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Abstract 
Background: iron and calcium dysmetabolism, with 
hyperferritinemia, hypoferremia, hypocalcemia and anemia have been 
documented in the majority of COVID-19 patients at later/worse 
stages. Furthermore, complementary to ACE2, both sialic acid (SA) 
molecules and CD147 proved relevant host receptors for SARS-CoV-2 
entry, which explains the viral attack to multiple types of cells, 
including erythrocytes, endothelium and neural tissue. Several 
authors advocated that cell ferroptosis may be the core and final cell 
degenerative mechanism. 
Methods: a literature research was performed in several scientific 
search engines, such as PubMed Central, Cochrane Library, Chemical 
Abstract Service. More than 500 articles were retrieved until mid-
December 2021, to highlight the available evidence about the 
investigated issues. 
Results: based on COVID-19 literature data, we have highlighted a few 
pathophysiological mechanisms, associated with virus-based cation 
dysmetabolism, multi-organ attack, mitochondria degeneration and 
ferroptosis. Our suggested elucidated pathological sequence is: a) 
spike protein subunit S1 docking with sialylated membrane 
glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the 
lipid layer; b) cell membrane morpho-functional changes due to the 
consequent electro-chemical variations and viroporin action, which 
induce an altered ion channel function and intracellular cation 
accumulation; c) additional intracellular iron concentration due to a 
deregulated hepcidin-ferroportin axis, with higher hepcidin levels. 
Viral invasion may also affect erythrocytes/erythroid precursors, 
endothelial cells and macrophages, through SA and CD147 receptors, 
with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood 
group, hemochromatosis, or environmental elements may represent 
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possible factors which affect individual susceptibility to COVID-19.     
Conclusions: our literature analysis confirms the combined role of SA 
molecules, ACE2, CD147, viroporins and hepcidin in determining the 
cation dysmetabolism and final ferroptosis in the cells infected by 
SARS-CoV-2. The altered ion channels and electrochemical gradients 
of the cell membrane have a pivotal role in the virus entry and cell 
dysmetabolism, with subsequent multi-organ immune-inflammatory 
degeneration and erythrocyte/hemoglobin alterations.
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1. Introduction
The present narrative review aims at providing a summary of the available evidence about a few peculiar aspects of
COVID-19 pathophysiology, regarding: a) alterations of cation (iron and calciummainly)metabolism, b) the role of sialic
acid (SA) molecules, CD147, ACE2 and of the ion-channeling components, such as voltage-gated calcium channels
(VGCC) and viroporins, in the morpho-functional chemical/electric alterations of the cell membrane caused by the viral
attack, c) the contribution of hepcidin, red blood cell (RBC) and hemoglobin to the cation dysmetabolism, d) the
consequent intracellular degeneration, ultimately resulting in both a mitochondrial degeneration and the ferroptosis
process.

Our literature search addressed the published articles related to COVID-19, which reported data and elaborations
concerning the pathophysiological elements described above.

We performed literature research retrieving and reviewing pertinent articles and documents from the following web-
based scientific search engines: MEDLINE, PubMed Central, Cochrane Library, Google Scholar, ChemRxiv, MedRxiv,
BioRxiv, Preprints, ResearchGate, Chemical Abstract Service, Genetic Home References and Human Metabolome
Database. The words COVID-19 and/or SARS-CoV-2 were combined with the following headings and keywords:
ferroptosis, iron, ferritin, transferrin, hepcidin, ferroportin, calcium, potassium, sodium, magnesium, hemoglobin, heme,
hematology, erythrocyte, red blood cells (RBC), erythroblast, RDW, LDH, hemochromatosis, chelation, mitochondria,
lactate, CD147, sialic acid (SA), VGCC, ion channels, viroporins.

We investigated the biomedical literature since January 2020 through mid-December 2021, and moreover we reviewed
the earlier reference articles where basic concepts and data were available for the main topics covered in this review (e.g.,
ferroptosis, iron, ferritin, SA, CD147, viroporins).

Nearly 500 articles were collected and reviewed, in order to extrapolate pertinent data and speculations concerning those
clinical and instrumental (mainly laboratory biochemistry and computational biology) findings which pertain the
investigated key-words.

2. Literature-based background
COVID-19 seems to be an extremely complex, variable systemic disease which has spread as pandemic worldwide,
generating dramatic health and socio-economic problems. The responsible coronavirus, SARS-CoV-2, shares some of
the pathomechanisms with the previous SARS-CoV-1 virus, but COVID-19 features peculiar clinical and instrumental
findings.

A series of pathophysiology mechanisms have been described in these patients, mostly based on virus-induced immune-
inflammatory pathways and on lung pathological consequences. In fact, a high body of evidence has been published
about the multi-organ viral attack, which is not solely based on the original immune degeneration induced by the virus.
Beyond the conventional pro-inflammatory pathways, other basic and possible pathomechanisms have been proposed in
the early literature about COVID-19,1 based on the preliminary scientific data.

Several authors have highlighted that iron dysmetabolism (and probable blood components denaturation), together with
cell membrane morpho-functional deregulation, represent specific early biochemical phenomena in this infection.1–6

Hyperferritinemia, low serum iron and low total iron binding capacity (TIBC) have been definitely linked to COVID-19
severity, and these elements have been considered relevant prognostic factors.1,7–14 Similarly, a series of possible
treatments aimed at controlling iron dysmetabolism have been proposed.15–19 Together with these biochemical changes,

REVISED Amendments from Version 1

Following to the reviewers’ comments and suggestions, we have revised a few parts of the text, including most updated
additional biochemical pathways regarding ferroptosis process with pertinent references. We have also expanded the iron
metabolism sections, highlighting the relationship among hepcidin, ferroportin, transferrin and ferritin in general and
specifically in COVID-19. Some pertinent literature and text has been added concerning arterial elasticity in Covid-19, which
could be related to the endothelial cell changes, as per our speculations. Lastly, we have focused on additional receptors
which could be involved in the cation dysmetabolism and ferroptosis processes in this viral disease, though literature data
are inconclusive at the moment. We have finally rectified Figure 1, as per the reviewer’s suggestion.

Any further responses from the reviewers can be found at the end of the article
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a number of RBC alterations have been described, both in terms of hemoglobin decrease/denaturation, and in terms of
RBC altered morphology/functionality.1,20–23

Another well-documented cation dysmetabolism, especially in later stages is represented by lower serum calcium levels,
which is equally a proven negative prognostic factor in COVID-19 patients24–32; additionally, early autopsies also
highlighted a higher representation of calcium deposits in many tissues.33

Regulation of transmembrane pumps and calcium influx/efflux is generally of great importance in many viral infec-
tions.34 Furthermore, past literature data has proven how excessive intracellular calcium does contribute to mitochondria
dysfunction and to ferroptosis degeneration.35

In view of the clinical relevance of excessive intracellular calcium, the use of calcium channel blockers has been
repeatedly suggested in the patients affected by COVID-19.36–41

In confirmation of the possible value of these drugs, a recently published retrospective cohort study among 4569
hospitalized hypertensive patients with COVID-19 showed a dramatic reduction of mortality in patients treated with
calcium channel blockers (risk ratio [RR]: 0.32, 95% confidence interval [CI]: 0.13-0.76, P = 0.0058).42

Decreased calcium levels in blood, in absence of a documented hypercalciuria, indicate a detrimental increased
concentration of this cation inside the cells. The movement of this mineral across cellular membranes is highly regulated
through the VGCC, which have an important role also in multiple pathological clinical conditions involving muscular,
neural, cardiac and endothelial cells, just to name a few.43–48

A possible effect of SARS-CoV-2-mediated altered transmembrane cation passage in the endothelium may regard the
electromotive force oscillations and ultimately the endothelial contractility. In fact, two preliminary studies have
highlighted an increased arterial stiffness in these patients, in comparison to age-matched healthy subjects.49,50

Interestingly, patients with later stages of COVID-19 often show altered serum concentration of other cations, such as
sodium, potassium and magnesium.51–54

Pathophysiology of this disease and, more specifically, cation dysmetabolism is linked to a series of viral interactions
with human cell membrane receptors.

Beyond the ascertained role of ACE2, several authors have reported the determinant role of another peculiar receptor,
namely CD147, in the multi-organ viral attack.1,55–59

CD147, also termed Basigin or EMPRIM, is regarded as a relevant SARS-CoV-2 entry port with a specific role in a few
tissues.1,55,60 However, it is worth mentioning that a minority of literature publications denies a direct role of this receptor
in the whole viral process.61

In fact, CD147 is represented in several human tissues and for example it is widely localized on the erythrocytemembrane
(nearly 2000-3000 receptors per cell are described,62 erythroblasts, endothelial cells, brain etc.1; as it is supposed that
SARS-CoV-2 may affect also RBC, the putative role of CD147 is sustainable.63

A few publications focused on CD147 in COVID-19; in fact, this diffusely distributed cell membrane receptor is a well-
known mediator in several diseases, where it exhibits a pleiotropic function.64–66

Cluster of Differentiation 147, or CD147, is a highly glycosylated transmembrane glycoprotein belonging to the
immunoglobulin superfamily, compelling for the Ok blood group system. The immunoglobulin superfamily compre-
hends proteins with at least one Ig domain and is of fundamental importance in intercellular communication.67

This transmembrane protein is dedicated to recognizing molecules inside the cell (cis-recognition), and extracellularly
(trans-recognition). Various isoforms of human CD147 are produced by differential splicing and differences in
transcription initiation sites. Isoform-1 has three Ig domains, located in the retina. Isoform-2, the most common, has
two Ig domains.68 Intriguingly, human platelets also express CD147, and a few authors observed a SARS-CoV-2 spike
protein-dependent platelet activation and aggregation, which is in fact CD147-mediated.57
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CD147 was also found to contribute as a chaperone of plasma membrane transport of monocarboxylate transporters,
hence a few authors postulated the possibility that CD147 might participate in ACE2-virus interaction, by a
re-localization to the same compartment of the two receptors.58

Furthermore, the well-known role of CD147 in inflammatory processes, together with its upregulation during hypoxic
states,1,69 may contribute to the deregulated inflammatory pathways of this disease in several organs.More specifically, it
was found that the viral interaction with CD147 may lead to some documented detrimental viral effects on endothe-
lium70–72 and on RBC and their precursors.1,21,63,73,74

In addition, it has been observed that CD147 expression levels correlate with SARS-CoV-2 infection extent, vascular
damage and an increased expression of vascular endothelial growth factor and thrombosis.75

Likewise, cardiovascular tissues and endothelial cells express putative genes for SARS-CoV-2 infection, including the
ones regarding ACE2 and Basigin/CD147. However, ACE2 decreases with age in some tissues, whereas basigin/CD147
increases with age in endothelial cells, suggesting that the expression of this specific receptor in the vasculature might
explain the heightened risk for severe vascular diseases with age.71,76 Interestingly, in most COVID-19 autopsy studies a
diffused micro- and macro-vascular thrombosis was shown.77

Beyond the importance of ACE2 and CD147 receptors, several authors have pointed out how SA role should be
re-assessed and emphasized in COVID-19. Early in May 2020, the determinant function of SA in SARS-CoV-2
transmembrane attack was highlighted.78 More recently, several authors have similarly remarked a series of SA-based
interaction pathways between the virus and the host cell.59,79–85

Sialic acids are ubiquitous structural polysaccharides that are typically found attached to theN andO terminal positions of
the cell membrane glycoproteins. Their structure is unique in the class of glycans: these alpha-keto acids have nine carbon
atoms and this helps them to play a critical role in several intrinsic and extrinsic cell interactions. The SA family includes
many derivatives of neuraminic acid and currently more than 50 structural variants for SA have been found in nature86;
this molecule has also been implicated in various pathophysiological processes such as oncogenesis and microbial
pathogenesis.87 In fact, several viruses attack host cells by binding with particular sialylated glycans, which become cell
adhesion molecules, to mediate cell entry.88

Of great importance, it has been recognized that SA may be expressed on the outer layer of cell membrane as molecules
located on specific wall glycoproteins, but also on the surface of ACE-2 and CD147 receptors.89 Sialo-glycoconjugates
expressed on cell surfaces serve also as ligands or receptors for specific intrinsic or extrinsic SA lectins.

Host cell receptors undergo evolutionary alterations to avoid rapidly emerging pathogens while maintaining critical
endogenous function. Similarly, most viruses have evolved to express enzymes that can cleave the interactions with these
SA receptors, helping to release them from the infected host cells. These sialidases act as decoy receptors, which bind to
virions, preventing their access to epithelial cells as well.87

The presence or absence of an appropriate host SA receptor is a major determinant of the viral host tropism, including the
specific host tissue and cell types that viruses can infect. Host receptors are therefore one of the keys to understanding
susceptibility to a particular virus and to determining the body systems that are likely to be infected and the type of clinical
outcome.85,90,91

Blood AB0 group, as well as blood viscosity and erythrocyte shape, are strictly dependent upon the RBC wall negative
electrical charge, which is induced mainly by the SA molecules; hence RBC morphology strictly relates to the
configuration and density of these negatively charged molecules on their membrane.92–97

With reference to the RBC changes induced by pathogens, it was also demonstrated that several viral glycoproteins may
interact with SA on the erythrocytes of various species, resulting in agglutination.87,98

The expression and distribution of these SA-based receptors differ according to their location within the body, cell type,
and their functional role. Humans predominantly express SA α2,6-Gal receptors in the ciliated and non-ciliated
epithelium of the respiratory tract, but also in blood, gut and neural system.99 Additionally, age-dependent differences
in the distribution of SA receptors have been reported in human subjects.59
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Beyond the cell membrane negative charge, also osmolarity and pH of the intra/extracellular space are significantly
influenced by SA concentration and disposition. Hence, SA molecules are being considered of central importance in the
SARS-CoV-2/cell docking and consequent infection.78,85,91,100

Past research showed that electrical and pH changes due to SA deregulation or its interaction with pathogens, proved to
interfere with cell membrane morpho-functional condition, for example resulting in spherical RBC shape and conse-
quently in altered blood viscosity.78,101,102

There is growing evidence that sialylated compounds present in the cellular glycocalyx may serve as an important factor
in themechanism of COVID-19 infection. A few studies have specifically focused on the glycosylation process of the two
subunits of the spike protein, S1 (which facilitates the attachment to the host cell receptor through the receptor binding
domain, RBD) and S2 (which mediates the fusion of viral to human cell membrane).103,104

In a very recent paper, unexpected changes in the glycosylation of the S1 RBD have been shown, which can explain the
crucial role of SA molecules in viral binding to ACE2, CD147 and to the glycoproteins of the host cell membrane.105

Equally, in a computational biology paper it has been reported that the average estimated binding affinity is much higher
for SA molecules (both free or on ACE2) docking with the furins and the cleaved spike protein subunit S1, than for any
other receptor/compound on the cell wall. Interestingly, they found that binding of negatively charged SA molecules of
host glycoproteins to the SARS-CoV-2 S protein will target the furins more thoroughly than the ACE2s, which may
increase the efficiency of furin cleavage.106

In general, coronaviruses bind SAs on theRBCand on the epithelium of upper respiratory tract through the hemagglutinin
glycoproteins. The higher or lower concentration of these molecules on the various cell membranes, which may also
depend upon a genetic constitution, is supposed to play a role in different diseases as well as in COVID-19.6,107,108

Blood AB0 group determination is based also upon SA distribution on RBC wall glycoproteins and there is some
contrasting evidence about the possibility that AB0 group may have a prognostic role in patients affected by COVID-
19.109

Interestingly, the blood group A has been found to have a more preferential SARS-CoV-2/RBD docking with the
erythrocytes and with the cells of the respiratory epithelium.110 Similarly, it has been proposed to link both the possible
0 group protection, and the A group higher susceptibility, to the different glycosylated part of the erythrocyte membrane
(hence to the SA component).111

However, some opposing data are reported in other studies where it is shown that SAmolecules content does not depend
on AB0 blood type.112 Overall, several factors influence AB0 group determination, thus much more evidence is likely
needed before drawing sound conclusions about this topic.

As a result of the described dysfunctionalmetabolic pathways in RBC, erythroblasts and hemoglobin, an alteration of iron
metabolism and possibly also of the oxygen-transport function is expected. In fact, low levels of hemoglobin have been
found in worse clinical stages,7,113–115 while, conversely, higher hemoglobin levels at the time of the hospital admittance
were associated to worse prognosis.116,117

Furthermore, a number of publications have documented a clear increase in the figures of a few biomarkers which express
dysfunctionality of hemoglobin and RBC, such as bilirubin, lactate dehydrogenase (LDH) and red cell distribution width
(RDW).1,117–120

Based on the evidence above, a multiple pathway-hypothesis has been published in the early 2021 to explain erythrocyte
and hemoglobin denaturation in these cases.121

Additionally, considering the possible autoimmune hemolysis (and piastrinopenia) consequent to the viral interaction
with RBC receptors (namely CD147 and sialylated membrane glycoproteins),122–125 the possibility of free circulating
heme has been taken in consideration with reference to the hypothetical pathomechanisms of COVID-19.1,126–132

More recently, an indirect demonstration of the SARS-CoV-2-induced hemolysis has been reported through liquid
chromatography, with a documented increase of protoporphyrin IX in blood of COVID-19 patients.133
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Overall, scientific research has early focused on the possible role of hemoglobin morpho-functional alterations in this
disease, as reported above, though a homogenous and direct evidence about hemoglobin dysregulation in COVID-19 has
not been reached; similarly, literature reports contrasting papers about the related hypoxia and about the altered
hemoglobin dissociation-curves.4,134–141

At the same time, also the critical debate about hypoxemic hypoxia and about the high-altitude pulmonary edema
(HAPE)-like condition in COVID-19 patients has attracted some scientific interest.142–144 In fact, the dysfunctionality of
RBC and hemoglobin has been proposed as primary cause of hypoxemic hypoxia, in presence of normal lung
functionality during the early phase of COVID-19; the subsequent lung parenchyma deterioration in the late phase,
with pneumolysis and interstitial pneumonia, would finally contribute to the ARDS phenomenon and to the deteriorated
hypoxic state.1,145–148

Iron and hemoglobin metabolism are strictly related; if the latter presents some denaturation, it is expected that there is
some repercussion on iron biochemical pathways. However, this is a reminder here that iron physiology is strictly
regulated by the axis hepcidin/ferroportin. Hepcidin is the master-regulator molecule in tissue and serum iron metab-
olism.149 This hormone acts on the transmembrane ferroportin molecule, regulating the iron inflow/outflow, hence
regulating serum iron and TIBC, together with ferritin concentration.

On one hand the finding of a hyperconcentration of hepcidin likely reflects the inflammatory state in these patients; on the
other hand the encountered molecular similarity between the tail of the viral spike protein and the hepcidin hormone may
contribute to the overall ferritin rise.150

In presence of a hepcidin-mimicking action by the spike protein on the ironmetabolism, it is argued that an over-blocking
action on ferroportin may occur. The consequent iron accumulation in the tissues, with blood iron deprivation, may
contribute to the findings of hyperferritinemia, hypoferremia and low TIBC in most COVID-19 patients, especially at
later/worse stages.8,151

Together with the occurrence of cell membrane morpho-functional alterations caused by external stimuli, viroporin
activity represents another general viral pathomechanism which may contribute to the intracellular cation overload. By
means of viroporin channeling action towards the cell membrane, cations (calcium mainly) may tend to enter the
cytoplasm, while on the other hand viral replication and subsequent viruses’ extracellular release is facilitated.152–154

In COVID-19 these viral proteins were shown to respectively oligomerize and accumulate in the endoplasmic reticulum
and in the Golgi apparatus; subsequently they can interact with the VGCC, based on the level of cell transmembrane
charge potential, which ultimately leads to an alteration of the same cell membrane electro-chemical activity.155–158

A few channels may be subsequently opened by viroporins from the inside of cell membrane, thus favoring the passage of
extracellular cations into the cell and subsequent virus expulsion which results in NLRP3 inflammasome activation and
cell apoptosis.155–157

A number of viroporins have been described in coronaviruses and more specifically in SARS-CoV-2 infection, being
protein E (from the envelope), ORF-3a and ORF-8a the most relevant ones.63,155–157 The ion-channeling action of these
viroporins exacerbate calcium/iron intracellular accumulation, tending to reduce the transmembrane voltage further-
more.156,159 These complex phenomena significantly condition both SARS-CoV-2 virulence and the microenvironment
of host cell, thus contributing to the final cell ferroptosis.

Cellular bioenergetics undergomajor re-arrangements during viral infections; mitochondria represent the core-organelles
for cell energy production and they typically undergomajor changes in aging and in chronic degenerative diseases.160–162

In general, the whole cell metabolism is strictly regulated by mitochondria activity and, equally, mitophagy is the driving
process of cell apoptosis.163 SARS-CoV-2 was shown to interfere significantly with mitochondrial activity,1,162,164–166

which results in an increased blood level of a few specific biomarkers related to mitochondria oxidative stress, such as
lactate, free radicals and LDH.1,164,166–170 Past literature showed that the deregulated pathways of cation (iron and
calcium mainly) metabolism invariably induce a relevant mitochondria degeneration, with altered mitophagy.35,171–176

The complex degenerative sequences occurring in the infected cell, influenced by cation overwhelming concentration,
may lead to several deranged biochemical pathways and ultimately to a specific type of apoptosis, named ferroptosis. The
term ferroptosis refers to a peculiar form of cell apoptosis and it has been introduced in 2012.177
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This degenerative process takes place in case of excessive intracellular iron accumulation (under the form of ferritin and
hemosiderin). Ferroptotic mechanisms are mostly based on lipoperoxidation and on mitochondria degeneration; they
are considered of extreme relevance in a series of chronic degenerative diseases (such as neurodegeneration and
cancer),178,179 and more broadly in many biochemical pathways which are proper of cell senescence,180 but also of
viral infections.181,182

An increasing number of articles have been showing the pivotal role of ferroptosis in the pathophysiology of COVID-19.
In fact, based on the evidence above, the SARS-CoV-2-induced intracellular cation overconcentration may easily lead to
a progressive deregulation of mitophagy, with a documented consequent ferroptosis-based cell degeneration in later
stages and in worst scenarios.1,2,15,18,183,184

Viruses were shown to generally alter iron metabolism, inducing somehow a form of iron deposition in the host cells;
COVID-19 features a similar cell condition, which may be considered a sort of evolutionary and protective mechanism
for viruses to survive and proliferate.185–190

The high levels of intracellular calcium and iron in these patients, especially in later stages, significantly contribute to a
number of dysfunctional metabolic pathways, both at mitochondrial level and at greater cell level. Cations notoriously
undergo a strict homeodynamic interaction, influencing each other as to the intra/extra-cellular dynamics and concen-
tration. Their accumulation in the affected cells is synergistically permitted by a series of mechanisms, which have been
detailed in the scientific literature (see above) and will be highlighted furthermore in this paper.

In COVID-19 deceased patients different types of tissues are affected by iron deposition at autopsy examinations,
regardless of virus localization.191–194 More specifically, the post-mortem examinations documented iron-overloaded
reticuloendothelial system, bone marrow, liver, lungs and generally iron-laded macrophages (hemophagocytosis). In
fact, in association with the typical immune-mediated pathologic findings (e.g. leukocyte infiltrate etc.), hemophago-
cytosis represents another extremely common finding in bone marrow of critical or deceased COVID-19 patients, which
may reinforce the hypothesis of a frequently occurring macrophage activation syndrome in this disease.195,196

With reference to the pulmonary involvement in viral diseases, it was proven that iron and calcium altered homeostasis in
lung cells may represent one of the factors to explain the onset of this interstitial infective-inflammatory phenomenon,
which is characterized by alveolar macrophages laden with ferritin.1,197,198

Obviously, intracellular cation accumulation in COVID-19 patients is also the result of the virus-based immune-
inflammatory processes. Beside this explanation, we have highlighted that other SARS-CoV-2 pathomechanisms, based
on cell membrane dysfunctionality and cations, may represent the core culprit of this disease.

In fact, virus interaction with cell membrane receptors, namely ACE 2, CD147 and SA molecules, proved to disrupt the
whole cell membrane metabolic activity, through a profound deregulation of the transmembrane electric potential. The
consequent intracellular cation accumulation and cell morphology/function alterations end up in the ferroptotic process,
which likely represents the unifying terminal pathway at the root of the multi-organ attack operated by this virus.

3. Unifying pathophysiological hypotheses
Based on structural and functional studies, it has been highlighted that SARS-CoV-2 spike protein binds optimally three
main host membrane receptors: ACE2, SA molecules and CD1471,58,59,78,108,199; similarly, it has been ascertained that
the viral spike protein features an aminoacidic polybasic structure, which allows its functional processing by the human
hydrolases and furin enzymes, so to favor the final anchoring of the virus to the cell membrane.

More specifically, the human cell transmembrane protease serin 2 (TMPRSS2), codified by the TMPRSS2 gene,
contributes to the division of the spike protein in subunit S1 and subunit S2.200

Similarly, the viral interactome with human cell membrane includes specific furin activity addressed to S1 subunit which
exposes the RBD part.201 In fact, furin cleavage is necessary to allow the exposure of the fusion sequences of the spike
protein with cell membranes, which preludes to virus entry in the cell. The viral RBD is unique in terms of affinity to the
molecules of SA which are found on cell membrane glycoproteins and on ACE2 and CD147.

The molecular and computational analyses of RBD/human receptors interaction have shown that single ACE2 target
would not suffice to explain the great diffusion and entry capability of this virus. Thus, the viral interaction also with SA
and CD147 represents a fundamental additional route to explain the multi-tissue diffusibility of this virus.
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The documented deranged cation (iron/calcium) metabolism is a consequence of the viral interaction with the cell
membrane receptors and with the ion-channels, as we have previously described and will detail further.

Iron homeostasis can be profoundly altered by different types of infections and by the concomitant inflammation.
Similarly, hepcidin production is increased by inflammatory cytokines, especially IL-6 and IL-1b, which are typically
over-released in more advanced stages of COVID-19, during the so-called “cytokine storm”.202

Hepcidin essentially downregulates ferroportin and therefore determines hypoferremia and the sequestration of iron at
cellular (macrophage in primis) level, leading to the typical anemia of any inflammatory state.

A growing body of evidence highlights how serum levels of iron, TIBC, ferritin, C-reactive protein and hepcidin tend to
correlate with the severity of inflammation and, specifically with the prognosis of COVID-19.1,7–14,203–206

As a reminder, it is acknowledged that the increase of blood ferritin expresses a compensatory mechanism to neutralize
free circulating heme and Fe3+; in fact, the latter contributes also to the formation of methemoglobin, which would
decrease hemoglobin O2-carrying function, hence deteriorating hypoxia furthermore in these patients.

A series of deranged metabolic pathways may take place at the root of the altered cation intracellular overload and of the
multi-organ ferroptosis: a) altered ion (calcium and iron mainly) channel function, via cell membrane morpho-functional
electro-chemical alterations and via viral viroporin channeling activity; b) higher hepcidin level, as result of the viral pro-
inflammatory action and possibly via a hepcidin-mimicking action of the viral spike protein; c) viral invasion through the
binding of SA molecules, ACE2 and CD147 of multiple types of cells, including erythrocytes/erythroid precursors,
endothelial cells and macrophages, with relative hemoglobin and iron deregulated metabolism.

Here below we review in detail the main interplaying factors which intervene in COVID-19 cation/ferroptosis-based
pathophysiology.

a) Sialic acid
In SARS-CoV-2 interactome with host receptors, SA component of membrane glycoproteins and of receptors is
considered of utmost importance due to its ubiquitous location. This molecule represents a fundamental mediator of
cell metabolism derangement in several chronic degenerative diseases207,208

The primary event in COVID-19 infection is the attachment of the virus particle to the surface of the host cell, which is
mediated also by sialylated cell surface receptors on several types of cells, mainly in the respiratory tract in humans.
Viruses interacting with humans preferably show a α2,6 binding to host cell receptors.99

Recent experimental evidence has shown the ability of the SARS-CoV-2 Spike protein to bind SA molecules embedded
in the membrane glycoproteins. In view of its negative charge, SA has a role in the determination of cell membrane
electrical charge and in the consequent binding to the electrically positive charged spike protein S1.209,210

Although the spike protein binding region has been identified in its N-terminal domain, this viral part is considerable as a
dipole from an electrical point of view. In fact, due to the different aminoacidic composition, S1 segment (the so called
RBD) has an overall positive charge, with 111 positive and 99 negative amino acids respectively; conversely S2 has a
negative charge.209

It is known that human cells have a negatively chargedmembrane, mostly due to SAmolecules, to the ion pump activities
and to the extra/intra-cellular pH. The average cell membrane resting potential is around -40/-70 mV.211 Beyond this
value expressed in mV, a more correct expression of this potential should be in (pico-)siemens (1/ohm), being this
measure unit more reliably related to the conductance of the cell membrane.212,213

Electrical properties of cells strictly relate to physiology and pathology, and literature data have clearly shown that
microbes alter ion channel activity, cytoplasm activities and deformability.213 Furthermore, scientific research has
extensively documented the importance of SA in cell membrane interaction specifically with outer organisms or
molecules.214,215

From this point of view, erythrocytes were specifically investigated to detect their possible deformation when under
pathogen attack or under specific biophysical/biochemical stressors; a different resistance and cell rigidity was found
following to membrane and cytoplasm electrical changes.97,216,217
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Several publications have examined the virus-host cell interactome, elucidating the determinant role of SA for SARS-
CoV-2 entry in the cell.6,80,83–85 In fact, virus attack ismediated by the contact of the S1 subunit with the SAmolecules; as
a result of this docking, a dipole is formed, including SA negatively charged and S1 positively charged; this involves a
variation of the local membrane potential. In view of the formation of numerous similar dipoles, the overall cell
membrane potential undergoes remarkable electrochemical variations, lowering the total negative charge. This funda-
mental SA-based membrane change contributes to cation dysmetabolism, through a deregulation of ion channeling
activity, as it was shown in numerous publications concerning electro-chemical physiology of human cell mem-
brane218–220

As to COVID-19 pathophysiology, it has been documented that the virus attack to cellmembranes occurs starting through
the formation of a fusion nucleus, derived from the spike protein and the host cell membrane; more specifically
electrostatic bonds and hydrogen bridges favor this preliminary step.

The attacked human cells subsequently release the hydrolases (especially the TMPRSS2), which in turn cleave the spike
protein creating the subunit S1 and S2, probably at the level of the aminoacidic interval 681-684,221 or at the level of
861-865 segment.222

On the other hand, human furins unveil the RBD in S1, which is then ready to dockwith the cell membrane receptors. The
subsequent transmembrane docking occurs between the positively charged [N(+) terminal] S1 RBD to the [C(-) terminal]
receptors (ACE2, CD147, SA).209,223–226

As the virus RBD interaction with the sialylated cell membrane glycoproteins/receptors (ACE2 and CD147) results in a
lower electro-negative membrane potential, the consequent dysfunction of the membrane ionic pumps conditions the
whole pathophysiology of COVID-19.

The past investigation of cell physiology clearly showed that SA concentration and its disposition in cluster (hence the
resulting membrane potential) strictly influence VGCC function.218,219 Once the electro-chemical variations mentioned
above occur, the greater opening of the VGCC lead to iron/calcium hyperconcentration inside the cell.220

With relevance to iron metabolism, it has been documented that any perturbation of the membrane potential and of ion
channels lead also to an altered ferroportin function.227 In COVID-19 this possible functional alteration of themembrane,
and specifically of ferroportin, contributes furthermore to the intracellular ferritin accumulation, also in view of the
deregulated axis with hepcidin.

Beside the cell membrane functional electro-chemical changes caused by the interaction between S1 and S2 subunits with
host cell, alsomorphologic changes ofmembrane and cytoplasmmay occur. For example, in septic conditionsmembrane
SA concentration tends to decrease, which leads RBC to become spherical and to decrease their intercellular repulsion;
these variations tend to increase blood viscosity and this finding constitutes one of the pro-coagulant elements which can
be encountered in these patients.228

Analogue morphologic changes of the whole cell may occur in many more tissues: this phenomenon depends upon the
milieu pH, the membrane potential charge, the concentration and conformation of the receptors, which also influence the
osmotic gradient.100

b) CD147
Together with SA, also CD147 transmembrane receptor glycoprotein plays a role in COVID-19 pathogenic-
ity.1,55,56,64,229–232 The receptor activity of this sialylated transmembrane glycoprotein has been studied in a large
number of diseases.68,69,233,234

In case of SARS-CoV-2 attack, numerous effects have been documented in tissues and organs where ACE2 receptors are
few if present at all (e.g. erythrocytes, leukocytes, platelets, endothelium, cardiomyocytes, neural cells, kidney).63

Of interest, CD147 is the receptor malaria parasite uses to enter cells. As COVID-19 infection rate seems to be much
lower in those countries where malaria is more endemic,235–237 it is argued that some competition for the same receptor
may likely contribute to explain the low infection rate in theseAfrican populations. Similarly, in these countries sickle cell
anemia is widely diffused, which is considered a protective evolutionary mechanism. Also, this phenotype may be a
possible additional protective factor from COVID-19 in the same populations of malaria areas.237–239
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A long series of publications have regarded the possible SARS-CoV-2 interaction with erythrocytes and the consequent
hemoglobin dysfunction, with release of free circulating hemoglobin/heme.21,22,128,132,240,241 More importantly, a few
researchers highlighted clear erythrocyte membrane alterations in COVID-19 patients.4 These and previous data seem to
demonstrate furthermore the CD147/SA-based interaction of SARS-CoV-2 with RBC which, at least partially, explains
the consequent hemoglobin/iron cycle alteration. A preliminary report has also evidenced a significantly higher CD147
surface expression (and an increased oxidative stress) in erythrocytes of COVID-19 patients in comparison to normal
subjects.242

Actually, higher RDW and lower hemoglobin figures have been highlighted, especially at later stages; moreover
RDW is considered an important prognostic factor in this disease.243–246 High values of RDW typically indicate
an altered synthesis of RBC precursors, and a number of authors confirmed this deranged erythropoiesis also in
COVID-19.1,74,247,248

Further to the documented role of CD147 in the viral attack to the cell membrane, this receptor was found to interact with
cyclophilin A, which is one of the human proteins used by SARS-CoV-2 for its intracellular replication. This interaction
regulates cytokine secretion and chemotaxis of inflammatory cells, which facilitate the infection of the host cell.64,249,250

c) Viroporins
As previously elucidated, viral encoded membrane pore forming protein (viroporins) may play a relevant role in the
intracellular viral attack. Intra/extracellular pH and the transmembrane potential charge (both of them influenced by SA
molecule activity and by the ion concentration) impact the cell membrane depolarization of these ion-channeling
viroporins.

Viroporins are chronologically activated after the virus entry and do facilitate viral replication; they are known to exert a
channeling action from the inner side of the host cellular membrane directed towards the extracellular space.152,153 The
modulation by viroporins on the opening/closure of multiple pores in the cell membrane tends to regulate cation
transmembrane movement, but also endoplasmic reticulum cation release.5,251

In fact, these small hydrophobic proteins are encoded by the virus and are oligomerized in the membrane of host cells,
leading to the formation of hydrophilic pores. This activity disrupts several cellular functions, including membrane
permeability, calcium homeostasis, membrane remodeling and glycoprotein trafficking.152,153

One of the main functions of viroporins during viral replication is to participate in virion morphogenesis and release from
host cells. Furthermore, some viroporins are involved in virus entry and genome replication.

The existence of viroporins was originally suggested following the observation that virus-infected cells become
permeable to ions and small molecules. New members of this expanding family of viral proteins have been described,
from both RNA and DNA viruses. These proteins are crucial for viral pathogenicity due to their involvement in different
stages of the viral life cycle. Their main function is to participate in the assembly of viral particles and their release
from the infected cells. Typically, deletion of a viroporin-encoding gene from a viral genome dramatically reduces viral
progeny formation and viral pathogenicity, emphasizing the essential role of these proteins in the viral-human cell
interaction.152

SARS-CoV-2 viroporins, mainly type E, act to re-potentiate the channeling action and ultimately the entry of cations and
new viruses in the cell. In fact, after the early depolarization of cell membrane due to S1 (especially) and S2 docking, virus
entry and calcium/iron influx take place through ion channels (e.g., VGCC). Once the cation-enriched gradient grows up,
the trans-channel ion movement from the extracellular space tends to decrease. Intracellular viroporin channeling action
tend to immediately re-activate virus and cation entry against the gradient, thus ultimately favoring virus intra/extra-
cellular diffusion and ultimately cell ferroptosis.

d) Calcium and iron dysmetabolism
Anumber of cations show a low blood level duringCOVID-19 course.32 Interestingly, calcium represents one of themost
investigated minerals in this disease and hypocalcemia has been repeatedly reported in these patients,26,252–254 especially
at later stages.24–28,30,33

The low serum calcium level lays for a probable progressive intracellular deposition of this mineral, as no specific
hypercalciuria has been detected. The prognostic role of hypocalcemia,27,29–31 together with the significantly dysregu-
lated calcium metabolism/signaling in COVID-19 patients, have been investigated in two recent reviews.255,256
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Physiologically, calcium intra/extra-cellular balance and homeodynamics are strictly depending on the so called VGCC.
The latter represent highly regulated cell proton pump mechanisms. Excessive intracellular calcium has been related to
several chronic degenerative diseases, mostly linked to peroxynitrite accumulation and oxidative stress.175,257,258

In COVID-19, the documented hypocalcemia and the consequent intracellular hyperconcentration of calcium may
originate a series of derangements, mostly through mitochondria deregulation, as already highlighted in other dis-
eases.259–261

Of interest, it was shown that a specific genetic susceptibility linked to VGCCmay predispose to Kawasaki autoimmune
disease,45 which may occur among children in the current pandemic.262 Neuronal cells may similarly suffer from a
deregulated calcium and iron concentration, as these cations intervene in the conductivity process; overall, neuro-
sensorial disturbs, including loss of smell and taste, have been extensively reported in the vast majority of COVID-19
cases.263–266

Calcium is essential to most viruses as to their processes of entry, replication and diffusion.34 For example in case of
SARS-CoV-1 infection, a calcium-dependent transmembrane invasion was demonstrated267 and it was proven that
generally any alteration in host cells calcium homeostasis reflects upon viral pathogenicity and diffusion.35,268

More in detail, it has been ascertained that viral replication is also based on a sort of hijacking of a few cation-based host
cell processes, which mainly pertain mitochondria. This mitochondria deregulation results in a number of biochemical
degenerative processes, such as NLRP3 inflammasome activation and a deregulated cell apoptosis (ferroptosis
namely).34,269

As previously reported, a similar mitochondria “kidnapping” and degeneration due to SARS-CoV-2 infection has been
described and hyper-concentrated iron and calcium on one side mediate this detrimental effect,2,166,270 on the other side
stimulate ferroptosis.35,44,271

In normal conditions body iron ismostly located in the prosthetic group of heme; hyperferritinemia reflects excessive iron
availability, but also it could hypothetically derive from damaged tissues.7,272 Thus, in order to assess iron metabolism
properly, additional biomarkers (such as TIBC and other transferrin-related markers) should be investigated, so to have
more surrogate findings which mirror iron deposition and free circulating iron.273

In these conditions of hyperconcentration of this metal inside the cell, free cellular iron (Fe3+) can easily form free
radicals, for example through Fenton and Haber-Weiss reactions, thus a series of detrimental biochemical pathways may
be activated, including pro-coagulative cascades.274 The same transferrin molecule has been recognized as an important
pro-coagulant factor in COVID-19,275 probably due to its interaction with several clotting factors.276

Of interest, the “protective” mechanism of iron sequestration under the form of ferritin (especially in macrophages of
lungs, liver etc.) can impair erythropoiesis and new hemoglobin production, which may complicate anemic hypoxia in
patients with COVID-19.273

Physiologically, in mitochondria iron represents a fundamental co-factor of several enzyme-based reactions; furthermore
Fe2+ is transformed in its bioavailable form by a cluster iron-sulfur (Fe/S) along the heme synthesis pathways.277 When
iron is in excess, its altered pathways lead to a much higher production of free radicals; furthermore heme (thus
hemoglobin) formation decreases, originating a sort of sideroblastic anemia in the case of COVID-19 patients.1

Ferritin overloading cells leads to ferroptosis, which could be considered also an evolutive protection mechanism, aimed
at reducing both free serum iron and its availability to viruses and other pathogens. Likely, ferroptotic mechanisms are
upregulated in similar conditions of ferritinophagy, high amounts of free cell iron, deregulated hepcidin/ferroportin axis
and especially exaggerated cation entry.

e) Cell membrane electrochemical changes and ion pumps
Following to the described morpho-dynamic viral interaction with cell membrane, and after the significant reduction of
the transmembrane electronegative potential, the charge change relevantly impacts ionic pump regulation. The docking
between S1 and S2 with membrane receptors (S1) and phospholipid layers (S2), as specified above, are mostly based on
the binding with SAmolecules and it leads to an altered ion channeling activity. VGCCmodification usually takes place,
permitting the excessive entry of calcium and, consequently, of Fe2+ ions.63,218–220 Lastly, as previously documented,
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the subsequent intervention of the viroporins contributes to create new pores in the cell membrane, allowing further
cations to enter, additionally facilitating virus diffusion.

Biophysical studies have recently highlighted that SARS-CoV-2 itself owns its electrical properties and generates an
electro-magnetic field (EMF), which can interact with the polarity of the host cell membrane; this possible interplay urges
a better understanding of the whole electrical and biochemical process occurring during the infection.278

The detrimental chain of biochemical events caused by cation intracellular overload, such as Fenton reaction with Fe3+
formation, H2O transformation into hydroxyl free radical and NO transformation into the toxic ONOO (peroxynitrite)
compound has been described in COVID-19 as well, especially concomitant to cytokine storm.279 Moreover a few
authors have advocated an involvement of hemoglobin denaturation, with free heme/iron release, at the root of the free
radical production.3

Lastly, the intracellular migration of iron and calcium ions is responsible for the activation of the inflammasome
NLRP3,280 which typically contributes to worst scenarios of this disease.

Altered ion exchange ultimately generates lipoperoxydation and oxidative stress (the root of ferroptosis), consuming
glutathione and deeply damaging mitochondria. The consequent dysregulated mitophagy accelerates apoptosis of the
infected cells.178,179

A computational study has elucidated that host cell membrane interaction with the SARS-CoV-2 viroporin channeling
action features a cation selectivity, being sodium, potassium and calcium the most facilitated ions in the transmembrane
movement; moreover, the authors showed that transmembrane voltage influences the pore dimension and the transition
rate (thus the intracellular accumulation) of cations.158 Similar findings had been discovered for viroporins in general,
thus confirming the importance of the electrochemical gradient of cell membrane in ion balance.152,281,282

Also virus fusion, invasion and replication are greatly enhanced by the progressively more favorable intracellular cation-
enriched microenvironment.158

As mentioned above, the blood levels of other cations, such as potassium and sodium, have been shown to decrease in
COVID-19 patients. Generally coronaviruses, and more specifically SARS-CoV-2, have been found to exert a
channeling activity via viroporin E and ORF3a,63 which leads to an intracellular K+ overload.155,283 Of note, as calcium
inflow is physiologically linked to potassium movement, a sort of vicious circle may arise, inducing an augmentation of
the calcium concentration inside the cell.

As we have seen, iron and calcium influence mitochondrial function and several metabolic processes. Additionally,
cellular iron stimulates calcium signaling and vice-versa, which impacts also ferroptosis.44,271,284

Through VGCC, also iron (and other metals) may enter cells, as biophysical studies have documented.285–291 Neuro-
degenerative diseases are paradigmatic examples of cell intoxication with iron and other metals, through VGCC
dysfunction,284 and calcium channels were shown to favor glutamate accumulation in neuronal diseases, giving rise
to the so-termed “oxytosis”, which originally described ferroptosis.292

The virus-based intracellular cation engulfment affects also the two-pore cation channels in the lysosomal membrane,
thus reducing the endo-lysosomal “digestive” function against microbes.293

In the light of the evidence above, scientific research is reserving a major attention to the relationship between iron and
calcium on one side, and the virus-host cell membrane electro-chemical interactions on the other side.106,156,273,278,294

f) Hepcidin, ferroportin and transferrin
Hepcidin is the master-regulator peptide hormone in iron metabolism. Basically, hepcidin is to iron what insulin is to
glucose and an alteration of its interaction with ferroportin has been linked to a series of chronic degenerative diseases.149

From the first reports on hepcidin discover,295,296 the understanding of iron homeostasis has become more and more
precise, revealing a large number of metabolic activity. Iron circulates inside-outside the cell in different manners:
introduction by extracellular transferrin capitation and internalization, or by divalent metal channel DMT1.297

Iron metabolism, both regarding intestine absorption and RBC catabolism, involves transferrin and ferroportin for blood
transport and extracellular release respectively. Hepcidin strictly regulates ferroportin activity. When the transferrin
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saturation capacity is exceeded, ferric iron ions can be released in the bloodstream, with noxious repercussions
systemically. In COVID-19, higher values of interleukins and other factors specified above increase hepcidin activity,
so to store the potentially harmful iron under the form of blood/cell ferritin.

Plasma levels of transferrin are dependent on iron requirement and availability. As in these patients hypoferremia
generally occurs, higher values of transferrin have been concomitantly recorded, suggesting an upregulation response to
the infection, with possible pro-coagulative repercussions as well.275

It is known that the two linked phenomena of high hepcidin activity and low ferroportin efflux, which take place in these
infected patients, decrease the amount of iron bound to transferrin, whereas decreased hepcidin and high ferroportin
activity may be associated with an increased transferrin saturation.273

Intracellular iron exists in two forms, Fe2+ and Fe3+; as Fe3+ is the toxic form more available to generate free radicals,
normally cell embeds this ion in the ferritin molecule inside specific vesicles. A minority of Fe3+ is deposited under the
form of hemosiderin. This equilibrium between the two iron forms is unbalanced in presence of excessive hepcidin
activity. Also, hyper-formation and storage of ferritin, based on the hyperconcentration of hepcidin molecules, requires a
relevant consumption of ATP, with consequently increases mitochondrial dysmetabolism.

Once in the plasmatic and cytoplasmic compartment, iron is a labile ion that could interact with numerous molecules,
stimulating, and inhibiting different processes. A homeostatic mechanism exists with regards to intra/extra-cellular iron
concentration. Hepcidin has the role of blocking and internalize the transmembrane ferroportin, preventing iron efflux. If
this excessive intracellular uptake is combined with a reduction of efflux, an overcharge of intracellular labile iron with
ferritin hyper-concentration and formation of toxic free radicals may occur.298

With concern to the immune-inflammatory derangement which takes place in COVID-19, a direct link has been
highlighted between viral ACE2 receptor internalization and hepcidin-IL6 activation through the NF-kB system.205,280

Thismechanism suggests the occurrence of a vicious cycle, where transferrin uptake and hepcidin overexpression cause a
persistent activation of NF-kB as a consequence of the intracellular iron augmentation. Literature data put in evidence that
also CD147 receptors stimulate NF-kB system,299,300 suggesting that both ACE2 and CD147 act on the same system and
consequently generate the same cascade of events within the inflammasome NLRP3. More in general, inflammasomes
include a class of intracellular proteins involved in inflammatory reaction in most chronic and acute inflammation
processes, such as obesity, diabetes, stroke, cancer,301 hypoxia and thrombosis.302

Similarly, it was proven303,304 that the NLRP3 inflammasome is directly activated and related to the NF-kB system and,
more interestingly, to the intracellular labile iron, suggesting a complex interaction with ACE2 and CD147 receptors in
COVID-19 infection.

Beyond the strict relationship between (chronic) inflammation and hepcidin/ferroportin axis activity, with an anemia
pattern and an increased level of circulating hepcidin,305,306 COVID-19 has been associated with a marked increase of
serum hepcidin level in worse patients.203–205

As previously described, early publications about COVID-191,150 reported about a similarity between the aminoacidic
sequence of SARS-CoV-2 spike cytoplasmic tail and the hepcidin molecule. Hence the virus could perhaps block
ferroportin-based iron extracellular transport and an accumulation of iron inside the cell could occur.

Note that hypoferremia and hyperferritinemia along the course of the disease should deactivate hepcidin activity and
reduce its blood levels. As this is not the case in the studies cited above, the viral pathomimicry could at least partially
justify the iron deregulated axis in these patients.

g) Hemoglobin, heme
Nearly 75% of human iron is contained in hemoglobin; in view of the iron deranged metabolism in COVID-19, a number
of articles have investigated a possible hemoglobin denaturation in these patients1,3,22,63,126,128–130 Though no sound
evidence of a direct hemoglobin viral attack has been documented so far, free circulating heme has been described in a few
papers132,240,241; moreover, some recruitment of hemoglobin and its metabolites (hemin and protoporphyrin IX) by a few
SARS-CoV-2 proteins was documented in a computational biology study.241
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An analogue scientific debate is underway about the alteration of the dissociation curves of hemoglobin in these patients,
regardless of whether hypoxia may not be regarded as solely generated by pneumolysis/lung disease.145–147,307

h) Potential environmental, genetic and microbiome susceptibility factors
Beside AB0 group and sickle cell conformation, several other factors may predispose to SARS-CoV-2 pathogenicity.

Specific chromosome variants or sequences have been linked to worse prognosis, but also genetically-determined
hemochromatosis is being considered of some importance. In fact, liver biopsies in seriously ill patients, or during
autopsies, have shown a remarkable intracellular iron accumulation, which clearly reminds hemochromatosis histopath-
ologic features.193 Similarly, a ferroptotic pattern has been encountered in a fatal case of myocarditis192 and a typical
pattern hemophagocytosis with iron-laden bone marrow cells was documented in a large series of autopsies.196

Hereditary hemochromatosis is characterized by an accumulation of ferritin in several tissues, which may be clinically
asymptomatic or less pronounced in heterozygosis type, more aggressive in homozygosis.

The incidence of heterozygote hemochromatosis has been reported as high as 5.4-13.5% in the general
U.S.A. population308 and, more specifically, a review309 found the following prevalence percentages in the general
population: 5% as compound heterozygotes (C282Y/H63D mutation), 1.5% homozygous for the H63D mutation, 3.6%
were C282Y heterozygotes, and 5.2% were H63D heterozygotes. With reference to world areas, the frequency of the
C282Y heterozygosity ranges from 9.2% in Europeans to much lower figures in Asia, Africa and Middle East.
Conversely, the H63D carrier frequency was documented as 22% in European populations.

In case of SARS-CoV-2 contagion, the subject with hemochromatosis may undergo a more complex course; being this
disease latent in the vast majority of the individuals, it could be of interest to investigate its presence in the patients
showing an atypical (e.g. young, or apparently healthy subjects) complicated infection.1,310,311

Environmental factors have equally been called into question as possible disruptors in the course of this infection. In the
past years a number of articles have evidenced in animals and humans the possible role of EMF on the dysfunctional
pathways of VGCC, on peroxynitrite formation, oxidative stress and on other biochemical pathways at the root of cation
dysmetabolism.312–322

Additionally, in the last decades scientific literature has documented the influence of EMF on viral activity, erythrocyte/
viroporins metabolism, mitochondria and immunity.323–327

The possible interaction of 5G technology with human health is being debated as well, raising contrasting speculations
and evidence, mostly due to the limited knowledge about this relatively new EMF typology.328,329 More recently, a few
specific papers focused on the possible role of peculiar types of EMF in SARS-CoV-2 pathogenicity,330,331 and a recent
publication has presented some data about the detrimental interaction of radiofrequencies specifically with VGCC and
with cation metabolism, erythrocytes, hemoglobin, coagulation, immune system and oxidative stress.332

In view of the role of both the cell membrane electro-chemical changes and the cations in COVID-19, somemore research
could be performed to assess any possible inter-relationship of polluting environmental factors with VGCC, cellular
membrane and cytoplasm ionic changes.

Microbiome is another potential element of interest in this infection. Microbiome regulates a large number of bodily
biochemical pathways and it is considered of utmost importance in several chronic degenerative diseases and, more
generally, in cell senescence.333,334

A few authors have highlighted an analogue specific role of microbiome in COVID-19, some of them focusing on the
pathogenicity of lipopolysaccharides (LPSs); LPSs are known byproducts of gram-negative bacteria which derive from
an altered microbiome and gut permeability, inducing endotoxemia.335,336 A strict relationship between LPSs and
ferroptosis has been already established in past literature337–340; similarly, it was documented that LPS interaction with
spike proteins may be mediated by SA receptor activity,341 which seems to reinforce the role of SAmolecule in the LPS-
mediated ferroptotic processes in these specific patients.

In fact, a high binding affinity between LPSs and SA has been repeatedly demonstrated,341–344 hence the complex
interaction among LPS, SA and SARS-CoV-2 spike protein, with the resulting pro-ferroptosis pathways, might deserve
more attention in the future scientific research.
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Summarizing the evidence and the hypotheses
Overall, the hyperinflammatory reaction which characterizes the worst scenarios of COVID-19 may be regarded as an
expression of the immune-inflammatory derangement, which in turn could depend upon the cascade of the biochemical
pathways that characterize intracellular cation accumulation and cell ferroptotic mechanisms. The very final detrimental
degenerative cell events are then represented by excessive free radical formation (peroxynitrite above all),279 glutathione
depletion, membrane lipoperoxidation, mitochondria degeneration, partial metabolic shift to anaerobic glycolysis,
marked activation of the inflammasome NRLP3 and NF-kB with subsequent inflammatory cytokine cascade.

At the very beginning of this sequence of pathomechanisms, it is possible to recognize the relevant role of the
electrochemical changes induced by the spike proteins on the cell membrane, via glycosylated receptors and ion
channeling alterations.

4. Discussion
The finding, now confirmed by many publications, of low levels of hemoglobin, serum iron and calcium, together with
the very high levels of ferritinemia in critical or deceased patients, highlights themajor derangement of cationmetabolism
in these patients. Similarly, higher figures of LDH, lactate and RDW express both the involvement of mitochondria, and
some form of degeneration of RBC and of their precursors.

The intervention of the negatively charged SA, both on the receptors ACE2 and CD147 and on the sialylated membrane
glycoproteins, proves extremely relevant in the mediation of the docking process with the spike proteins.

This docking interaction induces a decrease of the negative potential of the cell membrane and, as consequence, trans-
membrane cation channels may alter their permeability so that, on a multi-tissue level, different types of cells undergo
morpho-functional changes. Of course, the latter depend upon several other factors, including pH and osmolarity of the
intra-extracellular space.100

Hepcidin, as a result of both the hyperinflammatory state and of a possible mimicking action by the viral spike protein,
remarkably contributes to ferritin and hemosiderin accumulation in the tissues, by reducing ferroportin activity.

Lastly, viral viroporins and other viral pathomechanisms contribute to the accumulation of the cations inside the cell, thus
contributing to viral replication/extra-cellular release and cell degeneration.

The resulting calcium and iron hyper-influx impairs homeodynamics of a series of cellular (mitochondrial primarily)
pathways, and also favors a dramatic free radical increase. Excessive ferroptosis represents the ending outcome of these
degenerative changes in many tissues (e.g., lung, endothelium, heart).

Erythrocyte degenerative electrochemical changes of the membrane, with morpho-functional alterations (such as
spherocytosis, altered erythropoiesis, hemoglobin dysfunctionality) may deserve some specific attention. In fact, iron
metabolism strictly depends upon RBC and hemoglobin and several authors have documented some degree of
(autoimmune-like) hemolysis, with an increased RBC destruction which takes place in the reticuloendothelial system
and in specific organs (spleen, liver etc.). Lastly, some literature data point out the free heme circulation in patients
affected by COVID-19.

To summarize the probable events at the root of cation imbalance and ultimately of ferroptosis, we have reported themain
pathological steps in Table 1 and in Figure 1.

The pathophysiology sequence of the virus-host cell interaction which has been proposed above, is based on the
basic knowledge of the spike protein attack to cell membrane209,223–226 and focusing on SA, CD147, ACE2, hepcidin,
viroporins and on the electrochemical changes happening on the membrane, with subsequent cation imbalance and
ferroptosis.

Cell ferroptosis is the final step of the cascade described above. This specific cell death process is caused by a pronounced
lipoperoxidative transformation of several cell components, with glutathione peroxidase 4 (GPX4) depletion; finally a
deep dysregulation of mitophagy with mitochondrial degeneration occur, inducing an accelerated and deregulated
apoptosis.345
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Of interest, other relevant biochemical pathways inherent to ferroptosis have been described, such as the ferroptosis
suppressor protein 1 (FSP1) mechanism,179,346 which is based on a ferroptosis-resistant proteic factor that acts protecting
from GPX4 depletion. In fact, it was shown that FSP1 may increase the quote of ubiquinol using NAD(P)H as co-factor
(starting from the oxidized form ubiquinone); hence, this cytoplasmic membrane pathway ultimately collaborates with
GPX4 and glutathione to reduce the impact of ferroptotic pathomechanisms.

Most recently, another anti-ferroptosis defensive mechanism was discovered in oncology. Inducing ferroptosis in cancer
cells is promoted as one of the innovative possibilities in oncological therapeutics; recently it was discovered that
supplementation with dihydroorotate/orotate (the first is the substrate and the second is the product of dihydroorotate
dehydrogenase (DHODH)) respectively mitigate or exacerbate ferroptosis and mitochondria lipid peroxidation.347

How FSP1pathway relates specifically to COVID-19 pathophysiology has not been investigated yet, conversely a very
recent review reported the outcomes of two preliminary in-vitro studies where DHODH inhibitors halted SARS-CoV-2
replication. The results of these studies led the authors to elaborate on the possibilities of a few re-purposed anti-
ferroptosis drugs for the therapy of this infection.348

Cell membrane altered polarization and the overload of cations can also affect blood coagulation, endothelial and neural
functionality; more generally the electro-chemical events occurring at the cell wall significantly impact the metabolic
pathways of a number of organs.

Most of the biochemistry alterations reported above are also linked to the relevant immune-inflammatory process which
takes place in these patients. In fact, SARS-CoV-2 infection leads to the typical inflammasome activation, with NF-kB
activation and interleukins/TNF-alfa increase; these pathways involve extremely higher hepcidin production with
intracellular iron sequestration, which favors viral replication. However, in comparison to other inflammatory/infective
processes, ferritin peaks higher figures and in a shorter time in the course of this disease.1,205,349,350

Hence, ferritin is regarded both as a typical consequence andmarker of the SARS-CoV-2-induced inflammatory cascade,
and as a potential pathogenic mediator of the viral infection.

Furthermore, ferritin was found to have a different biochemical composition (higher protein component) when derived
from inflammatory diseases, whereas in these cases it is expected a higher ferric component and a different composition in

Table 1. Main pathological steps of the SARS-CoV-2 attack to cell membrane and of consequent cell
degeneration.

a) Initial attack of the spike protein at the host cell membrane; the latter is physiologically charged negatively
andwith a variable potential (around40mV+/- 30mV); the level of thenegative chargedependson thenumber
and on the type of the receptors. The main involved receptors are: SA on the membrane glycoproteins,
ACE2 andCD147; SAmolecules are expressed at the outer surface of ACE2 and CD147, which favor viral attack;

b) Morphologic changes of the whole cell may occur: this phenomenon depends upon the milieu pH, the
membrane potential charge, the concentration and configuration of the receptors, which also influence the
osmotic gradient;

c) Formation of fusion nuclei between the spike proteins and the host cell membrane by means of electrostatic
bonds and hydrogen bridges;

d) Release from the host cell of hydrolases (TMPRSS2) which cleave the spike protein separating the S1 subunit
from S2, probably at the level of the aminoacidic interval 681-684; on the other hand, furins simultaneously
unveil the RBD in S1;

e) Fusion of S2 to the lipid layer of the plasma side of the cell membrane;
f) Transmembrane attack of the positively charged [N(+) terminal] S1 RBD to the [C(-) terminal] receptors

(ACE2, CD147, sialylated glycoproteins), with numerous dipole (S1 positive-SA negative) formation;
g) Additionally, hyper-concentrated plasma hepcidin molecules bind the extracellular portion of the

transmembrane ferroportin, thus blocking iron extracellular transport;
h) As consequence of these synergistic events a change of themembrane electrical potential occurs, which leads

to an opening of the cation channels, especially of the VGCC; cations, primarily calcium and iron, enter the cell
and concentrate in the cytoplasm and in the organelles;

i) Subsequent rapid closure of the VGCC occurs, due to cell homeostasis and re-balancing of the protonic
gradient, while a simultaneous intracellular viral replication leads to the production of viroporins; these viral
hydrophobic proteins exert a membrane channeling action, thus facilitating new entry of cations from the
extracellular space against the gradient, also favoring replication and external release of viruses;

j) Re-increase of calcium/iron influx and their intracellular accumulation, which leads to an extremely high
oxidative stress, mitochondria degeneration, membrane lipoperoxidation, glutathione peroxidase 4 (GPX4)
depletion, all of this configuring the terminal ferroptosis.
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its two H and L subunits.351 In fact, for a long time now, scientific research has shown how viruses tend to take control of
ironmetabolism and ofVGCC, so to establish a preferential microenvironment for their growth andmultiplication.185–188

With reference to the possible therapeutic proposals targeting the basic pathophysiology steps elucidated above, literature
highlights a number of options to address this cation dysregulation, based on chelation for example.15,187,352 Equally, a
large series of drugs and natural compounds have been tested, or advocated, to target the sialylated receptors, hepcidin/
ferroportin axis and the cation channels deregulation.

Figure 1. a) Docking approach of the spike protein with the host cell membrane, which presents three main
receptors: ACE2, CD147 and Sialic Acid (SA); SA is expressed on themembrane glycoproteins and on the outer
site of the other two receptors. b) The two subunits of the spike protein (S1 and S2), derived frompriming and
cleavage by hydrolases (TMPRSS2) and furins, contact host cell membrane: S1 receptor binding domain (RBD)
attach ACE2 and CD147 through SA and directly SA on the membrane glycoproteins; S2 enters the lipid layer
of the cell membrane. c) Upper part: normal hepcidin-ferroportin axis; lower part: COVID-19 situation, with
hyper-concentrated plasma hepcidin molecules that bind the extracellular portion of the transmembrane
ferroportin, thus blocking iron extracellular transport and favoring intracellular ferritin accumulation.
d) Decrease of themembranepotential (less negatively charged),which is altered by the formation of several
dipoles between SA negative and S1 positive; consequent opening of the cation channels, especially of the
voltage gated calcium channels (VGCC), with intracellular entry of cations, primarily calcium and iron. e) Cell
homeostasis, after cation entry, rapidly brings closure of VGCCand cation channels (1 intracellular oscillation
with one peak of cations); simultaneous viroporin action of membrane channeling which brings opening of
new channels and re-entry of cations (2 intracellular oscillationwith a second peak of cations). f) Ferroptosis:
excessive cation concentration, increase of free radicals, depletion of glutathione peroxidase 4 (GPX4),
lipoperoxidation of membranes and organelles, mitochondria degeneration.
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More robust data are needed before drawing definitive conclusions about the role of intracellular cation accumulation in
the onset and perpetuation of the inflammatory and immune-mediated processes of this infection. However, through this
narrative review we aimed at addressing the electro-chemical pathomechanisms which are at the root of the viral attack,
and we highlighted as well the host cell membrane morpho-functional changes which relate to cation imbalance.

Furthermore, newer insights were provided about the role of SA, the CD147 receptor, about the hepcidin-ferroportin axis
deregulation and the erythrocyte/hemoglobin altered metabolism.

Some contrasting literature data were reported on the specific subjects’ different susceptibility to the viral attack, based on
determined genetic mutations, blood groups/diseases, specific receptors expression.73,193,311,353–360 Beyond a specific
possible TMPRSS2-related predisposition on a genetic or epigenetic (e.g. diabetic and obese patients) basis,361 the
majority of these speculations refer both to the variability of the membrane expression of certain receptors (namely SA
and CD147), and to the consequent cation dysmetabolism.

For example, past research has linked blood group to susceptibility to viral infections for a number of reasons, mostly
connected to membrane receptors.62

Basically, AB0 blood group glycanswere found tomodulate SA recognition on erythrocytes and it was reported that there
are approximately 2 million AB0 glycan antigen sites on each RBC and 50 million SA molecules per erythrocyte.96

Similarly to CD147 expression on RBC wall, also different SA molecules represent the terminal part of glycoproteins
which are expressed in variable formulas and clusters on the surface of several kinds of cell, thus on the RBCmembranes
as well. Interestingly, SA has possible substituent groups, especially in position 5 of the carbon atom, which are of
extremely variable nature.362 This peculiarity remarkably modifies both the charge (which remains always negative) and
the stereochemistry of the SAmolecule from the primary to the quaternary conformational structure; additionally, further
substitutions may occur in the overall glycoproteic molecule and, of importance, different concentrations of SA
molecules have been highlighted in the various kinds of cells and individuals.107

In a speculative review the possible protective and detrimental role of 0 and A blood group respectively, was linked to a
lower (0 group) or higher (non-0 group) attack from innate immunity. This reaction would take place based on the
different distribution of the erythrocyte membrane glycoproteins.111

AB0 antigens are known to modulate cellular interactions with outer molecules, microbes and parasites (such as
plasmodium falciparum), not as ligands, but by stabilizing other glycans such as SA on the cell surface in clusters, thus
influencing their accessibility for outer glycan-binding proteins.96

As previously elucidated, these biochemical differences among individuals in terms of SA and CD147, together with the
related RBC evolutionary changes, could partly explain the reduced pathogenicity of COVID-19 in those countries where
malaria and sickle cell disease are more endemic.

Furthermore, an overlap of the gene loci for the AB0 system and the loci for the ironmetabolism has been elicited.353 This
genetic connection between cations and blood type may represent another element of discussion within the findings
concerning individual genetic susceptibility.

Anyway, other authors reported no specific difference in terms of SA content in the context of the different AB0 blood
types, whereas they anyway found that patients with sickle cell anemia had significantly lower SA values in comparison
to the erythrocytes from healthy subjects.112

In view of thewide distribution of SAmolecules and of CD147 receptors onRBC, platelets and endothelium, and because
of thewell-known detrimental role of cation imbalance on the coagulative cascade,363,364 these factors should be regarded
of importance also to explain the artero-venous thromboembolic complications which may occur in COVID-19, with the
formation of cation-based fibrinolysis-resistant intravascular parafibrin.

Basically, beside the traditional vision of micro-macro-thromboses based on coagulation abnormalities deriving from a
number of immune-inflammatory derangements, a panoply of pro-thrombotic factors, partly based on RBC/hemoglobin
dysfunction, may intervene.
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Other typical clinical findings of these patients, such as hypoxemic hypoxia, pneumonia, most immune-inflammatory
processes and cytokine storm/ARDS, could be equally regarded as late expressions of amulti-organ (blood, endothelium,
liver and neural system included) disease, where RBC altered morphology, function and clearance, together with
ferroptosis in other cell types, seem to play a major role.

SARS-CoV-2 is emerging as an easilymutating viral agent and a number of potential or documented host receptors which
interact with the virus have been individualized along these two years.1,64,365,366

Among these additional potential receptors, the molecules of dipeptidyl peptidase 4 (DPP4), CD209L, CD26, ciclo-
phylin, C-lectin type receptors, toll-like receptors, neuropilin-1 and of glucose regulated protein 78 have been proposed;
in fact, little if no specific data has been provided on the real role of these additional entry-ports, neither as to their possible
interaction with the cation/ferroptosis pathway reported in this review.

In the latest weeks the newly emerged Omicron variant of SARS-CoV-2 has been extensively studied. A much higher
diffusibility and a lower pathogenicity of this viral strain over the previous ones has been highlighted so far.367

From the biophysical point of view, it has just been recorded that this variant shows a series of mutations which increase
the overall positive electric charge of S protein, more specifically of S2 subunit.368,369

Actually, the present review has shown how the electrical interaction between the spike protein (especially RBD of S1)
and cell membrane is pivotal to determine especially pathogenicity of this viral infection. This feature derives from the
formation of the new dipoles created by RBD-SA molecules, which brings the membrane electrochemical changes
mentioned above, and in turn generates ion channels dysfunction.

As Omicron variant expresses a higher positive charge especially at the level of S2, it may be expected an easier cell
penetration through the lipofilic fusion with cell membrane, whereas a lower ion-channeling dysfunction (putatively a
lower pathogenicity) could occur.

Based on the reported evidence here, it is expected biomedical research may deepen the meaning of the interplaying
pathophysiology factors elucidated in this review: cell membrane potential and ion channels, sialylated receptors, cations,
RBC, hemoglobin, hepcidin. The resulting deranged ferroptosis may represent the main and ultimate cell degenerative
process which characterizes the multi-organ SARS-CoV-2 attack and the final lung involvement.
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Based on the literature background a possible unifying hypothesis related COVID-19 to cation 
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Further, the role of hepcidin in the accumulation of intracellular ferritin and blocking iron 
transport then activation of the voltage-dependent cation channels, and the action of viroporins, 
resulting in oscillations is discussed. The possible ferroptosis consequences were shown. 
 
The presented hypothesis seems to be reasonable and certainly, it has a valuable unifying role. 
Regarding medical practice, I think that in the future it will be necessary and interesting to relate 
this hypothesis to the covid cytokine storm, by a mathematical kinetic model.  As some diagnostic 
advantage one may consider measurements of artery-vein electromotive force oscillations in 
normal and covid patients. 
 
I am sure that this a very good paper worth to be indexed as fast as possible with no major 
revision. 
 
To make it more precise, the authors may add in Fig.1 that they mean the membrane potential as 
the absolute value of the difference between electric potential inside and outside the cell, but it is 
not necessary.
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We sincerely thank you for your comments and valuable inputs. Here below we reply (in 
bold character) to your suggestions and comments. 
 
"Based on the literature background a possible unifying hypothesis related COVID-19 to 
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cation dysmetabolism, sialic acid, cd147, ACE2, viroporins, hepcidin, and ferroptosis were 
presented. It indicates three main receptors and their role in the spike docking approach 
and virus fusion. Further, the role of hepcidin in the accumulation of intracellular ferritin 
and blocking iron transport then activation of the voltage-dependent cation channels, and 
the action of viroporins, resulting in oscillations is discussed. The possible ferroptosis 
consequences were shown. 
 
The presented hypothesis seems to be reasonable and certainly, it has a valuable unifying 
role." 
 
Authors’ reply (AR): we appreciate your positive comments and we acknowledge that 
our hypothesis may represent a starting basis for future discussions about the 
pathophysiology of this relatively known disease. 
 
"Regarding medical practice, I think that in the future it will be necessary and interesting to 
relate this hypothesis to the covid cytokine storm, by a mathematical kinetic model.  As 
some diagnostic advantage one may consider measurements of artery-vein electromotive 
force oscillations in normal and covid patients." 
 
AR: we take in due consideration your proposed topics for further studies and we will 
do our best to promote some additional research, about these ideas. Additionally, we 
have found two preliminary articles where an increased arterial stiffness has been 
documented in COVID-19 patients 
 
Schnaubelt S, Oppenauer J, Tihanyi D, Mueller M, Maldonado-Gonzalez E, Zejnilovic S et 
al. Arterial stiffness in acute COVID-19 and potential associations with clinical 
outcome. J Intern Med. 2021 Aug;290(2):437-443. doi: 10.1111/joim.13275. 
 
Jud P, Kessler HH, Brodmann M. Case Report: Changes of Vascular Reactivity and 
Arterial Stiffness in a Patient With Covid-19 Infection. Front Cardiovasc Med. 2021 May 
12;8:671669. doi: 10.3389/fcvm.2021.671669 
 
We will include and comment these works in our own manuscript.   
 
"I am sure that this a very good paper worth to be indexed as fast as possible with no major 
revision. 
 
To make it more precise, the authors may add in Fig.1 that they mean the membrane 
potential as the absolute value of the difference between electric potential inside and 
outside the cell, but it is not necessary." 
 
AR: thanks for your appreciation. Following to the reviewer’s suggestion, we will 
include the proposed clarification in Fig.1 where needed. 
 
We thank the reviewer for his contribution to implement and improve our manuscript  
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Ming Yang   
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 
Hong Kong, Hong Kong 

Attilio et al. did a short review connecting the link between COVID-19 and ferroptosis. 
 
In fact, the association between SARS-CoV-2 infection and Ferroptosis was firstly proposed by Yang 
et al. 20201. Therefore, citing this paper to further support this review is essential. 
 
Ferroptosis was firstly proposed in 2012 and currently three pathways have been proposed: GPX-
4, FSP1, and DHODH. The author should write a section summarizing recent advances about 
ferroptosis. It would also be useful to discuss how exactly COVID-19 links to any of them. 
 
It has been shown that ACE2, CD147, viroporins and hepcidin are cell membrane targets of SARS-
CoV-2 spikes. On the other hand, Transferrin and ferriportin are in the charge of iron influx and 
efflux. How to link the two in COVID-19 patients is also worth a discussion. 
 
Delta and Omicron have much more spike mutations, it is important to analysis potential novel 
receptors other than ACE2, CD147 and viroporins that the virus may bind to. 
 
References 
1. Yang M, Lai CL: SARS-CoV-2 infection: can ferroptosis be a potential treatment target for 
multiple organ involvement?. Cell Death Discov. 2020; 6: 130 PubMed Abstract | Publisher Full Text  
 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

 
Page 33 of 35

F1000Research 2022, 11:102 Last updated: 14 MAR 2022

https://doi.org/10.5256/f1000research.120075.r121216
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-8600-4325
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-121216-1
http://www.ncbi.nlm.nih.gov/pubmed/33251029
https://doi.org/10.1038/s41420-020-00369-w


Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Cell biology, COVID-19, Neural regeneration

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 12 Feb 2022
Attilio Cavezzi, Eurocenter Venalinfa, San Benedetto del Tronto, Italy 

Dear Dr.Yang, we sincerely thank you for your review and your inputs. Here below you find 
our replies in bold) to your enquiries (which are listed before each reply) and furthermore 
we revised our text as per your indications. 
 
"Attilio et al. did a short review connecting the link between COVID-19 and ferroptosis. 
 
In fact, the association between SARS-CoV-2 infection and Ferroptosis was firstly proposed 
by Yang et al. 2020. Therefore, citing this paper to further support this review is essential." 
 
Authors’ reply (AR): we appreciate your input. In fact, the paper you refer to was 
included in our manuscript at the reference number 181, as we considered this work 
of basic importance for our narrative review. Moreover, it was our aim to elucidate in 
an original manner how intracellular cation (iron namely) accumulation takes place 
through several biochemical mechanisms based on sialic acid molecules, CD147 and 
ACE2, but also based on the electrochemical changes in the cell membrane, the 
viroporin action and the hepcidin/ferroportin deregulated axis etc. Also, reference 1 of 
our manuscript in fact details a past publication of ours concerning ferroptosis, as we 
highlighted the connection between iron accumulation, ferroptosis and COVID-19 
early in June 2020.  
 
"Ferroptosis was firstly proposed in 2012 and currently three pathways have been 
proposed: GPX-4, FSP1, and DHODH. The author should write a section summarizing recent 
advances about ferroptosis. It would also be useful to discuss how exactly COVID-19 links to 
any of them." 
 
AR: we took note of your valuable suggestion and we included a number of lines 
regarding these additional pathways which pertain to ferroptosis degenerative 
mechanisms and their possible relationship to COVID-19.  
 
"It has been shown that ACE2, CD147, viroporins and hepcidin are cell membrane targets of 
SARS-CoV-2 spikes. On the other hand, Transferrin and ferriportin are in the charge of iron 
influx and efflux. How to link the two in COVID-19 patients is also worth a discussion." 
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AR: we elaborated more in depth on the relationship among hepcidin, transferrin, 
ferroportin and iron metabolism, including also the name “transferrin” in the title of 
the paragraph “f” 
 
"Delta and Omicron have much more spike mutations, it is important to analysis potential 
novel receptors other than ACE2, CD147 and viroporins that the virus may bind to" 
 
AR: we took note of the suggestion and kindly remind that we highlighted the 
preeminent role of sialic acid molecules as receptors in the cell membrane and on the 
documented or potential host receptors. However we did our best to add some more 
information about further receptors and possible literature data connected to our 
hypothesis, though the evidence is not clear yet. 
  
We sincerely thank the reviewer for his help to improve the manuscript  
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