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Abstract 
The main topic of this research was to evaluate the effect in the performance of stochastic landslide 

susceptibility models, produced by differences between the triggering events responsible for the 

calibration and validation datasets. In the Caldera Ilopango area (El Salvador), MARS (Multivariate 

Adaptive Regression Splines)-based susceptibility modeling was applied using a set of physical-

environmental predictors and two remotely recognized landslide inventories: one dated at 2003 (1503 

landslides), which was the result of a normal rainfall season, and one which was produced by the 

combined effect of the Ida hurricane and the 96E tropical depression in 2009 (2237 landslides). Both 

the two event inventories included shallow debris- flow or slide landslides, which involved the 

weathered mantle of the pyroclastic rocks that largely outcrop in the study area. To this aim, different 

model building and validation strategies were applied (self-validation, forward and backward chrono-

validations), and their performances evaluated both through cut-off dependent and independent metrics. 

All of the tested models produced largely acceptable AUC (Area Under Curve) values, albeit a loss in 

the predictive performance from self-validation to chrono-validation was observed. Besides, in terms of 

positive/negative predictions, some critical differences arose: using the 2009 extreme landslide 

inventory for calibration resulted in higher sensitivity but lower specificity; conversely, using the 2003 
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normal trigger landslide calibration inventory led to higher specificity but lower sensitivity, with 

relevant increasing of Type-II errors. These results suggest the need of investigating the extent of such 

effects, taking multi-trigger intensities inventories as a standard procedure for susceptibility assessment 

in areas where extreme events potentially occur. 

Key-words: landslide susceptibility, MARS, temporal validation, Ida hurricane, Caldera Ilopango (El 
Salvador). 
 
 

1. Introduction 

Landslides are among the most important causes of natural hazard in El Salvador (Rose et al. 2004), 

being triggered either by earthquakes or tropical storms. In particular, storms which frequently hit the 

country are responsible for the multiple activation of a large number of shallow and fast moving flow-

like landslides, which cause life losses and severe damages disaster scenarios (e.g., CEPAL 2010; 

MARN 2011) either directly impacting along the slopes against inhabited areas or feeding debris floods 

phenomena along the streams. Predicting storm triggered multiple occurring landslides is of great 

importance in these areas where very steep slopes mantled by weathered pyroclastic rocks are exposed 

to such recurrent storm inputs, as in large part of Central America. In fact, landslide susceptibility 

models and their derived maps are among those tools that allow for cost/effectively mitigating the 

natural risk associated to storm events. 

The territory of El Salvador is largely characterized by a young deeply incised tephra dominated 

landscape, so that a history of recurrent debris flow disaster events is already known. However, in El 

Salvador few studies have dealt with this topic. A logistic regression model for earthquake-induced 

landslides in the whole country has been assessed, using an inventory of 2001 seismically-induced 

landslides for calibration, but not being supported by any validation procedure (García-Rodríguez et al. 

2008). García-Rodríguez and Malpica (2010) applied then to the same landslide inventory artificial 
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neural networks method and validated the obtained model by means of Receiver Operating 

Characteristic (ROC) curves, albeit without n-folds precision and reliability analysis. For the extreme 

north-western sector of the country, principal component analysis was also applied (Kopačková and 

Šebesta 2007), obtaining a landslide susceptibility map which was calibrated with post-Mitch hurricane 

(1998) and post-2001 earthquake inventories for a study area of around 3.500 km2, but again without a 

complete validation procedures. 

On a national basis, MARN (Ministerio de Medio Ambiente y Recursos Naturales) produced in 2004 a 

landslide susceptibility map for the whole country at a 1:50.000 scale (MARN 2004) by applying a 

heuristic approach (Mora and Vahrson 1991, 1994) and using five controlling factors. Recently, the El 

Salvador territory was included in a regional landslide susceptibility scenario, obtained by applying a 

fuzzy based heuristic approach, with a low spatial resolution of 30 arcseconds (Kirschbaum et al. 

2016). 

In this paper, a stochastic approach to landslide susceptibility modeling for storm-triggered multiple 

debris flows events in El Salvador is proposed, exploiting the Multivariate Adaptive Regression Spline 

(MARS) technique (Friedman 1991; Conoscenti et al. 2015) and a complete validation scheme 

(Guzzetti et al. 2006; Frattini et al. 2010; Conoscenti et al. 2015, 2016; Lombardo et al. 2015, 2016; 

Cama et al. 2016). In particular, we focused on the assessment of a landslide susceptibility model for 

storm triggered landslides in the north-western inner slopes of the Ilopango Caldera in El Salvador 

(Figs. 1), where at the end of the first decade of November 2009 a multiple landslides event occurred, 

due to the combined effect of the Ida Hurricane and the 96E tropical depression (CEPAL 2010, 2011; 

MARN 2010, 2011). 

Susceptibility models were prepared by applying MARS to regress a binary landslide-derived outcome 

(stable/unstable status) on a set of geo-environmental explanatory variables, which were derived from 
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two available thematic (geology and soil use) maps and a 10m-cell digital elevation model (DEM). The 

model building and validation scheme exploited two original pre- and post-event landslide inventories 

(2003 and 2009, respectively), which were recognized by means of the Google EarthTM (GE) image 

databank and 3D-view integrated system (e.g., Costanzo et al. 2012a).  

The main topic of this research was to evaluate the effect in the temporal prediction performance of a 

susceptibility models, produced by differences in the magnitude of the triggering events which caused 

the landslides forming the calibration and validation datasets. 

The present research exploited free open data and software resources: Google EarthTM, SAGA GIS 

(Conrad et al. 2015) and R software (R Core Team 2015). 

 

2. Materials 

2.1 Study area 

El Salvador (Fig. 1) stretches SE-NW along the Central American Volcanic Front for about 250km in 

the Pacific side of Central America, near 150km inboard of the Middle American Trench, where the 

Cocos plate is subducted beneath the Caribbean plate (Agostini et al. 2006; Lexa et al. 2011). In 

particular, the Ilopango Caldera is located in the central graben system of El Salvador (Fig. 2a), 

between the coastal and the inner volcanic cordilleras, being one of the most dangerous calderas of 

Central America, with an area of around 200km2, less than 20 kilometers east of the city of San 

Salvador (Rose et al. 2004). At least four exceptional eruptions in the last 100kys, the last of which 

near 2500 years ago, produced tephra layers and ignimbrites deposits which covered wide sectors of the 

central part of the country (Stoiber and Carr 1973). The caldera presently hosts a typical volcanic lake 

(Lake Ilopango), whose inner delimiting steep slopes are characterized by the outcropping of the 

weathered tephra layers. Such a geomorphologic setting is responsible for a large number of landslides 
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which activate in the occasion of the tropical storm events associated with the recurrent either Atlantic 

and Pacific cyclones. 

The study area (Fig. 2b) corresponds to an oblate catchment (about 5km long and 8km large) given by 

the convergence of several short highly steep streams into an alluvial plain named “Arenal de 

Cujuapa”, which progradates into the Ilopango lake with a marked delta-like head (“Punta El Pinar”). 

Actually, two main channels can be recognized in the alluvial plain, the southernmost of which 

corresponds to the ending branch of the Rio El Borbollón. The whole catchment drains the inner slopes 

of the northeastern sector of the Ilopango Caldera, which are characterized by the outcropping of 

Holocenic acid pyroclastic sequences, locally named “Tierra Blanca” (TB), belonging to the San 

Salvador formation (Quaternary). The latter covers the underlying pyroclastic deposits of the Cuscatlan 

formation, which are unburied by erosion along the valley bottom of the streams. Finally, in the upper 

sectors of the catchment, near the town of Cojutepeque, pyroclastites of the Bálsamo formation 

outcrop. 

2.2 The Ida/96E event and related landslides 

The Hurricane Ida developed on the 4th of November as a tropical depression in the south-western 

sector of the Caribbean Sea, increasing its strength up to tropical storm grade on the 7th of November, 

when it crossed the shoreline of Nicaragua, and to a second level hurricane at the midday of the 8th 

(Avila and Cangialosi 2010). The hurricane then moved northward crossing the Caribbean Sea and the 

Mexico Gulf, weakening back to tropical storm and to depression on the 9th and completely dissipating 

on the 12th. During these same days, the low-pressure system 96E moved from the eastern Pacific 

Ocean causing intense rainfall between November 7th and 8th (CEPAL 2000, 2011). In these two days, 

Ida and 96E simultaneously struck an area of around 400 km2 centered between Ilopango Lake and San 

Vicente Volcano, producing more than 300mm/24hrs at the Ilopango and San Vicente villages (Fig. 3). 
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In this area, large damages were recorded caused by floods and landslides with around two-hundreds 

deaths and a quarter of a billion dollars of economic losses (MARN 2010), the larger part of which in 

the north-western flank of San Vicente Volcano, where huge debris flow phenomena severely struck 

the villages of Verapaz and Guadalupe. At the same time, in the Ilopango Caldera area, hundreds of 

landslides triggered from steep slopes causing damages to cropland, rural houses and roads, as well as 

strongly affecting and modifying the connected fluvial system. 

In order to prepare the required two (ante- and post-event) landslide inventories, a remote recognition 

was carried out through a systematic GE-based analysis, which was performed on two different epochs: 

one dated at 9/10/2003 (DigitalGlobe Catalog ID: 1010010002459C02) and one dated at 11/21/2009 

(DigitalGlobe Catalog ID: 101001000AA5D801), the latter being taken just two weeks after the 

Ida/96E combined event. Unfortunately, the 2003 GE images were affected by a partial cloud coverage, 

so that the study area had to be subdivided into a 2003 cloud-free (CF) and a cloudy blind (CB) sector. 

By comparing 2003 to 2009 rainfall data, it is clearly evident (Fig. 4) that 2003 can be considered as a 

“normal” rainfall year, during which the maximum 24h, 48h and 72h rainfall resulted far below the 

Ida/96E records. In the following, as a consequence, the 2003 and the 2009 landslide inventories were 

relatively considered as a “normal” and an “extreme” one, respectively. 

It is worth to mention that, in the time span of some years, a large part of the 2009 landslide areas 

resulted as almost completely covered by vegetation and hardly recognizable on the field. At the time 

of our field survey (May 2015), the study area resulted as generally affected by dormant and active 

landslides, which were mainly classifiable as debris slides or debris flows. The warm-humid climate is 

in fact responsible for the fast growing of the vegetation, so that, with the exception of few cases of 

very recent landslides, the large part of the study area showed only smoothed forms of the previous 

slope failures (Fig. 5). Each landslide area was mapped as a polygon and represented by means of a 
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landslide identification point (LIP; Costanzo et al. 2014), which was positioned on the highest point 

along the crown line. In light of the type of slope movement, LIPs were assumed as potentially suitable 

for detecting the site conditions responsible for the previous failures that, as such, can be used as 

diagnostic landforms (Rotigliano et al. 2011; Lombardo et al. 2014; Cama et al. 2015) for calibrating 

the predictive models. It is worth to note that, as a consequence, using a LIP inventory for calibrating 

the susceptibility models obviously led to estimating the probability for a pixel to be an initiating area, 

to be then integrated with propagation and/or runout stages modeling. 

The two landslide inventories (Fig. 6) included 1503 and 2237 landslides, for 2003 and 2009 

respectively. It is worth to note that 253 2009-cases corresponded to reactivation of 2003 landslides. 

 

3. Methods 

Landslide susceptibility modeling through stochastic approaches requires the definition of a set of 

independent variables or covariates, which are expected to play the role of predictors, and of a 

dependent variable, representing the outcome to be predicted. Differently from deterministic 

approaches, through the adoption of statistical methods proxy variables can be included as predictors, 

which potentially play an indirect role into the physics of slope failures; however, in basin scale 

studies, these proxy variables are the only available at reasonable costs. The predictors are selected 

among those geo-environmental variables that are supposed to have controlled the slope failure 

mechanisms responsible for the observed past landslide scenarios (Costanzo et al. 2012b); the latter 

directly expresses the spatial distribution of the outcome, in terms of stable/unstable status of each 

mapping unit and constitutes the calibration dataset. At the same time, statistical methods allow for 

verifying if and to what extent a single predictor does control the estimated susceptibility, as well as 

potential multi-collinearity between predictors. 
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Once a set of predictors is defined, a value for all of the variables is assigned to each of the mapping 

units (Rotigliano et al. 2012) in which the study area is partitioned. The application of statistical 

methods allows then for optimizing and testing for significance the quantitative relationships which 

link the probability of the observed outcome status (stable/unstable) and the site multivariate 

geomorphological conditions of each mapped pixel. The predictive capability of the calibrated 

susceptibility model is then submitted to quantitative validation tests, which must be based on the 

evaluation of the accuracy, precision and general reliability of the derived predictive images (i.e., the 

susceptibility maps) in matching the spatial distribution of one or more unknown validation landslide 

inventories. 

3.1 The MARS method 

Recently, the adoption of Multivariate Adaptive Regression Spline (MARS; Friedman 1991) has 

proved to strengthen the predictive skill of generalized linear modeling techniques. MARS is a non-

parametric regression technique that aims at fitting un-linear relationships between predictors and 

outcome, by fragmenting their range into an optimized number of linear branches. Each branch defines 

into the covariate axis a basis function (BF) that is structured as hinge function delimited by knots. 

More complex BFs can be defined as the product of one or more hinge functions associated to different 

covariates. A particular case is the BF that corresponds to the model intercept, set to a constant value of 

1. 

The application of the MARS algorithm is based on a two stages procedure. In a first stage (forward 

pass) a model is generated by stepwise adding (starting from a constant only model) pairs of terms 

corresponding to the mirrored hinge functions generated by a knot. At each step, the added pair of 

terms that results in the regression giving the maximum reduction of the residual sum-of-squares error 

(RSS) is added. In light of the simple structure and fast computing, the searching of the best pair is run 
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systematically (in a “brute force” fashion). This stage can be run up either a minimum RSS gain is 

obtained or the whole set of possible BFs are added. In the second stage (backward pass) MARS 

stepwise prunes the best fitting but typically overfitted model, by dropping out of the model at each 

step the single term whose removal results in the lowest Generalized Cross-Validation parameter 

(GCV; Craven and Wahba 1979). The criterion expressed by the GCV parameter is in fact the best 

compromise between fitting (low RSS) and model complexity, the latter depending on the number of 

terms. At each pruning step, a best model subset is then obtained. 

MARS regression function is so given by: 

𝑓(𝑥) = 𝛼 +∑𝛽𝑖

𝑁

𝑖=1

ℎ𝑖(𝑥), 

where α is the model intercept and the βi the coefficients of the hi basis functions obtained by knots-

splitting the range of the x covariates. 

In this research, MARS modeling was performed using the “earth” package (Milborrow et al. 2011) of 

R software. In order to reduce the complexity of the models, the maximum degree of interaction was 

set equal to 1, thus avoiding terms given by combinations of two or more BFs. The software semi-

automatically determined the maximum number of terms entering the MARS models. The “evimp” 

function of “earth” was employed to estimate the variable importance, as a function of the number of 

entered model subsets. Only subsets equal to or smaller than the final model are considered to evaluate 

predictor importance (Milborrow 2015). 

In light of its flexibility and fast/easy to apply software/hardware structure the MARS algorithm has 

been recently adopted in stochastic modeling of geomorphological phenomena, including soil erosion 

and landslides (e.g., Conoscenti et al. 2016, 2017). In this paper a first application to debris flow 

phenomena prediction through a time-partition based validation scheme is presented. 
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3.2 Predictors 

The following covariates were assumed at the initial stage as potential predictors for slope failures in 

the study area: outcropping lithology (LIT), land use (USE), landform classification (LCL), elevation 

(ELE), steepness (STP), aspect (ASP), plan (PLN) and profile (PRF) curvatures, topographic wetness 

index (TWI) and terrain ruggedness index (TRI). The 10m pixel structure of the source DEM was 

adopted for partitioning the study area into mapping units (Cama et al. 2016). Table 1 details the DEM-

derived covariates in the area and their related references, while the classes for each of the categorical 

predictors are listed in Table 2. 

The selection of the predictors was based on largely adopted geomorphological criteria (Costanzo et al. 

2012b) and was here also supported by a multi-collinearity analysis based on classic VIF (Variance 

Inflation Factor) estimation which exploited the “usdm” package (Naimi 2015). A VIF value of 10 was 

set to exclude collinear variables from the models (Heckmann et al. 2014; Jebur et al. 2014; Bui et al. 

2016). All the variables resulted as not collinear and were so included into the final models. 

 

3.3 Model building and validation strategy 

According to the adopted research design, two validation schemes were applied (Tab. 3): chrono-

validation, based on the 2003/2009 time partition, and self-validation, based on the spatial random 

partition of each of the two inventories (Chung and Fabbri 2003; Guzzetti et al. 2006; Cama et al. 2015, 

2017; Lombardo et al. 2015). In particular, forward chrono-validation scheme was applied, by 

calibrating with 2003 and validating on 2009, whilst the opposite scheme was applied for backward 

chrono-validation. Moreover, due to the presence of the cloudy area in the 2003 GE coverage, chrono-

validations schemes were adopted for predicting either the whole 2009 landslide inventory (2009ALL) or 

the CF (2009CF) subset. For the same reason, the backward chrono-validation procedure was performed 
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only in the CF sector, by calibrating with 2009 landslides and validating in predicting the 2003s. By 

applying either time and random partition schemes, starting from the three available calibration dataset 

(2003CF, 2009CF and 2009ALL), the six models of Table 3 were obtained. 

Comparing model A to model D, or model B to model E, allows investigating the role of the calibration 

inventory in the prediction skill of the derived susceptibility models. In fact, in both the two cases the 

same landslide scenario (2003 and 2009, respectively) was predicted by calibrating the susceptibility 

models either on a randomly partitioned of the same coeval landslides or on the whole dataset of the 

landslides recognized in the other epoch. The different model performances were then more clearly 

highlighted by directly comparing the model B to the model D. At the same time, in order to have 

reference levels for evaluating the performance of the temporal (chrono-validated) predictions, the 

2003CF, 2009ALL and 2009CF datasets were also submitted to random splitting based self-validation. 

To estimate the potential role of the blind area in hampering the research strategy, B to C and E to F 

models were also compared. 

Each dataset was balanced by adding to the positives (i.e. pixels hosting a LIP) an equal number of 

randomly selected negatives, corresponding to LIP-free pixels (Conoscenti et al. 2016). For temporal 

partition based validations, one hundred replicates were obtained by randomly multi-extracting a 

different subset of negatives both in the calibration and validation datasets. Self-validations were based 

on 10-folds with 10 repetitions cross-validation schemes, obtaining one hundred estimates of model 

parameters and performance metrics (Tab. 3). 

The performances of the models were evaluated by adopting both cut-off dependent and independent 

metrics. In particular, the prediction skill of the model was evaluated by computing the AUC (Area 

Under Curve) in the ROC (Receiver Operating Characteristics) sensitivity Vs. fall out (1-specificity) 
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plots, as well as from confusion matrixes by distinguishing the true/false positive/negative cases (i.e., 

TP, TN, FP and FN, respectively), obtained from Youden index optimized cut-off (Youden 1950). 

For each of the validation procedures, the one hundred replicates allowed to obtain mean and variance 

of all the metrics enabling to estimate the model performances in terms of precision and reliability. 

 

4. Results 

In order to explore the structure of the models in terms of selected variables, the nsubsets criterion was 

adopted (Conoscenti et al. 2016), by counting the number of model subsets including each selected 

variable throughout the pruning pass, which is assumed as expressing the variable importance. Table 4 

summarizes the results for the three calibrated models. With a threshold of variable importance of 1 or 

more, only 27 variables were extracted at least for one model, out of the 44 included at the first step of 

the modelling procedures, with larger set of variables included in the 2009CF and 2009ALL models. 

Based on the comparison between the results of the three models, five main groups of variables can be 

defined: I, variables selected for all the three models; II, variables selected only for the 2009CF and 

2009ALL models; III, variable selected only for the models calibrated in the CF area; IV, variables 

selected for the 2003CF and 2009ALL models; V, variables selected only for one single model. TRI 

and ELE are the most important variables, with very similar and high mean values. The Ia subgroup is 

completed by quite important and homogeneous variables. The high importance of North-eastern 

facing observed for the 2003CF model resulted as very lowered for both the 2009. The Ic subgroup 

includes variables which are very important for the two 2009 models, whilst a lowering of one order of 

magnitude is observed for 2003CF. The II group includes a large set of variables which are important 

for the two 2009 models (ASP_South and ASP_SouthEast, in particular), but not extracted throughout 

the pruning pass in the 2003CF calibration. SLO is selected as a quite important variable only for 
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models calibrated in the CF sector, whilst group IV variables were extracted with varying importance, 

only for 2003CF and 2009ALL models. Finally, group V variables were extracted only for one of the 

calibrated models. 

As regards the predictive performances, Figure 7 shows the averaged ROC curves that were obtained 

for the six models through their replicates, while, to ease the comparison of the global accuracy, a 

boxplot displaying each of the corresponding mean AUCs was prepared (Fig. 8). 

The whisker symbols along the ROC curves (Fig. 7) attest for highly stable results through the 

replicates, with higher dispersion gradually shifting from true to false positives, in the direction of the 

lower scores. For the calibrated subsets, the frequency distribution of the scores shows a different shape 

in the intermediate range (0.7-0.3), with a more picked bi-modal trend for the 2003 model (Figs. 7a-c), 

resulting in a flat zone, where a wide range of scores is equally represented in terms of mapped pixels. 

As regards the AUCs (Fig. 8), the 2003CF, 2009CF and 2009ALL self-validated models obtained 

similar excellent performances, with AUC values above the 0.8 threshold (Hosmer and Lemeshow 

2000). At the same time, in the CF sector, the forward and the backward chrono-validations produced 

almost the same results in terms of AUCs, with largely acceptable values of 0.76 and 0.78, respectively. 

For the forward chrono-validations, only a slight performance decreasing was observed from the CF 

sector to the whole catchment (AUC=0.74); the same small difference was observed for the 2009 self-

calibrated model, from 2009CF (AUC=0.83) to 2009ALL (AUC=0.81). 

If cutoff-dependent performance metrics are taken into consideration (Tab. 5), it is evident that the loss 

in prediction skill from 2003 and 2009 self-validation (model A and model E) to forward and backward 

chrono-validation (model B and model D), respectively, depends on a sensitivity decreasing, which is 

more marked for the 2003 model, with no coupled loss of specificity. Furthermore, by directly 

comparing the backward (model E) to the forward (model B) chrono-validated models in the CF sector, 
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in spite of the similar AUC performance (0.71 and 0.70, respectively), a marked higher sensitivity and 

lower specificity of the former arises. In both cases, the specificity does not change from self- to 

chrono-validation. It is worth to note that the two opposite behaviors of specificity and sensitivity 

compensated each other, so that the two models result in a similar accuracy. 

Figure 9a,b shows the two susceptibility maps prepared by calibrating the models in the CF sector 

exploiting the 2003 and 2009 landslide inventory, respectively. The maps were obtained by averaging, 

for each pixel, the one hundred estimates of probability values. A map of the residuals is also shown 

(Fig. 9c), where the difference in the estimated score of the two models (score2003-score2009) was 

depicted. In spite of the similar general spatial pattern of the two prediction images, the 2009 model 

produced higher scores on average, whilst positive and negative residuals stretch along the north-

westward and south-eastward slopes of the main SW-NE running pyroclastic ranges, respectively. 

However, in terms of positive and negative predictions, if applying Youden index cut-offs, few pixels 

resulted as differently classified in the two maps (Fig. 10): less than 5% of the pixels with scores 

diverging for more than one susceptibility class; a larger percentage (13%) of pixels classified with a 

one class shift and crossing the cut-off score value. 

5. Discussion 

The analysis of the variable importance of the three calibrated models highlights that more variables 

are involved in the definition of the susceptibility for the extreme event datasets. At the same time, 

some variables play a role in the predictive models, no matter the intensity of the trigger, with two 

topographic factors showing the maximum importance: elevation (ELE) and Topographic Ruggedness 

Index (TRI). On the other hand, some variables (Topographic Wetness Index, Pasture and Crop 

Cultivation soil use) resulted as much more important (one order of magnitude) under extreme 

scenario, with the case of South and South-East facing, which are among the most important variables 
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for the two 2009 models, but never extracted for 2003CF. Conversely, North-eastern facing has an 

importance index of more than 10 only for normal event condition. The SLO variable was selected only 

for the models calibrated in the CF sector, probably due to the geomorphologic conditions. 

Figure 11 puts the main results of the validation tests inside the framework of the investigation strategy 

adopted in this research. The results attested that the 2003 landslide inventory allowed to calibrate a 

predictive model, whose AUC performance was estimated as very high and reliable, after a self-

validation procedure was applied (model A); that was the only test we could have performed in 2003, 

before the 2009 the 2009 Ida/96E event. However, if trying to predict the sites where then debris flow 

and debris slide phenomena triggered (model B), a small AUC decreasing (from above to below the 0.8 

threshold), but coupled with a relevant number of false negative occurrences (low sensitivity), arose: 

relying on a map prepared on 2003 would have resulted in 32% of missing positives (against the 22% 

expected on the basis of the 2003 self-validation test). An analogous AUC decreasing resulted for the 

backward chrono-validation (model D) with respect to the 2009CF self-validated model (model E), but 

caused by a moderate false negative prediction (miss rate) increasing, with only 21% of missing 

positives (against the 17% obtained from self-validation). It is worth to highlight that the model E 

showed the same accuracy of the self-validated model B in predicting the 2003 positives, suggesting 

the model calibrated with an extreme event landslide scenario of a different epoch (2009) as being able 

to reach the same performance in recognizing the sites of activation for a normal season landslide 

scenario of a self-validated one. Conversely, the model calibrated with this lower trigger landslide 

scenario resulted in a markedly lower sensitivity than the one calibrated under the extreme event 

(sensitivity = 0.68, against 0.83). In particular, the 2009-calibrated model resulted capable to detect as 

nearly as the 80% of the 2003 landslides, but expecting a higher number of positives, actually 

corresponding to 2003 stable sites (type-I errors), with low specificity and high number of false 
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positives. The same model calibrated in 2003 recognized the negative locations in the 2009 landslide 

scenario with a higher performance than the 2009 self-validated itself (specificity = 0.72, against 0.63). 

The results of this research seem to confirm non-linear stochastic relationships between predictors and 

outcome under different driving conditions, as the crossing with a more severe landslide scenario does 

not only correspond to a false-to-true conversion of the predicted positives (actually, a small decreasing 

of PPV is recorded for the 2003 forward chrono-validation), but also to positive occurrences for a 

number of predicted negatives. However, a similar but slighter effect is observed when models are 

calibrated with the extreme landslide scenario, which means the larger scenario does not fully include 

the smaller one. 

In terms of geomorphological model, a more intense triggering of the slopes is responsible for the 

activation of large part of those site conditions which typically activate under normal triggering but 

together with other regions of the multivariate parameter hyperspace, having stable status under normal 

triggering, as attested by the 2009 models, which are controlled by more variables. This means that, if 

we focus on the applicative relevance of the prediction, exploiting landslide scenarios caused by more 

intense triggering events allows to fit large part of the normal-trigger caused landslides as well as the 

same extreme-trigger ones. At the same time, a source of errors in terms of successful positive 

predictions is introduced by extreme events, so that a moderate lowering of the sensitivity is to be 

expected. This could be due to the activation on 2009 of a secondary triggering mechanisms, caused by 

landslide coupling, which add a non-stochastic component to the spatial relationships between 

predictors and outcome, being rather controlled by morphodynamic slope connectivity. In fact, in a 

relevant number of cases, landslides in that extreme event scenario were triggered by the impact or the 

erosion (either laterally or at the foot of the slopes) of the moving mass detached from the primary 
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slope failures. In Figure 12 a field example is given, highlighting a number of coupled landslides, in the 

2009 landslide scenario. The same setting can be observed in Figure 5. 

As regards the susceptibility maps, under an applicative perspective the 2009-calibrated models 

confirmed to be much more accurate in predicting positives, avoiding false negative predictions. 

Among the pixels predicted as negatives at 2003, but as positive at 2009, 227 out of 580 (39%) resulted 

unstable in the 2009 landslide scenario (Fig. 10); conversely, very few (0.5%) of the negative predicted 

pixels at 2009, but as positive at 2003, actually resulted unstable in 2003. Again, if considering the 

potential severity of a false negative prediction, the 2009 model confirmed to produce the more realistic 

and prudential prediction image in terms of potential damages. 

Differences in temporal validations between models trained under normal or extreme event triggered 

landslide scenarios have been investigated in other papers (Lombardo et al. 2014; Cama et al. 2015 and 

references therein). However, in this research, deepening the analysis to cut-off dependent performance 

metrics highlighted that, together with the confirmation of a AUC decreasing from self- to chrono-

validation, which could suggest using either one or the other model be the same, a clear difference 

arises in terms of type of predictive errors. 

 

6. Conclusions 

Predicting storm triggered landslides always poses the problem of the morphodynamic coherence 

between calibration and validation datasets. In fact, the prediction skill of a model can be hampered by 

a large difference between the trigger intensity of the event responsible for the calibration and one for 

the validation landslide dataset. 

In the present research, a test was carried out in the Caldera Ilopango, which is a representative area of 

Central America, where recurrent extreme events occur striking landslide prone pyroclastic slopes. 
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Two different landslide inventories were exploited: one produced by normal rainfall, the other being 

the result of a very intense triggering storm (the Ida/96E 2009 event). The results confirmed the 

relevant role played by the triggering conditions both in the importance of the variable included in the 

susceptibility models, and in their predictive performance. As regards the predictors, it is worth to note 

that some variables were selected for both the two triggering scenarios, whilst some other only for the 

extreme event one, demonstrating that the slope failures occur under different mechanisms depending 

on the rainfall intensity. At the same time, in terms of predictive performances, the specificity of the 

predictive models resulted as not conditioned by the type of validation (chrono- or self-validation), 

nevertheless being higher for the model calibrated under normal event. Conversely, the sensitivity 

changes from self- to chrono-validation, with the models calibrated with a landslide inventory 

associated to normal trigger less capable to predict the sites of landslide activation under intense 

triggering and resulting in very critical type-II errors (high miss rate). On the contrary, models 

calibrated with extreme landslide scenarios resulted very efficient in self-predicting the positives as 

well as less critically limited in predicting the normal event triggered landslides. 

It is worth to note that focusing only in an AUC estimation for assessing the quality of a susceptibility 

model could be misleading in terms of the applicative exploitation of the susceptibility maps, whose 

quality is critically dependent on the correctness of binary positive/negative discriminations. 

This research demonstrated that validating on an extreme-event landslide inventory a susceptibility 

map calibrated with a normal landslide dataset does not result into a simple conversion from false to 

true positives (i.e., the turning of negatives but susceptible cases into positive), but that new susceptible 

conditions arises under intense triggering, which cannot be predicted if a normal event inventory is 

used for calibration. Conversely, extreme landslide inventories allow to calibrate susceptibility maps 
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which are very effective in predicting the landslides produced by normal events but with limits in 

discriminating stable conditions. 

Summarizing what above discussed, models calibrated with normal landslide scenario result in higher 

specificity (less Type-I error) but lower sensitivity (more Type-II error). To explain these differences, 

two main hypotheses are here suggested: the non-linear behavior in the trigger intensity dimension of 

regressed relationships which link predictors and outcome; the role of a non-stochastic 

(morhodynamic), related to the multiple coupled triggering between different landslides under extreme 

events. This point is obviously of great importance in terms of applicative consequences. In fact, it 

means that landslide susceptibility stochastic modeling requires multi-temporal calibration inventories, 

so to detect and estimate the effects of differences in the intensity of the trigger, optimizing positive 

and negative predictions. Strategies for integrating low and high trigger landslide inventories are to be 

issued and constitute the logical conclusive perspective of this research. 
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Captions 

Fig. 1 – Setting of the study area. 

Fig. 2 – a) Location of the Caldera Ilopango. b) Drainage network and outcropping lithologies in the 
study area. 

Fig. 3 – a) Tracks of the Ida and TD96E (mod. from Avila and Cangialosi 2010; CATHALAC 2009). 
b) 7-8 November 2009 cumulated rainfall in El Salvador (MARN 2009). 

Fig. 4 – a) Average, 2009 and 2003 monthly rain at the meteorological station Ilopango. b) Comparison 
between the Ida/96E rainfall records and 2003 maximum ten critical cases for 24h, 48h and 72h 
durations. 

Fig. 5 –Comparison between 2003 (a), 2009 (soon after the Ida/96E event; b) and 2015 (c) slope 
conditions on a representative sector of the study area (LIP: landslide identification point). 

Fig. 6 – 2003 (a) and 2009 (b) landslide inventory maps. 

Fig. 7 – ROC-plots for the six models and validation schemes (see Tab. 3). 

Fig. 8 – AUC boxplots for the six models and validation schemes (see Tab. 3). 

Fig. 9 – 2003 (a) and (b) 2009 landslide susceptibility maps. Map (c) and (d) frequency distribution of 
the residuals. 

Fig. 10 – Differences in positive (P)/negative (N) predictions between the two models. 
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Fig. 11 – Graphical summary scheme of the adopted validation strategies and main performance 
metrics. 

Fig. 12 – Field example of coupled multiple landslides in 2009. 

Tab. 1 – List of the DEM-derived predictors. 

Tab. 2 – List of the categorical predictors. 

Tab. 3 – Characteristics of the validation schemes adopted for the six susceptibility models. 

Tab. 4 – Summary of the variable importance index for the three calibrated models (NS = not selected). 

Tab. 5 – Summary of the validation metrics for the six susceptibility models. 
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Factor Source layer Description of source parameter Units References 

LCL Landform classification 
Outcome of an automated procedure that 
recognise landforms on a gridded elevation 
distribution (TPI)  

Wilson and 
Galland 2000 

STP Slope gradient Highest first derivative of elevation degree Burrough and 
McDonell 1998 

ASP Slope aspect Direction of steepest downwards slope from 
each cell to its neighbours  degree Wilson and 

Galland 1996 

PLN Plan curvature  Second derivative of elevation, computed along 
the horizontal plane rad/m Zevenbergen and 

Thorne 1987 

PRF Profile curvature Second derivative of elevation, computed along 
the direction of the highest slope gradient rad/m Zevenbergen and 

Thorne 1987 

TWI Topographic wetness 
index 

Calculated as ln[A/tanβ], where A and β, 
computed on each cell, corrispond to the area 
of upslope drained cells and the slope gradient, 
respectively 

m Beven and Kirkby 
1979 

TRI Terrain Ruggedness Index Topographic height difference of a cell 
compared to the adjacent ones m Riley et al. 1999 

Tab. 1 – List of the DEM-derived predictors. 
 

Factor Source layer Classes of the variable 
LCL Landform classification LCL_1 (Streams) 

LCL_2 (Midslope Drainages) 
LCL_3 (Upland Drainages) 
LCL_4 (Valleys) 
LCL_5 (Plains) 
LCL_6 (Open Slopes) 
LCL_7 (Upper Slopes) 
LCL_8 (Local Ridges) 
LCL_9 (Midslope Ridges) 
LCL_10 (High Ridges) 

ASP Slope aspect (degree) ASP_flat (-1) 
ASP_N (North: 0-22.5|337.5-360) 
ASP_NE (NorthEast: 22.5-67.5) 
ASP_E (East: 67.5-112.5) 
ASP_SE (SouthEast: 112.5-157.5) 
ASP_S (South: 157.5-202.5) 
ASP_SW (SouthWest: 202.5-247.5) 
ASP_W (West: 247.5-292.5) 
ASP_NW (NorthWest: 292.5_337.5) 

LIT Lithology LIT_Qf (Quaternary sedimentary deposits) 
LIT_s4 (Pyroclastics of "Tierra Blanca") 
LIT_s5b (Accumulation cones) 
LIT_c1 (Acid pyroclastics) 
LIT_c2 (Acid effusive) 
LIT_b3 (Basic-intermediate effusive rocks) 

USE Land use USE_1 (Wood) 
USE_2 (Crop cultivation) 
USE_3 (Vegetables cultivation) 
USE_4 (Crop cultivation and pasture) 
USE_5 (Pasture cultivation) 

Tables



USE_6 (Pasture) 
USE_7 (River) 
USE_8 (Continuous urban fabric) 
USE_9 (Discontinuous urban fabric) 
USE_10 (Precarious urban fabric) 
USE_11 (Growing urban fabric) 
USE_12 (Low shrubs) 
USE_13 (Mine areas) 
USE_14 (Uncultivated areas) 

 
Tab. 2 – List of the categorical predictors. 
 
 

MOD. VALIDATION 
SCHEME CALIBRATION VALIDATION  DATASET  REPLICATES 

A SELF2003CF 2003CF_RND(90%) 2003CF_RND(10%) 10-folds cross-validation 100 

B FRWCHRONOCF-CF 2003CF_(100%) 2009CF_(100%) 100 (CAL X VAL) 100 

C FRWCHRONOCF-ALL 2003CF_(100%) 2009ALL 100 (CAL X VAL) 100 

D BCKCHRONOCF-CF 2009CF_(100%) 2003CF_(100%) 100 (CAL X VAL) 100 

E SELF2009CF 2009CF_RND(90%) 2009CF_RND(10%) 10-folds cross-validation 100 

F SELF2009ALL 2009ALL_RND(90%) 2009ALL_RND(10%) 10-folds cross-validation 100 
Tab. 3 – Characteristics of the validation schemes adopted for the six susceptibility models 
 
 

Variables MOD A 
(2003CF) 

MOD E 
(2009CF) 

MOD F 
(2009ALL) TYPE 

LCL_2 6 5 9 

I 

a 

TRI 17 19 21 a 

ELE 16 18 20 a 

ASP_W 2 3 6 a 

ASP_E 7 3 6 a 

ASP_NE 12 4 2 b 

USE_2 2 12 13 c 

TWI 3 10 17 c 

USE_4 4 17 19 c 

LTL_s5b NS 2 2 

II 

PLC NS 3 2 

PRC NS 3 2 

ASP_NW NS 1 2 

LIT_b3 NS 7 5 

USE_9 NS 2 4 

LCL_6 NS 1 4 

ASP_SE NS 15 17 

ASP_S NS 13 17 

ASP_SW NS 6 12 



SLO 5 3 NS III 

USE_6 9 NS 8 
IV 

LIT_s4 1 NS 6 

LIT_c1 NS NS 7 

V 
LIT_c2 NS NS 4 

LCL_4 7 NS NS 

USE_14 3 NS NS 

LCL_5  NS 1 NS 
Tab. 4 – Summary of the variable importance index for the three calibrated models (NS = not selected). 
 
 
 

MOD. VALIDATION 
SCHEME 

ROC 
AUC 

CUT-
OFF RECALL 

FALL 
OUT 

MISS 
RATE 

PRECISION 

ACCURACY 
MEAN MEAN SENS. SPEC. PPV NPV 

A SELF2003CF 0.83 
0.52 

0.78 0.72 0.28 0.22 0.74 0.76 0.75 
B FRWCHRONOCF-CF 0.76 0.68 0.72 0.28 0.32 0.71 0.69 0.70 
C FRWCHRONOCF-ALL 0.74 0.64 0.70 0.30 0.36 0.68 0.66 0.67 
D BCKCHRONOCF-CF 0.78 0.47 0.79 0.63 0.37 0.21 0.68 0.76 0.71 
E SELF2009CF 0.83 0.83 0.63 0.37 0.17 0.69 0.79 0.73 

F SELF2009ALL 0.81 0.45 0.84 0.66 0.34 0.16 0.71 0.80 0.75 
Tab. 5 – Summary of the validation metrics for the six susceptibility models 
 
 
 
 


