be an ideal such that S ™ E ™ Zl(L). Then g splits
over E if there exits a Lie subalgebra h µ g such that g = E ü h, a direct sum of
vector spaces.
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In this case, for u, v œ E , X, Y œ h, we have

[u + X, v + Y ] = [X, v] + [X, Y ] (2.11)

since E ™ Zl(L), i.e. [u, ·] © 0 for all u œ E .
In order to present a theorem on split Lie algebras, we first provide a

definition.

Definition 2.3.8. [53] Let h be a Lie algebra, let V be an h-module and set
g := V ü h. With the bracket

[u + X, v + Y ] = Xv + [X, Y ] , (2.12)

g becomes a Leibniz algebra called demisemidirect product of V and h.

Theorem 2.3.9. Let g be a left Leibniz algebra, let h be a Lie algebra and let V

be an h-module. Let E be an ideal of g such that S ™ E ™ Zl(L). Then g splits
over E. Conversely, g is a demisemidirect product of V with a Lie algebra h.

Proof. One of the two directions is proved above. It remains to prove that if g
is a demisemidirect product of V and h as above, then g splits over V . Indeed,
the ideal S of squares of g, generated by squares, agrees with S = h + V since
[u + X, u + X] = Xu + [X, X] = Xu, for all u œ V and X œ h. The kernel of
ad is

Zl(L) = V ü {X œ h | Xv = 0, ’v œ V } fl Z(h).

Finally, V ≥= V ü {0} is an ideal of g such that S ™ V ™ Zl(L). We have
g/V ≥= h, and so g splits over V .

Remark 2.3.1. If a Leibniz algebra g splits over S with its complementary Lie
subalgebra being h, then, as shown in the identity 2.12, hS = S. Conversely, if
g is a demisemidirect product given by g = V ü h and hV = V , then it follows
that S coincides with V .

A Leibniz algebra may split over more than one ideal. Let us illustrate this
with an example.

Example 2.3.9.1. Let V := Rn and on g := V ü gl(V ) ü gl(V ), define

[u + X + Y, v + U + V ] := Y v + [X, U ] + [Y, V ]

for u, v œ V , X, Y, U, V œ gl(V ). Then S ≥= V and ker(ad) = V ü {aI | a œ
R} ü {0}, where I œ gl(V ) denotes the identity matrix. Here, g splits over S

with complement gl(V ) ü V , and g also splits over ker(ad) with complement
sl(V ) ü gl(V ).

We note that a Leibniz algebra may split over ker(ad) without splitting over
its ideal generated by squares.

Example 2.3.9.2. Let V := R2, let h :=
IA

0 a

0 0

B

| a œ R
J

, and let g = V ü h

be the demisemidirect product. Then Zl(L) = V and S ≥= R ·
A

1
0

B

. While g



44 Chapter 2. Two-step nilpotent algebras and their integration

splits over ker(ad), it easy to check that g does not split over S. Indeed, if g

splits over S, then no element of the form
A

x

y

B

+ 0, with y ”= 0, would belong to
g.

We next present M.K. Kinyon’s result (see Theorem 3.5 in [54]) on split
Leibniz algebras.
Theorem 2.3.10. Let H be a Lie group with Lie algebra Lie(H) = h, let
V be an H-module, and let (X,⇤, 1) be the linear Lie rack defined by the
Equation (2.7), where X = V ◊ H. Then the tangent Leibniz algebra T1X of X

is the demisemidirect product g = V üh with bracket given by the Equation (2.12).
On the other hand, let g be a split Leibniz algebra. Then there exists a linear

Lie rack X with tangent Leibniz algebra isomorphic to g.
Proof. We prove the first part of the statement. Let h be the Lie algebra of the
Lie group H. Then we may identify T1X with g := V ü h. For u œ V, A œ H,
the tangent mapping �(u, A) = T1„(u, A) : g æ g is given by

�(u, A)(v + X) = Av + Ad(A)X

for all v œ V, X œ h, where Ad: A æ GL(V ) is the adjoint representation.
Di�erentiating this, we find that

[u + X, v + Y ] = Xv + [X, Y ]

for all u, v œ V, X, Y œ Zl(L). By comparing with the identity 2.12, we obtain
that the tangent Leibniz algebra T1X for the Lie rack X = V ◊ H is exactly
the demisemidirect product of V with h.

Now, in order to prove the second statement let g = E ü h be a splitting
over g, where E is an ideal with S ™ E ™ ker(ad) and h is a Lie subalgebra.
Remembering that g is then a demisemidirect product of E with h, let H be a
connected Lie group with Lie algebra h. Set Q = E ◊ H, and note that we may
identify g with T1X. Give X the Lie rack structure (X,⇤, 1) where ⇤ is given
by the identity 2.7. Finally, the result follows from the first part of the proof we
shown above.

More recently, S. Covez in [26] gives a solution to this problem, which is
in general only local: he shows how to integrate any Leibniz algebra into a
local Lie rack. The central point of his result is to see every Leibniz algebra
g as an abelian extension of its left centre Zl(g) and to explicitly integrate
the corresponding Leibniz algebra 2-cocycle into a local Lie rack 2-cocycle.
However, M. Bordemann and F. Wagemann (see [11]) and J. Mostovoy (see [67])
independently give two di�erent answers to the general coquecigrue problem:
Bordemann and Wagemann’s solution is not functorial (nor is Covez’s method,
since the left centre does not depend functorially on the Leibniz algebra in
general); Mostovoy’s solution is global, but does not generalize the classical Lie
solution. The general coquecigrue problem is still open.

The aim of this subsection is to use the Leibniz algebras - Lie local racks
correspondence proposed by S. Covez to show that the integration of the two-step
nilpotent Leibniz algebras is global.
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In [26] S. Covez gives the definition of smooth rack modules, rack cohomology
and cohomolgy theory for Leibniz algebras. In particular, for X a Lie rack and
A a smooth X≠module, he defines a cochain complex {CRn (X, A) , d

n
R}nœN by

setting

CRn (X, A) = {f : X
n æ A | f(x1, . . . , 1, . . . , xn) = 0,

f is smooth in a neighborhood of (1, . . . , 1) œ X
n}

and d
n
R is the di�erential operator. Moreover, for g a left Leibniz algebra and

M a g-module, he defines a cochain complex {CLn(g, M), dL
n}nœN by setting

CLn(g, M) = Hom(g¢n
, M)

and dL
n is the di�erential operator.

Any Leibniz algebra g can be turned in several ways into an abelian extension
of a Lie subalgebra g0 ™ gl(V ) by a g0≠module a. For example we can take
a = Zl(g) and g0 = g/ Zl(g). Thus we can associate with g a short exact sequence

0 æ Zl(g) Òæ g ⇣ g0 æ 0.

in the category LeibAlg. Because Zl(g) is a g0≠module in the sense of Lie
algebras, there is a Leibniz algebra 2≠cocycle Ê œ ZL2 (g0, Zl(g)) such that
g = g0 üÊ Zl(g). The Leibniz bracket in g can be written as follows

[(x, a) , (y, b)] =
1
[x, y]g0

, flx(b) + Ê(x, y)
2

,

where fl : g0 ◊ Zl(g) æ Zl(g) is the action induced by the g0-module structure of
Zl(g). Now, we report some results from S. Covez, which are proven in [26] and
will be useful later on.

Theorem 2.3.11. Every Leibniz algebra g = g0 üÊ a can be integrated into a
local Lie rack of the form

G0 ◊f a

with operation defined by

(g, a) ⇤ (h, b) =
1
ghg

≠1
, „g(b) + f(g, h)

2

and unit (1, 0), where G0 is a Lie group such that Lie(G0) = g0, „ is the
exponentiation of the action fl,
f : G0 ◊ G0 æ a is the Lie local racks 2 ≠ cocycle defined by

f(g, h) =
⁄

“h

A⁄

“g

·
2(Ê)eq

Beq

, ’g, h œ G0

and ·
2(Ê) œ ZL1(g0, Hom(g0, a)) is defined by ·

2(Ê)(x)(y) = Ê(x, y), for all
x, y œ g0.

Corollary 2.3.12. Let X be a Lie rack. Then any Lie rack integrating the
Leibniz algebra T1X is isomorphic to X.
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We finally can answer the question whether a Lie rack integrating a Leibniz
algebra can be the quandle Conj(G), for a suitable Lie group G. The answer is
no in general, as the following theorem shows.

Theorem 2.3.13. Let R be a Lie rack integrating a Leibniz algebra g. R is
a quandle if and only if g is a Lie algebra. In particular R = Conj(G), where
Lie(G) = g.

Proof. If g is a Lie algebra, then it is clear that R = Conj(G), where Lie(G) =
g. Conversely, we suppose that R is a Lie quandle. Again we can write
g = g0 üÊ Zl(g), thus R is of the form G0 ◊f Zl(g), with multiplication

(g, a) ⇤ (h, b) =
1
ghg

≠1
, „g(b) + f(g, h)

2
,

where f is the Lie racks 2≠cocycle integrating Ê. To prove that g is a Lie
algebra, we have to show that [(x, a), (x, a)] = (0, 0), for all (x, a) œ g.
The condition (g, a)⇤ (g, a) = (g, a) implies that f(g, g) = 0, for all g œ G0, and
then „g(a) = a, for all a œ Zl(g). Indeed the action fl of g0 on Zl(g) is trivial
and Ê(x, x) = 0 for all x œ g0. Finally R = Conj(G), where G = G0 ◊F Zl(g) is
the Lie group with operation

(g, a)(h, b) = (gh, a + b + F (g, h)),

and F : G0 ◊ G0 æ Zl(g) is a Lie group 2≠cocycle such that

f(g, h) = F (g, h) ≠ F (g, g
≠1) + F (gh, g

≠1) ’g, h œ G0.

In fact with this condition we have that

(g, a) ⇤ (h, b) = (g, a)(h, b)(g, a)≠1 ’(g, a), (h, b) œ G0 ◊ Zl(g)

and the Lie algebra of the Lie group G is clearly g.

Now we will claim a result about the integration of nilpotent Leibniz algebras.
We will show that, for this class of Leibniz algebras, the integration proposed by
S. Covez is global.

Theorem 2.3.14. Every nilpotent real Leibniz algebra g has a global integration
into a Lie rack.

Proof. Let g be a nilpotent real Leibniz algebra g, seen as the abelian extension
of g0 = g/ Zl(g) by its left center Zl(g). Thus g0 is a nilpotent Lie algebra and
for every x œ g0 the action flx defined by

flx(a) = adx(a), ’a œ Zl(g),

can be represented as m ◊ m strictly lower triangular matrix (see [36]), where
m = dimR Zl(g). If G0 is the simply connected Lie group integrating g0, the
automorphism „exp(x) = exp(flx) œ Aut(Zl(g)) is a unitriangular matrix whose
entries are polynomial expressions of the coordinates of the vector x œ g0, with
respect to a fixed basis. Thus, for every g, h œ G0 and fixed smooth paths
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“g(s) = g
s and “h(t) = h

t in G0 from 1 to g and from 1 to h respectively, we
have that the Lie racks 2≠cocycle

f(g, h) =
⁄

“h

A⁄

“g

·
2(Ê)eq

Beq

, ’g, h œ G0

is everywhere defined because it involves the integration of matrices with poly-
nomial entries in R[s] and R[t]. Then the vector space supporting G0 ◊f Zl(g)
has a Lie global rack structure integrating the nilpotent Leibniz algebra g.

In the case that g is a two-step nilpotent Leibniz algebra, a Lie rack integrating
g can be defined without integrating the Leibniz algebras 2≠cocycle associated
with g, a fact that we note explicitly in the following Theorem.
Theorem 2.3.15. Let (g, [≠, ≠]) be a two-step nilpotent Leibniz algebra and
let Ê : g0 ◊ g0 æ [g, g], where g0 = g/ [g, g], be the Leibniz algebras 2≠cocycle
associated with the short exact sequence

0 æ [g, g] Òæ g ⇣ g0 æ 0.

Then the multiplication

(x, a) ⇤ (y, b) = (y, b + Ê(x, y)) , ’ (x, a) , (y, b) œ g0 ◊ [g, g]

defines a Lie global rack structure on g0 ◊ [g, g], such that T(0,0)(g0 ◊Ê [g, g] ,⇤)
is a Leibniz algebra isomorphic to g.
Proof. We have [g, g] ™ Z(g), so we can see g as an abelian extension of [g, g] by
the quotient g0 = g/ [g, g] via a Leibniz algebras 2≠cocycle Ê œ ZL2(g0, [g, g]).
Thus g = g0 üÊ [g, g] with bracket

[(x, a) , (y, b)] = (0, Ê(x, y)) .

Actually, the condition [g, g] ™ Zl(g)flZr(g) implies that the action of g0 on [g, g]
is trivial. Moreover g0 is an abelian Lie algebra, thus a Lie group integrating g0
is G0 = g0. Then we can define a Lie rack structure on the cartesian product
g0 ◊ [g, g] by setting

(x, a) ⇤ (y, b) = (y, b + Ê(x, y)) ’ (x, a) , (y, b) œ g0 ◊ [g, g] ,

with unit element (0, 0). Finally, the tangent space T(0,0) (g0 ◊ [g, g]) has a
Leibniz algebra structure isomorphic to g. In fact

ˆ
2

ˆsˆt

-----
s,t=0

(sx, sa)⇤(ty, tb) = ˆ
2

ˆsˆt

-----
s,t=0

(ty, tb + Ê (sx, ty)) = (0, Ê (x, y)) = [(x, a) , (y, b)] .

Remark 2.3.2. The main point of the strategy in proving Theorem 2.3.15 was
to choose G0 = g0 as a Lie group integrating the abelian Lie algebra g0. If
we change the Lie group G0, then the integration may not be global, as the
following example illustrates.



48 Chapter 2. Two-step nilpotent algebras and their integration

Example 2.3.15.1. Let a œ R and let g = la3 be the three-dimensional Heinse-
berg Lebiniz algebra. Then [g, g] = Z(g) ≥= R and we can see g as an abelian
extension of the Lie algebra g0 = g/[g, g] ≥= R2 by R. The corresponding Leibniz
algebras 2-cocycle is

Ê((x, y), (xÕ
, y

Õ)) = (1 + a)xy
Õ + (≠1 + a)xÕ

y.

Now we can choose

G0 = SO(2) ◊ SO(2) ≥= {(eix
, e

iy) | x, y œ R}

as a Lie group integrating g0. In this case a Lie local rack integrating g is
(G0 ◊ SO(2),⇤) with multiplication

(eix
, e

iy
, e

iz) ⇤ (eixÕ
, e

iyÕ
, e

izÕ) = (eixÕ
, e

iyÕ
, e

i(zÕ+Ê((log(eix),log(eiy)),(log(eixÕ ),log(eiyÕ )))),

that is defined only for (x, y), (xÕ
, y

Õ) œ [0, 2fi[◊[0, 2fi[, where we choose [0, 2fi[
as the domain of the principal value of the function log. Thus the integration is
not global.

In order to show that Theorem 2.3.15 provides an e�ective tool for the
construction of a global rack integrating a Leibniz algebra g with [g, g] ™ Z(g),
we can reformulate an example proposed by S. Covez in [26].

Example 2.3.15.2. Let g = (R4
, [≠, ≠]) with basis {e1, e2, e3, e4} and nonzero

brackets
[e1, e1] = [e1, e2] = [e2, e2] = [e3, e3] = e4,

[e2, e1] = ≠e4.

It is easy to see that g is a left Leibniz algebra with [g, g] = Z(g) = Re4. We have
that g = g0 üÊ Re4, where g0 ≥= SpanR {e1, e2, e3}, and the Leibniz 2-cocycle is
given by

Ê(x, y) = [(x1, x2, x3, 0), (y1, y2, y3, 0)] = (0, 0, 0, x1y1+x1y2≠x2y1+x2y2+x3y3).

Thus, by Theorem 2.3.15, a Lie global rack integrating g is (g0 ◊Ê Re4,⇤) with
multiplication given by

(x1, x2, x3, x4) ⇤ (y1, y2, y3, y4) = (y1, y2, y3, y4 + Ê(x, y)).

Now we can globally integrate all the indecomposable nilpotent real Leib-
niz algebras with one-dimensional commutator ideal classified in the previous
sections. For the Heisenberg Leibniz algebras, we will obtain Lie racks that are
"perturbations" of the conjugation of the Heisenberg Lie group H2n+1. From
now on we suppose that A œ Mn(R) is the companion matrix of the power of
an irreducible monic polynomial f(x) œ R[x]. Thus A is a n ◊ n Jordan block
of eigenvalue a œ R or A = JR, where R œ M2(C) is the realification of some
complex number z = – + i—.

Example 2.3.15.3. Let g = lA2n+1 and let {e1, . . . , en, f1, . . . , fn, h} be a basis
of g. Then [g, g] = Rh ™ Z(g), thus we can use Theorem 2.3.15 to find the Lie
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global rack integrating g. The Leibniz bracket of g is given by

[(x1, . . . , xn, y1, . . . , yn, z), (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ)] =
Q

a0, . . . , 0,

nÿ

i,j=1
(”ij + aij) xiy

Õ
j +

nÿ

i,j=1
(≠”ij + aij) x

Õ
iyj

R

b ,

so we obtain a Lie rack R
A
2n+1 = (g0 ◊f Rh,⇤) with multiplication

(x1, . . . , xn, y1, . . . , yn, z) ⇤ (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ) =
Q

ax
Õ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ +
nÿ

i,j=1

Ë
(”ij + aij) xiy

Õ
j + (≠”ij + aij) x

Õ
iyj

È
R

b

and T(0,0)R
A
2n+1 = lA2n+1.

Definition 2.3.16. We define (RA
2n+1,⇤) as the Heisenberg rack.

We want to make explicit that the multiplication ⇤ in R
A
2n+1 is a perturbation

of the conjugation of the Heisenberg Lie group H2n+1. To do this, we will use
the canonical matrix representation

H2n+1 =

Y
_]

_[

Q

ca
1 x z

0 In y
t

0 0 1

R

db

------
x = (x1, . . . , xn), y = (y1, . . . , yn) œ Rn

, z œ R

Z
_̂

_\
Æ GLn+2(R).

The conjugation formula for two matrices in H2n+1 is given by

Q

ca
1 x z

0 In y
t

0 0 1

R

db

Q

ca
1 x

Õ
z

Õ

0 In y
Õt

0 0 1

R

db

Q

ca
1 x z

0 In y
t

0 0 1

R

db

≠1

=

Q

cccca

1 x
Õ

z
Õ +

nÿ

i=1
(xiy

Õ
i ≠ yix

Õ
i)

0 In y
Õt

0 0 1

R

ddddb

With the same representation, the multiplication ⇤ of R
A
2n+1 turns into

Q

ca
1 x z

0 In y
t

0 0 1

R

db⇤

Q

ca
1 x

Õ
z

Õ

0 In y
Õt

0 0 1

R

db =

Q

cccca

1 x
Õ

z
Õ +

nÿ

i,j=1

Ë
(”ij + aij) xiy

Õ
j + (”ij ≠ aij) x

Õ
iyj

È

0 In y
Õt

0 0 1

R

ddddb
,

hence for A = 0n◊n, it holds R
0n◊n
2n+1 = Conj(H2n+1).

Example 2.3.16.1. Let g = kn and let {e1, . . . , en, f1, . . . , fn, h} be a basis of g.
Then the Leibniz bracket of g is given by

[(x1, . . . , xn, y1, . . . , yn, z), (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ)] =
A

0, . . . , 0, x1y
Õ
1 +

nÿ

i=2
(xiy

Õ
i + xiy

Õ
i≠1 + x

Õ
i≠1yi≠1 ≠ x

Õ
iyi≠1) + x

Õ
nyn

B

,
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so we obtain a Lie global rack Kn = (g0 ◊f Rh,⇤) with multiplication

(x1, . . . , xn, y1, . . . , yn, z) ⇤ (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ) =
A

x
Õ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ + x1y
Õ
1 +

nÿ

i=2
(xiy

Õ
i + xiy

Õ
i≠1 + x

Õ
i≠1yi≠1 ≠ x

Õ
iyi≠1) + x

Õ
nyn

B

and T(0,0)Kn = kn.

Definition 2.3.17. We define (Kn,⇤) as the Kronecker rack.

Example 2.3.17.1. Let g = dn and let {e1, . . . , e2n+1, h} be a basis of g. Then
the Leibniz bracket of g is given by

[(x1, . . . , x2n+1, z),(xÕ
1, . . . , x

Õ
2n+1, z

Õ)] = (0, . . . , 0, z̄),

where

z̄ = x1x
Õ
n+2 +

nÿ

i=2
xi(xÕ

i+n + x
Õ
i+n+1) + xn+1x

Õ
2n+1 +

2n+1ÿ

i=n+2
xi(xÕ

i≠n ≠ x
Õ
i≠n≠1),

thus a Lie global rack integrating g is Dn = (g0 ◊f Rh,⇤) with multiplication

(x1, . . . , xn, y1, . . . , yn, z) ⇤ (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ) = (xÕ
1, . . . , y

Õ
1, . . . , y

Õ
n, z

Õ + z̄)

and T(0,0)Dn = dn.

Definition 2.3.18. We call (Dn,⇤) the Dieudonné rack.

We want to conclude this section with the following example. The realification
of an indecomposable nilpotent Leibniz algebra with one-dimensional commutator
ideal over the field C is a nilpotent real Leibniz algebra with two-dimensional
commutator ideal. In the following example, we integrate the realification of the
complex indecomposable Heisenberg Leibniz algebra lJa

2n+1, where Ja œ Mn(C) is
the Jordan block of eigenvalue a œ C.

Example 2.3.18.1. Let h = lJa
2n+1 and let {e1, . . . , en, f1, . . . , fn, h} be a basis of

h over C. Then dimRh = 4n+2 and {e1, ie1, . . . , en, ien, f1, if1, . . . , fn, ifn, h, ih}
is a basis of h over R. For every (x1, . . . , xn, y1, . . . , yn, z), (xÕ

1, . . . , x
Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ) œ
C2n+1, the Leibniz bracket of h over R is given by

[(x1, . . . , xn, y1, . . . , yn, z), (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ)] = (0, . . . , 0, Ÿ(z̄), ⁄(z̄)) ,

where Ÿ(a + ib) = a, ⁄(a + ib) = b and

z̄ =
nÿ

i=1
[(1 + a)xiy

Õ
i + (≠1 + a)xÕ

iyi] +
nÿ

i=2
(xiy

Õ
i≠1 + x

Õ
iyi≠1).



2.3. Integration of two-step nilpotent Leibniz algebra 51

Thus a Lie global rack integrating (h, [≠, ≠]) is (h0 ◊f SpanR{h, ih},⇤) with
multiplication

(x1, . . . , xn, y1, . . . , yn, z) ⇤ (xÕ
1, . . . , x

Õ
n, y

Õ
1, . . . , y

Õ
n, z

Õ) =

(Ÿ(xÕ
1), ⁄(xÕ

1), . . . , Ÿ(xÕ
n), ⁄(xÕ

n), Ÿ(yÕ
1), ⁄(yÕ

1), . . . , Ÿ(yÕ
n), ⁄(yÕ

n), Ÿ(zÕ + z̄), ⁄(zÕ + z̄)) .
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Chapter 3

Derivations and isotopisms

3.1 Derivations
The derivations and isotopism classes of two-step nilpotent (Leibniz) algebras
are outlined in chapter three. The main sources for the composition of this
chapter are two papers that were co-authored by me ([57] and [72]).

We study the Lie algebra of derivations of the three classes of indecompos-
able nilpotent Leibniz algebras with one-dimensional commutator ideal become
outlined in the present chapter. We observe that, given a derivation d of a
Leibniz algebra L, we have

d([L, L]) ™ [L, L],

thus, if [L, L] = Fz, it follows that d(z) = “z, for some “ œ F.

3.1.1 Derivations of the Heisenberg Leibniz algebras lA
2n+1

Now we want to study in details the Lie algebras of derivations of the Heisenberg
Leibniz algebras in the case the field F is C or R.

3.1.2 The complex case
Let n œ N and let f(x) = x ≠ a œ C[x]. Then the companion matrix A of f(x)n

is similar to the n ◊ n Jordan block Ja of eigenvalue a. Thus lA2n+1
≥= lJa

2n+1 and
the Leibniz brackets are given by

[ei, fi] = (1 + a)z, [fi, ei] = (≠1 + a)z, ’i = 1, . . . , n,

[ei, fi≠1] = [fi≠1, ei] = z, ’i = 2, . . . , n,

where {e1, . . . , en, f1, . . . , fn, z} is a basis of lJa
2n+1. Moreover lJa

2n+1
≥= lJ≠a

2n+1.
Now let d : lJa

2n+1 æ lJa
2n+1 be a linear endomorphism such that

d(ei) =
nÿ

j=1
ajiej +

nÿ

k=1
bkifk + aiz, ’i = 1, . . . , n,

d(fi) =
nÿ

j=1
cjiej +

nÿ

k=1
dkifk + biz, ’i = 1, . . . , n
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and
d(z) = “z.

Then d is a derivation of the Heisenberg algebra lJa
2n+1 if and only if

0 = d([ei, ej]) = [d(ei), ej] + [ei, d(ej)]
= (bji(≠1 + a) + bij(1 + a) + bj≠1,i + bi≠1,j)z,

0 = d([fi, fj]) = [d(fi), fj] + [fi, d(fj)]
= (cji(1 + a) + cij(≠1 + a) + cj+1,i + ci+1,j)z,

(1 + a)“z = d([ei, fi]) = [d(ei), fi] + [ei, d(fi)]
= ((aii + dii)(1 + a) + ai+1,i + di≠1,i)z,

(≠1 + a)“z = d([fi, ei]) = [d(fi), ei] + [fi, d(ei)]
= ((aii + dii)(≠1 + a) + ai+1,i + di≠1,i),

“z = d([ei+1, fi]) = [d(ei+1), fi] + [ei+1, d(fi)]
= ((ai,i+1 + di+1,i)(1 + a) + ai+1,i+1 + dii)z,

“z = d([fi, ei+1]) = [d(fi), ei+1] + [fi, d(ei+1)]
= ((ai,i+1 + di+1,i)(≠1 + a) + ai+1,i+1 + dii)z,

0 = d([ei, fj]) = [d(ei), fj] + [ei, d(fj)]
= ((aji + dij)(1 + a) + aj+1,i + di≠1,j)z, j ”= i ≠ 1, i,

0 = d([fj, ej]) = [d(fj), ei] + [fj, d(ei)]
= ((aji + dij)(≠1 + a) + aj+1,i + di≠1,j)z, j ”= i ≠ 1, i,

for every i, j = 1, . . . , n. So, for a ”= 0 the linear endomorphism d is a derivation
of the Heisenberg algebra lJa

2n+1 if and only if it has the following form
Q

ca
A 0 0
0 D 0
µ ‹ “

R

db

where

A =

Q

ccccccca

–1 –2 –3 . . . –n

0 –1 –2 . . . –n≠1
0 0 –1 . . . –n≠2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . –1

R

dddddddb

, D =

Q

ccccccca

—1 0 0 . . . 0
≠–2 —1 0 . . . 0
≠–3 ≠–2 —1 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

≠–n ≠–n≠1 ≠–n≠2 . . . —1

R

dddddddb

,

µ = (µ1, µ2, µ3, . . . , µn), ‹ = (‹1, ‹2, ‹3, . . . , ‹n), “ = –1 + —1.

Thus, Der(lJa
2n+1) is the Lie subalgebra of gl(2n + 1,C) of dimension 3n + 1 with

basis
{x, y, E1, . . . , En≠1, A1, . . . , An, B1, . . . , Bn},
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where

x =
nÿ

k=1
ek,k + e2n+1,2n+1, y =

nÿ

k=1
en+k,n+k + e2n+1,2n+1,

Ei =
n≠iÿ

k=1
(ek,k+i ≠ en+i+k,n+k), ’i = 1, . . . , n ≠ 1,

Ai = e2n+1,i, Bi = e2n+1,n+i, ’i = 1, . . . , n,

and eij are matrix units and non-trivial commutators given by

[x, Bi] = Bi, [y, Ai] = Ai, ’i = 1, . . . , n,

[Ei, Bk] = Bk≠i, 1 Æ i < k Æ n,

[Ei, Ak] = ≠Ai+k, 1 Æ i Æ n ≠ 1, 1 Æ k Æ n ≠ i.

Remark 3.1.1. With the change of basis

{e1, . . . , en, f1, . . . , fn, z} ‘æ {e1, f1, . . . , en, fn, z} ,

a derivation of lJa
2n+1 is represented by the (2n + 1) ◊ (2n + 1) matrix

Q

ccccccccccccca

M1 ≠ÁM2 ≠ÁM3 ≠ÁM4 · · · ≠ ÊMn 0
M2 M1 ≠ÁM2 ≠ÁM3 · · · ≠ ÊMn≠1 0
M3 M2 M1 ≠ÁM2 · · · ≠ ÊMn≠2 0
M4 M3 M2 M1 · · · ≠ ÊMn≠3 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Mn Mn≠1 Mn≠2 Mn≠3 · · · M1 0
v1 v2 v3 v4 · · · vn tr(M1)

R

dddddddddddddb

where

M1 =
A

–1 0
0 —1

B

, Mi =
A

0 0
0 –i

B

, ÊMi =
A

–i 0
0 0

B

, ’i = 2, . . . , n,

vk = (µk, ‹k), for any k = 1, . . . , n and tr(M1) = –1 + —1.

In this case Der(lJa
2n+1) has basis

{x, y, E1, . . . , En≠1, A1, . . . , An, B1, . . . , Bn},

where

x =
nÿ

k=1
e2k≠1,2k≠1 + e2n+1,2n+1, y =

nÿ

k=1
e2k,2k + e2n+1,2n+1,

Ei =
n≠i+1ÿ

k=0
(e2(k+i+1),2(k+1) ≠ e2k+1,2(k+i)+1), ’i = 1, . . . , n ≠ 1,

Ai = e2n+1,2i≠1, Bi = e2n+1,2i, ’i = 1, . . . , n
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and the Lie brackets are given by

[x, Bi] = Bi, [y, Ai] = Ai, ’i = 1, . . . , n,

[Ei, Bk] = ≠Bk≠2i, k > 2i,

[Ei, Ak] = Ak+2i, k + 2i Æ 2n.

With this representation, one can check that

Der(lJa
2n+1) ™ Der(h2n+1),

where Der(h2n+1) are the derivations of the (2n + 1)≠dimensional Heisenberg
Lie algebra h2n+1 with respect to the symplectic basis {e1, f1, . . . , en, fn, z} of
h2n+1. The description of these derivations have been well-established in the
mathematical literature for a significant period (see [63] and [44]), and continue
to be studied and applied today (as evidenced by a recent article in control
theory, [29]). Later we present the derivations of the Heisenberg Leibniz algebra
lJ0
2n+1 and the ones of the Kronecker Leibniz algebra kn with respect to this basis,
in order to compare them with the corresponding ones of the Heisenberg Lie
algebra h2n+1.

The commutator ideal of Der(lJa
2n+1) is the abelian algebra of dimension 2n

with basis
{A1, . . . An, B1, . . . , Bn},

thus Der(lJa
2n+1) is a two-step solvable Lie algebra. Moreover the lower central

series is

Der(lJa
2n+1) ´ ÈA1, . . . An, B1, . . . , BnÍ ´ ÈA1, . . . An, B1, . . . , BnÍ ´ ....

so Der(lJa
2n+1) is not nilpotent and its nilradical is the ideal

N = ÈE1, . . . , En≠1, A1, . . . , An, B1, . . . , BnÍ.

Finally the center Z(Der(lJa
2n+1)) is trivial and the algebra of inner derivations of

lJa
2n+1 is

Inn(lJa
2n+1) = ÈAh, . . . , An, B1, . . . , BkÍ,

with h = 1 and k = n if a ”= ±1; h = 2 and k = n if a = 1; and h = 1 and
k = n ≠ 1 if a = ≠1. Indeed

adei = Bi≠1 + (1 + a)Bi, ’i = 2, . . . , n,

adfj = Aj+1 + (≠1 + a)Aj, ’j = 1, . . . , n ≠ 1

and
ade1 = (1 + a)B1, adfn = (≠1 + a)An,

thus for a = 1 we have

adfn = 0, adfj = Aj+1, ’j = 1, . . . , n ≠ 1
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and the matrix A1 does not represent an inner derivations. In the same way, if
a = ≠1, then Bn ”œ Inn(lJ1

2n+1). We will show later that

AIDer(lJa
2n+1) = ÈA1, . . . , An, B1, . . . , BnÍ

for every a œ C.

When a = 0, a derivation of the Heisenberg Leibniz algebra lJ0
2n+1 has the

form Q

ca
A C 0
B D 0
µ ‹ “

R

db

where A, D, µ, ‹ and “ are as above,

B =

Q

ccccccccccccccccca

0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 ≠bn+2
0 0 0 0 . . . 0 0 bn+2 0
0 0 0 0 . . . 0 ≠bn+2 0 ≠bn+4
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 . . . b2n≠6 0 b2n≠4 0
0 0 0 ≠bn+2 . . . 0 ≠b2n≠4 0 ≠b2n≠2
0 0 bn+2 0 . . . b2n≠4 0 b2n≠2 0
0 ≠bn+2 0 ≠bn+4 . . . 0 ≠b2n≠2 0 ≠b2n

R

dddddddddddddddddb

,

C =

Q

ccccccccccccccccca

c2 0 c4 0 . . . cn≠2 0 cn 0
0 ≠c4 0 ≠c6 . . . 0 ≠cn 0 0
c4 0 c6 0 . . . cn 0 0 0
0 ≠c6 0 ≠c8 . . . 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

cn≠1 0 cn 0 . . . 0 0 0 0
0 ≠cn 0 0 . . . 0 0 0 0
cn 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0

R

dddddddddddddddddb

,

if n is even,

B =

Q

ccccccccccccccccca

0 0 0 0 . . . 0 0 0 bn+1
0 0 0 0 . . . 0 0 ≠bn+1 0
0 0 0 0 . . . 0 bn+1 0 bn+3
0 0 0 0 . . . ≠bn+1 0 ≠bn+3 0
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

0 0 0 ≠bn+1 . . . ≠b2n≠3 0 ≠b2n≠2 0
0 0 bn+1 0 . . . 0 b2n≠3 0 b2n≠2
0 ≠bn+1 0 ≠bn+3 . . . ≠b2n≠2 0 ≠b2n 0

bn+1 0 bn+3 0 . . . 0 b2n≠2 0 b2n

R

dddddddddddddddddb

,
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C =

Q

ccccccccccccccccca

c2 0 c4 0 . . . 0 cn≠1 0 cn+1
0 ≠c4 0 ≠c6 . . . ≠cn≠1 0 ≠cn+1 0
c4 0 c6 0 . . . 0 cn+1 0 0
0 ≠c6 0 ≠c8 . . . ≠cn+1 0 0 0
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

0 ≠cn≠1 0 ≠cn+1 . . . 0 0 0 0
cn≠1 0 cn+1 0 . . . 0 0 0 0

0 ≠cn+1 0 0 . . . 0 0 0 0
cn+1 0 0 0 . . . 0 0 0 0

R

dddddddddddddddddb

,

if n is odd.

If we reorder the basis as in Remark 3.1.1, then a derivation of lJ0
2n+1 is

represented by
Q

cccccccccccccccccccccccca

–1 c2 ≠–2 0 ≠–3 c4 · · · ≠–n≠1 cn ≠–n 0 0
0 —1 0 0 0 0 · · · 0 0 0 0 0
0 0 –1 ≠c4 ≠–2 0 · · · ≠–n≠2 0 ≠–n≠1 0 0
0 –2 0 —1 0 0 · · · 0 0 ≠bn+2 0 0
0 c4 0 0 –1 c6 · · · ≠–n≠3 0 ≠–n≠2 0 0
0 –3 0 –2 0 —1 · · · bn+2 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 cn 0 0 0 0 · · · –1 0 ≠–2 0 0
0 –n≠1 0 –n≠2 bn+2 –n≠3 · · · b2n≠2 —1 0 0 0
0 0 0 0 0 0 · · · 0 0 –1 0 0
0 –n ≠bn+2 –n≠1 0 –n≠2 · · · 0 –2 b2n —1 0
µ1 ‹1 µ2 ‹2 µ3 ‹3 · · · µn≠1 ‹n≠1 µn ‹n –1 + —1

R

ddddddddddddddddddddddddb

if n is even, and
Q

cccccccccccccccccccccccca

–1 c2 ≠–2 0 ≠–3 c4 · · · ≠–n≠1 0 ≠–n cn+1 0
0 —1 0 0 0 0 · · · 0 0 bn+1 0 0
0 0 –1 ≠c4 ≠–2 0 · · · ≠–n≠2 ≠cn+1 ≠–n≠1 0 0
0 –2 0 —1 0 0 · · · ≠bn+1 0 0 0 0
0 c4 0 0 –1 c6 · · · ≠–n≠3 0 ≠–n≠2 0 0
0 –3 0 –2 0 —1 · · · 0 0 bn+3 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 ≠cn+1 0 0 · · · –1 0 ≠–2 0 0
0 –n≠1 ≠bn+1 –n≠2 0 –n≠3 · · · ≠b2n≠2 —1 0 0 0
0 cn+1 0 0 0 0 · · · 0 0 –1 0 0

bn+1 –n 0 –n≠1 bn+3 –n≠2 · · · 0 –1 b2n —1 0
µ1 ‹1 µ2 ‹2 µ3 ‹3 · · · µn≠1 ‹n≠1 µn ‹n –1 + —1

R

ddddddddddddddddddddddddb

if n is odd. We can now study in details these two cases.
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If n is even, then Der(lJ0
2n+1) is a Lie algebra of dimension 4n + 1 with basis

{x, y, E1, . . . , En≠1, c2, c4, . . . , cn, bn+2, bn+4 . . . , b2n, A1, . . . , An, B1, . . . , Bn},

where

x =
nÿ

k=1
e2k≠1,2k≠1 + e2k+1,2k+1,

y =
nÿ

k=1
e2k,2k + e2k+1,2k+1,

Ei =
n≠i+1ÿ

k=0
(e2(k+i+1),2(k+1) ≠ e2k+1,2(k+i)+1), ’i = 1, . . . , n ≠ 1,

Ai = e2n+1,2i≠1, Bi = e2n+1,2i, ’i = 1, . . . , n,

ch =
h≠2ÿ

i=0
(≠1)i

e2(h≠i≠1)≠1,2(1+i), ’h = 2, 4, . . . , n,

bh =
2n≠hÿ

i=0
(≠1)i

e2(n≠i),2(h≠n+i)≠1, ’h = n + 2, n + 4, . . . , 2n

and commutators

[x, Bi] = Bi, [y, Ai] = Ai, ’i = 1, . . . , n,

[Ei, Bk] = ≠Bk≠2i, k > 2i,

[Ei, Ak] = Ak+2i, k + 2i Æ 2n,

[x, ch] = ch, [y, ch] = ≠ch, ’h = 2, 4, . . . , n,

[x, bh] = ≠bh, [y, bh] = bh, ’h = n + 2, n + 4, . . . , 2n,

[Ai, ck] = (≠1)i+1
Bk≠i, [Bi, bk] = (≠1)i

Ak≠i, 1 Æ k ≠ i Æ n,

[ck, bh] = Eh≠k, h ≠ k Ø 1,

[–2i, ch] = ≠2ch≠2i, h ≠ 2i > 0,

[–2i, bh] = 2bh+2i, h + 2i Æ 2n.

Then the commutator ideal of Der(lJ0
2n+1) has basis

{E2, E4, . . . , En≠2, c2, c4, . . . , cn, bn+2, bn+4 . . . , b2n, A1, . . . , An, B1, . . . , Bn}

and we have a (n
2 + 1)≠step solvable Lie algebra with derived series

Der(lJ0
2n+1) ´ [Der(lJ0

2n+1), Der(lJ0
2n+1)] ´

´ ÈE2, E4, . . . , En≠2, c2, c4, . . . , cn≠2, bn+4, . . . , b2n, A2, . . . , An, B1, . . . , Bn≠1Í ´ . . .

. . . ´ Èc2, b2n, An
2 +1, . . . , An, B1, . . . , Bn

2
Í ´ 0

Moreover, Der(lJ0
2n+1) is not nilpotent and its nilradical is the ideal

N = ÈE1, . . . , En≠1, c2, c4, . . . , cn, bn+2, bn+4 . . . , b2n, A1, . . . , An, B1, . . . , BnÍ.
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If n is odd, then the algebra of derivations of lJ0
2n+1 has dimension 4n + 2 and

it is generated by

{x, y, E1, . . . , En≠1, c2, c4, . . . , cn+1, bn+1, bn+3 . . . , b2n, A1, . . . , An, B1, . . . , Bn}.

The Lie brackets are the same of the ones listed for the case n even, except for the
facts that [Bi, bk] = (≠1)i+1

Ak≠i, for any 1 Æ k ≠ i Æ n, and [cn+1, bn+1] = x ≠ y.
Then the commutator ideal is the subspace generated by

{x≠y, E2, E4, . . . , En≠1, c2, c4, . . . , cn+1, bn+1, bn+3 . . . , b2n, A1, . . . , An, B1, . . . , Bn}.

In this case the Lie algebra of derivations is not solvable since

[[Der(lJ0
2n+1), Der(lJ0

2n+1)], [Der(lJ0
2n+1), Der(lJ0

2n+1)]] = [Der(lJ0
2n+1), Der(lJ0

2n+1)]

and the Levi decomposition is given by

Der(lJ0
2n+1) = R o S,

where the radical of the Lie algebra is

R = Èx+y, E1, . . . , En≠1, c2, c4, . . . , cn≠1, bn+3, bn+5 . . . , b2n, A1, . . . , An, B1, . . . , BnÍ

and the Levi complement is

S = Èx ≠ y, cn+1, bn+1Í.

Finally the nilradical is the ideal

N = ÈE1, . . . , En≠1, c2, c4, . . . , cn≠1, bn+3, bn+5 . . . , b2n, A1, . . . , An, B1, . . . , BnÍ.

In both cases n is even or odd, we have that Z(Der(lJ0
2n+1)) = 0 and the Lie

algebra of inner derivations is represented by the matrices of the type
Q

ccccca

0

0 .
.
.

0
µ1 ‹1 . . . µn ‹n 0

R

dddddb
,

thus Inn(lJ0
2n+1) is an abelian algebra of dimension 2n. Moreover, for every n œ N

and for every a œ Cú, we observe that

Der(h2n+1) ´ Der(lJ0
2n+1) ´ Der(lJa

2n+1).

3.1.3 The real case
Irreducible polynomials in R[x] have degree one or two. Let f(x) œ R[x] be an
irreducible monic polynomial. If f(x) = x ≠ a, then we obtain the same results
of the complex case. So we suppose that f(x) = x

2 +Cx+D, with C
2 ≠4D < 0.
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Let z = a + ib œ C \ R be a root of f(x). Then f(x) = (x ≠ z)(x ≠ z̄) and
the companion matrix A of f(x)n in similar to the 2n ◊ 2n real block matrix

JR =

Q

ccccca

R 0 · · · 0
I2 R · · · 0
.
.
.

. . .
. . .

.

.

.

0 · · · I2 R

R

dddddb
,

where
R =

A
a b

≠b a

B

is the realification of the complex number z. Thus lA4n+1
≥= lJR

4n+1 and lJR
4n+1

is the realification of the complex algebra lJz
2n+1. In [9] the derivations of the

realification of the (2n + 1)≠dimensional Heisenberg Lie algebra h2n+1 were
studied. We want to find the conditions such that the realification of a derivation
of the complex algebra lJz

2n+1, with z = a + ib œ C \ R, is a derivation of the real
algebra lJR

4n+1. We will investigate the case n = 1.

Let {e1, f1, e2, f2, z} be a basis of the real algebra lR5 . The non-trivial com-
mutators are

[ei, fi] = (1 + a)z, [fi, ei] = (≠1 + a)z, ’i = 1, 2,

[e1, f2] = [f2, e1] = bz, [e2, f1] = [f1, e2] = ≠bz

and it comes out that a general derivation of lR5 is represented by the matrix
Q

cccccca

–1 0 –2 0 0
0 —1 0 –2 0

≠–2 0 –1 0 0
0 ≠–2 0 —1 0
µ1 ‹1 µ2 ‹2 –1 + —1

R

ddddddb

if a ”= 0 and by Q

cccccca

–1 ” –2 0 0
”

Õ
—1 0 –2 0

≠–2 0 –1 ” 0
0 ≠–2 ”

Õ
—1 0

µ1 ‹1 µ2 ‹2 –1 + —1

R

ddddddb

if a = 0. Then

• if a ”= 0, Der(lR5 ) is generated by the set

{x, y, E, A1, A2, B1, B2},

where x = e11 + e33 + e55, y = e22 + e44 + e55, E = e13 + e24 ≠ e31 ≠ e42,
Ai = e5,2i≠1 and Bi = e5,2i, for every i = 1, 2, and the non-trivial Lie
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brackets are

[x, Bi] = Bi, [y, Ai] = Ai, ’i = 1, 2,

[E, A1] = ≠A2, [E, A2] = ≠A1,

[E, B1] = ≠B2, [E, B2] = ≠B1.

Then we have a solvable Lie algebra with abelian commutator ideal gener-
ated by

{A1, A2, B1, B2},

which coincides with the ideal Inn(lR5 ) and with the nilradical of the Lie
algebra itself. Moreover the center Z(Der(lR5 )) is trivial.

• if a = 0, a basis of Der(lR5 ) is

{x, y, E, F, G, A1, A2, B1, B2},

where x, y, E, A1, A2, B1, B2 are defined as above, F = e12 + e34, G =
e21 + e43 and the non-trivial Lie brackets are given by the ones above and
by

[x, F ] = F, [x, G] = ≠G, [y, F ] = ≠F, [y, G] = ≠G,

[F, G] = x ≠ y, [F, Ai] = ≠Bi, [F, Bi] = ≠Ai, ’i = 1, 2.

It follows that Z(Der(lR5 )) = 0 and the Lie algebra is not solvable. Its
radical is given by the ideal

R = Èx + y, E, A1, A2, B1, B2Í,

a Levi complement is the semisimple Lie algebra

S = Èx ≠ y, F, GÍ

and the nilradical of Der(lR5 ) is the abelian four-dimensional algebra

N = ÈA1, A2, B1, B2Í ≥= R4

and again it coincides with the set of inner derivations of lR5 .

Now let Q

ca
– 0 0
0 — 0
µ ‹ – + —

R

db
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be a derivation of the complex Heinseberg algebra lz3, where z = a + ib. Then
its realification is represented by the matrix

Q

cccccca

Ÿ(–) ⁄(–) 0 0 0
≠⁄(–) Ÿ(–) 0 0 0

0 0 Ÿ(—) ⁄(—) 0
0 0 ≠⁄(—) Ÿ(—) 0
µ1 ‹1 µ2 ‹2 “

R

ddddddb

and this is a derivation of the real Heisenberg Leibniz algebra lR5 if and only if

– = — œ R

in both cases that a ”= 0 or a = 0. Then the set of realifications of the derivations
of lz3 that are derivations of the real algebra lR5 form the proper Lie subalgebra
of the matrices of the form

Q

cccccca

– 0 0 0 0
0 – 0 0 0
0 0 – 0 0
0 0 0 – 0
µ1 ‹1 µ2 ‹2 2–

R

ddddddb

of Der(lR5 ).

3.1.4 Derivations of the Kronecker Leibniz algebra kn

Now we return to the case that F is a field with char(F) ”= 2. Let n œ N and let
kn be the Kronecker Leibniz algebra. We fix the basis {e1, . . . , en, f1, . . . , fn, z}
of kn.

A linear endomorphism d : kn æ kn defined by

d(ei) =
nÿ

j=1
ajiej +

nÿ

k=1
bkifk + aiz, ’i = 1, . . . , n,

d(fi) =
nÿ

j=1
cjiej +

nÿ

k=1
dkifk + biz, ’i = 1, . . . , n

and
d(z) = “z,
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is a derivation if and only if the following equations hold

0 = d([ei, ej]) = [d(ei), ej] + [ei, d(ej)]
= (bji + bij ≠ bj≠1,i + bi≠1,j)z,

0 = d([fi, fj]) = [d(fi), fj] + [fi, d(fj)]
= (cji + cij ≠ cj+1,i + ci+1,j)z,

“z = d([ei, fi]) = [d(ei), fi] + [ei, d(fi)]
= (aii + dii + ai+1,i + di≠1,i)z,

“z = d([fi, ei]) = [d(fi), ei] + [fi, d(ei)]
= (aii + dii ≠ ai+1,i ≠ di≠1,i),

“z = d([ei+1, fi]) = [d(ei+1), fi] + [ei+1, d(fi)]
= (ai,i+1 + di+1,i + ai+1,i+1 + dii)z,

≠“z = d([fi, ei+1]) = [d(fi), ei+1] + [fi, d(ei+1)]
= (ai,i+1 + di+1,i ≠ ai+1,i+1 ≠ dii)z,

0 = d([ei, fj]) = [d(ei), fj] + [ei, d(fj)]
= (aji + dij + aj+1,i + di≠1,j)z, j ”= i ≠ 1, i,

0 = d([fj, ej]) = [d(fj), ei] + [fj, d(ei)]
= (aji + dij ≠ aj+1,i ≠ di≠1,j)z, j ”= i ≠ 1, i,

for every i, j = 1, . . . , n and we have the following.

Theorem 3.1.1. A linear endomorphism d : kn æ kn is a derivation of the
Kronecker algebra kn if and only if it has the form

Q

ca
A C 0
B D 0
µ ‹ “

R

db

where

A =

Q

ccccccca

–1 –2 –3 . . . –n

0 –1 –2 . . . –n≠1
0 0 –1 . . . –n≠2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . –1

R

dddddddb

, D =

Q

ccccccca

—1 0 0 . . . 0
≠–2 —1 0 . . . 0
≠–3 ≠–2 —1 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

≠–n ≠–n≠1 ≠–n≠2 . . . —1

R

dddddddb

,
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B =

Q

ccccccccccccccccca

0 0 0 0 . . . 0 0 0 bn+1
0 0 0 0 . . . 0 0 ≠bn+1 0
0 0 0 0 . . . 0 bn+1 0 bn+3
0 0 0 0 . . . ≠bn+1 0 ≠bn+3 0
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

0 0 0 bn+1 . . . 0 b2n≠5 0 b2n≠3
0 0 ≠bn+1 0 . . . ≠b2n≠5 0 ≠b2n≠3 0
0 bn+1 0 bn+3 . . . 0 b2n≠3 0 b2n≠1

≠bn+1 0 ≠bn+3 0 . . . ≠b2n≠3 0 ≠b2n≠1 0

R

dddddddddddddddddb

,

C =

Q

ccccccccccccccccca

0 c3 0 c5 . . . 0 cn≠1 0 cn+1
≠c3 0 ≠c5 0 . . . ≠cn≠1 0 ≠cn+1 0
0 c5 0 c7 . . . 0 cn+1 0 0

≠c5 0 ≠c7 0 . . . ≠cn+1 0 0 0
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

0 cn≠1 0 cn+1 . . . 0 0 0 0
≠cn≠1 0 ≠cn+1 0 . . . 0 0 0 0

0 cn+1 0 0 . . . 0 0 0 0
≠cn+1 0 0 0 . . . 0 0 0 0

R

dddddddddddddddddb

,

if n is even,

B =

Q

ccccccccccccccccca

0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 ≠bn+2
0 0 0 0 . . . 0 0 bn+2 0
0 0 0 0 . . . 0 ≠bn+2 0 ≠bn+4
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 . . . 0 ≠b2n≠5 0 ≠b2n≠3
0 0 0 bn+2 . . . b2n≠5 0 b2n≠3 0
0 0 ≠bn+2 0 . . . 0 ≠b2n≠3 0 ≠b2n≠1
0 bn+2 0 bn+4 . . . b2n≠3 0 b2n≠1 0

R

dddddddddddddddddb

,

C =

Q

ccccccccccccccccca

0 c3 0 c5 . . . cn≠2 0 cn 0
≠c3 0 ≠c5 0 . . . 0 ≠cn 0 0
0 c5 0 c7 . . . cn 0 0 0

≠c5 0 ≠c7 0 . . . 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

. . .
. .

.

.
.
.
.

.

.

.
.
.
.

≠cn≠2 0 ≠cn 0 . . . 0 0 0 0
0 cn 0 0 . . . 0 0 0 0

≠cn 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0

R

dddddddddddddddddb

,

if n is odd and

µ = (µ1, µ2, µ3, . . . , µn), ‹ = (‹1, ‹2, ‹3, . . . , ‹n), “ = –1 + —1.
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Remark 3.1.2. Again, with the change of basis

{e1, . . . , en, f1, . . . , fn, z} ‘æ {e1, f1, . . . , en, fn, z} ,

a derivation of kn is represented by the (2n + 1) ◊ (2n + 1) matrix
Q

cccccccccccccccccccccccca

–1 0 ≠–2 c3 ≠–3 0 · · · ≠–n≠1 0 ≠–n cn+1 0
0 —1 0 0 0 0 · · · 0 0 bn+1 0 0
0 ≠c3 –1 0 ≠–2 ≠c5 · · · ≠–n≠2 ≠cn+1 ≠–n≠1 0 0
0 –2 0 —1 0 0 · · · ≠bn+1 0 0 0 0
0 0 0 c5 –1 0 · · · ≠–n≠3 0 ≠–n≠2 0 0
0 –1 0 –2 0 —1 · · · 0 0 ≠bn+3 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 cn+1 0 0 · · · –1 0 ≠–2 0 0
0 –n≠1 bn+1 –n≠2 0 –n≠3 · · · 0 —1 ≠b2n≠1 0 0
0 ≠cn+1 0 0 0 0 · · · 0 0 –1 0 0

≠bn+1 –n 0 –n≠1 bn+3 –n≠2 · · · b2n≠1 –2 0 —1 0
µ1 ‹1 µ2 ‹2 µ3 ‹3 · · · µn≠1 ‹n≠1 µn ‹n –1 + —1

R

ddddddddddddddddddddddddb

if n is even and
Q

cccccccccccccccccccccccca

–1 0 ≠–2 c3 ≠–3 0 · · · ≠–n≠1 cn ≠–n 0 0
0 —1 0 0 0 0 · · · 0 0 0 0 0
0 ≠c3 –1 0 ≠–2 ≠c5 · · · ≠–n≠2 0 ≠–n≠1 0 0
0 –2 0 —1 0 0 · · · 0 0 ≠bn+2 0 0
0 0 0 ≠c5 –1 0 · · · ≠–n≠3 0 ≠–n≠2 0 0
0 –3 0 –2 0 —1 · · · bn+2 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 cn 0 0 0 0 · · · –1 0 ≠–2 0 0
0 –n≠1 0 –n≠2 ≠bn+2 –n≠3 · · · 0 —1 ≠b2n≠1 0 0
0 0 0 0 0 0 · · · 0 0 –1 0 0
0 –n bn+2 –n≠1 0 –n≠2 · · · b2n≠1 –2 0 —1 0
µ1 ‹1 µ2 ‹2 µ3 ‹3 · · · µn≠1 ‹n≠1 µn ‹n –1 + —1

R

ddddddddddddddddddddddddb

if n is odd.

We can now describe the main properties of the Lie algebra Der(kn).

• If n is even, then Der(kn) has basis

{x, y, E1, . . . , En≠1, c3, c5, . . . , cn+1, bn+1, bn+3 . . . , b2n≠1, A1, . . . , An, B1, . . . , Bn},
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where

x =
nÿ

k=1
e2k≠1,2k≠1 + e2k+1,2k+1,

y =
nÿ

k=1
e2k,2k + e2k+1,2k+1,

Ei =
n≠i+1ÿ

k=0
(e2(k+i+1),2(k+1) ≠ e2k+1,2(k+i)+1), ’i = 1, . . . , n ≠ 1,

Ai = e2n+1,2i≠1, Bi = e2n+1,2i, ’i = 1, . . . , n,

ch =
h≠2ÿ

i=0
(≠1)i+1

e2(h≠i≠1)≠1,2(1+i), ’h = 3, 5, . . . , n + 1,

bh =
2n≠hÿ

i=0
(≠1)i+1

e2(n≠i),2(h≠n+i)≠1, ’h = n + 1, n + 3, . . . , 2n ≠ 1,

and

[x, Bi] = Bi, [y, Ai] = Ai, ’i = 1, . . . , n,

[Ei, Bk] = ≠Bk≠2i, k > 2i,

[Ei, Ak] = Ak+2i, k + 2i Æ 2n,

[x, ch] = ch, [y, ch] = ≠ch, ’h = 3, 5, . . . , n + 1,

[x, bh] = ≠bh, [y, bh] = bh, ’h = n + 1, n + 3, . . . , 2n ≠ 1,

[Ai, ck] = (≠1)i+1
Bk≠i, [Bi, bk] = (≠1)i+1

Ak≠i, 1 Æ k ≠ i Æ n,

[ck, bh] = Eh≠k, h ≠ k Ø 1,

[cn+1, bn+1] = ≠x + y,

[E2i, ch] = ≠2ch≠2i, h ≠ 2i > 0,

[E2i, bh] = 2bh+2i, h + 2i Æ 2n.

The commutator ideal of Der(kn) has basis

{x≠y, E2, E4, . . . , En≠2, c3, c5, . . . , cn+1, bn+1, bn+3 . . . , b2n≠1, A1, . . . , An, B1, . . . , Bn}

and, as in the case of the Heisenberg Leibniz algebra lJ0
2n+1 with n odd,

we have that the Lie algebra of derivations is not solvable. The Levi
decomposition is

Der(kn) = R o S,

where

R = Èx+y, E1, . . . , En≠1, c3, c5, . . . , cn≠1, bn+3, bn+5 . . . , b2n≠1, A1, . . . , An, B1, . . . , BnÍ

is the radical and
S = Èx ≠ y, cn+1, bn+1Í

is a Levi complement. Moreover the nilradical of Der(kn) is

N = ÈE1, . . . , En≠1, c3, c5, . . . , cn≠1, bn+3, bn+5 . . . , b2n≠1, A1, . . . , An, B1, . . . , BnÍ.
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• If n is odd, then the algebra of derivations of kn has dimension 4n and it
is generated by

{x, y, E1, . . . , En≠1, c3, c5, . . . , cn, bn+2, bn+4 . . . , b2n≠1, A1, . . . , An, B1, . . . , Bn}.

The Lie brackets are the same of the ones listed before when n is even,
except for the facts that x≠y does not belong to the commutator ideal and
[Bi, bk] = (≠1)i

Ak≠i, for any 1 Æ k ≠ i Æ n. In this case the commutator
ideal is the subspace generated by

{E2, E4, . . . , En≠1, c3, c5, . . . , cn, bn+2, bn+4 . . . , b2n≠1, A1, . . . , An, B1, . . . , Bn}

and we have a (n+1
2 + 1)≠step solvable Lie algebra with nilradical

N = ÈE1, . . . , En≠1, c3, c5, . . . , cn, bn+2, bn+4 . . . , b2n≠1, A1, . . . , An, B1, . . . , BnÍ.

In both cases n is odd or even, the center Z(Der(lJ0
2n+1)) is trivial, the Lie algebra

of inner derivations is

Inn(kn) = ÈA1, . . . , An, B1, . . . , BnÍ ≥= F2n
,

since
adei = Bi≠1 + Bi, adfi = Ai + Ai+1, ’i = 1, . . . , n

and
Der(h2n+1) ´ Der(kn) ´ Der(lJa

2n+1),

for any a ”= 0. More precisely

Der(lJ0
2n+1) fl Der(kn) = Der(lJa

2n+1).

3.1.5 Derivations of the Dieudonné Leibniz algebra dn

Finally we study the derivations of the Dieudonné Leibniz algebra dn. We fix
the basis {e1, . . . , e2n+1, z} of dn.

If

D =

Q

ccccca

0

A
.
.
.

0
a1 a2 . . . a2n+1 “

R

dddddb
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is a derivation of dn, then it turns out that the entries of A = (aij)i,j œ M2n+1(F)
must satisfy the following set of equations
Y
_______________________]

_______________________[

aj+n,1 ≠ aj+n+1,1 + an+2,j = 0, ’j = 2, . . . , n,

a2n+1,1 + an+2,n+1 = 0,

aj≠n,1 + aj≠n≠1,1 + an+2,j = 0, ’j = n + 3, . . . , 2n + 1,

a11 + a21 + an+2,n+2 = “,

≠an+2,i + an+i,1 + an+i+1,1 = 0,

an+j,i ≠ an+j+1,i + an+i,j + an+i+1,j = 0, ’j = 2, . . . , n,

a2n+1,i + an+i,n+1 + an+i+1,n+1 = 0,

aj≠n,i + aj≠n≠1,i + an+i,j + an+i+1,j = 0, ’j = n + 2, . . . , 2n + 1, j ”= n + i, n + i + 1,

aii + ai≠1,i + an+i,n+i + an+i+1,n+i = “,

ai+1,i + aii + an+i,n+i+1 + an+i+1,n+i+1 = “

(3.1)
for every i = 2, . . . , n and

Y
_______________________________]

_______________________________[

≠an+2,n+1 + a2n+1,1 = 0,

an+j,n+1 ≠ an+j+1,n+1 + a2n+1,j = 0, ’j = 2, . . . , n,

a2n+1,n+1 = 0,

aj≠n,n+1 + aj≠n≠1,n+1 + a2n+1,j = 0, ’j = n + 2, . . . , 2n,

an,n+1 + an+1,n+1 + a2n+1,2n+1 = “,

≠an+2,k + ak≠n,1 ≠ ak≠n≠1,1 = 0, if k ”= n + 2,

an+j,k ≠ an+j+1,k + ak≠n,j ≠ ak≠n≠1,j = 0, ’j = 2, . . . , n, j ”= k ≠ n, k ≠ n ≠ 1,

a2n+1,k + ak≠n,n+1 ≠ ak≠n≠1,n+1 = 0,

aj≠n,k + aj≠n≠1,k + ak≠n,j ≠ ak≠n≠1,j = 0, ’j = n + 2, . . . , 2n + 1,

akk ≠ ak+1,k + ak≠n,k≠n ≠ ak≠n≠1,k≠n = “, if k ”= 2n + 1,

a2n+1,2n+1 + an+1,n+1 ≠ an,n+1 = “,

≠an+2,n+2 + a21 ≠ a11 = ≠“,

ak≠1,k ≠ akk + ak≠n,k≠n≠1 ≠ ak≠n≠1,k≠n≠1 = ≠“, if k ”= n + 2.

(3.2)
for every k = n + 2, . . . , 2n + 1.

Theorem 3.1.2. A derivation of dn is represented by a (2n + 2) ◊ (2n + 2)
matrix

Q

ccccccccccccca

0

–In+1 C
.
.
.

0
0

0 —In

.

.

.

0
µ1 . . . µn+1 ‹1 . . . ‹n – + —

R

dddddddddddddb
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where the (n + 1) ◊ n matrix C is
Q

cccccccccccca

–1 0 –2 0 –3 0 · · · –n
2

0
0 ≠–2 0 ≠–3 0 ≠–4 · · · 0 ≠–n

2 +1
–2 0 –3 0 –4 0 · · · –n

2 +1 0
0 ≠–3 0 ≠–4 0 ≠–5 · · · 0 ≠–n

2 +2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 ≠–n
2 +1 0 ≠–n

2 +2 0 ≠–n
2 +3 · · · 0 ≠–n

–n
2 +1 0 –n

2 +2 0 –n
2 +3 0 · · · –n 0

R

ddddddddddddb

if n is even and
Q

cccccccccccccca

–1 0 –2 0 –3 0 · · · 0 –n+1
2

0 ≠–2 0 ≠–3 0 ≠–4 · · · ≠–n+1
2

0
–2 0 –3 0 –4 0 · · · 0 –n+1

2 +1
0 ≠–3 0 ≠–4 0 ≠–5 · · · ≠–n+1

2 +1 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

–n+1
2

0 –n+1
2 +1 0 –n+1

2 +2 0 · · · 0 –n

0 ≠–n+1
2 +1 0 ≠–n+1

2 +2 0 ≠–n+1
2 +3 · · · ≠–n 0

R

ddddddddddddddb

if n is odd.

The Lie algebra Der(dn) has dimension 3n + 3 and basis

{x, y, E1, . . . , En, A1, . . . , A2n+1},

where

x =
n+1ÿ

i=1
eii + e2n+1,2n+1,

y =
2n+2ÿ

i=n+2
eii, Ai = e2n+1,i, ’i = 1, . . . , 2n + 1,

Ei =
2i≠1ÿ

k=1
(≠1)k+1

ek,n+2i+1≠k, ’i = 1, . . . ,

7
n + 1

2

8
,

En
2 +j =

n+2≠2jÿ

k=1
(≠1)k+1

en+2≠k,n+2j≠1+k, ’j = 1, . . . ,
n

2 ,

if n even, and

En+1
2 +j =

n+1≠2jÿ

k=1
(≠1)k

en+2≠k,n+2j+k, ’j = 1, . . . ,
n ≠ 1

2 ,



3.1. Derivations 71

if n is odd. The non-zero Lie brackets are

[x, Ei] = [Ei, y] = –i, ’i = 1, . . . , n,

[y, Ah] = Ah, ’h = 1, . . . , n + 1,

[x, Ak] = Ak, ’k = n + 2, . . . , 2n + 1,

[Ai, Ek] = ÁjAj, ’i = 1, . . . , n + 1,

where Áj = ±1 is the only entry di�erent than zero in the i
th row of the matrix

–k and j œ {n + 2, . . . , 2n + 1} is its column. Thus Der(dn) is a 3≠step solvable
Lie algebra with commutator ideal consisting of the matrices

Q

ccccccccccccca

0

0 C
.
.
.

0
0

0 0
.
.
.

0
µ1 . . . µn+1 ‹1 . . . ‹n 0

R

dddddddddddddb

The derived series is

Der(dn) ´ ÈE1, . . . , En, A1, . . . , A2n+1Í ´ ÈAn+2, . . . , A2n+1Í ´ 0

and the nilradical coincides with the commutator ideal (which is a two-step
nilpotent Lie algebra). Finally Z(Der(dn)) is trivial and the left adjoint maps
are

ade1 = An+2, adei = An+i + An+i+1, ’i = 2, . . . , n,

aden+1 = A2n+1, adej = Aj≠n ≠ Aj≠n≠1, ’j = n + 2, . . . , 2n + 1,

thus the inner derivations of the Dieudonné algebra dn are represented by the
matrices of the form

Q

ccccca

0

0 .
.
.

0
µ1 µ2 . . . µn µ ‹1 . . . ‹n 0

R

dddddb

where µ = ≠
nÿ

k=1
µk. More precisely, the matrix
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Q

ccccca

0

0 .
.
.

0
0 . . . 0 µn+1 0 . . . 0 0

R

dddddb

does not represent an inner derivation, for every an+1 ”= 0.

For example, we study Der(dn) in the case that n Æ 3.

Example 3.1.2.1. If n = 1, then

D =

Q

ccca

– 0 –1 0
0 – 0 0
0 0 — 0
µ1 µ2 ‹1 – + —

R

dddb

thus Der(d1) is the six-dimensional solvable Lie algebra with basis

{x, y, E, A1, A2, A3},

where x = e11 + e22 + e44, y = e33 + e44, E = e1,3 and Ai = e4,i, for any i = 1, 2, 3,
and with non-trivial commutators

[x, E] = [E, y] = E, [x, A3] = A3, [y, A1] = A1, [y, A2] = A2, [A1, E] = A3.

Example 3.1.2.2. If n = 2, the derivations of d2 are of the form
Q

cccccccca

– 0 0 –1 0 0
0 – 0 0 ≠–2 0
0 0 – –2 0 0
0 0 0 — 0 0
0 0 0 0 — 0
µ1 µ2 µ3 ‹1 ‹2 – + —

R

ddddddddb

and Der(d2) is a nine-dimensional Lie algebra with commutator ideal consisting
of the matrices Q

cccccccca

0 0 0 –1 0 0
0 0 0 0 ≠–2 0
0 0 0 –2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
µ1 µ2 µ3 ‹1 ‹2 0

R

ddddddddb

Example 3.1.2.3. If n = 3, then
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D =

Q

ccccccccccccca

0

–I4 C
.
.
.

0
0

0 —I3
.
.
.

0
µ1 µ2 µ3 µ4 ‹1 ‹2 ‹3 – + —

R

dddddddddddddb

where

C =

Q

ccca

–1 0 –2
0 ≠–2 0
–2 0 –3
0 ≠–3 0

R

dddb

and the Lie algebra Der(d3) has dimension 9 with generators

{x, y, E1, E2, E3, A1, . . . , A8},

where

x = e11 + e22 + e33 + e44 + e88, y = e55 + e66 + e77 + e88,

E1 = e1,5, E2 = e1,7 ≠ e2,6 + e3,5, E3 = e3,7 ≠ e2,8,

Ai = e8,i, ’i = 1, . . . , 7

and with Lie brackets

[x, Ei] = [Ei, y] = Ei, ’i = 1, 2, 3,

[y, Ah] = Ah, [x, Ak] = Ak ’h = 1, 2, 3, 4, ’k = 5, 6, 7,

[A1, E1] = A5, [A1, E2] = A7, [A2, E2] = ≠A6,

[A3, E2] = A5, [A3, E3] = A7, [A4, E3] = ≠A6.

3.1.6 Almost inner derivations of nilpotent Leibniz alge-
bras with one-dimensional commutator ideal

We recall that a derivation d of a left Leibniz algebra L is an almost inner deriva-
tion if d(x) œ [L, x], for every x œ L. The set of all almost inner derivations of
L forms a Lie subalgebra of Der(L), denoted by AIDer(L), containing the ideal
Inn(L) of inner derivations of L.

Derivations of two-step nilpotent Lie algebras were studied in [18] and [17]
by D. Burde, K. Dekimpe and B. Verbeke. They proved that every almost inner
derivations of a Lie algebra of genus 1 (i.e. with one-dimensional commutator
ideal) is an inner derivation. We want to generalize this result in the frame of
Leibniz algebras.

Proposition 3.1.3. Let L be a complex nilpotent Leibniz algebra with [L, L] =
Cz, such that L ”≥= lJ±1

2n+1 and L ”≥= dn. Then every almost inner derivation
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d œ AIDer(L) is an inner derivation.

Proof. Let d œ AIDer(L). Then d(y) œ [L, y] ™ [L, L] = Cz, for any y œ L and
d([L, L]) = 0. Fixed a basis {e1, . . . , et≠1, z} of L, where t = dimC L, we have
that

d(ei) = aiz, ’i = 1, . . . , t ≠ 1,

with ai œ F and d(z) = 0, thus d œ Inn(L).

For the Heisenberg Leibniz algebras lJa
2n+1 with a = ±1 (in [58] it was proved

that these two algebras are isomorphic) and for the Dieudonné Leibniz algebra
dn, it is possible to define an almost inner derivation d which is not inner. For
instance, if a = 1 and we fixed the basis {e1, f1, . . . , en, fn, z} of lJ1

2n+1, then the
matrix

Q

ccccca

0

0 .
.
.

0
1 0 . . . 0 0 0

R

dddddb

defines a derivation d œ AIDer(lJ1
2n+1) \ Inn(lJ1

2n+1). In the same way

Q

ccccca

0

0 .
.
.

0
0 0 . . . 0 1 0

R

dddddb

is an almost inner but non-inner derivation of lJ≠1
2n+1. More precisely every almost

inner derivation of lJ±1
2n+1 is of the form

Q

ccccca

0

0 .
.
.

0
µ1 ‹1 . . . µn ‹n 0

R

dddddb

with a1, b1, . . . , an, bn œ C, meanwhile the inner derivations are represented by
the set of matrices

Q

ccccca

0

0 .
.
.

0
0 ‹1 µ2 ‹2 . . . µn ‹n 0

R

dddddb
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for lJ1
2n+1, and by

Q

ccccca

0

0 .
.
.

0
µ1 ‹1 µ2 ‹2 . . . µn 0 0 0

R

dddddb

for the Leibniz algebra lJ≠1
2n+1. Finally AIDer(dn) consists of the matrices of the

type

Q

ccccca

0

0 .
.
.

0
µ1 . . . µn+1 ‹1 . . . ‹n 0

R

dddddb

and an example of almost inner but non-inner derivations is given by the linear
map d œ gl(dn) defined by d(en+1) = z.

3.2 Isotopisms
The concept of isotopism between two algebraic structures was introduced in [1]
by A. A. Albert (see also [2] and [38]) in order to classify non-associative algebras
by generalizing the notion of isomorphism. Before defining isotopisms for Leibniz
algebras and racks, we recall some results and properties of isotopisms in the
context of non-associative algebras.

3.2.1 Isotopisms of algebras
The aim of this subsection is to introduce the concept of isotopism according to
the ideas of A.A. Albert as presented in [1]. More specifically, Albert discusses
isotopy in both associative and non-associative algebras, while also considering
their inclusion of units. In the forthcoming introduction, we will focus exclusively
on the non-commutative context we are about to explore, particularly in the
context of Leibniz algebras, and will therefore not discuss algebras containing
units.

Let A be an algebra over a field F. Denote with R(A) and L(A) the vector
spaces, respectively, of all right and left multiplications. Namely,

R(A) = {Rx : A æ A | Rx(a) = ax, ’a, x œ A}
L(A) = {Lx : A æ A | Rx(a) = xa, ’a, x œ A}

Given an algebra A, we can determine the vector space R(A) and establish the
x ‘æ Rx mapping that goes from A to R(A) and vice versa (the same can be
done for left multiplications). Suppose we have a second algebra A0 over F with
dimF A0 = dimF A and then a corresponding linear mapping x ‘æ R

(0)
x . So the
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product ú of A0 can be written as follows

a ú x = R
(0)
x (a).

Definition 3.2.1. Two algebras A and A0 over a field F are isotopic if there
exist non-singular linear transformations P, Q, C : A0 æ A such that

R
(0)
x = P

≠1
RQ(x)C (3.14)

for every x œ A0. We shall call Equation (3.14) an isotopy (or isotopism) of A

and A0.

We remind that in this case the two algebras A0 A have the same dimension,
so here the notions of non-singular linear map and bijective linear map (then
invertible) are equivalent.

Proposition 3.2.2. The relation of isotopy is an equivalence relation.

Proof. We shall make use the Equation (3.14). Reflexivity follows by selecting
P = Q = C the identity, in order to see that R

(0)
x is the identity as well. If

R
(0)
x = P

≠1
RQ(x)C is an isotopy of A and A0, then putting y = Q(x) we have

Ry = PR
(0)
Q≠1(y)C

≠1
.

This is an isotopy of A0 and A. Now let R
(1)
x = P

≠1
1 R

(0)
Q1(x)C1 be an isotopy of

A0 and A1. If we put P2 = PP1, Q2 = QQ1 and C2 = CC1, we obtain and
isotopism of A1 and A by

R
(1)
x = P

≠1
2 RQ2(x)C2.

Indeed we have

R
(0)
x = P

≠1
RQ(x)C

∆ R
(0)
Q1(x) = P

≠1
RQ(Q1(x))C

∆ R
(1)
x = P

≠1
1

1
P

≠1
RQ(Q1(x))C

2
C1.

Is it reasonable to ask what happens if, instead of examining right multi-
plications in an algebra, we consider left multiplications? Before showing an
isotopism in these terms, let us make a few remarks beforehand. The following
relations hold in an algebra A

ax = Rx(a) = La(x)
xa = Lx(a) = Ra(x)

for every x, a œ A.
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Theorem 3.2.3. Let A and A0 be algebra over a field F. If A and A0 are
isotopic by Equation (3.14), then this is equivalent to

L
(0)
x = P

≠1
LC(x)Q, (3.15)

for every x œ A0.

Proof. For x, a œ A0, we put z := C(x). Then, by Equation (3.14) we have

L
(0)
x (a) = R

(0)
a (x)

= P
≠1

RQ(a)C(x)
= P

≠1
RQ(a)z

= P
≠1(zQ(a))

= P
≠1

LzQ(a)
= P

≠1
LC(x)Q(a).

With the same arguments used in Proposition 3.2.2 the reader can prove
that to be isotopic by Equation (3.15) is still a relation of equivalence. For the
sake of completeness and clarity, let us state the result without providing the
proof.

Proposition 3.2.4. The relation of isotopy by Equation (3.15) is an equivalence
relation.

Two algebra (A, ·) and (A0, ú) over the same field are said to be isomorphic
if there exists a bijective map (i.e. non-singular) „ : A0 æ A that preserves
algebra multiplication. Thus, for every x, a œ A0

„(a ú x) = „(a)„(x),

that is
„R

(0)
x (a) = R„(x)„(a)

and then
R

(0)
x (a) = „

≠1
R„(x)„(a). (3.16)

The last equations is equivalent by Theorem 3.2.3 to the following

L
(0)
x = „

≠1
L„(x)„. (3.17)

It is often more practical to employ simplified versions of equations 3.14 and
3.15, which can be achieved by substituting A0 with an isomorphic algebra.
Thus we may apply Equation (3.16) to Equation (3.14). To be more precise we
indicate with A1 the algebra A with a di�erent multiplication R

(1), „ : A1 æ A0
is an algebra isomorphism and „ = Q

≠1. Thus we have

R
(1)
x = „

≠1
R

(0)
„(x)„ = „

≠1
P

≠1
RQ(„(x))C„.

This result may be stated as follows.
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Proposition 3.2.5. Let A be an algebra over a field F. Every isotopism of A is
equivalent to an isotopism defined by

R
(1)
x = P

≠1
RxC, ’x œ A,

for some non-singular linear transformations P, C : A1 æ A.

In light of this latest result, by Theorem 3.2.3 we have the following result.

Proposition 3.2.6. Let A be an algebra over a field F. Every isotopism of A is
equivalent to an isotopism defined by

L
(1)
x = P

≠1
LC(x)

for some algebra A0 and for some non-singular linear transformations P, C : A0 æ
A.

Clearly, the proposition above has the advantage of mapping x to P
≠1

RxC.
Even though it is already a simpler isotopism compared to Equation (3.14), it
can be further simplified by setting „ = C

≠1 and obtain

R
(1)
x = P

≠1
CRC≠1(x).

Definition 3.2.7. An isotopism of two algebra A and A0 is principal if C = id.

We give the following result to summarize the results showed above.

Theorem 3.2.8. Every isotopism of an algebra A is equivalent to a principal
isotopism of A0, that is, an isotopism with

R
(0)
x = P

≠1
RQ(x), L

(0)
x = Q

≠1
LP (x),

for every x œ A0 and for some non-singular linear transformations P, C : A0 æ
A.

Before concluding this subsection, we would like to take a moment to reflect
on how the results we have just seen clarify the manner in which the notion of
isotopism can be thought of as a generalization or a broader concept compared
to that of isomorphism.

Example 3.2.8.1. Let A = Èe1, e2, e3Í be a nilpotent 3-dimensional algebra
over a field F such that e1e2 = ≠e2e1 = e3 and all other products zero1. Now,
for every x œ A we can write this element as a linear combinations of e1, e2, e3,
namely x = ›1e1 + ›2e2 + ›3e3 for some ›1, ›2, ›3 œ F. Thus we have

Rx = ≠Lx =

Q

ca
0 0 ›2
0 0 ≠›1
0 0 0

R

db .

1
This is the Heisenberg Lie algebra h3.
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Let

� =

Q

ca
0 ≠1 0
1 0 0
0 0 1

R

db

and define an algebra A0 with the same basis of A which multiplication is

R
(0) = �Rx =

Q

ca
0 ≠1 0
1 0 0
0 0 1

R

db

Q

ca
0 0 ›2
0 0 ≠›1
0 0 0

R

db =

Q

ca
0 0 ›1
0 0 ›2
0 0 0

R

db .

A and A0 are isotopic but they are not isomorphic. Indeed,

e1e1 = R
(0)
e1 (e1) =

1
1 0 0

2
Q

ca
0 0 1
0 0 0
0 0 0

R

db =
1
0 0 1

2
= e3

and in A the square of every element is zero, while in A0 we have

„(e1e1) = 0 ”= e3 = e1e1 = „(e1)„(e1).

To be thorough and comprehensive, there is much more to discuss regarding
the isotopisms of algebras. However, as mentioned earlier, we would also need
to consider associative algebras with or without units. This would extend our
discussion considerably and take us further away from our main focus, which is
on Leibniz algebras. Nevertheless, we refer the reader to the articles by A.A.
Albert ([1] and [2]) for a broader overview of this topic.

3.2.2 Isotopisms of Leibniz algebras and racks
Definition 3.2.9. Let (g, [≠, ≠]) and (h, [≠, ≠]h) be left Leibniz algebras over
F. An isotopism between g and h is a triple of linear isomorphisms

(f, g, h) : g ⌧ h

such that
[f(x), g(y)]h = h([x, y]), ’x, y œ g.

We say that g and h are isotopic Leibniz algebras.

An isotopism is said to be a right isotopism if f = h and a left isotopism if
g = h. We observe that, if f : g ⌧ h is an isomorphism of Leibniz algebras, then
the triple (f, f, f) is a (left and right) isotopism.

Definition 3.2.10. Let (X,⇤, 1) and (Y,⇤Y , 1Y ) be left pointed racks. An
isotopism between X and Y is a triple of bijections

(f, g, h) : X ⌧ Y

such that f(1) = g(1) = h(1) = 1Y and

f(x) ⇤Y g(y) = h(x ⇤ y), ’x, y œ X.
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Also in this case, every isomorphism of racks can be seen as a left and right
isotopism. Moreover, one can define the notion of Lie rack isotopism by asking
that f, g, h are di�eomorphisms.

The following is the generalization of a result proved by A. A. Albert in [2]
for isotopisms of quasigroups.

Remark 3.2.1. Every isotopism (f, g, h) between two algebraic structures is
isomorphic to a principal isotopism, i.e. an isotopism of the form (f̃ , g̃, id).
To be more precise, let (A, ·) and (B, ¶) be two algebraic structures and let
(f, g, h) : A ⌧ B be an isotopism. We define a new binary operation ú : B ◊B æ
B by

h(x) ú h(y) = h(xy), ’x, y œ A.

In this way (A, ·) and (B, ú) are isomorphic and h(x) ú h(y) = f(x) ¶ g(y). Thus
(hf

≠1)(x̄) ú (hg
≠1)(ȳ) = x̄ ¶ ȳ, where x̄ = f(x), ȳ = g(y) and we obtain the

principal isotopism (fh
≠1

, gh
≠1

, idB) : (B, ¶) ⌧ (B, ú).

(B, ¶) (B, ú)

(A, ·)

(fh≠1,gh≠1,idB)

(f,g,h) h

In the case that (A, ·) and (B, ¶) are finite dimensional non-associative
algebras over a field F, such as Leibniz algebras, we can identify the underlying
vector space of A and B with Fn, where n = dimF A = dimF B, and idB = idFn .

From Definition 3.2.9, it turns out that a di�erence between isomorphisms
and isotopisms is that one can find a Lie algebra that is isotopic to a Leibniz
non-Lie algebra, as the following example shows.

Example 3.2.10.1. Let h3 be the three-dimensional Heisenberg Lie algebra, let
A = (aij)i,j œ GL2(F), B = (bij)i,j = A · diag{⁄, µ}, with ⁄, µ œ Fú and let gA

⁄,µ

be the nilpotent Leibniz algebra with one-dimensional commutator ideal with
structure matrix

Q

ca
0 a11b22 ≠ a21b12 0

a12b21 ≠ a22b11 0 0
0 0 0

R

db .

Then the triple of linear isomoprhisms (f, g, idF3) : gA
⁄,µ ⌧ h3, where f and g are

defined respectively by the matrices
Q

ca
a11 a21 0
a12 a22 0
0 0 –

R

db and

Q

ca
b11 b21 0
b12 b22 0
0 0 —

R

db ,
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with –, — œ Fú, is a principal isotopism. Indeed, for every x © (x1, x2, x3), y ©
(y1, y2, y3) œ F3, we have

[f(x), g(y)]h3
= (0, 0, (a11x1 + a12x2)(b21y1 + b22y2) ≠ (a21x1 + a22x2)(b11y1 + b12y2))
= (0, 0, (a11b22 ≠ a21b12)x1y2 ≠ (a12b21 ≠ a22b11)x2y1) = [x, y]gA

⁄,µ
,

since a11b21 ≠ b11a21 = a12b22 ≠ b12a22 = 0.

If ⁄ = 2
det(A) ≠ µ and – = µ det(A) ≠ 1, then gA

⁄,µ = l–3 . Indeed gA
⁄,µ and l–3 have

the same structure matrix, that is
Q

ca
0 µ det(A) 0

≠⁄ det(A) 0 0
0 0 0

R

db =

Q

ca
0 1 + – 0

≠1 + – 0 0
0 0 0

R

db .

Conversely, for every – œ Fú \{±1}, if we choose A = I2, ⁄ = 1≠– and µ = 1+–,
then gI2

⁄,µ = l–3 . Thus h3 and l–3 are isotopic for every – œ F, – ”= ±1. We note
that this result is not true if – = ±1, in fact in the next section we will show
that l±1

3 and h3 are not isotopic.
In a similar way, if µ = ≠⁄ = 1

det(A) , then the structure matrix of gA
⁄,µ is

Q

ca
0 1 0
1 0 0
0 0 0

R

db ,

i.e. gA
⁄,µ = k1 is the Kronecker Leibniz algebra. Thus l–3 is isotopic to k1, for every

– ”= ±1.

3.2.3 Isotopisms of two-step nilpotent Leibniz algebras
and Lie racks

The notion of isotopism was used in [39] and [40] for classifying some families of
Lie algebras, such as filiform Lie algebras over finite fields. The authors also
determined some isotopism invariants for these algebras.

The main goal of this section is to investigate the isotopism classes of
indecomposable nilpotent Leibniz algebras with one-dimensional commutator
ideal over a field F, with char(F) ”= 2. Moreover we will show that, when
F = R, two Leibniz algebras of this type are isotopic if and only if the Lie racks
integrating them are isotopic. For doing this, we need to find new isotopism
invariants for Leibniz algebras and Lie racks.

We start with the following definition, which was given by M. Elhamdadi
and E. M. Moutuou in [35].

Definition 3.2.11. Let X be a left rack. The center of X is

Z(X) = {x œ X | x ⇤ y = y, ’y œ X}.
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We observe that Z(X) is a subrack of X since 1 ⇤ y = y and

(x ⇤ x
Õ) ⇤ y = (x ⇤ x

Õ) ⇤ (x ⇤ y) = x ⇤ (xÕ ⇤ y) = x ⇤ y = y,

for every x, x
Õ œ Z(X) and for every y œ X. In [35] the center of X is called the

stabilizer of X and it is denoted by Stab(X). We prefer the designation "center"
for the following reasons:

• If G is a group, then Z(Conj(G)) = Z(G);

• If X is a Lie rack and g = T1 X, then T1 Z(X) = Zl(g).

Proposition 3.2.12.

(i) Let g, h be Leibniz algebras and let (f, g, h) : g ⌧ h be an isotopism. Then

f(Zl(g)) = Zl(h), g(Zr(g)) = Zr(h), h([g, g]) = [h, h]

and the dimensions of the left center, of the right center and of the com-
mutator ideal are isotopism invariants.

(ii) Let X, Y be left racks and let (f, g, g) : X ⌧ Y be a left isotopism. Then

f(Z(X)) = Z(Y ).

In the case of Lie racks, the dimension of the center is a left isotopism
inviariant.

Proof.

(i) Let x, y œ h such that x = f(x̄), y = g(ȳ), with x̄, ȳ œ g. If x̄ œ Zl(g), then

[x, y]h = [f(x̄), g(ȳ)]h = h([x̄, ȳ]) = h(0) = 0

hence x œ Zl(h). Conversely, if x œ Zl(h), then

0 = [x̄, ȳ]h = [f(x̄), g(ȳ)]h = h([x, y]).

Thus [x̄, ȳ] œ Ker(h) = 0, i.e. x̄ œ Zl(g) and f(Zl(g)) = Zl(h). In a similar
way, one can check that g(Zr(g)) = Zr(h). Finally, for every x̄, ȳ œ g

h([x̄, ȳ]) = [f(x̄), g(ȳ)]h œ [h, h].

Coversely, for any x, y œ h, with x = f(x̄) and y = g(ȳ), we have

[x, y]h = h([x̄, ȳ]) œ h([g, g])

and h([g, g]) = [h, h].

(ii) Let x, y œ Y such that x = f(x̄), y = g(ȳ), with x̄, ȳ œ X. If x̄ œ Z(X),
then

x ⇤ y = f(x̄) ⇤Y g(ȳ) = g(x̄ ⇤ ȳ) = g(ȳ) = y
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hence x œ Z(Y ). Conversely, if x œ Z(Y ), then

g(ȳ) = y = x ⇤Y y = f(x̄) ⇤Y g(ȳ) = g(x̄ ⇤ ȳ)

and the statement is proved, since g is injective.

The last proposition allows us to conclude that the algebras l±1
3 and h3

are not isotopic, since dimF Zl(l13) = 2 (see Section 2.2) and dimF Z(h3) = 1.
Moreover we recall that l13 and l≠1

3 are isomorphic, and h3 is isotopic to l–3 , for
every – ”= ±1, thus l–3 and l±1

3 are not isotopic. This fact, combined with the
one we illustrated at the end of the previous section (Example 3.2.10.1), leeds
to the following.

Proposition 3.2.13. Let g be a three-dimensional indecomposable nilpotent
Leibniz algebra with one-dimensional commutator ideal over a field F, with
char(F) ”= 2. Then either g is isomorphic to the Heisenberg Leibniz algebra l13,
or g is isotopic to the Heisenberg Lie algebra h3.

We want now to extend this result to the case that dimF g > 3.

Theorem 3.2.14. Let F be a field with char(F) ”= 2 and let g be a nilpotent
Leibniz algebra with dimF g = t Ø 3 and dimF[g, g] = 1.

(i) If t = 2n + 2, then g is isomorphic to the Dieudonné Leibniz algebra dn;

(ii) If t = 2n + 1, then either g is isomorphic to the Heisenberg Leibniz algebra
lJ1
2n+1, where J1 is the n ◊ n Jordan block of eigenvalue 1, or g is isotopic

to the Heisenberg Lie algebra h2n+1;

(iii) The Heisenberg Leibniz algebras lJ1
2n+1 and lJ≠1

2n+1 are not isotopic to any Lie
algebra.

Proof.

(i) If dimF g is even, then g must be isomorphic to the Dieudonné algebra dn,
where t = 2n + 2;

(ii) If dimF g = 2n+1 and g is not isomorphic to lJ1
2n+1, then g ≥= kn or g ≥= lA2n+1,

where A is the companion matrix of the power of an irreducible monic
polynomial p(x)k œ F[x] and it is not similar to the Jordan blocks J1 adn
J≠1. We want to show that both these Leibniz algebras are isotopic to
the Heisenberg Lie algebra h2n+1. The Leibniz algebra kn is isotopic to the
(2n+1)-dimensional Heisenberg Lie algebra via the left principal isotopism
(f, idFt , idFt), where

f(x1, . . . , xn, y1, . . . , yn, z) =
(x1 + x2, x2 + x3, . . . , xn≠1 + xn, xn, ≠y1, y1 ≠ y2, y2 ≠ y3, . . . , yn≠1 ≠ yn, z),
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for every (x1, . . . , xn, y1, . . . , yn, z) œ Ft. The Heisenberg Leibniz algebra
lA2n+1 is isotopic to h2n+1 via the triple (f, idFt , idFt), where f is the linear
isomorphism defined by the matrix

Q

ccccccccccccca

0

In + A 0 .
.
.

0
0

0 In ≠ A
T

.

.

.

0
0 · · · · · · 0 0 · · · · · · 0 1

R

dddddddddddddb

We observe that f is a bijection since the matrices In + A and In ≠ A
T

are invertible. Indeed one has

det(xIn + A) = (≠1)n
f(x),

det(xIn ≠ A
T ) = det(xIn ≠ A) = f(x)

and for x = 1
det(In + A) = (≠1)n

f(≠1),

det(In ≠ A
T ) = f(1).

Thus f is not invertible if and only if f(1) = 0 or f(≠1) = 0. Since f(x)
is irreducible over F, this would imply that f(x) = x ≠ 1 or f(x) = x + 1
and A would be similar to the n ◊ n Jordan block J1 or J≠1. We have a
contradiction since we supposed that g is not isomorphic to the Heisenberg
Leibniz algebra lJ1

2n+1. Finally, by Proposition 3.2.12, we have that lJ1
2n+1

and lJ≠1
2n+1 are not isotopic to h2n+1 since

dimF Zl(lJ±1
2n+1) = 2,

dimF Z(h2n+1) = 1

and the dimension of the left center is an isotopism invariant.

(iii) If we suppose that there exists a Lie algebra p and an isotopism

(f, g, h) : lJ1
2n+1 ⌧ p,

then, by Proposition 3.2.12, dimF[p, p] = 1 and dimF Z(p) = 2. For the
classification of Lie algebras with one-dimensional commutator ideal (see
Section 3 of [36]), p = p1 ü p2, where p1 is an abelian Lie algebra and p2 is
either the non-abelian Lie algebra of dimension 2 (i.e. p2 has basis {e1, e2}
and the the Lie bracket is defined by [e1, e2] = e1), or it is an Heisenberg
algebra h2k+1. In the first case, dimF p1 must be odd. Thus dimF Z(p) is
also odd, since Z(p) = p1. In the second case, dimF p1 must be even and

dimF Z(p) = dimF p1 + dimF Z(h2k+1) = dimF p1 + 1
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is odd. Hence, in both cases we have a contradiction and lJ1
2n+1 cannot

be isotopic to a Lie algebra. The statement is also valid for the Leibniz
algebra lJ≠1

2n+1, since it is isomorphic to lJ1
2n+1.

We just showed that an isotopism between two nilpotent Leibniz algebras
with one-dimensional commutator ideal g, h can be always chosen of the form
(f, idFt , idFt). Next we show that for F the reals, such an isotopism turns out
to be also an isotopism between the Lie racks integrating g and h. Recall from
Theorem 2.3.15 that we can identify the underlying vector space of a Lie rack X

integrating a two step nilpotent Leibniz algebra, with its tangent space T1 X.

Lemma 3.2.15. Let F = R and let g, h be two-step nilpotent Leibniz algebras
with dimR g = dimR h = t. Let X, Y be the Lie racks integrating g and h
respectively.

(i) If (f, g, g) : g ⌧ h is a left Leibniz algebra isotopism, then it is also a Lie
rack isotopism between X and Y ;

(ii) If (f, g, h) : X ⌧ Y is a Lie rack isotopism, then g = h and it turns out to
be a Leibniz algebra isotopism between g and h;

(iii) Let dimR[g, g] = dimR[h, h] = 1. Then g is isotopic to h if and only if X

is isotopic to Y .

Proof. The multiplications of the Lie racks X and Y can be written as

x ⇤ y = y + [x, y]g, x
Õ ⇤Y y

Õ = y
Õ + [xÕ

, y
Õ]h, ’x, y œ X, ’x

Õ
, y

Õ œ Y.

(i) If (f, g, g) : g ⌧ h is an isotopism of Leibniz algebra, then

f(x) ⇤Y g(y) = g(y) + [f(x), g(y)]h = g(y) + g([x, y]) = g(x ⇤ y),

for every x, y œ X;

(ii) If (f, g, h) : X ⌧ Y is an isotopism of Lie racks, then

g(y) = 1Y ⇤Y g(y) = f(1X) ⇤Y g(y) = h(1X ⇤ y) = h(y), ’y œ X,

thus g = h and the triple (f, g, g) becomes an isotopism between g and h,
since

g(y) + [f(x), g(y)]h = f(x) ⇤Y g(y) = g(x ⇤ y) = g(y) + g([x, y]),

for every x, y œ X, and then

[f(x), g(y)]h = g([x, y]).

(iii) If X and Y are isotopic Lie racks, then from (ii) g and h are isotopic
Leibniz algebra. Conversely, if g and h are isotopic nilpotent Leibniz
algebras with one-dimensional commutator ideal, then by Theorem 3.2.14,
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an isotopism between them can be chosen of the form (f, idFt , idFt) and,
from (ii), it becomes an isotopism between X and Y .

The last result allows us to describe the isotopism classes of Lie global racks
integrating the indecomposable nilpotent Leibniz algebras with one-dimensional
commutator ideal.

Theorem 3.2.16. Let F = R and let X be a Lie rack integrating a nilpotent
Leibniz algebra g with dimF g = t and dimF[g, g] = 1.

(i) If t = 2n + 2, then X is isomorphic to the Dieudonné rack Dn;

(ii) If t = 2n + 1, then either X is isomorphic to the Heisenberg rack R
J1
2n+1,

where J1 is the n ◊ n Jordan block of eigenvalue 1, or X is isotopic to the
conjugation of the Heisenberg Lie group Conj(H2n+1);

(iii) The Heisenberg racks R
J1
2n+1 and R

J≠1
2n+1 are not isotopic to any Lie quandle.

Proof.

(i) If t is even, then g ≥= dn and X is isomorphic to the Dieudonné rack Dn;

(ii) If t = 2n + 1 and g ≥= lJ1
2n+1, then X is isomorphic to the Heisenberg

rack R
J1
2n+1. If this is not the case, then g is isotopic to h2n+1 and X is

isomorphic either to the Kronecker rack Kn, or to R
A
2n+1, where A = J–

with – œ R \ {±1}, or A = JR and R = R–,— as in Section 2.2. Note
that the last case is admissible if and only if n in even. Since both, kn

and lA2n+1, are isotopic to the Heisenberg Lie algebra h2n+1 with a left
principal isotopism (f, idFt , idFt), by Lemma 3.2.15 we can conclude that
both Kn and R

A
2n+1 are isotopic to Conj(H2n+1). Thus X is isotopic to the

conjugation of the Heisenberg Lie group. Finally R
J1
2n+1 and Conj(H2n+1)

are not isotopic. Indeed, if we suppose that there exists an isotopism

(f, g, h) : R
J1
2n+1 ⌧ Conj(H2n+1),

then, by Lemma 3.2.15, g = h and we obtain a contradiction, since (f, g, g)
would become an isotopism between the Leibniz algebras lJ1

2n+1 and h2n+1.
Another way to show that R

J1
2n+1 and Conj(H2n+1) are not isotopic racks

is to observe that

Z(RJ1
2n+1) = {(0, y, z) | y, z œ R},

Z(Conj(H2n+1)) = {(0, 0, z) | z œ R},

where we use the same notation of Example 2.3.15.3 and we proved in
Proposition 3.2.12 that the dimension of the center of a Lie rack is a left
isotopism invariant.
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(iii) If R
J1
2n+1 were isotopic to a Lie quandle X, then lJ1

2n+1 would be isotopic to
the Leibniz algebra g = T1 X. By Theorem 2.3.13, g is a Lie algebra and
X = Conj(G), where Lie(G) = g. Thus lJ1

2n+1 would be isotopic to a Lie
algebra and, by (iii) of Theorem 3.2.14, this is a contradiction. The same
argument can be used for the Lie rack R

J≠1
2n+1.

In the last section we saw that, though the problem of finding isomorphism
classes of the complex Heisenberg Leibniz algebras lJa

2n+1 is still open, the notion
of isotopism allow us to classify all the possible non-isotopic nilpotent Leibniz
algebras with one-dimensional commutator ideal. Moreover, this induces also a
classification of the non-isotopic Lie racks integrating such Leibniz algebras.
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Chapter 4

Non-nilpotent Leibniz algebras
with one-dimensional derived
subalgebra

Here, we finalize the classification of Leibniz algebras with one-dimensional
derived subalgebras, considering both nilpotent and non-nilpotent cases. This
research is a joint work, to which I have also contributed, together with my
co-supervisor ([32]).

4.1 Preliminaries
Let L be a non-nilpotent left Leibniz algebra over F with dimF L = n and
dimF [L, L] = 1. We observe that such an algebra is two-step solvable since the
derived subalgebra [L, L] is abelian.

It is well known that a non-nilpotent Lie algebra with one-dimensional derived
subalgebra is isomorphic to the direct sum of the two-dimensional non-abelian
Lie algebra and an abelian algebra (see Section 3 of [36]). Thus we are interested
in the classification of non-Lie Leibniz algebras with these properties.

In Theorem 2.6 of [30] the authors prove that a complex non-split non-
nilpotent non-Lie Leibniz algebra with one-dimensional derived subalgebra is
isomorphic to the two-dimensional algebra with basis {e1, e2} and multiplication
table [e2, e1] = [e2, e2] = e1. Here we generalize this result when F is a general
field with char(F) ”= 2.

Proposition 4.1.1. Let L be a non-nilpotent left Leibniz algebra over F with
dimF [L, L] = 1. Then L has a two-dimensional bilateral ideal S which is
isomorphic to one of the following Leibniz algebras:

(i) S1 = Èe1, e2Í with [e2, e1] = ≠ [e1, e2] = e1;

(ii) S2 = Èe1, e2Í with [e2, e1] = [e2, e2] = e1.

Proof. Let [L, L] = Fz. L is not nilpotent, then

[L, [L, L]] ”= 0,
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subalgebra

i.e. z /œ Zr(L). Since [L, L] is an abelian algebra, there exists a vector x œ L,
which is linearly independent than z, such that [x, z] ”= 0. Thus

[x, z] = “z,

for some “ œ Fú. The subspace S = Èx, zÍ is an ideal of L and it is not nilpotent.
In fact

0 ”= “z = [x, z] œ [S, [S, S]] .

Thus S is a non-nilpotent Leibniz algebra. Using the classification of two-
dimensional Leibniz algebras given by C. Cuvier in [28], S is isomorphic either
to S1 or to S2.

Remark 4.1.1. One can see the algebras S1 and S2 are respectively the Leibniz
algebras L2 and L4 of Section 3.1 in [6]. We observe that S1 is a Lie algebra,
meanwhile S2 is a non-right left Leibniz algebra.

One can see L as an extension of the abelian algebra L0 = L/S ≥= Fn≠2 by S

(see [61])
0 // S

i // L
fi //

L0s
oo // 0 . (4.1)

It turns out that there exists an equivalence of Leibniz algebra extensions

0 S L0 nÊ S L0 0

0 S L L0 0

i2

idS

fi1

◊

i1
idB

i fi

‡

where L0 nÊ S is the Leibniz algebra defined on the direct sum of vector spaces
L0 ü S with the bilinear operation given by

[(x, a), (y, b)](l,r,Ê) = (0, [a, b] + lx(b) + ry(a) + Ê(x, y)),

where
Ê(x, y) = [‡(x), ‡(y)]L ≠ ‡([x, y]L0) = [‡(x), ‡(y)]L

is the Leibniz algebra 2-cocycle associated with (4.1) and

lx(b) = [‡(x), i(b)]L, ry(a) = [i(a), ‡(y)]L

define the action of L0 on S; i1, i2, fi1 are the canonical injections and projection.
The Leibniz algebra isomorphism ◊ is defined by ◊(x, a) = ‡(x) + i(a), for every
(x, a) œ L0 ü S.

By Proposition 4.2 of [61], the 2-cocycle Ê : L0 ◊L0 æ S and the linear maps
l, r : L0 æ gl(S) must satisfy the following set of equations

(L1) lx([a, b]) = [lx(a), b] + [x, lx(b)];

(L2) rx([a, b]) = [a, rx(b)] ≠ [b, rx(a)];

(L3) [lx(a) + rx(a), b] = 0;
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(L4) [lx, ly]gl(S) ≠ l[x,y]L0
= adÊ(x,y);

(L5) [lx, ry]gl(S) ≠ r[x,y]L0
= AdÊ(x,y);

(L6) ry(rx(a) + lx(a)) = 0;

(L7) lx(Ê(y, z)) ≠ ly(Ê(x, z)) ≠ rz(Ê(x, y)) =
= Ê([x, y]L0 , z) ≠ Ê(x, [y, z]L0) + Ê(y, [x, z]L0)

for any x, y œ L0 and for any a, b œ S. Notice that these equations where also
studied in [25] in the case of Leibniz algebra split extensions.

Remark 4.1.2. The first three equations state that the pair (lx, rx) is a bideriva-
tion of the Leibniz algebra S, for any x œ L0. Biderivations of low-dimensional
Leibniz algebras were classified in [66] and it turns out that

• Bider(S1) = {(d, ≠d) | d œ Der(S1)} and

Der(S1) =

Y
]

[

A
– —

0 0

B ------
–, — œ F

Z
^

\ ;

• Bider(S2) =

Y
]

[

AA
– –

0 0

B

,

A
0 —

0 0

BB ------
–, — œ F

Z
^

\.

We study now in detail the non-abelian extension (4.1) in both cases that S

is isomorphic either to S1 or to S2.

4.1.1 S is a Lie algebra
When S ≥= S1, we have that ry = ≠ly, for any y œ L0 and the bilinear operation
of L0 nÊ S1 becomes

[(x, a), (y, b)](l,Ê) = (0, [a, b] + lx(b) ≠ ly(a) + Ê(x, y)).

The linear map lx is represented by a 2 ◊ 2 matrix
A

–x —x

0 0

B

with –x,—x œ F. From equations (L4)-(L5) it turns out that

Ê(x, y) = (–x—y ≠ –y—x)e1, ’x, y œ L0

and the 2-cocycle Ê is skew-symmetric. Moreover, equations (L6)-(L7) are
automatically satisfied and the resulting algebra L0 nÊ S1 ≥= L is a Lie algebra.
We conclude that L is isomorphic to the direct sum of S1 and L0 ≥= Fn≠2.
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4.1.2 S is not a Lie algebra
With the change of basis e2 ‘æ e2 ≠ e1, S2 becomes the Leibniz algebra with
basis {e1, e2} and the only non-trivial bracket given by [e2, e1] = e1. Now a
biderivation of S1 is represented by a pair of matrices

AA
– 0
0 0

B

,

A
0 —

0 0

BB

with –, — œ F and the pair (lx, rx) œ Bider(S2) is defined by lx(e1) = –xe1 and
rx(e2) = —xe1, for any x œ L0.

Equation (L4) states that [lx, ly]gl(S2) = [Ê(x, y), ≠], with

[lx, ly]gl(S2) = lx ¶ ly ≠ ly ¶ lx =
A

–x 0
0 0

B A
–y 0
0 0

B

≠
A

–y 0
0 0

B A
–x 0
0 0

B

=

=
A

–x–y 0
0 0

B

≠
A

–x–y 0
0 0

B

=
A

0 0
0 0

B

,

for any x, y œ L0. Thus Ê(x, y) œ Zl(S2) = Fe1.
From equation (L5) we have [lx, ry]gl(S2) = [≠, Ê(x, y)]S2

, with

[lx, ry]gl(S2) = lx ¶ ry ≠ ry ¶ lx =
A

0 –x—y

0 0

B

≠
A

0 0
0 0

B

=
A

0 –x—y

0 0

B

.

Thus, for every a = a1e1 + a2e2 œ S2 and for every x, y œ L0, we have

[a, Ê(x, y)] = [lx, ry] (a) = –x—ya2e1

i.e. Ê(x, y) = –x—ye1. Finally, equations (L6) and (L7) are identically satisfied.
Summarizing we have

Y
______________]

______________[

lx ©
Q

a–x 0
0 0

R

b

ry ©
Q

a0 —y

0 0

R

b

Ê(x, y) = –x—ye1

for every x, y œ L0 and the bilinear operation [≠, ≠](l,r,Ê) becomes

[(x, a), (y, b)](l,r,Ê) = (0, (a2b1 + –xb1 + —ya2 + –x—y)e1),

for any x, y œ L0 and for any a = a1e1 + a2e2, b = b1e1 + b2e2 œ S2.
If we fix a basis {f3, . . . , fn} of L0 and we denote by

–i = –fi , —i = —fi , ’i = 3, . . . , n
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then L is isomorphic to the Leibniz algebra with basis {e1, e2, f3, . . . , fn} and
non-zero brackets

[e2, e1] = e1

[e2, fi] = —ie1, ’i = 3, . . . , n

[fi, e1] = –ie1, ’i = 3, . . . , n

[fi, fj] = –i—je1, ’i, j = 3, . . . , n.

With the change of basis fi ‘æ f
Õ
i = fi

—i
≠ e1, if —i ”= 0, we obtain that

[e2, f
Õ
i ] = e1 ≠ [e2, e1] = 0,

[f Õ
i , e1] = “ie1, where “i = –i

—i
,

[fi, f
Õ
j] = –ie1 ≠ [fi, e1] = 0,

[f Õ
i , f

Õ
j] = “ie1 ≠ 1

—i
[fi, e1] = 0.

If we denote again fi © f
Õ
i and –i © “i when —i ”= 0, then L has basis

{e1, e2, f3, . . . , fn} and non-trivial brackets

[e2, e1] = e1, [fi, e1] = –ie1, ’i = 3, . . . , n.

Finally, when –i ”= 0, we can operate the change of basis

fi ‘æ fi

–i
≠ e2.

One can check that the only non-trivial bracket now is [e2, e1] = e1 and L is
isomorphic to the direct sum of S2 and the abelian algebra L0 ≥= Fn≠2. This
allows us to conclude with the following.

Theorem 4.1.2. Let F be a field with char(F) ”= 2. Let L be a non-nilpotent
non-Lie left Leibniz algebra over F with dimF L = n and dimF[L, L] = 1. Then
L is isomorphic to the direct sum of the two-dimensional non-nilpotent non-Lie
Leibniz algebra S2 and an abelian algebra of dimension n ≠ 2. We denote this
algebra by Ln.

If we suppose that L is a non-split algebra, i.e. L cannot be written as the
direct sum of two proper ideals, then we obtain the following result, that is a
generalization of Theorem 2.6 of [30] and which is valid over a general field F
with char(F) ”= 2.

Corollary 4.1.3. Let L be a non-split non-nilpotent non-Lie left Leibniz algebra
over F with dimF L = n and dimF[L, L] = 1. Then n = 2 and L ≥= S2.

Now we study in detail the algebra Ln = S2 ü Fn≠2 by describing the Lie
algebra of derivations, its Lie group of automorphisms and the Leibniz algebra
of biderivations. Moreover, when F = R, we solve the coquegigrue problem (see
[26] and [54]) for Ln by integrating it into a Lie rack.
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4.2 Derivations, automorphisms and bideriva-
tions of Ln

Let n Ø 2 and let Ln = S2 ü Fn≠2. We fix the basis Bn = {e1, e2, f3, . . . , fn}
of Ln and we recall that the only non-trivial commutator is [e2, e1] = e1. A
straightforward application of the algorithm proposed in [66] for finding deriva-
tions and anti-derivations of a Leibniz algebra as pair of matrices with respect
to a fixed basis produces the following.

Theorem 4.2.1.

(i) A derivation of Ln is represented, with respect to the basis Bn, by a matrix

Q

ccccccccca

– 0
0 0

0 0 · · · 0
0 0 · · · 0

0 a3
0 a4
.
.
.

.

.

.

0 an

A

R

dddddddddb

where A œ Mn≠2(F).

(ii) The group of automorphisms Aut(Ln) is the Lie subgroup of GLn(F) of
matrices of the form

Q

ccccccccca

— 0
0 1

0 0 · · · 0
0 0 · · · 0

0 b3
0 b4
.
.
.

.

.

.

0 bn

B

R

dddddddddb

where — ”= 0 and B œ GLn≠2(F).

(iii) The Leibniz algebra of biderivations of Ln consists of the pairs (d, D) of
linear endomorphisms of Ln which are represented by the pair of matrices

Q

ccccccccca

Q

ccccccccca

– 0
0 0

0 0 · · · 0
0 0 · · · 0

0 a3
0 a4
.
.
.

.

.

.

0 an

A

R

dddddddddb

,

Q

ccccccccca

0 –
Õ

0 0
0 0 · · · 0
0 0 · · · 0

0 a
Õ
3

0 a
Õ
4

.

.

.
.
.
.

0 a
Õ
n

A
Õ

R

dddddddddb

R

dddddddddb
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where A,AÕ œ Mn≠2(F).

4.3 The integration of the Leibniz algebra Ln

Our aim here is to solve the coquecigrue problem for the non-nilpotent Leibniz
algebra Ln = S2 ü Fn≠2. One can check that S2 is a split Leibniz algebra, in the
sense of M. K. Kinyon, with I = Zl(S2) ≥= R and M ≥= R. Thus L ≥= (R2

, {≠, ≠})
with the bilinear operation defined by

{(x1, x2), (y1, y2)} = (0, flx1(y2))

and flx1(y2) = x1y2, for any x1, y2 œ R. It turns out that a Lie rack integrating
S2 is (R2

,⇤), where

(x1, x2) ⇤ (y1, y2) = (y1, y2 + e
x1y2).

and the unit element is (0, 0). Finally, one can check that the binary operation

(x1, x2, x3, . . . , xn) ⇤ (y1, y2, y3, . . . , yn) = (y1, y2 + e
x1y2, y3, . . . , yn)

defines on Rn a Lie rack structure with unit element 1 = (0, . . . , 0), such that
(T1 Rn

,⇤) is a Leibniz algebra isomorphic to Ln. This result, combined with the
ones of Section 4 of [58], completes the classification of Lie racks whose tangent
space at the unit element gives a Leibniz algebra with one-dimensional derived
subalgebra.
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Chapter 5

Biderivations of complete Lie
algebras

This chapter is based on a published paper of which I am co-author with my
co-supervisor ([31]).

Let R be a ring and let X be a subset of R. A map f : X æ R is called
commuting (on X) if

f(x)x = xf(x), (5.1)

for every x œ X. If we write the commutator xy ≠ yx of x, y in R as [x, y],
then the equation above can be written as [f(x), x] = 0. The typical goal
when dealing with a commuting map is to characterize its form. For a better
understanding, consider just two examples: the identity map and any map with
its range in the centers Z(R) of A. In addition, the sum and the dot product of
commuting maps also give commuting maps. For instance, the map

f(x) = ⁄0(x)xn + ⁄1(x)xn≠1 + · · · + ⁄n≠1(x)x + ⁄n(x),

where ⁄i : R æ Z(R), is commuting for any choice of central maps ⁄i. The first
important result on commuting maps is Posner’s theorem [69] from 1957. His
theorem says that if there exists a nonzero commuting derivation on a prime
ring R, then R is commutative.

The first appearance of biderivation dates back to 1980 when G. Maksa
studied in [64] symmetric biadditive maps with non-negative diagonalization in
a di�erent context from ours (Hilbert spaces), which have been revealed to be
biderivations. From the 1980s the study of biderivations on rings and algebras
has had a great increase. The first of these works that initiated the study of the
aforementioned biderivations in a purely algebraic context dates back to 1989
by J. Vukman [77]. He demonstrated that if there exists a nonzero symmetric
biderivation, denoted as B, on a prime ring R with a characteristic di�erent
from 2 such that B(x, x)x = xB(x, x) for every x œ R, then R is commutative.

The history of the development of these results can be found in a special
survey written by M. Breöar in 2004 [12], who contributed (and continues to
contribute) significantly with his own findings. Now, what do these commuting
maps have to do with biderivations? Let f : R æ R be an additive commuting
map. By Equation (5.1), we linearize with respect to x and y, meaning:

[f(x), y] = [x, f(y)] for all x, y œ R.
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The map (x, y) ‘æ [f(x), y] (= [x, f(y)]) is an inner derivation of R in each
argument, that is, a biderivation.

The definition of biderivation for a Lie algebra was given in 2011 by D. Wang
et al. in [79]. A considerable number of articles appeared in the literature since
then, where biderivations of Lie algebras have been studied (see [78], [46], [23],
[20],[21], [22] to name a few). The main goal of this section is to prove some
results related to biderivations of Lie algebras in terms of matrices associated to
these particular bilinear maps. This approach o�ers an opportunity to deepen
certain aspects of this topic and use linear algebraic tools to study and expose
the results obtained.
In the next subsection, we will introduce the matrix approach we will use to
study biderivations on Lie algebras. In Section 5.1 we will prove the main result
which describes all biderivations of complete Lie algebras (in particular, if L is
semisimple). It also extends a well known result on simple Lie algebras obtained
by X. Tang in 2018 [76]. In conclusion, in the last subsection, we will show some
results about symmetric and skew-symmetric biderivations.

Let A be an associative algebra over the commutative ring R. A derivation
d : A æ A is a linear map that satisfies the Leibniz identity

d(xy) = d(x)y + xd(y),

for every x, y œ A. A similar definition can be given for a Lie algebra. Denote by
L a Lie algebra over a field F. An example of derivation on L is the linear map
adx : L æ L, with x œ L, that maps every y œ L in [x, y]. These derivations are
called inner. In order to generalize the definition of derivation on Lie algebras,
some researchers gave the definitions of generalized derivation, quasiderivation,
near derivation, etc. and a lot of them studied this maps in several di�erent
cases (see for example [59] and [13]). Another way to generalize the definition
of derivation is to consider bilinear map instead of a linear map and require
that this bilinear map is a derivation in each of its arguments. More precisely,
referring to the article [14] of M. Breöar, W. Martindale and C. Miers, a bilinear
map f : A ◊ A æ A is called a biderivation of A if

f(xy, z) = xf(y, z) + f(x, z)y
f(x, yz) = f(x, y)z + yf(x, z),

for all x, y, z œ A. Suppose now that A is a noncommutative algebra and let
[x, y] = xy ≠ yx be the Lie product of the elements x, y œ A. Then, for all
x, y œ A and ⁄ œ Z(A) (the center of A), the map

f(x, y) = ⁄ [x, y]

is the main example of biderivation on A. The biderivations of this form
are called inner biderivations. In [15] it was proved that all biderivations on
noncommutative prime rings are of this type. D. Benkonvi� in [8] proved
furthermore that, under certain conditions, all biderivations on a triangular
algebra is a sum of an extremal and an inner biderivation. This result extends
that obtained by J. Zhang et al. in [84], which stated that biderivations of nest
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algebras are usually inner (they showed by some examples that, in some special
cases, there exist non-inner biderivations). Biderivations have many applications
to other field (see [12] for more details). Motivated by this, D. Wang, X. Zu and
Z. Chen gave in [79] the definition of biderivation on Lie algebras to study these
latter on parabolic subalgebras of Lie algebras.

Definition 5.0.1. [79] Let L be a Lie algebra over a field F. A bilinear map
B : L ◊ L æ L is called biderivation if it satisfies

B([x, y] , z) = [x, B(y, z)] + [B(x, z), y] (5.2)
B(x, [y, z]) = [B(x, y), z] + [y, B(x, z)] , (5.3)

for all x, y, z œ L.

An equivalent way to approach to a biderivation of a Lie algebra it is the
following. We note the same could be done for other algebraic structures.

Definition 5.0.2. Let L be a Lie algebra over a field F. A bilinear map
B : L ◊ L æ L is called biderivation if the maps B(x, ≠) and B(≠, y) are
derivations of L, for all x, y œ L.

5.0.1 A matricial approach for the study of biderivations
of Lie algebras

To make the calculations more clear we use the following matricial approach.
Let L be a Lie algebra of dimension n over a field F and let {e1, . . . , en} be a
basis of L. Consider now the vector space product Mn(F)n of the n-tuples of
matrices in Mn(F). A biderivation B : L ◊ L æ L can be thought as an element
of Mn(F)n. In general, a biderivation B can be written as

B(x, y) = —1(x, y)e1 + · · · + —n(x, y)en,

where —1, . . . , —n : L ◊ L æ F are bilinear forms. Let Bi be the matrix associated
with the bilinear form —i, for every i = 1, . . . , n. We denote with BiDer(L) the
set of all biderivations of the Lie algebra L. Now we are ready to define the
following map

F : BiDer(L) æ Mn(F)n

B ‘æ (B1, . . . , Bn) .

We denote with b
k
ij the (i, j)-th entry of the matrix Bk, i.e. the scalar —k(ei, ej),

with i, j, k = 1, . . . , n.
Let U, V and W be vector spaces over F and let B(U, V ; W ) be the set of all
bilinear maps from U ◊ V to W . By definition, we have that BiDer(L) is a
subset of B(L, L; L). Now, since B(U, V ; W ) is a vector space (see Chapter 5 in
[74]), it is natural to wonder whether BiDer(L) is a subspace of B(L, L; L) or
whether it is just a subset.

Proposition 5.0.3. Let L be a Lie algebra over a field F. The set BiDer(L) is
a subspace of B(L, L; L).
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Proof. We want to show that BiDer(L) is a subspace of B(L, L; L), so we show
that, for all B1, B2, B œ BiDer(L) and ⁄ œ F, B1 + B2 and ⁄B belongs to
BiDer(L). In particular, since the biderivations are bilinear maps, B1 + B2 and
⁄B are bilinear maps, for every B1, B2, B œ BiDer(L) and ⁄ œ F. To prove that
B1 + B2 is a biderivation we have to show that B1 + B2 satisfies equations (5.2)
and (5.3). The same applies to ⁄B. Therefore

(B1 + B2)([x, y] , z) = B1([x, y] , z) + B2([x, y] , z)
= [x, B1(y, z)] + [B1(x, z), y] + [x, B2(y, z)] + [B2(x, z), y]
= [x, B1(y, z) + B2(y, z)] + [B1(x, z) + B2(x, z), y]
= [x, (B1 + B2)(y, z)] + [(B1 + B2)(x, z), y] ,

for all B1, B2 œ BiDer(L) and x, y, z œ L;

(⁄B)([x, y] , z) = ⁄B([x, y] , z) = ⁄ ([x, B(y, z)] + [B(x, z), y])
= ⁄ [x, B(y, z)] + ⁄ [B(x, z), y]
= [x, (⁄B)(y, z)] + [(⁄B)(x, z), y] ,

for all ⁄ œ F and B œ BiDer(L). In a similar manner we could show that B1 +B2
and ⁄B satisfy the Equation (5.3).

Proposition 5.0.4. The map

F : BiDer(L) æ Mn(F)n

B ‘æ (B1, . . . , Bn) .

is a monomorphism of vector spaces.

Proof. The map F is linear since the biderivations are bilinear maps. Further-
more F (B) = (0, 0, . . . , 0) if and only if B = 0, since B1 = B2 = · · · = Bn =
0n œ Mn(F).

In the following proposition we will rewrite the the equations (5.2) and (5.3)
in terms of bilinear forms associated with a biderivation of a Lie algebras and
its structure constants.
Proposition 5.0.5. Let L be a Lie algebra over a field F and {e1, . . . , en} a
basis of L. Let

Ó
c

k
ij

Ô
be the structure constants of L, that is, [ei, ej] = qn

k=1 c
k
ijek

for every i, j, k = 1, . . . , n. Then B : L ◊ L æ L is a biderivation of L if and
only if

nÿ

t=1
c

t
jkb

r
it =

nÿ

t=1

1
c

r
tkb

t
ij + c

r
jtb

t
ik

2
and

nÿ

t=1
c

t
ijb

r
tk =

nÿ

t=1

1
c

r
tjb

t
ik + c

r
jtb

t
jk

2
,

for every i, j, k, r = 1, . . . , n.

Proof. From Equation (5.2) we have

B([ei, ej] , ek) = [B(ei, ek), ej] + [ei, B(ej, ek)] ,
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for every i, k, k = 1, . . . , n. Then

B([ei, ej] , ek) = B(
nÿ

t=1
c

t
ijet, ek) =

nÿ

t=1
c

t
ijB(et, ek) =

nÿ

r=1

nÿ

t=1
c

t
ijb

r
tker;

on the other hand,

[B(ei, ek), ej] + [ei, B(ej, ek)] =

= [
nÿ

t=1
b

t
iket, ej] + [ei,

nÿ

t=1
b

t
jket] =

nÿ

t=1
b

t
ik [et, ej] +

nÿ

t=1
b

t
jk [ei, et]

=
nÿ

r=1

nÿ

t=1
c

r
tjb

t
iker +

nÿ

r=1

nÿ

t=1
c

r
itb

t
jker =

nÿ

r=1
(

nÿ

t=1
c

r
tjb

t
ik + c

r
itb

t
jk)er.

Since {ei, . . . , en} is a basis of L, by comparing both equations we obtain the
first equation. With similar computations we obtain the second equation.

In light of this result one can asks if, in matricial terms, a relation between
biderivations and derivations exists and, if so, what kind of relation there is. The
next result proves that there is an a�rmative answer in this sense and, besides,
describes this relation. But first we introduce some notations. Let (B1, . . . , Bn)
the n-tuple of matrices associated to a biderivation B of a n-dimensional Lie
algebra L respect to a fixed basis. We denote with (Bi)k the k-th row of the
matrix Bi and with (Bi)j the j-th column of (Bi), for all i = 1, . . . , n.
Proposition 5.0.6. Let B : L ◊ L æ L be a bilinear map of a n- dimensional
Lie algebra L and let B1, . . . , Bn œ Mn(F) the matrices associated to B. B is a
biderivation L if and only if, for every i = 1, . . . , n,

Q

ccccca

(B1)i

(B2)i

.

.

.

(Bn)i

R

dddddb
and

1
(B1)i (B2)i · · · (Bn)i

2

are matrices associated to two derivations of L.

Proof. The "if" directions follows directly by the definition of derivation. The
other direction is not trivial. Let ”

x := B(x, ≠) be the linear function that
maps every y œ L in B(x, y), for every x œ L. Since B is a biderivation, ”

x is
a derivation of L for every x œ L. Let B = {e1, . . . , en} be a basis of L. For
i = 1, . . . , n, we have

”
ej (ei) = B(ej, ei) = —1(ej, ei)e1 + · · · + —n(ej, ei)en

= b
1
jie1 + · · · + b

n
jien,
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where —1, . . . , —n are the bilinear forms associated to the biderivation B respect
to the basis B. The matrix associated to the derivation ”

ej is
Q

ccccca

b
1
ji b

1
j2 · · · b

1
jn

b
2
ji b

2
j2 · · · b

2
jn

.

.

.
.
.
.

. . .
.
.
.

b
n
ji b

n
j2 · · · b

n
jn

R

dddddb
.

It is clear that the i-th row of the matrix above is the j-th row of Bi, the
i-th matrix associated to the biderivation B. If we define the linear function
”x := B(≠, x), the same arguments may be used to prove that the i-th row of the
matrix associated to the derivation ”ej is the j-th column of the matrix Bi.

Recall that the set BiDer(L) is a vector space, as we have seen before. In
addition, every biderivation B has an image in Mn(F)n via the linear map Ï. It
is clear that not all n-tuple of matrices in Mn(F) correspond to a biderivation of
L. For example:
Example 5.0.6.1. Let L = L2,2 = Èe1, e2ÍF be a Lie algebra of dimension 2 over
F such that [e1, e2] = e1. The pair of matrices

AA
0 0
0 1

B

,

A
1 0
0 0

BB

is not image of a biderivation B because B(e1, e1) = e2, B(e2, e2) = e1 and

B([e1, e2] , e1) = B(e1, e1) = e2

[e1, B(e2, e1)] + [B(e1, e1), e2] = [e1, 0] + [e2, e2] = 0.

This is just an example of how hard it could be to define a Lie bracket on
BiDer(L) such that Ï is a Lie monomorphism. In general the Lie bracket of
Mn(F) is not closed in general. In the next proposition we show how a Lie
bracket could be defined on the set of biderivations.
Proposition 5.0.7. If F (BiDer(L)) is a Lie subalgebra of Mn(F)n, then {BiDer(L), {≠, ≠}}
is a Lie algebra, where

{≠, ≠} = F
≠1 ¶ [≠, ≠]Mn(F)n .

Proof. Since J := F (BiDer(L)) is a Lie subalgebra of Mn(F)n, then J is closed
under the Lie bracket. In addition, F : BiDer æ J is a linear isomorphism.
Thus, for every A, B œ BiDer(L), we have

{A, B} = F
≠1([A, B]) = F

≠1
1
[A1, B1]Mn(F) , . . . , [An, Bn]Mn(F)

2
.

Since [≠, ≠]Mn(F)n is a Lie bracket and F
≠1 is a linear isomorphism, the bilinear

map {≠, ≠} defined above is a Lie bracket on BiDer(L).

We conclude this first section with a couple of results regarding biderivations
on two-step nilpotent Lie algebras. Remind that the lower central series defined
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recursively as the series L
1 = L

Õ and L
k =

Ë
L, L

k≠1
È
, for k Ø 2. L is nilpotent if

exists k Ø 1 such that L
k≠1 ”= 0 and L

k = 0. A Lie algebra L is two-step nilpotent
if k = 2. For such Lie algebras the ideal commutator ideal L

Õ is contained in
the center of L. On the other hand, the condition L

Õ ™ Z(L) implies that L is a
two-step nilpotent Lie algebra.
Proposition 5.0.8. Let L be a two-step nilpotent Lie algebra over a field F and
B a biderivation of L. Then, for every x œ L and z œ L

Õ, B(x, z), B(z, x) œ
L

Õ ™ Z(L).

Proof. Let {e1, . . . , en, } be a basis of L. For every z œ L
Õ, z = qn

i,j=1 –ij [ei, ej]
for some –ij œ F. Thus we have

B(x, z) = B

Q

ax,

nÿ

i,j=1,i<j

–ij [ei, ej]
R

b

=
nÿ

i,j=1
–ijB(x, [ei, ej]) =

nÿ

i,j=1
–ij([B(x, ei), ej] + [ei, B(x, ej)]) œ L

Õ
.

With similar computations we obtain B(z, x) and these results prove the
statement.

Corollary 5.0.9. Let L be a two-step nilpotent Lie algebra and B a biderivation
of L. Then, for every z, z

Õ œ L
Õ, B(z, z

Õ) = 0.

5.1 Biderivations of complete Lie algebras
X. Tang in [76] proved that all biderivations of a complex simple Lie algebra
are inner. We will extend this result. We begin this section with a result that
makes it easier the study of biderivations of complete Lie algebras (in particular,
if the Lie algebra is semisimple).
In 1962 N. Jacobson gave in [51] the definition of complete Lie algebra, that is a
Lie algebra L with Z(L) = 0 and Der(L) = ad(L). The next result makes easier
the study of biderivations of this class of Lie algebras.
Proposition 5.1.1. Let L be a complete Lie algebra over a field F. B is a
biderivation of L if and only if exist two linear maps Ï, Â œ End(L) such that,
for every x, y œ L,

B(x, y) = [Ï(x), y] = [x, Â(y)] .

Proof. The "if" direction is trivial to prove. To prove the other direction we
recall that, by Definition 5.0.2, B(x, ≠) and B(≠, x) are derivations of L, for
every x œ L. Since L is complete, all derivations of L are inner. Thus, for
every x œ L, there exist u, v œ L such that B(x, ≠) = adu(≠) = [u, ≠] and
B(≠, x) = adv(≠) = [v, ≠]. So we can define two maps Ï, Â : L æ L in the
following way

Ï : x ‘æ u and Â : x ‘æ ≠v.
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Now we have to prove that Ï and Â are linear. By the definition of Ï we have

Ï(x + y)(t) = adÏ(x+y)(t) = [Ï(x + y), t] ,

for every t œ L. Moreover,

Ï(x)(t)+Ï(y)(t) = adÏ(x)(t)+adÏ(y)(t) = [Ï(x), t]+ [Ï(y), t] = [Ï(x) + Ï(y), t] .

Since B is a bilinear map, for every t œ L we have [Ï(x + y), t] = [Ï(x) + Ï(y), t]
and this implies that Ï(x + y) ≠ Ï(x) ≠ Ï(y) œ Z(L). The center of L is zero
because L is complete, hence Ï(x + y) = Ï(x) + Ï(y) for all x, y œ L. By similar
computations we can a�rm that Â is also linear. To conclude the proof we
observe that [Ï(x), y] and [x, Â(y)] are biderivations of L because the Lie bracket
is skew-symmetric and verifies the Jacoby identity.

Under the same assumptions the following holds:
Corollary 5.1.2. If B is a biderivation of L and Ï = ⁄ idL for some ⁄ œ F,
then Ï = Â.

Proof. For any x, y œ L we have

B(x, y) = [Ï(x), y] = [⁄x, y] = ⁄ [x, y] .

On the other hand B(x, y) = [x, Â(y)], then [x, ⁄y ≠ Â(y)] = 0, for all x, y œ L.
This implies that ⁄y ≠ Â(y) belongs to the center of L, that is trivial because L

is complete and this conlcude the proof.

It is well known that all derivations of a simple Lie algebra are inner (see
[36]) and this happens also for semisimple Lie algebras (see [47]). Biderivations
of complex simple Lie algebras are studied by X. Tang in [76] where he proved
the following result.
Theorem 5.1.3. [76] Suppose that L is a finite-dimensional complex simple Lie
algebra. Then B is a biderivation of L if and only if it is inner, i.e. there is a
complex number ⁄ such that

B(x, y) = ⁄ [x, y] , ’x, y œ L.

One can asks if something like that happens to semisimple Lie algebras and
the answer is a�rmative. We would to remind that every semisimple Lie algebra
has trivial center and all derivations on it are inner. Thus every semisimple Lie
algebra is complete. While it is straightforward to demonstrate that all semisim-
ple Lie algebras are complete, proving that the converse (that all complete
Lie algebras are semisimple) is false, is not as obvious. E. Angelopoulos con-
structed in [3] a class of sympathetic Lie algebras, i.e. complete Lie algebras with
[L, L] = L, which are not semisimple. Notably, there exists a counter-example
within this class of minimal dimension, namely a Lie algebra of dimension 35,
whose Levi subalgebra is isomorphic to sl(2). Now we are ready to prove the
main result of this section. From now on we indicate with P

Õ the transpose
matrix of a matrix P .
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Theorem 5.1.4. Let L = L1 ü · · · ü Lt be an n-dimensional complex semisimple
Lie algebra, where Li is a complex simple Lie algebra with dimC Li = ni for
every i = 1, . . . , t and n1 + · · · + nt = n. A bilinear map B : L ◊ L æ L is a
biderivation of L if and only if exist ⁄1, . . . , ⁄t œ C such that

B(x1 + · · · + xt, y1 + · · · + yt) = ⁄1 [x1, y1] + · · · + ⁄t [xt, yt] ,

with xi, yi œ Li, i = 1, . . . , t.

Proof. For every i = 1, . . . , t let Bi =
Ó
ei1 , . . . , eini

Ô
be a basis of Li and let

Ó
(ci)k

lm

Ô

l,m,k=1,...,ni
be the structure constants of Li, i.e. [eil

, eim ] = qni
k=1(ci)k

lmeik

for every eil
, eim œ Bi. Then the structure matrices of Li forms an ni-tuples of

ni ◊ ni matrices and let this tuple be
1
Ci1 . . . , Cini

2
, where Cij = (ci)j

lm with
j = 1, . . . , ni. Thus the structure matrices of L are “ij, with i = 1, . . . , t and,
for any i, j = 1, . . . , ni, where

“ij =

Q

ccccccccca

0 0 · · · · · · 0
. . .

.

.

. Cij

.

.

.

. . .

0 · · · · · · 0 0

R

dddddddddb

is the diagonal block matrix where the i-th diagonal block is the matrix Cij œ
Mni(C). By Proposition 5.1.1 there exist Ï, Â œ End(L) such that

B(x, y) = [Ï(x), y] = [x, Â(y)] (5.4)

for every x, y œ L. Thus there exist two matrices P, Q œ Mn(C) associated with,
respectively, Ï and Â with respect to the basis B = B1 fi · · · fi Bt of L. With this
assumptions equations (5.4) hold if and only if P

Õ
“ij = “ijQ, for any i = 1, . . . , t

and j = 1, . . . , ni. The matrices P = (Pij)i,j=1,...,t e Q = (Qij)i,j=1,...,t are block
matrices, where Pij, Qij œ Mni◊nj (C). The condition P

Õ
“ij = “ijQ implies that

P
Õ
ikCij = 0 = Cij Qik, for every k œ {1, . . . , t} \ {i}, because

P
Õ
“ij =

Q

ccccca

0 · · · 0 P
Õ
i1Cij 0 · · · 0

0 · · · 0 P
Õ
i2Cij 0 · · · 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . . 0

0 · · · 0 P
Õ
itCij 0 · · · 0

R

dddddb
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and

“ijQ =

Q

ccccccccccccca

0 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0
Cij Qi1 Cij Qi2 · · · Cij Qit

0 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0

R

dddddddddddddb

.

Then, for every x œ Lk, y œ Li, we have

x
Õ
P

Õ
ikCij y = 0 ∆ (Pikx)Õ

Cij y = 0, ’j = 1, . . . , ni ∆
∆

1
(Pikx)Õ

Ci1y, . . . , (Pikx)Õ
Cini

y

2
= (0, . . . , 0) ≥= 0Li .

The matrix Pik œ Mni◊nk
(C) is associated to a linear map f : Lk æ Li with

respect to the basis Bk of Lk and Bi of Li. Thus [f(x), y]Li
= 0Li, i.e. f(x) œ

Z(Li). The centers Z(Li) = {0Li} since Li is a simple Lie algebra, for every
i = 1, . . . , t, and then Pik = 0 œ Mni◊nk

(C). By similar computation we obtain
Qik = 0 œ Mni◊nk

(C). Then P and Q are respectively the diagonal block
matrices

Q

ccccca

P11 0 · · · 0
0 P22 0
.
.
.

. . .
.
.
.

0 0 · · · Ptt

R

dddddb
and

Q

ccccca

Q11 0 · · · 0
0 Q22 0
.
.
.

. . .
.
.
.

0 0 · · · Qtt

R

dddddb
.

The linear maps Ïi and Âi, whose associated matrices are respectively Pii and
Qii with respect to the basis Bi of Li, map every element xi œ Li in Li, for any
i = 1, . . . , t. Finally, for every x = x1+· · ·+xt, y = y1+· · ·+yt œ L = L1ü· · ·üLt

we have

B(x, y) = B(x1 + · · · + xt, y1 + · · · + yt)
= [Ï1(x1), y1]L1

+ · · · + [Ït(xt), yt]Lt

= [x1, Â1(y1)]L1
+ · · · + [xt, Ât(yt)]Lt

.

By Proposition 5.1.1 and since Li is a simple Lie algebra, exist ⁄i, µi œ C
such that [Ïi(xi), yi]Li

= ⁄i [xi, yi]Li
and [xi, Âi(yi)]Li

= µi [xi, yi]Li
, for every

i = 1, . . . , t. We can conclude the proof by Corollary 5.1.2 and say that ⁄i = µi,
for every i = 1, . . . , t.

In the last part of this subsection we want to show how to decompose the
vector space BiDer(L) in a direct sum of its subspaces, when L is a complete Lie
algebra. In other words, we will show that is always possible to decompose the
vector space BiDer(L) of all biderivations of L into a direct sum of two simpler
vector spaces. The space BiDer(L) is isomorphic to the vector space

{Ï œ End(L) | ÷Â œ End(L) such that [Ï(x), y] = [x, Â(y)] , ’x, y œ L}
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that is isomorphic to

V = {P œ Mn(C) | ÷Q œ Mn(C) such that PAi = AiQ, ’i = 1, . . . , n},

where dimC L = n and (A1, . . . , An) are the structure matrices of L.
Theorem 5.1.5. Let L be a complete Lie algebra over the complex field C, with
dimC L = n, (A1, . . . , An) the structure matrices of L with respect to a fixed basis
B of L and let V be the vector space defined above. Then V = V

+ ü V
≠, where

V
+ = {P œ Mn(C) | (PAi)Õ = (PAi)}

V
≠ = {P œ Mn(C) | (PAi)Õ = ≠(PAi)}

Proof. Remind that all matrices Ai are skew-symmetric. Then V
+ ü V

≠ ™ V

because, for all P+ œ V
+

, P≠ œ V
≠ and Ai œ {A1, . . . , An}, we have

P+Ai = (P+Ai)Õ = A
Õ
iP

Õ
+ = ≠AiP

Õ
+ = Ai(≠P

Õ
+),

and this proves that P+ œ V . On the other hand,

P≠Ai = ≠(P≠Ai)Õ = ≠A
Õ
i(P≠)Õ = Ai(P Õ

≠),

for every Ai œ {A1, . . . , An}, and this proves that P≠ œ V . Now, to prove that
V ™ V

+ ü V
≠ we consider P œ V and Q œ Mn (C) such that PAi = AiQ. Then

we have

((P + Q
Õ) Ai)Õ = (PAi + Q

Õ
Ai)Õ

= (AiQ + Q
Õ
Ai)Õ

= ≠Q
Õ
Ai ≠ AiQ

= ≠PAi ≠ Q
Õ
Ai

= ≠ (P + Q
Õ) Ai

and

((P ≠ Q
Õ) Ai)Õ = (PAi ≠ Q

Õ
Ai)Õ

= (AiQ ≠ Q
Õ
Ai)Õ

= ≠Q
Õ
Ai + AiQ

= (≠Q
Õ
Ai + PAi)

= (P ≠ Q
Õ) Ai,

for every Ai œ {A1, . . . , An}. Then we showed that P +Q
Õ œ V

≠ and P ≠Q
Õ œ V

+.
Thus the matrix P = 1

2 (P + Q
Õ) + 1

2(P ≠ Q
Õ) belongs to V

+ ü V
≠ and this

proves the second inclusion.

By Theorem 5.1.4 it follows that the matrix P associated to the endomorphism
Ï of the semisimple Lie algebra L (that is equal to Q, the matrix associated to Â)
is direct sum of scalar matrices ⁄iIni , for i = 1, . . . , t, then P is a scalar matrix and
(PAi)Õ = A

Õ
iP

Õ = ≠AiP
Õ = ≠AiP , for all structure matrices Ai œ {A1, . . . , An}.
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Thus the subspace V
+ is empty and if L = L1 ü · · · ü Lt, where Li is a complex

simple Lie algebra with dimC Li = ni for every i = 1, . . . , t and n1 + · · · + nt = n,
V

≠ is isomorphic to Ct. We summarize these facts in the following proposition.
Proposition 5.1.6. Let L be a semisimple Lie algebra over the complex field
C like above, with dimC L = n, (A1, . . . , An) the structure matrices of L with
respect to a fixed basis B of L and V = V

+ ü V
≠ the vector space defined in

Theorem 5.1.5. Then BiDer(L) ≥= V
≠ ≥= Ct.

5.1.1 Symmetric and skew-symmetric biderivations of
complete Lie algebras

There are several examples of papers in which biderivations (more precisely skew-
symmetric biderivations) are determined in terms of linear commuting maps
(see [16],[23],[24],[46], [78]). In this section we show how simple are symmetric
and skew-symmetric biderivations of a complete Lie algebra.
A biderivation B : L ◊ L æ L is called symmetric (resp. skew-symmetric)
if B(x, y) = B(y, x) (resp. B(x, y) = ≠B(y, x)), for all x, y œ L. If B is a
symmetric biderivation the bilinear forms —1, —2, . . . , —n associated with B are
symmetric and then the matrices B1, B2, . . . , Bn are symmetric. Obviously, the
same reasoning applies to a skew-symmetric biderivation. It is equivalent to
say that Ï maps symmetric (resp. skew-symmetric) biderivations into n≠tuples
of symmetric (resp. skew-symmetric) matrices. In general, every biderivation
B : L ◊ L æ L of a Lie algebra L can be written as B = 1

2B
+ + 1

2B
≠, where B

+

and B
≠ are respectively the bilinear maps from L ◊ L to L defined as

B
+ : (x, y) ‘æ B(x, y) + B(y, x) and B

≠ : (x, y) ‘æ B(x, y) ≠ B(y, x),

for all x, y œ L. We note that, since BiDer(L) is a vector space, B
+ and B

≠ are
biderivations of L. With this assumptions we prove the following result.
Proposition 5.1.7. Let B be a biderivation of a complete Lie algebra L, with

B(x, y) = [Ï(x), y] = [x, Â(y)]

for some Ï, Â œ End(L) and for all x, y œ L.

• If B is symmetric, then Ï = ≠Â.

• If B is skew-symmetric, then Ï = Â.

Proof.

• Since B is a symmetric biderivation of L we have B(x, y) = B(y, x),
for every x, y œ L. Then B(y, x) = [Ï(y), x] and B(x, y) = [Ï(x), y] =
[x, Â(y)]) = ≠ [Â(y), x]. By comparing these two expressions we obtain

[Ï(y) + Â(y), x] = 0

and this implies that Ï(y) + Â(y) œ Z(L). The Lie algebra L is centerless
because it is complete and this allows us to conclude that Ï = ≠Â.
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• If we start from the equality B(y, x) = ≠B(x, y), with the same arguments
and similar computations we obtain Ï = Â.

We recall here that a linear map f : L æ L is called commuting if [x, f(x)] =
0, for every x œ L. If the characteristic char(F) ”= 2, then a linear map f : L æ L

is commuting if and only if [f(x), y] = [x, f(y)] for all x, y œ L. In a similar
way f is called skew-commuting if and only if [f(x), y] = ≠ [x, f(y)] for all
x, y œ L. To be more precise the definition of commuting linear maps can be
given for a wider class of algebraic structures, for example for rings. Armed with
these definitions and the last proposition, it is fairly straightforward to prove
the following results in which are described symmetric and skew-symmetric
biderivations of a complete Lie algebra L.
Corollary 5.1.8. Let L be a complete Lie algebra. B : L æ L is a symmetric
biderivation of L if and only if there exists a unique skew-commuting linear map
Ï œ End(L) such that B(x, y) = [Ï(x), y], for any x, y œ L.
Corollary 5.1.9. Let L be a complete Lie algebra. B : L æ L is a skew-
symmetric biderivation of L if and only if there exists a unique commuting linear
map Ï œ End(L) such that B(x, y) = [Ï(x), y], for any x, y œ L.
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Appendix A

Lie algebras

A.1 Basic Definitions
Definition A.1.1. Let A be a vector space over the field F. A is called an
algebra over F if there is a bilinear operation · : A ◊ A æ A defined on it. A is
called associative if (xy)z = x(yz) for all x, y, z œ A. A is said to have a unit if
there exists 1 œ A such that x1 = 1x = x for all x œ A.
Definition A.1.2. Let F be a field. g is a Lie algebra over F if g is an F-vector
space equipped with a bilinear form, the Lie bracket defined as follows:

g ◊ g æ g

(x, y) ‘æ [x, y]

satisfying the following properties:

[x, x] = 0, for all x œ g, (A.1)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z œ g. (A.2)

The Lie bracket [x, y] are often referred to as the commutator of x and y.
The condition A.2 is called the Jacobi identity. Note that, since the Lie bracket
[≠, ≠] define a bilinear form, it follows that

0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].

Therefore, condition A.1 implies

[x, y] = ≠[y, x], for all x, y œ g. (A.3)

For a field F with characteristic di�erent from 2, conditions A.2 and A.3 are
equivalent. Additionally, it is easy to observe that

• [0, v] = 0, for all v œ g;

• if x, y œ g such that [x, y] ”= 0, then x and y are linearly independent.

Definition A.1.3. A Lie algebra g over a field F is abelian if [x, y] = 0 for all
x, y œ g.
Definition A.1.4. The dimension of a Lie algebra g over F is defined as the
dimension of g as a vector space over F, denoted as dim g := dimF g.
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Here are some examples of Lie algebras that will be frequently mentioned:

1. On any vector space V , it is always possible to define a Lie bracket by
setting [x, y] = 0 for all x, y œ V . Thus, V is equipped with the structure
of a Lie algebra. In this case, it is an abelian Lie algebra. It is worth
noting that a field F can be thought of as a Lie algebra of dimension 1.

2. Let V be a finite-dimensional vector space over a field F. Denote gl(V )
as the set of linear maps from V to itself. From linear algebra, it is
well known that gl(V ) is a vector space over F. Moreover, it forms a Lie
algebra, referred to as the general linear algebra, by defining the following
Lie bracket:

[x, y] := x ¶ y ≠ y ¶ x for all x, y œ gl(V ),

where ¶ denotes the composition of linear maps.

3. Let gl(n,F) be the vector space of n ◊ n matrices with entries in the field
F. Then we can define the following Lie bracket:

[x, y] := xy ≠ yx,

where xy is the standard matrix multiplication (row by column). It can
be useful to observe how the Lie bracket acts on the canonical basis of
gl(n,F). Let {eij}i,j=1,...,n be that basis, where eij denotes the n◊n matrix
with a 1 at position (i, j) and 0 elsewhere. Then we have

[eij, ekl] = eijekl ≠ ekleij = ”jkeil ≠ ”ilekj,

where the last equality becomes clear when matrix multiplication is carried

out, and ” represents the Kronecker delta, i.e., ”ij =

Y
]

[
1 if i = j

0 otherwise
.

Definition A.1.5. Let g be a Lie algebra over the field F. Let h ™ g be a
subspace of g. h is called a subalgebra of g if [x, y] œ h for every x, y œ h.

Here are some examples of subalgebras.

1. Let sl(n,F) denote the vector subspace of gl(n,F) consisting of matrices
with zero trace. Remembering from linear algebra that Tr(xy) = Tr(yx),
then the matrix xy ≠yx has zero trace. Thus, the same Lie bracket defined
on gl(n,F) also define a Lie algebra on sl(n,F). This Lie algebra is known
as the special linear algebra. So, by the above definition, sl(n,F) is a Lie
subalgebra of gl(n,F).

2. Let b(n,F) be the vector subspace of gl(n,F) consisting of upper triangular
matrices, i.e., matrices x = (xij) such that xij = 0 when i > j. This is
a Lie algebra if we define the same bracket as in gl(n,F). Furthermore,
since xy is still an upper triangular matrix, b(n,F) is a Lie subalgebra of
gl(n,F).
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3. The same considerations as above can be made for the vector subspace
n(n,F) of gl(n,F) consisting of strictly upper triangular matrices (x = (xij)
such that xij = 0 when i Ø j), which also turns out to be a Lie subalgebra
of gl(n,F).

Definition A.1.6. Let g be a Lie algebra over a field F. Let i be a subspace of
g. If [x, y] œ i for every x œ g and y œ i, then i is called an ideal of g.

Regarding the distinction between right and left ideals, here we do not need
it because for Equation A.3, we have [x, y] = ≠ [y, x] for every x, y œ g.

Example A.1.6.1. Referring to the previous examples, it is easily noted that
sl(n,F) is an ideal of gl(n,F) and n(n,F) is an ideal of b(n,F).
Remark A.1.1. An ideal is always a subalgebra; this follows trivially from the
definitions. Conversely, however, is not always true. It has been shown that
b(n,F) is a subalgebra of gl(n,F), but for n Ø 2, it is not its ideal. For example,
if we consider e11 œ b(n,F) and e21 œ gl(n,F), then [e11, e21] = ≠e21 /œ b(n,F).

For every Lie algebra g, there are always two ideals, known as trivial, which
are {0} and g. A non-trivial ideal for non-abelian Lie algebras is defined as
follows:
Definition A.1.7. Let g be a Lie algebra over F. The center of g is defined as

Z(g) = {x œ g | [x, y] = 0, for every y œ g} .

As defined earlier, if Z(g) = g, then g is an abelian Lie algebra.
Proposition A.1.8. Z(g) is an ideal of g.

Proof. Let x1, x2 œ Z(g) and y œ g. Then

[x1 + x2, y] = [x1, y] + [x2, y] = 0 + 0 = 0,

so x + y œ Z(g). Additionally, let ⁄ œ F, x œ Z(g), and y œ g. Therefore,

[⁄x, y] = ⁄ [x, y] = 0,

so ⁄x œ Z(g), and Z(g) is a subspace of g. Furthermore, it is also an ideal. For
every x œ g and y œ Z(g), [x, y] œ Z(g), we have

[t, [x, y]] + [x, [y, t]] + [y, [t, x]] = 0

and this implies that

[t, [x, y]] = ≠ [x, [y, t]] ≠ [y, [t, x]] = ≠ [x, 0] ≠ 0 = ≠0 ≠ 0 = 0,

for every t œ g.
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A.2 Homomorphisms of Lie Algebras
Definition A.2.1. Let (g1, [·, ·]g11) and (g2, [·, ·]g2

) be two Lie algebras over the
same field F. Then „ : g1 æ g2 is a homomorphism of Lie algebras if „ is a
linear map and if it satisfies

„([x, y]g1
) = [„(x), „(y)]g2

for all x, y œ g1.

Remark A.2.1. The Lie bracket [x, y] are those defined on g1, while those
of [„(x), „(y)] are those defined on g2. Often, to simplify notation, subscripts
indicating the Lie algebra to which reference is made will be omitted. When
they are included, it will be to avoid ambiguity or errors.

For every Lie algebra g over the field F, there is a particular and extremely
important homomorphism.
Definition A.2.2. The adjoint homomorphism, denoted by ad, acts as follows:

ad: g æ gl(g)
x ‘æ ad(x),

where ad(x)(y) := [x, y] for all x, y œ g.
From the bilinearity of Lie brackets, it follows that the adjoint homomorphism

is linear. To demonstrate that the Lie brackets are preserved, it su�ces to apply
the Jacobi identity. Less obvious is the following.
Proposition A.2.3. The kernel of ad : g æ gl(g) is the center of g.

Proof. If x œ g, then

ad(x) = 0 … ad(x)(y) = 0, ’y œ g … [x, y] = 0, ’y œ g … x œ Z(g).

Proposition A.2.4. Let g1 and g2 be two Lie algebras over a field F, and
„ : g1 æ g2 be a homomorphism of Lie algebras. Then

1. ker „ is an ideal of g1;

2. Im „ is a subalgebra of g2.

1. If x œ ker „ and y œ g1, then (recall that ker „ is already a vector subspace
of g1):

„([x, y]) = [„(x), „(y)] = [0, „(y)] = 0 ∆ [x, y] œ ker „.

2. It must be shown that [xÕ
, y

Õ] œ Im „, for every x
Õ
, y

Õ œ Im„. Since
x

Õ
, y

Õ œ Im „, there exist x, y œ g1 such that x
Õ = „(x) and y

Õ = „(y), thus

[xÕ
, y

Õ] = [„(x), „(y)] = „([x, y]) œ Im „.
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Remark A.2.2. If V is a vector space over the field F with dimF V = n, it
is well known from linear algebra that EndF(V ) ≥= Mn(F) through the linear
isomorphism f ‘æ Mf , where Mf is the matrix of the linear map f with respect to
a fixed basis of V . It is not di�cult to observe that this represents an isomorphism
of Lie algebras, i.e., a linear isomorphism that preserves Lie brackets. Therefore,
the identification made for vector spaces also holds for Lie algebras, namely in
our language gl(V ) ≥= gl(n,F).
Definition A.2.5. Let A be an algebra over the field F. A derivation of A is a
linear map ” : A æ A such that

”(ab) = a”(b) + ”(a)b for all a, b œ A.

If we denote Der(A) as the set of all derivations on A and equip it with
the usual addition and scalar multiplication between linear maps, then Der(A)
is a subspace of gl(A). In particular, it is observed that if ”1 and ”2 are two
derivations of a Lie algebra A, then [”1, ”2] is still a derivation, so Der(A) is a
subalgebra of gl(A).
Lemma A.2.6. Let g be a Lie algebra, and let x œ g. Then ad(x) : g æ g is a
derivation.

Proof. Since the Jacobi identity holds, we have

ad(x) [y, z] = [x, [y, z]] = [[x, y] , z] + [y, [x, z]] = [ad(x)(y), z] + [y, ad(x)(z)] ,

for all x, y, z œ g.

Definition A.2.7. Let g be a Lie algebra, and let ” be a derivation on g. ” is
called an inner derivation if ” = ad(x) for some x œ g.

If we denote IDer g as the set of inner derivations on g, then IDer g is an
ideal of Der g.

A.2.1 Structure Constants
To understand how a bilinear form acts on any pair of vector spaces, it is su�cient
to define its values on pairs of basis elements. Similarly, to understand how Lie
brackets act on a given Lie algebra g, it is enough to define their action on the
basis elements, essentially presenting the multiplication table. For example, let
{e1, . . . , en} be a basis for g. Then [ei, ej] is a linear combination of the basis
elements as an element of g, that is,

[ei, ej] =
nÿ

k=1
a

k
ijek.

The scalars a
k
ij œ F are naturally defined and are called the structure constants

of g with respect to the given basis. It is immediately apparent that the scalars
a

k
ij depend on the chosen basis; di�erent bases will define di�erent structure

constants. From the conditions A.1 and A.3 on Lie bracket, [ei, ei] = 0 for every
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i = 1, 2, . . . , n and [ei, ej] = ≠ [ej, ei] for every i, j = 1, 2, . . . , n. Therefore, it is
su�cient to know the structure constants a

k
ij for every 1 Æ i < j Æ n.

A.3 Sum of Ideals, Quotient Algebras, and Iso-
morphism Theorems

Given two ideals i and j of a Lie algebra g, it is possible to construct new ideals
from i and j. We define the sets

i + j := {x + y | x œ i, y œ j}

and
[i, i] := È[x, y] | x œ i, y œ jÍ.

which turn out to be ideals of g. A particular case of this construction is when
we consider i = j = g.
Definition A.3.1. Let g be a Lie algebra over the field F. The Lie algebra
[g, g], denoted as gÕ, is called the derived algebra of g.

If i is an ideal of the Lie algebra g, then in particular, i is a vector subspace
of g, so we can consider the set z + i = {z + x|x œ i}, with z œ g, and we have
the quotient vector space

g/i = {z + i | z œ g} 1
.

Definition A.3.2. In the above conditions, the vector space g/i can be equipped
with the structure of a Lie algebra, called the quotient Lie algebra, whose Lie
brackets are defined as

[w + i, z + i] := [w, z] + i for all w, z œ g.

The Lie brackets of g/i are indeed well-defined, meaning they depend on the
representatives w and z. If w + i = w

Õ + i and z + i = z
Õ + i, then w ≠ w

Õ œ i
and z ≠ z

Õ œ i. By the bilinearity of Lie brackets on g, we have

[wÕ
, z

Õ] = [w + (wÕ ≠ w), z + (zÕ ≠ z)]
= [w, z] + [wÕ ≠ w, z] + [w, z

Õ ≠ z] + [wÕ ≠ w, z
Õ ≠ z] ,

where the last three terms belong to the ideal i. Therefore, [wÕ + i, z
Õ + i] =

[w, z] + i. Finally, it is observed that the axioms for the Lie brackets defined
on the quotient Lie algebra g/i follow from the axioms that hold for g. The
following theorems present isomorphism results for Lie algebras.
Theorem A.3.3 (Isomorphism Theorems).

1
It is well-known that this set is a vector space once we define the operations inherited

from g.
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1. Let „ : g1 æ g2 be a homomorphism of Lie algebras. Then ker „ is an ideal
of g1, Im „ is a subalgebra of g2, and

g1/ ker „ ≥= Im „.

2. If i and j are two ideals of a Lie algebra, then (i + j)/j ≥= i/(i fl j).

3. Suppose that i and j are ideals of the Lie algebra g such that i ™ j. Then
j/i is an ideal of g/i and

(g/i)/(j/i) ≥= g/j.

In order, these are called the first, second, and third isomorphism theorem
for Lie algebras.

Suppose that i is an ideal of the Lie algebra g. Then there exists a bijective
correspondence between ideals of g containing i and ideals of g/i. Specifically,
this correspondence associates an ideal j of g containing i with the ideal j/i of
g/i. Conversely, if k is an ideal of g/i, then the set j := {z œ g|z + i œ k} is an
ideal of g containing k. These two mappings are inverses of each other. The
following theorem summarizes what has been said.
Theorem A.3.4 (Correspondence Theorem). Let i be an ideal of the Lie algebra
g. There exists a bijective correspondence between ideals of g containing i and
ideals of g/i.

{ideals of g containing i} ¡ {ideals of g/i}

For completeness, we provide the following results related to quotient algebras
and homomorphisms of Lie algebras.
Proposition A.3.5. g/i is abelian if and only if gÕ Æ i.

Proof. If g/i is abelian, then for every x + i, y + i, we have

[x + i, y + i] = 0g/i ∆ [x, y] + i = i ∆ [x, y] œ i ∆ gÕ Æ i.

Conversely, if gÕ Æ i, then for any x
Õ
, y

Õ œ g/i, we have

[xÕ
, y

Õ] = [„(x), „(y)] = „([x, y]) œ „(i).

Hence, g/i is abelian.

Proposition A.3.6. Let „ : g1 æ g2 be a surjective isomorphism of Lie algebras.

1. „(gÕ
1) = gÕ

2

2. If x œ g1 such that ad(x) is diagonalizable, then ad(„(x)) is diagonalizable.

Proof.

1. To prove the thesis, we demonstrate the two inclusions. To show that
„(gÕ

1) Æ gÕ
2, we first consider x, y œ g1. Then, „([x, y]) = [„(x), „(y)] œ gÕ

2



118 Appendix A. Lie algebras

because „ is a Lie homomorphism. For a generic linear combination of n

elements of gÕ
1, i.e., taking x1, . . . , xn, y1, . . . , yn œ g1, we have

„(⁄1 [x1, y1] + · · · + ⁄n [xn, yn]) =
nÿ

i=1
⁄i„([xi, yi]) œ gÕ

2

because, for every i = 1, . . . , n, it was shown above that „([xi, yi]) œ gÕ
2.

For the inverse inclusion, let x
Õ
, y

Õ œ g2. Due to the surjectivity of „, there
exist x, y œ g1 such that x

Õ = „(x) and y
Õ = „(y), so

[xÕ
, y

Õ] = [„(x), „(y)] = „([x, y]) œ „(gÕ
1).

2. If x œ g1 is such that ad(x) is diagonalizable, then there exists a basis B of
g1 consisting of eigenvectors of ad(x), i.e., B = {v1, . . . , vn}, if dim g1 = n,
with ad(x)(vi) = ⁄ivi. Then, g2 = È„(v1), . . . , „(vn)Í, and, by appropriate
reordering, {„(v1), . . . , „(vm)} is a basis of g2, where dim g2 = m. So, for
1 Æ i Æ m, we have

ad(„(x))(„(vi)) = [„(x), „(vi)] = „([x, vi]) = „(ad(x)(vi)) = „(⁄ivi) = ⁄i„(vi),

therefore, {„(v1), . . . , „(vm)} is a basis of g2 consisting of eigenvectors of
ad(„(x)), and consequently, ad(„(x)) is diagonalizable.

Remark A.3.1. Under the same assumptions as before, it cannot be concluded
that „(Z(g1)) = Z(g2), but in general, it can only be stated that „(Z(g1)) µ Z(g2).
Indeed, if x

Õ œ g2 and „(z) œ „(Z(g1)) (i.e., z œ Z(g1)), then, due to the
surjectivity of „, x

Õ = „(x) for some x œ g1, and

[xÕ
, „(z)] = [„(x), „(z)] = „([x, z]) = „(0g1) = 0g2 .

To obtain the equality above, a stronger hypothesis is needed.
Proposition A.3.7. Let „ : g1 æ g2 be an isomorphism of Lie algebras. Then
„(Z(g1)) = Z(g2).

Proof. In the previous remark, it was shown that if „ is surjective, then
„(Z(g1)) Æ Z(g2). To establish the reverse inclusion, consider z2 œ Z(g2).
For every x2 œ Z(g2), we have [x2, z2] = 0. Let x1 œ Z(g1) ∆ [„(x1), z2] = 0.
Since „ is an isomorphism, there exists „

≠1, so
Ë
„(x1), „(„≠1(z2))

È
= „(

Ë
x1, „

≠1(z2)
È
) = 0.

Then [x1, „
≠1(z2)] = 0 and this implies that „

≠1(z2) œ Z(g1). Hence z2 œ
„(Z(g1)).

Proposition A.3.8. Let „ : g1 æ g2 be a homomorphism of Lie algebras. If i is
an ideal of g1, then „(i) is an ideal of Im „.
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Proof. If i is an ideal of g, it is, in particular, a vector subspace of g, so „(i) is a
vector subspace of g2, and therefore, of Im „, since „(i) Æ Im „. Now, consider
x

Õ œ Im „ and y œ „(i). Then, there exist x œ g1 and i œ i such that

x
Õ = „(x) and y = „(i),

so
[xÕ

, y] = [„(x), „(y)] = „([x, y]) œ „(i).

A.4 Direct Sum of Lie Algebras
In the following sections, we will frequently use the concept of a direct sum of
Lie algebras. Therefore, it is necessary to provide a detailed explanation of this
construction.
Definition A.4.1. Let g be a Lie algebra over a field F, and let g1 and g2 be
subalgebras of g. We will say that g is the direct sum of the subalgebras g1 and
g2, denoted as g = g1 ü g2, if the following conditions hold:

1. g is the direct sum of g1 and g2 as vector spaces.

2. [x1, x2] = 0 for every xi œ gi, with i = 1, 2.

Indeed, if a Lie algebra g is the direct sum of two of its subalgebras, they
are shown to be more.
Proposition A.4.2. If g = g1 ü g2, then g1 and g2 are ideals of g.

Proof. Let y œ g. Then, y = y1 + y2, with y1 œ g1 and y2 œ g2. For any x1 œ g1,

[y, x1] = [y1 + y2, x1] = [y1, x1] + [y2, x1] = [y1, x1] œ g1.

Similarly, g2 is an ideal of g.

Example A.4.2.1. Let gl(2,F) be the Lie algebra of invertible 2 ◊ 2 matrices
with elements in the field F, where char(F) ”= 2. We want to show that

gl(2,F) = sl(2,F) ü Z(gl(2,F)).

First, we determine the center of this Lie algebra. Let x œ Z(gl(2,F)), then
[x, eij] = 0 for every i, j = 1, 2. If x = (xij), then

[x, e11] = xe11 ≠ e11x =
A

x11 0
x21 0

B

≠
A

x11 x12
0 0

B

=
A

0 ≠x12
x21 0

B

= 0gl(2,F)

if and only if x12 = x21 = 0. Thus, x = diag {x11, x22}. Continuing with e12:

[x, e12] = xe12 ≠ e12x =
A

0 x11
0 0

B

≠
A

0 x22
0 0

B

=
A

0 x11 ≠ x12
0 0

B

= 0gl(2,F)
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if and only if x11 = x22, so x is a scalar matrix, more formally, x = ⁄I2, where
⁄ œ F. It can be easily verified that for such a matrix, [x, e21] = [x, e22] = 0, so

Z(gl(2,F)) = {⁄I2 | ⁄ œ F} .

Before verifying the two conditions given in Definition A.4.1, we observe that
the dimension of gl(2,F) is 4, while the dimensions of sl(2,F) and Z(gl(2,F)) are
3 and 1, respectively.

sl(2,F) and Z(gl(2,F)) have trivial intersection since the only scalar matrix
with a trace zero is the zero matrix, which is in gl(2,F). Thus, sl(2,F) fl
Z(gl(2,F)) = {0gl(2,F)}.

To demonstrate that it is a direct sum of vector spaces, it remains to be
shown that for every x œ gl(2,F), there exists s œ sl(2,F) and z œ Z(gl(2,F))
such that x = s + z.

Let x =
A

a b

c d

B

œ gl(2,F). First, we calculate the trace of x, Tr(x) = a + d.

We want to find a matrix with this trace which is traceless. This is achieved by
subtracting the average of the diagonal entries of x from x. In other words,

s = x ≠ Tr(x)
2 I2 =

A
a b

c d

B

≠ a + d

2

A
1 0
0 1

B

=
A

a ≠ a+d
2 b

c d ≠ a+d
2

B

=
A

a≠d
2 b

c
d≠a

2

B

œ sl(2,F).

For the element z, we choose z = a+d
2 I2, which belongs to Z(gl(2,F)). We

have

x = s + z =
A

a≠d
2 b

c
d≠a

2

B

+ a + d

2

A
1 0
0 1

B

=
A

a≠d
2 + a+d

2 b

c
d≠a

2 + a+d
2

B

=
A

a b

c d

B

.

Thus, gl(2,F) = sl(2,F) ü Z(gl(2,F)).
In this example, we showed that the Lie algebra gl(2,F) of invertible 2 ◊ 2

matrices over a field F can be decomposed as the direct sum of sl(2,F) and the
center Z(gl(2,F)), where sl(2,F) is the special linear Lie algebra and Z(gl(2,F))
is the center of gl(2,F).
Remark A.4.1. If g = g1 ü g2 and i is an ideal of gi, i = 1, 2, then i is an ideal
of g. Indeed, suppose that i is an ideal of g1 (the same argument applies if i is
an ideal of g2). Then, i is a vector subspace of g1, so i is also a vector subspace
of g. Furthermore, let y œ g and x œ i, then [y, x] œ i because y = y1 + y2, with



A.4. Direct Sum of Lie Algebras 121

y1 œ g1 and y2 œ g2, and

[y, x] = [y1 + y2, x] = [y1, x] + [y2, x] = [y1, x] + 0 = [y1, x] œ i.

g = g1 ü g2 is supported in the set determined by the Cartesian product of
the Lie algebras g1 and g2, that is

g = g1 ◊ g2 = {(x1, x2)|x1 œ g1, x2 œ g2} .

For the underlying vector spaces the sum is defined componentwise, i.e.

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

and 0g = (0g1 , 0g2). The sum defined in this way is associative in g1 and g2, so it
will also be in g. The latter, with the sum defined above, is an abelian group.
Defining scalar multiplication as

⁄(x1, x2) = (⁄x1, ⁄x2),

where ⁄ œ F and (x1, x2) œ g, it follows that (g, +, ·) is a vector space over the
field F. It is also worth noting that the dimension of g over F is the sum of the
dimensions of g1 and g2. To see this, suppose that g1 and g2 have dimensions
n1 and n2, respectively. Therefore, there are two bases for these vector spaces,
denoted respectively as

B1 =
Ó
e

1
1, e

1
2, . . . , e

1
n1

Ô

and
B2 =

Ó
e

2
1, e

2
2, . . . , e

2
n2

Ô
.

With this in mind, it is easy to construct a basis B of g using B1 and B2 as
follows:

B =
Ó
(e1

1, 0), . . . , (e1
n1 , 0), (0, e

2
1), . . . , (0, e

2
n2)

Ô

whose cardinality is n1 + n2. If, as assumed earlier, g1 and g2 have the structure
of Lie algebras, then it is possible to endow g = g1 ◊ g2 with such a structure
by defining the following Lie brackets in this vector space:

[≠, ≠] : g ◊ g æ g

((x1, x2), (y1, y2)) ‘æ [(x1, x2), (y1, y2)] = ([x1, y1] , [x2, y2]).

Naturally, the Lie brackets in the first component of the image are those related
to g1, and those in the second component are those related to g2. Due to the
additivity of the Lie brackets in g1 and g2, it follows that the Lie brackets in g
are also additive. Let’s see this only for the first component; a similar argument
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can be made for the second component:

[(x1, x2) + (xÕ
1 + x

Õ
2), (y1, y2)] = [(x1 + x

Õ
1, x2 + x

Õ
2), (y1, y2)]

= ([x1 + x
Õ
1, y1] , [x2 + x

Õ
2, y2])

= ([x1, y1] + [xÕ
1, y1] , [x2, y2] + [xÕ

2, y2])
= ([x1, y1] , [x2, y2]) + ([xÕ

1, y1] , [xÕ
2, y2])

= [(x1, x2), (y1, y2)] + [(xÕ
1, x

Õ
2), (y1, y2)] .

With similar steps, one can demonstrate the properties regarding linearity with
respect to scalar multiplication. Finally, it is observed that antisymmetry and the
Jacobi identity hold because they also hold for g1 and g2. In fact, if (x1, x2) œ g,
then

[(x1, x2), (x1, x2)] = ([x1, x1] , [x2, x2]) = (0g1 , 0g2) = 0g,

and for generic (x1, x2), (y1, y2), (z1, z2) œ g, it follows that

[(x1, x2), [(y1, y2), (z1, z2)]] + [(y1, y2), [(z1, z2), (x1, x2)]]
+ [(z1, z2), [(x1, x2), (y1, y2)]]
= [(x1, x2), ([y1, z1] , [y2, z2])] + [(y1, y2), ([z1, x1] , [z2, x2])]
+ [(z1, z2), ([x1, y1] , [x2, y2])]
= 0g.

If you have two Lie algebras over the same field F, namely g1 and g2, then it
is possible to construct a third Lie algebra g from g1 and g2, where g = Êg1 ü Êg2
and Âgi

≥= gi, with i = 1, 2. Define

Êg1 = {(x1, 0) | x1 œ g1}

and
Êg2 = {(0, x2) | x2 œ g2} .

Clearly, Êg1 is a Lie subalgebra of g, as a linear combination of elements of Êg1 is
still in Êg1. Additionally, by applying the Lie brackets of g to any two elements
of Êg1, you will obtain another element of Êg1. The same argument can be made
for Êg2. Now, let’s see how g is a direct sum of Lie algebras:

1. As vector spaces, it is well known that given two vector spaces, you can
construct their direct sum.

2. For any (x1, 0) œ Êg1 and (0, x2) œ Êg2, you have

[(x1, 0), (0, x2)] = ([x1, 0] , [0, x2]) = (0Âg1 , 0Âg2) = 0g.

To conclude, it’s enough to show that Âgi = gi for i = 1, 2. Take i = 1 and
consider the map Ï1 : g1 æ Êg1 defined as

x1 œ g1 ‘æ Ï1(x1) = (x1, 0) œ Êg1.
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The map Ï1 is clearly well-defined and linear, as

Ï1(–x1 + —y1) = (–x1 + —y1, 0) = –(x1, 0) + —(y1, 0) = –Ï1(x1) + —Ï1(y1),

for all –, — œ F and for all x1, y1 œ g1. This map is surjective since (x, 0) = Ï1(x)
for all x œ Êg1 and injective because

x1 œ ker(Ï1) … Ï1(x1) = 0g = (0Âg1 , 0Âg2) … x1 = 0g1 .

Therefore, Ï1 is a linear isomorphism. Similarly, it can be shown that x2 œ g2 ‘æ
Ï2(x2) = (0, x2) œ Êg2 is a linear isomorphism. Consequently, g1 ≥= Êg1 and, by
the same reasoning, g2 ≥= Êg2.

The following proposition clarifies a result that will be frequently used in
the subsequent chapters without explaining the details every time.
Proposition A.4.3. Let g = g1 ü g1 be a Lie algebra. Then, g/g2 ≥= g1 and
g/g1 ≥= g2.

Proof. Consider the projections fi1 and fi2 defined as follows:

fi1 : g æ g1

x = x1 + x2 ‘æ x1,

fi2 : g æ g2

x = x1 + x2 ‘æ x2.

fi1 and fi2 are straightforwardly surjective linear mappings of vector spaces.
They are also homomorphisms of Lie algebras because for any x = x1 + x2, y =
y1 + y2 œ g, we have:

fi1([x, y]) = fi1([x1 + x2, y1 + y2])
= fi1([x1, y1] + [x2, y2])
= [x1, y1]
= [fi1(x1 + x2), fi1(y1 + y2)] ,

fi2([x, y]) = fi2([x1 + x2, y1 + y2])
= fi2([x1, y1] + [x2, y2])
= [x2, y2]
= [fi2(x1 + x2), fi2(y1 + y2)] .

The kernels of fi1 and fi2 are as follows:

ker(fi1) = ker(fi1) fl g2 = g2 fl g2 = 0,
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ker(fi2) = ker(fi2) fl g1 = g1 fl g1 = 0.

Thus, by the first isomorphism theorem, fi1 and fi2 yield the isomorphisms
g/g2 ≥= g1 and g/g1 ≥= g2.

A.5 Lie Algebras of Dimension Æ 3
In general, Lie algebras are di�cult to classify. However, there is a complete
classification for all Lie algebras of dimension at most 3 over an algebraically
closed field.
Theorem A.5.1. [36] Let g be a Lie algebra over the field F = C. Then, we
have:

dim g dim gÕ Multiplication Table
1 0 Abelian
2 0 Abelian
2 1 [x, y] = x

3 0 Abelian
3 1 gÕ * Z(g) : [x, y] = x, [x, z] = [y, z] = 0
3 1 gÕ ™ Z(g) : [x, y] = z, [x, z] = [y, z] = 0
3 2 [x, y] = y, [y, z] = 0, [x, z] = y + z

3 2 [x, y] = y, [y, z] = 0, [x, z] = µz, µ ”= 0
3 3 g ≥= sl(2,F)

Table A.1: Isomorphism classes of Lie Algebras of Dimension

Æ 3

The sixth Lie algebra in the list is known as the Heisenberg algebra. On
the other hand, the penultimate Lie algebra is often denoted as gµ because it
depends on the parameter µ, and for it, the following holds.
Proposition A.5.2. gµ

≥= g‹ … ‹ = µ or ‹ = µ
≠1.

A.6 Solvable and Nilpotent Lie Algebras
Definition A.6.1. The derived series of a Lie algebra g is defined recursively
as follows:

g(1) = gÕ and g(k) = [g(k≠1)
, g(k≠1)] for k Ø 2.

Definition A.6.2. A Lie algebra g is called solvable if there exists m Ø 1 such
that g(m) = 0.

1. The Heisenberg algebra h is solvable; indeed, h(1) = hÕ = ÈxÍ and h(2) =
[h(1)

, h(1)] = [hÕ
, hÕ] = [x, x] = 0 since [x, x] = 0.
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2. The Lie algebra sl(2,C) is a non-solvable Lie algebra. To see this, consider
a basis of sl(2,C) as {e12, e21, e11 ≠ e22}, then the multiplication table is:

[e12, e21] = e12e21 ≠ e21e12 = e11 ≠ e22,

[e11 ≠ e22, e12] = (e11 ≠ e22)e12 ≠ e12(e11 ≠ e22) = e12 + e12 = 2e12,

[e11 ≠ e22, e21] = (e11 ≠ e22)e21 ≠ e21(e11 ≠ e22) = ≠e21 ≠ e21 = ≠2e21.

Thus, we have sl(2,C)(1) = sl(2,C)Õ = sl(2,C) and recursively sl(2,C)(m) =
[sl(2,C)(m≠1)

, sl(2,C)] = sl(2,C).

Lemma A.6.3. If g has ideals

g = i0 ´ i1 ´ · · · ´ im≠1 ´ im = 0

such that ik≠1/ik is abelian for 1 Æ k Æ m, then g is solvable.
As mentioned earlier, a homomorphism of Lie algebras preserves the derived

series.
Lemma A.6.4. Let „ : g1 æ g2 be a surjective homomorphism of Lie algebras.
Then

„(g(k)
1 ) = g(k)

2 .

Lemma A.6.5. Let g be a Lie algebra.

• If g is solvable, then every subalgebra and every homomorphic image of g
is solvable.

• Suppose g has an ideal i such that i and g/i are solvable. Then g is solvable.

• If i and j are solvable ideals of g, then i + j is a solvable ideal of g.

Corollary A.6.6. Let g be a finite-dimensional Lie algebra. Then, there exists
a unique solvable ideal of g that contains every solvable ideal of g.
Definition A.6.7. Let g be a Lie algebra. The maximal solvable ideal containing
every solvable ideal of g is called the radical of g, denoted by rad(g).
Definition A.6.8. If g ”= 0, a Lie algebra g is called semisimple if rad(g) = 0.
Lemma A.6.9. Let g be a Lie algebra. Then g/ rad(g) is semisimple.
Definition A.6.10. Let g be a Lie algebra. The descending central series of g
is defined recursively as follows:

g1 = gÕ and gk = [g, gk≠1] for k Ø 2.

Thus, g ´ g1 ´ g2 ´ · · · .
Remark A.6.1. gk is an ideal of g since it is a product of ideals. In general, if
i and j are ideals of g, then [i, j] is also an ideal of g.
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The series defined above is called central because gk
/gk+1 is contained in the

center of g/gk+1. To see this, consider x +gk+1 œ gk
/gk+1 and y +gk+1 œ g/gk+1.

We have

[x + gk+1
, y + gk+1] = [x, y] + gk+1 = [x, y] œ [gk

, gk+1] = gk+1
,

since [x, y] œ [gk
, g] = gk+1, which implies

x + gk+1 œ Z(g/gk+1) ∆ gk
/gk+1 ™ Z(g/gk+1).

Definition A.6.11. A Lie algebra g is called nilpotent if there exists m Ø 1
such that gm = 0.
Definition A.6.12. If g is a nilpotent Lie algebra, and m is the smallest index
such that gm = 0, then m is called the nilpotency index.

Here are some examples of nilpotent Lie algebras.

1. Every abelian Lie algebra is nilpotent, with a nilpotency index of 1.

2. The Lie algebra n(n,F) of strictly upper triangular matrices is a nilpotent
Lie algebra.

3. In A.5.1, an example of a nilpotent Lie algebra h of dimension 3 called
the Heisenberg algebra is given, with a basis {x, y, z} such that [x, y] = z,
[x, z] = [y, z] = 0. Therefore,

h1 = hÕ = ÈzÍ, h2 = [h, h1] = [h, ÈzÍ] = 0.

Here, the nilpotency index is 2.

4. Let g be a Lie algebra of dimension n with a basis {e1, e2, . . . , en} and the
following Lie brackets:

[e1, ei] = ei+1 for 2 Æ i Æ n ≠ 1.

Consequently,

g1 = gÕ = Èe3, . . . , enÍ,
g2 = [g, g1] = [g, Èe3, . . . , enÍ] = Èe4, . . . , enÍ,
g3 = [g, g2] = Èe5, . . . , enÍ,
.
.
.

gn≠2 = ÈenÍ,
gn≠1 = 0.

The nilpotency index of this Lie algebra is n ≠ 1.

Remark A.6.2. Every nilpotent Lie algebra is also solvable. For each k Ø 1, we
have g(k) ™ gk, and to see this, we can use induction on k. For k = 1, g(1) = g1,
which can serve as the base of induction. Assuming the induction hypothesis
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that g(k≠1) ™ gk≠1, we need to prove the thesis. By applying the definition of
the derived series and using the induction hypothesis, we have:

g(k) = [g(k≠1)
, g(k≠1)] ™ [gk≠1

, g] ™ [gk
, g] = gk

.

Remark A.6.3. The converse of the above observation does not hold. Consider,
for example, the Lie algebra g presented in A.5.1 with dimension 2 and basis
{x, y}, where [x, y] = x. Then,

g1 = g(1) = ÈxÍ,
g2 = [g, g1] = È[x, y]Í = ÈxÍ;
.
.
.

gk = ÈxÍ, for every k Ø 1,

so the descending central series stabilizes, and g is not nilpotent. However, it is
solvable since

g(2) = [g(1)
, g(1)] = [ÈxÍ, ÈxÍ] = 0.

Lemma A.6.13. Let g be a Lie algebra.

1. If g is nilpotent, then every subalgebra of g is nilpotent.

2. If g/Z(g) is nilpotent, then g is nilpotent.

Remark A.6.4. If g/i and i are nilpotent, it does not necessarily mean that g is
nilpotent. To see this, consider an example. Let g be a Lie algebra of dimension
2, which is non-abelian. Referring to Theorem A.5.1, we know that there exists
a basis {x, y} such that [x, y] = x. Then,

g1 = g(1) = ÈxÍ,
g2 = [g, g1] = È[x, y]Í = ÈxÍ;
.
.
.

gk = ÈxÍ, for every k Ø 1,

so the descending central series stabilizes, and g is not nilpotent.

A.7 Cartan’s Criteria
In this section, we will present criteria for determining when a Lie algebra is
semisimple or solvable. These criteria, known as Cartan’s criteria, are very useful
because it is often impractical to use the definitions to determine whether a
Lie algebra is semisimple or solvable. Furthermore, we will assume that F is
an algebraically closed field, so without loss of generality, we can take F = C,
meaning we are dealing with complex Lie algebras.
Definition A.7.1. Let g be a Lie algebra. It is called simple if its only ideals
are the trivial ones, and g is non-abelian.
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Definition A.7.2. Let g be a complex Lie algebra. The Killing form on g is a
symmetric bilinear form Ÿ defined as:

Ÿ(x, y) := Tr(ad(x) ¶ ad(y)) for all x, y œ g.

The Killing form is bilinear because ad is linear, the composition of linear
maps is still a linear map, and Tr is linear. This bilinear form has a peculiar
property, which we will call associativity.
Proposition A.7.3. Let g be a complex Lie algebra, and Ÿ be the Killing form
on it. Then, for all x, y, and z œ g, we have

Ÿ([x, y], z) = Ÿ(x, [y, z]).

Proof. To simplify the notation, we will denote the composition of linear maps
as multiplication. Remember that the trace function satisfies Tr(ab) = Tr(ba)
for all a, b œ Mn(C). Now, for all x, y, and z œ g:

Ÿ([x, y], z) = Tr(ad([x, y]) ¶ ad(z))
= Tr(ad(x) ad(y) ad(z) ≠ ad(y) ad(x) ad(z))
= Tr(ad(x) ad(y) ad(z) ≠ ad(x) ad(z) ad(y))
= Tr(ad(x)([ad(y), ad(z)]))
= Tr(ad(x) ad([y, z]))
= Ÿ(x, [y, z]).

This completes the proof.

Theorem A.7.4 (First Cartan’s Criterion). The complex Lie algebra g is solvable
if and only if Ÿ(x, y) = 0 for all x œ g and y œ gÕ.
Example A.7.4.1. Let g be the non-abelian Lie algebra of dimension 2 with a
basis consisting of elements x and y such that [x, y] = x. In this basis, the linear
maps ad(x) and ad(y) have matrix representations:

ad(x) =
A

0 1
0 0

B

, ad(y) =
A

≠1 0
0 0

B

.

Therefore, Ÿ(x, x) = Ÿ(x, y) = Ÿ(y, x) = 0, and Ÿ(y, y) = 1. Thus, the matrix
representing Ÿ in the basis x and y is

A
0 0
0 1

B

.

So, for any x, y œ g and –, — œ C, we have

Ÿ(–x + —y, x) = –Ÿ(x, x) + —Ÿ(y, x) = 0 + 0 = 0.

Recalling that for a symmetric bilinear form B : V ◊ V æ F, where V

is a vector space over the field F, you can define, for any subset S of V , the
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orthogonal complement to S as

S
‹ = {x œ C | B(x, s) = 0, for all s œ S}.

With that said, a symmetric bilinear form B is called non-degenerate if V
‹ = 0.

Theorem A.7.5 (Second Cartan’s Criterion). The complex Lie algebra g is
semisimple if and only if the Killing form on g is non-degenerate.
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