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Abstract. Some thermodynamical properties of solids, such as heat capacity
and magnetic susceptibility, have recently been shown to be linked to the amount
of entanglement in a solid. However, this entanglement may appear a mere
mathematical artefact of the typical symmetrization procedure of many-body
wavefunction in solid state physics. Here we show that this entanglement is
physical, demonstrating the principles of its extraction from a typical solid-
state system by scattering two particles off the system. Moreover, we show
how to simulate this process using present day optical lattice technology. This
demonstrates not only that entanglement exists in solids but also that it can be
used for quantum information processing or as a test of Bell’s inequalities.

Entanglement [1] is the property of quantum systems to show correlations that cannot be
explained by classical mechanics [2]. In the last two decades entanglement has been recognized
as a resource in quantum information processing, such as quantum cryptography [3] and quantum
computation [4, 5]. Furthermore, in recent years the role that entanglement plays in the properties
of condensed matter systems has received increasing attention. For instance in a typical magnetic
solid, the electron orbitals of different atoms overlap giving rise to an exchange interaction
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Figure 1. Schematic drawing of the entanglement extraction process. Two probe
particles initially prepared in a product state are sent toward a solid whose spins
are entangled. Each probe interacts with only one spin in the solid. During the
collision, due to the exchange interaction between probe and spin, their state is
swapped. The two probes come out from the solid in an entangled state.

between the electron spins which can be described by a Heisenberg Hamiltonian, whose thermal
states are entangled [6].

It is a common belief that entanglement cannot exist on a macroscopic scale since
decoherence effects would destroy all quantum correlations. However, it has been predicted
that macroscopic entanglement not only is related to critical phenomena [7] but also that it can
exist in solids in the thermodynamic limit [8] even at high temperatures [9]. Indeed there are many
works inferring the existence of macroscopic entanglement at various temperatures up to room
temperature [10]–[12]. The evidence for this entanglement comes from experiments measuring
different thermodynamic properties such as magnetic susceptibility and heat capacity. The main
aim of this paper is to show that such entanglement is not an artificial mathematical property but
that it can be extracted and therefore used for quantum information processing in the same way
as heat can be extracted and used for work in thermodynamics. In particular we will show how
such entanglement can be transferred to a pair of particles and subsequently used, in principle,
for quantum communication or to test the violation of Bell’s inequalities. Furthermore, we
propose a scheme to demonstrate entanglement extraction with present day technology using
optical lattices. In the next two paragraphs, we outline the basic idea behind our proposal which
is then elaborated in the remaining part of the paper.

In the ideal scenario, the entanglement between a pair of spins inside a solid can clearly be
transferred to another pair of probe particles using only local swap operations. To this end one
sends simultaneously a pair of probe particles toward the entangled spin chain in such a way
that each probe interacts with a different spin (cf figure 1). We emphasize that the two probes
do not interact with each other nor do they experience an interaction mediated by the solid (cf
[13]). The entanglement between the probes has been extracted from the spin chain and cannot
exist without entanglement in the chain. This is a genuine non-local process between the two

New Journal of Physics 8 (2006) 95 (http://www.njp.org/)

http://www.njp.org/


3 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 2. Simulation of the entanglement extraction using optical lattices.
Cold neutral atoms (black) are loaded onto an optical lattice generated by
counterpropagating lasers in such a way that each potential well is occupied
by only one atom. These atoms represent the spin degrees of freedom in a typical
solid. To the first potential a second one is superimposed (wireframe) onto which
different atoms (white), called markers, are loaded. It is possible to move the
markers across the solid by moving adiabatically the second potential. This can
be done efficiently by varying the laser parameters of the second lattice.A collision
between a marker and a spin can be produced by moving the marker into the same
potential well of the spin.

probes like in the case of entanglement swapping [14]. We mention that in the continuum limit,
our procedure can be used to extract entanglement from vacuum (some steps in this direction
have been taken by [15]). In practice, however, the spin chain is in a mixed entangled state and
the scattering interaction between probes and spins in the chain can only partially swap their
state. Is entanglement extraction still possible under such realistic conditions? In this paper,
we answer this question affirmatively. We will consider only common physical interactions
like the Heisenberg or the XY ones. We will show that in general, after one scattering event,
entanglement swapping is only partial. In this case, it is interesting to investigate whether by
repeating this collision procedure with the same probes, one can achieve a better entanglement
extraction.

The most natural way to extract entanglement from entangled electron spins in solids would
be to scatter pairs of neutrons off the solid. We will present a proposal for simulation of this
process of entanglement extraction with optical lattices [16] that we believe can be implemented
at present. Optical lattices are a very useful tool for simulating many quantum effects in solids
and have been employed in demonstrating quantum phase transition [16] and quantum gates
[17]. For our purposes we need to simulate both the interaction in the solid system as well as
the interaction with the external probes. Hamiltonians of entangled spin chains or ladders can
be realized using cold neutral atoms trapped in potential wells generated by counterpropagating
lasers [18]–[20]. Bosonic atoms (black in figure 2) are loaded on to the lattice in such a way
that there is only one atom per lattice site and that the hopping between neighbouring sites is
inhibited. Long-lived atomic states are used to simulate the electronic spin in a typical solid.
The interaction between atoms can be varied by adjusting the laser parameters and by means of
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electric and magnetic fields. In this way, one can produce a variety of common spin Hamiltonians.
As probe particles one can use different atoms (white in figure 2), called marker qubits [21].
The main idea is to construct first the optical lattice, loading the atoms in a register that constitutes
the simulated solid and then to superimpose a second optical lattice loading auxiliary atoms onto
it as shown in figure 2. The auxiliary marker atoms need not be of the same atomic species as the
atoms in the solid. The marker atoms can be moved through the solid by varying adiabatically
laser parameters of the second optical lattice. These operations do not affect the register atoms
which remain confined in their potential wells. In this way, collisions between probes and spins
in the solid can be simulated by moving a marker atom close to a register atom letting their
orbitals overlap as shown in figure 2. This in principle can be performed with high precision and
efficiency as in the case of cold controlled collisions [17]. In this way, one can realize the swap
operations needed in our protocol. Such an operation can be repeated several times moving the
markers forward to collide with other register atoms.

Let us now introduce the detailed description of the interaction between the probes and the
spins in the solid. We stress again that all aspects of the following analysis can be implemented not
only with the optical lattices described above but also with any other quantum systems capable
of coherent manipulation. Two probes are sent to interact for a time τ each with a single spin of
an entangled pair in a solid as shown in figure 1. We suppose that the interaction Hamiltonian is
given by an anisotropic XXZ model between probe i = L, R and spin j = 1, 2

H(λ)ij = J
(
σi

xσ
j
x + σi

yσ
j
y + λσi

zσ
j
z

)
(1)

where σx,y,z are the Pauli matrices, J is the coupling which we assume to be constant during
the collision. In the case of a time-dependent J(t), our analysis still applies by making the
substitution: Jt → ∫ t

0 J(t′) dt′. The total Hamiltonian is therefore HT = H(λ)1L + H(λ)2R. This
Hamiltonian comes from the same exchange mechanism that gives rise to the interaction between
spins in the solid. This Hamiltonian can be easily implemented with optical lattices and marker
qubits in a probabilistic fashion. Here we concentrate on two important limits: λ = 1, which is
the Heisenberg (exchange) interaction; λ = 0, which is the XY interaction. We assume that the
spin chain is initially in the ground state, however, our discussion can also be extended to other
out-of-equilibrium states. We also assume that during the only dynamics is due to the interaction
with the probes. The reduced density matrix of the entangled pair can be written in terms of
spin–spin correlation functions by using translational invariance and conservation of angular
momentum. The full derivation is presented in [22] and the result is:

ρ =




1
4 + gzz 0 0 0

0 1
4 − gzz 2gxx 0

0 2gxx
1
4 − gzz 0

0 0 0 1
4 + gzz


 , (2)

where gzz = 〈σ1
z σ

2
z 〉/4 and gxx = 〈σ1

xσ
2
x〉/4 are spin–spin correlation functions and can be

numerically estimated for the Heisenberg model. The concurrence of ρ, assuming |gxx| � gzz, is

C = Max[0, − 1
2 + 4 |gxx| − 2gzz]. (3)

Note that the results given below apply to a large class of mixed entangled states including,
for example, Werner states. Let us first consider what happens after a single collision between
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Figure 3. Extracted entanglement for a Heisenberg chain, measured by the
concurrence C between the two probes, maximized over the set of initial product
states of the probes, after one collision as a function of gzz and τ. Notice how C
increases with the correlation gzz and oscillates with the interaction time τ.

the probes in a pure product state e.g. |00〉 and the spins when λ = 1, 0. To illustrate the idea let
us suppose that the spins are initially in a maximally entangled state |ψ−〉 = 2−1/2(|01〉 − |10〉).
After the collision the global state of the four particle reads (apart from a global phase factor)

|�(t)〉 = cos 2Jτ|00〉LR|ψ−〉12 − i sin 2Jτ|ψ−〉LR|00〉12. (4)

This state is a superposition of the initial state and of the swapped state. By tracing out the two
spins one obtains the reduced density matrix ρLR of the two probes. We use the concurrence [23]
to measure the entanglement extracted. For a density matrix of two qubits ρ let us define ρ̃

.=
σy ⊗ σyρ

∗σy ⊗ σy and R = ρρ̃. The concurrence is defined as C = max{0, λ1 − λ2 − λ3 − λ4}
where λi are the square roots of the eigenvalues of R labelled in decreasing order. The concurrence
for the two probes is simply C = sin2 2Jτ and is equal to 1 when Jτ = π/4. Thus no matter how
small τ is, it is still possible to extract some entanglement from the singlet state.

The extracted entanglement (i.e. the concurrence between the probes), maximized over the
set of initial product states of the probes, is plotted in figure 3, for λ = 1, as a function of gxx = gzz,
including therefore the case of mixed states of spins in the solid. Note that ρ is entangled for
−1/4 � gzz < −1/12. As is shown in the plot the entanglement between probes decays when gzz

decreases. This confirms the intuitive expectation that more the spins in the solid are entangled,
the more such entanglement can be transferred to the probes.

We want to stress that for a translational invariant system the correlation functions can never
reach the maximum value gxx = gzz = −1/4. Pure maximal entangled states cannot exist in a
homogeneous spin chain. Nevertheless in figure 3, we show the concurrence for all possible
values of gzz.

The state of the spins and that of the probes are swapped when Jτ = π/4 and the
entanglement extracted is maximum. In an optical lattice implementation, this can be achieved in
a time comparable to the trapping frequency of the atoms (10 µs for 87Rb [21]). In the case of solid
J is of the order of 1 K giving approximately τ ∼ 10−11 s [11]. We also note that entanglement
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oscillates with τ, a feature which reflects the fidelity of the swapping operation. The probes are
always entangled for gzz � −0.16 no matter how small τ is. However, as shown in figure 3, for
−0.16 < gzz < −1/12, τ must be chosen appropriately in order to extract some entanglement.
Notice that obviously no entanglement can be extracted for gzz � −1/12 since the two spins are
not entangled. The important point is that as long as some entanglement is shared between two
spins in the solid (i.e. for gzz < −1/12), our procedure is capable of transferring part of it to the
probes. Similar results applies also to the XY model λ = 0.

Once τ is fixed for a specific experimental setup, the amount of entanglement extracted is less
than the entanglement in the pair of spins as long as Jτ < π/4. Is it possible to extract more entan-
glement by repeating the collision process several times? This can be done in optical lattices by
moving the marker qubits so they interact with different identically prepared chains (cf figure 2).
Although this approach has some conceptual analogies with the so-called homogenization
process [24], the two schemes are not equivalent since the transformation induced by the
interaction Hamiltonian (1) is not a global partial SWAP transformation. Indeed with a lo-
cal interaction generated by the spin Hamiltonian (λ = 1), the full transformation of the four
spins is

U12LR = PSW1L ⊗ PSW2R, where (5)

PSW = eiJt (cos 2Jt11 − i sin 2JtSWAP) , and (6)

SWAP = |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|, (7)

swaps two qubits.
It is easy to demonstrate that, for λ = 0 (XY model), the state |ψ+〉LR|ψ−〉12 is an eigenstate

of HT . It is thus a fixed point of the evolution transformation U12LR and the state of the probes
approaches the state |ψ+〉 as the number of collisions goes to infinity, independently of the input
state and of how small τ is. This is a counterintuitive result: the state of the probes do not converge
to the state of the bath but to an orthogonal state. The reason is that XY interaction does not
generate a partial SWAP operation but something similar to a partial iSWAP operation

iSWAP = |00〉〈00| + i|01〉〈10| + i|10〉〈01| + |11〉〈11|, (8)

that swaps the state of the two qubits but with a i factor. The composition of two of these
transformations produces a minus sign that transform |ψ+〉 in |ψ−〉. In figure 4, we show how
the concurrence grows increasing the number of collision with the spins.

For λ = 1 (Heisenberg model), there is no eigenstate of the total Hamiltonian which is the
tensor product of a maximally entangled state of the probes and a maximally entangled state of
the two spins.

When the state of the two spins in the solid is mixed, the transformation has still a unique
fixed point [25, 26]. This follows form the Banach–Cacciopoli theorem for contractive map.
The transformation we are considering is the tensor product of two partial swap transformation
which are contractive maps and thus it is itself a contractive map. The entanglement of the fixed
point depends on gzz, gxx and τ. For example, for a Heisenberg interaction, when gzz = −0.2
and Jτ = 0.6, the concurrence of the fixed point is C � 0.28. However, when the two spins in
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Figure 4. Concurrence between the probes as a function of the number of
collisions. We supposed the initial state (2) with η = 0 and Jτ = 0.2. The data are
well described by the fit function C(n) = 1 − exp(−κn) where κ = −8.3 × 10−3.

the chain are in a mixed state, the entanglement extracted by the probes after repeated collisions
is always less than that after only one collision for λ = 1 (Heisenberg interaction) and ‘nearly’
always, i.e. except for mixed states which are very close to a pure state, for λ = 0 (XY interaction).
Therefore repeated collisions do not increase the extracted entanglement.

Under a different hypothesis, it is possible by repeated collisions to homogenize the state
of the probes to the state of the spins in the solid. By modifying the interaction between the four
spins 1, 2, L and R we can build a Hamiltonian that generates a global SWAP transformation

PSW1L,2R = eiJt (cos 2Jt111L ⊗ 112R − i sin 2JtSWAP1L ⊗ SWAP2R) . (9)

This can be found by inspection and reads in the computational basis of 12LR

H12LR = |0000〉〈0000| + |0101〉〈0101| + |1010〉〈1010| + |1111〉〈1111|
+ (|0001〉〈0100| + |0010〉〈1000| + |1011〉〈1110| + |1101〉〈0111|
+ |0011〉〈1100| + |1001〉〈0110| + h.c.). (10)

Notice that the elements of the first two rows can be generated by pairwise interactions as in (1).
The elements of the third row instead are four spin processes. With this interaction, it is proven
by the homogenization process [24] that the probes state will approach the state of the spins no
matter the initial state.

Until now we concentrated on extracting bipartite entanglement, however, our scheme can
also be adapted to extract genuine multipartite entanglement. Let us consider n spins in a chain,
each scattering a spin probe. Let the initial state of the chain be a W state:

|Wn〉 = 1√
n
(|100 · · · 0〉 + |010 · · · 0〉 + · · · + |000 · · · 1〉), (11)
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and the probes be in state |0〉 = |00 · · · 0〉. W states can be ground states of some Hubbard
related Hamiltonians [27], critical spin chains [7, 28] and fermionic lattice models of high Tc

superconductivity [9]. The state of the system at time τ is the analogue for n spins of equation
(4) with |Wn〉 instead of |ψ−〉. Thus the reduced density matrix for the n probes reads

ρ = cos2 2Jτ|0〉〈0| + sin2 2Jτ|Wn〉〈Wn|. (12)

Notice that when Jτ = π/4, the state of the chain is fully swapped onto that of the probes as
in the case with n = 2. For any value of Jτ 	= kπ/2, where k is an integer, it can be shown that
the above state contains genuine multipartite entanglement [28] (i.e. it cannot be written as a
mixture of biseparable states).

So far we have assumed that each probe interacts with a single spin in the chain. This
assumption is, in some cases, unrealistic. For instance it is difficult, with present day technology,
to address a single spin in a solid. For example, in neutron scattering experiments, the spin of
the incoming neutron interacts with the total angular momentum of a bunch of spins in the solid
[29]. It is thus more realistic to analyse a model in which two probes interact with several spins at
once. Let us consider a chain of L spins and let us assume that each neutron, being a wavepacket
of a certain width, interacts with a different subset of N spins. We will assume that the spin of the
probe is coupled to the total angular momentum of the N spins, which is equivalent to assuming
that each probe is equally coupled to each of the N spins in the chain. This model is equivalent
to the ones considered in other contexts [30], and for λ = 0, 1 its eigenstates are known. Let us
consider a WL state as the initial state of the chain. Though this is not the most general entangled
state of a spin chain, this model can be solved analytically. The concurrence for the two probes for
λ = 0 is C = (2N/L) sin2 2J

√
Nτ and reaches the maximum value 2N/L for Jτ = π/(4

√
N)

(the entanglement for the Heisenberg model λ = 1 is greater than zero but is always less than that
of the XY model). Notice that 2N/L is just the fraction of spins interacting with the probes and
thus it is the maximum bipartite entanglement that can be extracted. We note that these results
have been obtained for a W state of the chain. This state is symmetric under permutations of
any number of spins which means that the entanglement is equally distributed among all spins.
However, for Heisenberg and XY chain models, long-range correlations are very small and the
entanglement extracted should decrease with N and with the distance between the two beams of
neutrons. From the above analysis, it emerges that a necessary condition to extract entanglement
within this realistic model is that segments of the spin chains should be entangled. This analysis
can be extended to the case of non-equilibrium states and it would be interesting to see if the
entanglement extracted could be larger than in the case of the W state.

We have described a scheme to extract entanglement from spins in a solid by scattering
probe particles. In this way, macroscopic thermal entanglement of solids can be converted into a
useful resource for quantum information processing. To illustrate the scheme, we have proposed
an optical lattice implementation where all aspects of our procedure can be realized with present
day technology. In this context, optical lattices offer only a simulation of entanglement extraction.
This is why we have discussed how neutron scattering can be used to achieve entanglement
extraction from a real solid as well as the physical limitations of this process. We hope that
our ideas in the long run will lead to an entangling procedure for neutrons in the same way as
parametric down conversion is for creating entangled photons.

New Journal of Physics 8 (2006) 95 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

References

[1] Schrödinger E 1935 Naturwissenschaften 23 807–12, 823–8, 844–9
[2] Bell J S 1964 Physics 1 195
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4] Shor P 1994 Proc. 35th Annu. Symp. on Foundations of Computer Science vol 116 (Los Alamitos, CA: IEEE

Press)
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[6] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[7] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[8] Ghosh S, Rosenbaum T F, Aeppli G and Coppersmith S N 2003 Nature 425 48
[9] Vedral V 2004 New J. Phys. 6 102

[10] Brukner C and Vedral V 2004 Preprint quant-ph/0406040
[11] Brukner C, Vedral V and Zeilinger A 2006 Phys. Rev. A 73 012110
[12] Vertesi T and Bene E 2006 Phys. Rev. B 73 134404
[13] Braun D 2002 Phys. Rev. Lett. 89 277901
[14] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287–90
[15] Retzker A, Cirac J I and Reznik B 2005 Phys. Rev. Lett. 94 050504
[16] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39

Greiner M, Mandel O, Hansch T W and Bloch I 2002 Nature 419 51
[17] Mandel O, Greiner M, Widera A, Rom T, Hansch T W and Bloch I 2003 Nature 425 937
[18] Garcia-Ripoll J J, Martin-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 93 250405
[19] Duan L-M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[20] Garcia-Ripoll J J and Cirac J I 2003 New J. Phys. 5 76
[21] Calarco T, Dorner U, Julienne P S, Williams C J and Zoller P 2004 Phys. Rev. A 70 012306
[22] Amico L, Osterloh A, Plastina F, Fazio R and Palma G M 2004 Phys. Rev. A 69 022304
[23] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[24] Scarani V, Ziman M, Stelmachovic P, Gisin N and Buzek V 2002 Phys. Rev. Lett. 88 097905
[25] Ziman M, Stelmachovic P, Buzek V, Hillery M, Scarani V and Gisin N 2002 Phys. Rev. A 65 042105
[26] Raginsky M 2002 Phys. Rev. A 65 032306
[27] de Boer J, Korepin V E and Schadschneider A 1995 Phys. Rev. Lett. 74 789–92
[28] Bruss D, Datta N, Erkert A, Kwek L C and Macchiavello C 2005 Phys. Rev. A 72 014301
[29] Rauch H and Werner S A 2000 Neutron Interferometry (Oxford: Clarendon)
[30] Hutton A and Bose S 2002 Phys. Rev. A 69 042312

De Chiara G, Fazio R, Macchiavello C, Montangero S and Palma G M 2004 Phys. Rev. A 70 062308
De Chiara G, Fazio R, Macchiavello C, Montangero S and Palma G M 2005 Phys. Rev. A 72 012328

New Journal of Physics 8 (2006) 95 (http://www.njp.org/)

http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/PhysRevLett.87.017901
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/nature01888
http://dx.doi.org/10.1088/1367-2630/6/1/102
http://arxiv.org/abs/quant-ph/0406040
http://dx.doi.org/10.1103/PhysRevA.73.012110
http://dx.doi.org/10.1103/PhysRevB.73.134404
http://dx.doi.org/10.1103/PhysRevLett.89.277901
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.94.050504
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1103/PhysRevLett.93.250405
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1088/1367-2630/5/1/376
http://dx.doi.org/10.1103/PhysRevA.70.012306
http://dx.doi.org/10.1103/PhysRevA.69.022304
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.88.097905
http://dx.doi.org/10.1103/PhysRevA.65.042105
http://dx.doi.org/10.1103/PhysRevA.65.032306
http://dx.doi.org/10.1103/PhysRevLett.74.789
http://dx.doi.org/10.1103/PhysRevA.72.014301
http://dx.doi.org/10.1103/PhysRevA.69.042312
http://dx.doi.org/10.1103/PhysRevA.70.062308
http://dx.doi.org/10.1103/PhysRevA.72.012328
http://www.njp.org/

