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Abstract

We consider a nonlinear elliptic Dirichlet problem driven by the (p, q)-Laplacian

and a reaction consisting of a parametric singular term plus a Carathéodory

perturbation f(z, x) which is (p − 1)-linear as x → +∞. First we prove a

bifurcation-type theorem describing in an exact way the changes in the set of

positive solutions as the parameter λ > 0 moves. Subsequently, we focus on the

solution multifunction and prove its continuity properties. Finally we prove the

existence of a smallest (minimal) solution u∗λ and investigate the monotonicity

and continuity properties of the map λ→ u∗λ.
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1. Introduction

In this paper we study the following parametric singular (p, q)-Dirichlet prob-

lem: −∆pu(z)−∆qu(z) = λu(z)−η + f(z, u(z)) in Ω,

u
∣∣
∂Ω

= 0 u > 0, λ > 0, 1 < q < p, 0 < η < 1.

(Pλ)

In this problem Ω ⊆ RN is a bounded domain with a C2-boundary ∂Ω. For

every r ∈ (1,+∞), by ∆r we denote the r-Laplace differential operator defined

by

∆ru = div(|∇u|r−2∇u) for all u ∈W 1,r
0 (Ω).

So, in problem (Pλ) the differential operator is the sum of two such operators

and therefore it is not homogeneous. Operators of this kind arise in many

mathematical models of physical processes. We refer to the work of Bahrouni-

Rădulescu-Repovš [2] and the references therein. In the reaction of (Pλ), we5

have a parametric singular term (u→ λu−η) and a Carathéodory perturbation

f(z, x) (that is, for all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω,

x→ f(z, x) is continuous). We assume that this perturbation is (p−1)-linear as

x→ +∞. Our goal is to determine the precise dependence of the set of positive

solutions on the parameter λ > 0. In this direction, we prove a bifurcation-type10

theorem describing the changes in the set of positive solutions of (Pλ) as the

parameter λ moves in R̊+ = (0,+∞). Also, we study the properties of the

solution multifunction and produce minimal positive solutions.

Recently Papageorgiou-Rădulescu-Repovš [18] examined problem (Pλ) as-

suming that the perturbation f(z, ·) is (p−1)-superlinear but without satisfying15

the usual in such cases Ambrosetti-Rabinowitz condition. In fact the formula-

tion of the problem in [18] is more general, since the differential operator is

nonhomogeneous including as a special case the (p, q)-Laplacian and the singu-

lar term is more general having as a special case the function x → λx−η. For

the sake of simplicity in the presentation, we have decided to proceed with the20

(p, q)-Laplacian and the standard singularity u → λu−η. The work here can

also be extended to the more general framework in [18].
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Bai-Motreanu-Zeng [3] considered parametric singular equations driven by

the p-Laplacian and studied the continuity properties of the solution multifunc-

tion. Our results in Section 4 extend their work to (p, q)-equations. Finally we25

mention the nonsingular works on parametric (p, 2)-equations of Papageorgiou-

Rădulescu [12], Papageorgiou-Rădulescu-Repovš [14, 16, 17], Papageorgiou-Scapellato

[19], Papageorgiou-Vetro-Vetro [21], Papageorgiou-Zhang [22].

2. Mathematical Background - Hypotheses

The main spaces in the analysis of problem (Pλ) are the Sobolev space

W 1,p
0 (Ω) and the Banach space C1

0 (Ω) =
{
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}

. By ‖ · ‖ we

denote the norm of the Sobolev space W 1,p
0 (Ω). On account of the Poincaré

inequality, we have

‖u‖ = ‖∇u‖p for all u ∈W 1,p
0 (Ω).

The Banach space C1
0 (Ω) is ordered with positive (order) cone

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω

< 0

}
.

By ∂u
∂n we denote the normal derivative of u(·). We know that

∂u

∂n
(z) = (∇u(z), n)RN for all z ∈ ∂Ω, all u ∈W 1,p

0 (Ω) ∩ C1(Ω)

and n(·) is the outward unit normal on ∂Ω.30

For every r ∈ (1,+∞) by Ar : W 1,r
0 (Ω)→W 1,r

0 (Ω)∗ = W−1,r′(Ω) ( 1
r + 1

r′ =

1) we denote the nonlinear map defined by

〈Ar(u), h〉 =

∫
Ω

|∇u|r−2(∇u,∇h)RNdz for all u, h ∈W 1,r
0 (Ω).

This map has the following well-known properties (see Gasiński-Papageorgiou

[5], Problem 2.192, p. 279).
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Proposition 1. The map Ar : W 1,r
0 (Ω) → W−1,r′(Ω) is bounded (that is,

maps bounded sets to bounded sets), continuous, strictly monotone (hence max-

imal monotone too) and of type (S)+ (that is, un
w−→ u in W 1,r

0 (Ω) and35

lim supn→+∞〈Ar(un), un − u〉 ≤ 0 imply un → u in W 1,r
0 (Ω)).

We will need some facts about the spectrum of the Dirichlet r-Laplacian.

So, we consider the following nonlinear eigenvalue problem

−∆ru(z) = λ̂|u(z)|r−2u(z) in Ω, u
∣∣
∂Ω

= 0. (1)

We known (see Gasiński-Papageorgiou [4]) that this problem has a smallest

eigenvalue λ̂1(r), which has the following properties:

• 0 < λ̂1(r) = inf

[
‖∇u‖rr
‖u‖rr

: u ∈W 1,r
0 (Ω), u 6= 0

]
; (2)

• λ̂1(r) > 0 is isolated in the spectrum σ̂(r) of (1), that is, there

exists ε > 0 such that (λ̂1(r), λ̂1(r) + ε) ∩ σ̂(r) = ∅;

• λ̂1(r) > 0 is simple, that is, if û, v̂ ∈W 1,r
0 (Ω) are eigenfunctions

corresponding to λ̂1(r), then û = µv̂ for some µ ∈ R \ {0}.

So, by this last property, the eigenspace corresponding to λ̂1(r) > 0 is one-

dimensional. The infimum in (2) is realized on this eigenspace. Moreover, it is

clear that the elements of this eigenspace have fixed sign. By û1(r) we denote the

positive, Lr-normalized (that is, ‖û1(r)‖r = 1) eigenfunction corresponding to40

λ̂1(r). The nonlinear regularity theory (see Lieberman [10]) and the nonlinear

moaximum principle (see Pucci-Serrin [23]) imply that û1(r) ∈ intC+. Em-

ploying the Ljusternik-Schnirelmann minimax scheme, we can produce a whole

sequence of distinct eigenvalues {λ̂k(r)}k≥1 with λ̂k(r)→ +∞ as k → +∞. We

do not know if these variational eigenvalues exhaust the spectrum σ̂(r). This45

is the case if r = 2 (linear eigenvalue problem) or if N = 1 (scalar eigenvalue

problem).

An easy consequence of the above properties of λ̂1(r) > 0 is the following

result (see Mugnai-Papageorgiou [11], Lemma 4.11).
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Proposition 2. If η0 ∈ L∞(Ω), η0(z) ≤ λ̂1(r) for a.a. z ∈ Ω and η0 6≡ λ̂1(r),50

then ‖∇u‖rr −
∫

Ω
η0(z)|u|rdz ≥ c0‖u‖r for some c0 > 0, all u ∈W 1,r

0 (Ω).

We mention that λ̂1(r) is the only eigenvalue with eigenfunctions of constant

sign. All the other eigenvalues have eigenfunctions which are nodal (that is, sign

changing).

We will also consider a weighted version of problem (2). So, let m ∈ L∞(Ω)

such that m(z) ≥ 0 for a.a. z ∈ Ω, m 6≡ 0 and consider the following nonlinear

weighted eigenvalue problem:

−∆ru(z) = λ̃m(z)|u(z)|r−2u(z) in Ω, u
∣∣
∂Ω

= 0. (3)

Problem (3) has the same properties as problem (2). In particular there is

a smallest eigenvalue λ̃1(m, r) > 0, which is isolated, simple and admits the

following variational characterization

λ̃1(m, r) = inf

[
‖∇u‖rr∫

Ω
m(z)|u|rdz

: u ∈W 1,r
0 (Ω), u 6= 0

]
. (4)

The infimum in (4) is realized on the corresponding one-dimensional eigenspace.55

Using (4) one can show the following strict monotonicity property for the map

m→ λ̃1(m, r).

Proposition 3. If m1,m2 ∈ L∞(Ω), 0 ≤ m1(z) ≤ m2(z) for a.a. z ∈ Ω,

m1 6≡ 0, m1 6≡ m2, then λ̃1(m2, r) < λ̃1(m1, r).

For x ∈ R, we set x± = max{±x, 0}. Then given u ∈ W 1,p
0 (Ω), we define

u±(z) = u(z)± for all z ∈ Ω. We know that

u± ∈W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Given h1, h2 : Ω → R measurable functions, we write h1 ≺ h2 if for every

K ⊆ Ω compact, we have

0 < cK ≤ h2(z)− h1(z) for a.a. z ∈ K.

Evidently if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2.60
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A set S ⊆ W 1,p
0 (Ω) is said to be “downward directed” if for every pair

(u1, u2) ∈ S × S, we can find u ∈ S such that u ≤ u1, u ≤ u2.

Given u, v ∈W 1,p
0 (Ω) with u ≤ v, we define

[u, v] =
{
h ∈W 1,p

0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω
}
,

[u) =
{
h ∈W 1,p

0 (Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω
}
.

Let X be a Banach space and ϕ ∈ C1(X,R). We say that ϕ(·) satisfies the

“C-condition” if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and65

(1 + ‖un‖X)ϕ′(un)→ 0 in X∗ as n→ +∞, admits a strongly convergent

subsequence”.

We set Kϕ = {u ∈ X : ϕ′(u) = 0}, the critical set of ϕ.

Our hypotheses on the perturbation f(z, x) are the following:

H: f : Ω× R→ R is a Carathéodory function such that70

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω) such that

0 ≤ f(z, x) ≤ aρ(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ;

(ii) there exist functions η, η̂ ∈ L∞(Ω) such that

λ̂1(p) ≤ η(z) ≤ η̂(z) for a.a. z ∈ Ω, η 6≡ λ̂1(p),

η(z) ≤ lim inf
x→+∞

f(z, x)

xp−1
≤ lim sup

x→+∞

f(z, x)

xp−1
≤ η̂(z) uniformly for a.a. z ∈ Ω;

(iii) there exists a function η0 ∈ L∞(Ω) such that

η0(z) ≤ λ̂1(q) for a.a. z ∈ Ω, η0 6≡ λ̂1(q),

lim sup
x→0+

f(z, x)

xq−1
≤ η0(z) uniformly for a.a. z ∈ Ω;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function

x→ f(z, x) + ξ̂ρx
p−1 is nondecreasing on [0, ρ].
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Remark 1. Since our goal is to find positive solutions and all the above hypothe-

ses concern the positive semiaxis R+ = [0,+∞), without any loss of generality,

we may assume that

f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. (5)

Note that hypotheses H (iii), (iv) imply that f(z, 0) = 0 for a.a. z ∈ Ω.

Hypothesis H (iii) implies that f(z, ·) is (p− 1)-linear near +∞ and also makes

the energy functional of the problem noncoercive.75

By a solution of problem (Pλ) we mean a function u ∈ W 1,p
0 (Ω) such that

u−ηh ∈ L1(Ω) for all h ∈W 1,p
0 (Ω) and

〈Ap(u), h〉+ 〈Aq(u), h〉 = λ

∫
Ω

u−ηhdz +

∫
Ω

f(z, u)hdz for all h ∈W 1,p
0 (Ω).

The difficulty we encounter in dealing with problem (Pλ) is that the energy

(Euler) functional ϕλ : W 1,p
0 (Ω)→ R for the problem, defined by

ϕλ(u) =
1

p
‖∇u‖pp +

1

q
‖∇u‖qq −

λ

1− η

∫
Ω

(u+)1−ηdz −
∫

Ω

F (z, u+)dz

for all u ∈ W 1,p
0 (Ω), with F (z, x) =

∫ x
0
f(z, s)ds, is not C1 on account of

the singular (third) term. Therefore the minimax techniques of critical point

theory are not directly applicable to the functional ϕλ(·). We need to find ways

to bypass the singularity and deal with C1-functionals.

For this reason, first we consider the following purely singular auxiliary

Dirichlet problem−∆pu(z)−∆qu(z) = λu(z)−η in Ω,

u
∣∣
∂Ω

= 0, u > 0, λ > 0, 1 < q < p, 0 < η < 1.

(Qλ)

Consider the ordered Banach space C0(Ω) =
{
u ∈ C(Ω) : u

∣∣
∂Ω

= 0
}

with

positive cone K+ =
{
u ∈ C0(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
. This cone has a

nonempty interior given by

intK+ =
{
u ∈ K+ : cud̂ ≤ u for some cu > 0

}
,
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where d̂(z) = d(z, ∂Ω) for all z ∈ Ω. Lemma 14.16, p. 335, of Gilbarg-Trudinger

[6] implies that there exists δ > 0 small such that d̂ ∈ C2(Ωδ) with Ωδ = {z ∈

Ω : d̂(z) < δ}. Therefore d̂ ∈ intC+ and then using Proposition 4.1.22, p. 274,

of Papageorgiou-Rădulescu-Repovš [15], we see that given u ∈ intC+ we can

find constants 0 < c1 ≤ c2 such that

c1d̂ ≤ u ≤ c2d̂,

⇒ u ∈ intK+. (6)

Given s > N , we have û1(p)1/s ∈ K+ and so on account of (6) we can find

c3 > 0 such that

0 ≤ û1(p)1/s ≤ c3u,

⇒ u−η ≤ c4û1(p)−η/s for some c4 > 0.

The Lemma in Lazer-McKenna [9] implies that

u−η ∈ Ls(Ω) (s > N). (7)

For problem (Qλ) we have the following result80

Proposition 4. For every λ > 0 problem (Qλ) has a unique positive solution

uλ ∈ intC+ and the map λ → uλ from R̊+ = (0,+∞) into C1
0 (Ω) is nonde-

creasing, that is, 0 < µ < λ implies uµ ≤ uλ.

Proof. The existence and uniqueness of the solution uλ ∈ intC+ follows from

Proposition 10 of Papageorgiou-Rădulescu-Repovš [18]. We have

u−ηλ ∈ Ls(Ω) s > N (see (7)). (8)

Let 0 < µ < λ and consider the Carathéodory function ŵµ(z, x) defined by

ŵµ(z, x) =

µ(x+)−η if x ≤ uλ(z),

µuλ(z)−η if uλ(z) < x,

(see (8)). (9)

We consider the following Dirichlet problem−∆pu(z)−∆qu(z) = ŵµ(z, u(z)) in Ω,

u
∣∣
∂Ω

= 0, u > 0, 1 < q < p.
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Again using Proposition 10 of [18], we see that (9) has a solution ũµ ∈ intC+.

We have

〈Ap(ũµ), h〉+ 〈Aq(ũµ), h〉 =

∫
Ω

ŵµ(z, ũµ)hdz for all h ∈W 1,p
0 (Ω). (10)

In (10) we choose h = (ũµ − uλ)+ ∈W 1,p
0 (Ω). Then we have

〈Ap(ũµ), (ũµ − uλ)+〉+ 〈Aq(ũµ), (ũµ − uλ)+〉

=

∫
Ω

µu−ηλ (ũµ − uλ)+dz (see (9))

≤
∫

Ω

λu−ηλ (ũµ − uλ)+dz (since µ < λ)

= 〈Ap(uλ), (ũµ − uλ)+〉+ 〈Aq(uλ), (ũµ − uλ)+〉,

⇒ ũµ ≤ uλ (see Proposition 1),

⇒ ũµ = uµ ∈ intC+ (from the uniqueness of the solution of (Qµ)),

⇒ uµ ≤ uλ.

In the next section we will use this solution to isolate the singularity and85

use the minimax techniques of critical point theory.

3. Bifurcation-Type Theorem

In this section we prove a bifurcation-type theorem which describes in a

precise way the changes in the set of positive solutions as the parameter λ > 0

moves.90

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution},

Sλ = set of positive solutions of (Pλ).

Proposition 5. If hypotheses H hold, then L 6= ∅.
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Proof. For λ > 0, let uλ ∈ intC+ be the unique positive solution of (Qλ) (see

Proposition 4). We introduce the following truncation of the reaction in problem

(Pλ)

gλ(z, x) =

λuλ(z)−η + f(z, x+) if x ≤ uλ(z),

λx−η + f(z, x) if uλ(z) < x,

(11)

(recall that uλ(z)−η ∈ Ls(Ω), s > N , see (8)). This is a Carathéodory function.

We set Gλ(z, x) =
∫ x

0
gλ(z, s)ds and consider the C1-functional ϕ̂λ : W 1,p

0 (Ω)→

R defined by

ϕ̂λ(u) =
1

p
‖∇u‖pp +

1

q
‖∇u‖qq −

∫
Ω

Gλ(z, u)dz for all u ∈W 1,p
0 (Ω),

(see also Papageorgiou-Smyrlis [20], Proposition 3).

Let r > p. On account of hypotheses H (i), (ii), (iii), given ε > 0, we can

find c5 = c5(ε, r) > 0 such that

F (z, x) ≤ 1

p
[η0(z) + ε]xq + c5x

r for a.a. z ∈ Ω, all x ≥ 0. (12)

Using (11) and (12), we have

ϕ̂λ(u) ≥ 1

p
‖∇u‖pp +

1

q

[
‖∇u‖qq −

∫
Ω

η0(z)|u|qdz − ε‖u‖qq
]
− c6‖u‖r

− λ
∫
{u≤uλ}

u−ηλ udz − λ

1− η

∫
{uλ<u}

[
u1−η − u1−η

λ

]
dz (13)

for some c6 > 0, all u ∈W 1,p
0 (Ω).

From Proposition 2, we have

‖∇u‖qq −
∫

Ω

η0(z)|u|qdz ≥ c7‖∇u‖qq for some c7 > 0, all u ∈W 1,p
0 (Ω).

Therefore

‖∇u‖qq −
∫

Ω

η0(z)|u|qdz − ε‖u‖qq ≥

[
c7 −

ε

λ̂1(q)

]
‖∇u‖qq (see (2))

≥ 0 choosing ε ∈ (0, λ̂1(q)c7]. (14)
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Also we have

λ

∫
{u≤uλ}

u−ηλ udz +
λ

1− η

∫
{uλ<u}

[
u1−η − u1−η

λ

]
dz

≤ λ
∫
{u≤uλ}

u1−ηudz +
λ

1− η

∫
{uλ<u}

u1−ηdz

≤ λc8‖u‖1−η for some c8 > 0. (15)

We return to (13) and use (14) and (15). We obtain

ϕ̂λ(u) ≥ 1

p
‖u‖p − c6‖u‖r − λc8‖u‖1−η. (16)

Choose ρ ∈ (0, 1) small such that

1

p
ρp − c6ρr ≥ µ0 > 0 (recall p < r). (17)

We fix such a ρ ∈ (0, 1) and then choose λ0 > 0 such that

λc8ρ
1−η <

µ0

2
for all λ ∈ (0, λ0]. (18)

So, if in (16), we use (17), (18), then

ϕ̂λ(u) ≥ µ0

2
> 0 for all u ∈W 1,p

0 (Ω), ‖u‖ = ρ. (19)

Let Bρ = {u ∈ W 1,p
0 (Ω) : ‖u‖ < ρ}. Since W 1,p

0 (Ω) is reflexive, by the

Eberlein-Smulian theorem the set Bρ is sequentially weakly compact. More-

over, using the Sobolev embedding theorem, we see that ϕ̂λ(·) is sequentially

weakly lower semicontinuous. Therefore, by the Weierstrass-Tonelli theorem,

there exists uλ ∈ Bρ such that

ϕ̂λ(uλ) = min[ϕ̂λ(u) : u ∈ Bρ]. (20)

Let u ∈ intC+ and choose t ∈ (0, 1) small such that

tu ≤ uλ (recall uλ ∈ intC+). (21)

Then from (21) and (11), we have

ϕ̂λ(tu) =
tp

p
‖∇u‖pp +

tq

q
‖∇u‖qq −

∫
Ω

[
λu−ηλ (tu) + F (z, tu)

]
dz

≤ tq
[
‖∇u‖pp + ‖∇u‖qq

]
− λt

∫
Ω

u−ηλ udz

(since t ∈ (0, 1), 1 < q < p and F ≥ 0).
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Since q > 1, choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ̂λ(tu) < 0 and ‖tu‖ ≤ ρ,

⇒ ϕ̂λ(uλ) < 0 = ϕ̂λ(0) (see (20)),

⇒ uλ 6= 0.

On account of (19) we have

‖uλ‖ < ρ, uλ 6= 0. (22)

From (22) and (20), it follows that

ϕ̂′λ(uλ) = 0,

⇒ 〈Ap(uλ), h〉+ 〈Aq(uλ), h〉 =

∫
Ω

gλ(z, uλ)hdz for all h ∈W 1,p
0 (Ω). (23)

In (23) first we choose h = −u−λ ∈W
1,p
0 (Ω). We obtain

‖u−λ ‖
p ≤ 0,

⇒ uλ ≥ 0, uλ 6= 0. (24)

Next in (23) we choose h = (uλ − uλ)+ ∈W 1,p
0 (Ω). We obtain

〈Ap(uλ), (uλ − uλ)+〉+ 〈Aq(uλ), (uλ − uλ)+〉

=

∫
Ω

[
λu−ηλ + f(z, uλ)

]
(uλ − uλ)+dz (see (11) and (24))

≥
∫

Ω

λu−ηλ (uλ − uλ)+dz (since f ≥ 0)

= 〈Ap(uλ), (uλ − uλ)+〉+ 〈Aq(uλ), (uλ − uλ)+〉

⇒ uλ ≤ uλ (see Proposition 1).

Then from (11) and (23) it follows that uλ ∈ Sλ and so (0, λ0] ⊆ L 6= ∅.

Proposition 6. If hypotheses H hold and λ ∈ L, then uλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ ⊆ W 1,p
0 (Ω). We introduce the function eλ : Ω × R̊+ → R

defined by

eλ(z, x) =

λx
−η if 0 < x ≤ u(z),

λu(z)−η if u(z) < x.

(25)
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This is a Carathéodory function on Ω × R̊+. We consider the following

Dirichlet (p, q)-equation−∆pu(z)−∆qu(z) = eλ(z, u(z)) in Ω,

u
∣∣
∂Ω

= 0, u > 0, λ > 0, 1 < q < p.

(Eλ)

Invoking Proposition 10 of Papageorgiou-Rădulescu-Repovš [18], we see that

problem (Eλ) admits a solution ũλ ∈W 1,p
0 (Ω), ũλ ≥ 0, ũλ 6= 0. We have

〈Ap(ũλ), (ũλ − u)+〉+ 〈Aq(ũλ), (ũλ − u)+〉

=

∫
Ω

λu−η(ũλ − u)+dz (see (25))

≤
∫

Ω

[
λu−η + f(z, u)

]
(ũλ − u)+dz (since f ≥ 0)

= 〈Ap(u), (ũλ − u)+〉+ 〈Aq(u), (ũλ − u)+〉 (since u ∈ Sλ),

⇒ ũλ ≤ u.

So, we have proved that

ũλ ∈ [0, u], ũλ 6= 0. (26)

From (26), (25) and Proposition 4 it follows that

ũλ = uλ ∈ intC+,

⇒ uλ ≤ u for all u ∈ Sλ.

95

Proposition 7. If hypotheses H hold, then Sλ ⊆ intC+.

Proof. Let u ∈ Sλ. From Proposition 6, we know that uλ ≤ u, hence u−η ∈

Ls(Ω), s > N (see (8)). Then we have

−∆pu(z)−∆qu(z) = λu(z)−η + f(z, u(z)) for a.a. z ∈ Ω. (27)

Consider the linear Dirichlet problem

−∆v(z) = λu(z)−η in Ω, v
∣∣
∂Ω

= 0. (28)
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Using Theorem 9.15, p. 241, of Gilbarg-Trudinger [6], we have that problem

(28) admits a unique solution vλ ∈ W 2,s(Ω). Since s > N , by the Sobolev

embedding theorem we have that vλ ∈ C1,α(Ω) with α = N
s ∈ (0, 1). Let

wλ = ∇vλ. Then wλ ∈ C0,α(Ω,RN ). Using wλ(·), we rewrite (27) as follows

−div
(
|∇u|p−2∇u+ |∇u|q−2∇u− wλ

)
= 0 in Ω, u

∣∣
∂Ω

= 0. (29)

From (29) and Theorem 7.1, p. 286, of Ladyzhenskaya-Ural’tseva [8] we

have that u ∈ L∞(Ω). Then the nonlinear regularity theory of Lieberman [10]

implies that u ∈ C+ \ {0}. Moreover, from (27) we see that

∆pu(z) + ∆qu(z) ≤ 0 for a.a. z ∈ Ω,

⇒ u ∈ intC+ (see Pucci-Serrin [23], pp. 111, 120).

Proposition 8. If hypotheses H hold and λ ∈ L, then Sλ ⊆ C1
0 (Ω) is compact.

Proof. First we show that Sλ ⊆W 1,p
0 (Ω) is bounded.

We argue indirectly. So, suppose we can find {un}n≥1 ⊆W 1,p
0 (Ω) such that

‖un‖ → +∞ as n→ +∞. (30)

Let yn = un
‖un‖ , n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. So, we may

assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω) as n→ +∞, y ≥ 0. (31)

For every n ∈ N, we have

〈Ap(un), h〉+ 〈Aq(un), h〉 =

∫
Ω

[
λu−ηn + f(z, un)

]
hdz for all h ∈W 1,p

0 (Ω),

⇒ 〈Ap(yn), h〉+
1

‖un‖p−q
〈Aq(yn), h〉 =

∫
Ω

[
λ

u−ηn
‖un‖p−1

+
f(z, un)

‖un‖p−1

]
hdz (32)

for all h ∈W 1,p
0 (Ω).
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On account of hypotheses H (i), (ii), we have

0 ≤ f(z, x) ≤ c9[1 + xp−1] for a.a. z ∈ Ω, all x ≥ 0, some c9 > 0,

⇒
{
f(·, un(·))
‖un‖p−1

}
⊆ Lp

′
(Ω) is bounded. (33)

From (33) and hypothesis H (ii), we infer that at least for a subsequence we

have
f(·, un(·))
‖un‖p−1

w−→ η̃(·)y(·)p−1 in Lp
′
(Ω) as n→ +∞, (34)

with η(z) ≤ η̃(z) ≤ η̂(z) for a.a. z ∈ Ω (see Aizicovici-Papageorgiou-Staicu [1],

proof of Proposition 16). In (32), we choose h = yn − y ∈W 1,p
0 (Ω), pass to the

limit as n→ +∞ and use (30) (recall that q < p), (31) and (34). We obtain

lim
n→+∞

〈Ap(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p
0 (Ω) (see Proposition 1), hence ‖y‖ = 1, y ≥ 0. (35)

So, if in (32) we pass to the limit as n → +∞ and use (35), (30) and (34),

then we have

〈Ap(y), h〉 =

∫
Ω

η̃(z)yp−1hdz for all h ∈W 1,p
0 (Ω),

⇒ −∆py(z) = η̃(z)y(z)p−1 in Ω, y
∣∣
∂Ω

= 0.

On account of Proposition 3, we have

λ̃1(η̃, p) < λ̃1(λ̂1, p) = 1 (see (34) and hypothesis H (iii)),

⇒ y 6= 0, (see (35)) must be nodal.

This contradicts (35).100

Therefore Sλ ⊆W 1,p
0 (Ω) is bounded. As before (see the proof of Proposition

7), using the nonlinear regularity theory (see [8] and [10]), we see that we can

find β ∈ (0, 1) and c10 > 0 such that

u ∈ C1,β(Ω) ∩ C1
0 (Ω) and ‖u‖C1,β(Ω) ≤ c10.

The compact embedding of C1,β(Ω) ∩ C1
0 (Ω) into C1

0 (Ω) implies that

Sλ ⊆ C1
0 (Ω) is relatively compact.
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But clearly the set Sλ ⊆ C1
0 (Ω) is closed. Therefore we conclude that Sλ ⊆

C1
0 (Ω) is compact.

Next we show that L is connected (that is, L is an interval).

Proposition 9. If hypotheses H hold, λ ∈ L and 0 < µ < λ, then µ ∈ L.

Proof. Since λ ∈ L we can find u ∈ Sλ ⊆ intC+ (see Proposition 7). We have

uµ ≤ uλ ≤ u (see Propositions 4 and 6). Hence we can define the following

truncation of the reaction in problem (Pµ)

kµ(z, x) =


µuµ(z)−η + f(z, uµ(z)) if x < uµ(z),

µx−η + f(z, x) if uµ(z) ≤ x ≤ u(z),

µu(z)−η + f(z, u(z)) if u(z) < x.

(36)

This is a Carathéodory function. We set Kµ(z, x) =
∫ x

0
kµ(z, s)ds and con-

sider the functional σµ : W 1,p
0 (Ω)→ R defined by

σµ(u) =
1

p
‖∇u‖pp +

1

q
‖∇u‖qq −

∫
Ω

Kµ(z, u)dz for all u ∈W 1,p
0 (Ω).

We have σµ ∈ C1(W 1,p
0 (Ω),R) (see also Papageorgiou-Smyrlis [20], Propo-

sition 3). From (36) it is clear that σµ(·) is coercive. Also, it is sequentially

weakly lower semicontinuous. By the Weierstrass-Tonelli theorem, we can find

uµ ∈W 1,p
0 (Ω) such that

σµ(uµ) = min
[
σµ(u) : u ∈W 1,p

0 (Ω)
]
,

⇒ σ′µ(uµ) = 0,

⇒ 〈Ap(uµ), h〉+ 〈Aq(uµ), h〉 =

∫
Ω

kµ(z, uµ)hdz for all h ∈W 1,p
0 (Ω). (37)
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In (37) first we choose h = (uµ − uµ)+ ∈W 1,p
0 (Ω). We have

〈Ap(uµ), (uµ − uµ)+〉+ 〈Aq(uµ), (uµ − uµ)+〉

=

∫
Ω

[
µu−ηµ + f(z, uµ)

]
(uµ − uµ)+dz (see (36))

≥
∫

Ω

µu−ηµ (uµ − uµ)+dz (since f ≥ 0)

= 〈Ap(uµ), (uµ − uµ)+〉+ 〈Aq(uµ), (uµ − uµ)+〉 (see Proposition 4),

⇒ uµ ≤ uµ (see Proposition 1).

Next in (37) we choose h = (uµ − u)+ ∈W 1,p
0 (Ω). We have

〈Ap(uµ), (uµ − u)+〉+ 〈Aq(uµ), (uµ − u)+〉

=

∫
Ω

[
µu−η + f(z, u)

]
(uµ − u)+dz (see (36))

≤
∫

Ω

[
λu−η + f(z, u)

]
(uµ − u)+dz (since µ < λ)

= 〈Ap(u), (uµ − u)+〉+ 〈Aq(u), (uµ − u)+〉 (since u ∈ Sλ),

⇒ uµ ≤ u (see Proposition 1).

So, we have proved that

uµ ∈ [uµ, u]. (38)

From (38), (36) and (37) it follows that uµ ∈ Sµ ⊆ intC+ and so µ ∈ L.105

A byproduct of the above proof is the following corollary.

Corollary 1. If hypotheses H hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+ and 0 < µ < λ,

then µ ∈ L and we can find uµ ∈ Sµ ⊆ intC+ such that uµ ≤ uλ.

In fact we can improve this corollary as follows.

Proposition 10. If hypotheses H hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+ and 0 < µ <110

λ, then µ ∈ L and we can find uµ ∈ Sµ ⊆ intC+ such that uλ − uµ ∈ intC+.

Proof. From Corollary 1, we know that µ ∈ L and that there exists uµ ∈ Sµ ⊆

intC+ such that

uµ ≤ uλ. (39)
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Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H (iv). We

have

−∆puµ(z)−∆quµ(z) + ξ̂ρuµ(z)p−1 − λuµ(z)−η

= [µ− λ]uµ(z)−η + f(z, uµ(z)) + ξ̂ρuµ(z)p−1

≤ f(z, uλ(z)) + ξ̂ρuλ(z)p−1 (see hypothesis H (iv) and recall µ < λ)

= −∆puλ(z)−∆quλ(z) + ξ̂ρuλ(z)p−1 − λuλ(z)−η for a.a. z ∈ Ω. (40)

Note that 0 ≺ [λ − µ]u−ηµ . So (40) and Proposition 7 of Papageorgiou-

Rădulescu-Repovš [18] imply that uλ − uµ ∈ intC+.

Let λ∗ = supL.

Proposition 11. If hypotheses H hold, then λ∗ < +∞.115

Proof. On account of hypotheses H (iii), we see that we can find λ̂ > 0 such

that

λ̂x−η + f(z, x) ≥ λ̂1(p)

2
xp−1 for a.a. z ∈ Ω, all x > 0. (41)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ intC+ (see

Proposition 7). Let Ω0 ⊂⊂ Ω with a C2-boundary ∂Ω0 and let m0 = min
Ω0

uλ > 0

(since uλ ∈ intC+). For δ ∈ (0, 1) we set mδ
0 = m0 + δ, ρ = max{‖uλ‖∞,m1

0}

and let ξ̂ρ > 0 be as postulated by hypothesis H (iv). For δ ∈ (0,min{1,m0}],

we have

−∆pm
δ
0 −∆qm

δ
0 + ξ̂ρ(m

δ
0)p−1 − λ(mδ

0)−η

≤

[
ξ̂ρ +

λ̂1(p)

2

]
mp−1

0 + χ(δ)− λ

2
m−η0 with χ(δ)→ 0+ as δ → 0+

≤ f(z,m0) + ξ̂ρm
p−1
0 + χ(δ)− λ

2
m−η0 (see (41) and recall λ̂ < λ)

≤ f(z, uλ(z)) + ξ̂ρuλ(z)p−1 for δ > 0 small

= −∆puλ(z)−∆quλ(z) + ξ̂ρuλ(z)p−1 − λuλ(z)−η for a.a. z ∈ Ω0. (42)

Note that for δ > 0 small, we have

λ̂m−η0 − χ(δ) ≥ µ̂0 > 0.
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Then from (42) and Proposition 6 of Papageorgiou-Rădulescu-Repovš [18],

we have

mδ
0 ≤ uλ(z) for all z ∈ Ω0, δ > 0 small,

a contradiction to the definition of m0. Therefore λ∗ ≤ λ̂ < +∞.

Proposition 12. If hypotheses H hold and λ ∈ (0, λ∗), then problem (Pλ) has

at least two positive solutions u0, û ∈ intC+, u0 ≤ û, u0 6= û.

Proof. Let 0 < λ < ϑ < λ∗. We have λ, ϑ ∈ L and using Proposition 10 we can

find u0 ∈ Sλ ⊆ intC+ and uϑ ∈ Sϑ ⊆ intC+ such that

uϑ − u0 ∈ intC+. (43)

Also from Proposition 6 we know that uλ ≤ u0 and so u−η0 ∈ Ls(Ω), s > N

(see (8)). We introduce the following Carathéodory functions:

βλ(z, x) =

λu0(z)−η + f(z, u0(z)) if x ≤ u0(z),

λx−η + f(z, x) if u0(z) < x ,

(44)

β̂λ(z, x) =

βλ(z, x) if x ≤ uϑ(z),

βλ(z, uϑ(z)) if uϑ(z) < x .

(45)

We set Bλ(z, x) =
∫ x

0
βλ(z, s)ds and B̂λ(z, x) =

∫ x
0
β̂λ(z, s)ds and consider

the C1-functionals γλ, γ̂λ : W 1,p
0 (Ω)→ R defined by

γλ(u) =
1

p
‖∇u‖pp +

1

q
‖∇u‖qq −

∫
Ω

Bλ(z, u)dz for all u ∈W 1,p
0 (Ω),

γ̂λ(u) =
1

p
‖∇u‖pp +

1

q
‖∇u‖qq −

∫
Ω

B̂λ(z, u)dz for all u ∈W 1,p
0 (Ω).

Using (44), (45) and the nonlinear regularity theory, we show that

Kγλ ⊆ [u0) ∩ intC+, (46)

Kγ̂λ ⊆ [u0, uϑ] ∩ intC+. (47)

From (44) and (46), we see that we may assume that

Kγλ is finite and Kγλ ∩ [u0, uϑ] = {u0}. (48)
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Otherwise, we already have a second positive smooth solution, bigger than

u0 and so we are done. Also, it is clear from (44) and (45) that

γλ

∣∣∣
[0,uϑ]

= γ̂λ

∣∣∣
[0,uϑ]

and γ′λ

∣∣∣
[0,uϑ]

= γ̂′λ

∣∣∣
[0,uϑ]

. (49)

From (48) and (49) it follows that

Kγ̂λ = {u0}. (50)

Evidently γ̂λ(·) is coercive (see (45)) and sequentially weakly lower semicon-

tinuous. So, we can find ũ ∈W 1,p
0 (Ω) such that

γ̂λ(ũ) = min
[
γ̂λ(u) : u ∈W 1,p

0 (Ω)
]
, (51)

⇒ ũ ∈ Kγ̂λ ,

⇒ ũ = u0 ∈ intC+ (see (50)).

From (51), (43) and (49) we infer that

u0 is a local C1
0 (Ω)-minimizer of γλ(·),

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of γλ(·) (52)

(see Papageorgiou-Rădulescu [13], Proposition 2.12).

Using (52), (48) and Theorem 5.7.6, p. 449, of Papageorgiou-Rădulescu-

Repovš [15], we can find ρ ∈ (0, 1) small such that

γλ(u0) < inf [γλ(u) : ‖u− u0‖ = ρ] = mλ. (53)

On account of hypothesis H (ii), we have

γλ(tû1(p))→ −∞ as t→ +∞. (54)

Claim: The functional γλ(·) satisfies the C-condition.120

Consider a sequence {un}n≥1 ⊆ W 1,p
0 (Ω) such that {γλ(un)}n≥1 ⊆ R is

bounded and

(1 + ‖un‖)γ′λ(un)→ 0 in W−1,p′(Ω) = W 1,p
0 (Ω)∗ as n→ +∞. (55)
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From (55) we have∣∣∣〈Ap(un), h〉+ 〈Aq(un), h〉 −
∫

Ω

βλ(z, un)hdz
∣∣∣ ≤ εn‖h‖

1 + ‖un‖
(56)

for all h ∈W 1,p
0 (Ω), with εn → 0+.

In (56) first we choose h = −u−n ∈W
1,p
0 (Ω). Using (44) we see that

‖u−n ‖p ≤ c11 for some c11 > 0, all n ∈ N,

⇒ {u−n }n≥1 ⊆W 1,p
0 (Ω) is bounded. (57)

Next we show that {u+
n }n≥1 ⊆W 1,p

0 (Ω) is bounded too. Arguing by contra-

diction, suppose that

‖u+
n ‖ → +∞ as n→ +∞. (58)

We set yn =
u+
n

‖u+
n ‖

, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. So, we may

assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (59)

From (44) we see that

f(z, x)− c12 ≤ βλ(z, x) ≤ λu0(z)−η + f(z, x) + c12 (60)

for a.a. z ∈ Ω, all x ≥ 0, some c12 > 0,

⇒
{
βλ(·, u+

n (·))
‖u+

n ‖p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded (see (8) and (58)).

Then (60) and hypothesis H (ii) imply that

βλ(·, u+
n (·))

‖u+
n ‖p−1

w−→ η̃(·)y(·)p−1 in Lp
′

(61)

with η(z) ≤ η̃(z) ≤ η̂(z) for a.a. z ∈ Ω (see Aizicovici-Papageorgiou-Staicu [1],

proof of Proposition 16).

From (56) and (57), we have∣∣∣∣〈Ap(yn), h〉+
1

‖u+
n ‖p−q

〈Aq(yn), h〉 −
∫

Ω

βλ(z, u+
n )

‖u+
n ‖p−1

hdz

∣∣∣∣ ≤ ε′n (62)

for all h ∈W 1,p
0 (Ω), with ε′n → 0+ as n→ +∞.
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In (62) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n→ +∞ and

use (58), (59) and (61). We obtain

lim
n→+∞

〈Ap(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p
0 (Ω) (see Proposition 1), hence ‖y‖ = 1, y ≥ 0. (63)

In (62) we pass to the limit as n → +∞ and use (58), (61) and (63). We

obtain

〈Ap(y), h〉 =

∫
Ω

η̃(z)yp−1hdz for all h ∈W 1,p
0 (Ω),

⇒ −∆py(z) = η̃(z)y(z)p−1 in Ω, y
∣∣
∂Ω

= 0. (64)

On account of Proposition 3, we have

λ̃1(η̃, p) < λ̃1(λ̂1(p), p) = 1. (65)

From (64), (65) and (63), we infer that y must be nodal, a contradiction.

So, {u+
n }n≥1 ⊆W 1,p

0 (Ω) is bounded, hence {un}n≥1 ⊆W 1,p
0 (Ω) is bounded (see

(57)).125

We may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (66)

In (56) we choose h = un − u ∈W 1,p
0 (Ω), pass to the limit as n→ +∞ and

use (66) and (61). Then

lim
n→+∞

[〈Ap(un), un − u〉+ 〈Aq(un), un − u〉] = 0,

⇒ lim sup
n→+∞

[〈Ap(un), un − u〉+ 〈Aq(u), un − u〉] ≤ 0 (since Aq(·) is monotone),

⇒ lim sup
n→+∞

〈Ap(un), un − u〉 ≤ 0,

⇒ un → u in W 1,p
0 (Ω) (see Proposition 1).

Therefore γλ(·) satisfies the C-condition and this proves the Claim.

From (53), (54) and the Claim, we see that we can apply the Mountain Pass

Theorem. Therefore we can find û ∈W 1,p
0 (Ω) such that

û ∈ Kγλ ⊆ [u0) ∩ intC+ (see (46)) and mλ ≤ γλ(û). (67)
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From (67), (44) and (53) it follows that

û ∈ Sλ ⊆ intC+, u0 ≤ û, û 6= u0.

Proposition 13. If hypotheses H hold, then λ∗ ∈ L.

Proof. Let λn ∈ (0, λ∗), n ∈ N, such that λn ↑ λ∗ as n → +∞. Using the

contradiction argument in the Claim in the proof of Proposition 12, we can find

un ∈ Sλn ⊆ intC+, n ≥ 1 with {un}n≥1 ⊆ W 1,p
0 (Ω) bounded. Subsequently

using Proposition 1, as in the proof of Proposition 12, we show that at least for

a subsequence we have

un → u∗ in W 1,p
0 (Ω) as n→ +∞. (68)

From Propositions 4 and 6, we have

uλ1
≤ un for all n ∈ N,

⇒ uλ1
≤ u∗. (69)

From (68) and (69), we conclude that

u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L.

We have proved that

L = (0, λ∗].

Summarizing our findings in this section, we can state the following bifurcation-130

type theorem.

Theorem 1. If hypotheses H hold, then there exists λ∗ > 0 such that

(a) for every λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions u0,

û ∈ intC+, u0 ≤ û, u0 6= û;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ intC+;135

(c) for every λ > λ∗ problem (Pλ) has no positive solutions.
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4. The Solution Multifunction

In this section we examine the continuity properties of the solution multi-

function λ→ Sλ from L = (0, λ∗] into 2C
1
0 (Ω) \ {∅}.

First we need to recall some continuity notions for multifunctions. For details140

we refer to Hu-Papageorgiou [7].

Let X,Y be Hausdorff topological spaces and S : X → 2Y \{∅} a multifunc-

tion. We introduce the following continuity concepts for S(·).

Definition 1. We say that S(·) is

(a) “upper semicontinuous” (“usc” for short) if for every C ⊆ Y closed,145

S−(C) = {x ∈ X : S(x) ∩ C 6= ∅} is closed in X;

(b) “lower semicontinuous” (“lsc” for short) if for every C ⊆ Y closed, S+(C) =

{x ∈ X : S(x) ⊆ C} is closed in X;

(c) “continuous” (or “Vietoris continuous”) if it is both usc and lsc.

Remark 2. It is clear from Definition 1, that when S(·) is single-valued, then the150

notions of upper semicontinuity and lower semicontinuity coincide with the usual

notion of continuity of a map between Hausdorff topological spaces. In general

the two notions of upper and lower semicontinuity are distinct. Upper semiconti-

nuity allows upward jumps (in the sense of inclusion), while lower semicontinuity

allows downward jumps (in the sense of inclusion), see Hu-Papageorgiou [7], p.155

38.

Next let (Y, d) be a metric space and A,C ⊆ Y . We set

h∗(A,C) = sup[d(a,C) : a ∈ A] = inf[ε > 0 : A ⊆ Cε],

where Cε = {y ∈ Y : d(y, C) < ε} (the open ε-enlargment of C). The Hausdorff

distance between A and C is defined by

h(A,C) = max{h∗(A,C), h∗(C,A)} = inf[ε > 0 : A ⊆ Cε, C ⊆ Aε].
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Let Pk(Y ) = {A ⊆ Y : A 6= ∅, A is compact}. Then (Pk(Y ), h) is a complete

metric space and it is separable (resp. Polish), if Y is separable (resp. Polish),

see Hu-Papageorgiou [7], p. 15.

Let X be a Hausdorff topological space, (Y, d) a metric space and S : X →160

2Y \ {∅} a multifunction.

Definition 2. We say that S(·) is

(a) “h-usc” if for all x0 ∈ X, x→ h∗(S(x), S(x0)) is continuous;

(b) “h-lsc” if for all x0 ∈ X, x→ h∗(S(x0), S(x)) is continuous;

(c) “h-continuous” if it is both h-usc and h-lsc.165

Remark 3. Note that h-continuity of S(·) is continuity from X into the pseu-

dometric space (2Y \ {∅}, h). In general we have

“usc ⇒ h-usc” and “h-lsc ⇒ lsc”

with the converse implications failing in general. However, if S(·) is Pk(Y )-

valued, then the notions are equivalent and so “S(·) is continuous if and only if170

S(·) is h-continuous” (see Hu-Papageorgiou [7], pp. 61-62).

According to Proposition 8, for the solution multifunction λ → Sλ from

L = (0, λ∗] we know that it is Pk(C1
0 (Ω))-valued.

Proposition 14. If hypotheses H hold, then the solution multifunction λ→ Sλ

is usc.175

Proof. Let C ⊆ C1
0 (Ω) be closed. According to Definition 1 (a), we need to

show that S−(C) = {λ ∈ L : Sλ ∩ C 6= ∅} is closed in L.

Let {λn}n≥1 ⊆ S−(C) and assume that λn → λ ∈ L. Let un ∈ Sλn ⊆ intC+,

un ∈ C. Then as in the proof of Proposition 11 (see the Claim in that proof),

we show that

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded. (70)

Let 0 < λ̃ ≤ λn for all n ∈ N. From Propositions 4 and 6 we have

uλ̃ ≤ un for all n ∈ N. (71)
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From (70) and the nonlinear regularity theory (see the proof of Proposition

7), we can find τ ∈ (0, 1) and c13 > 0 such that

un ∈ C1,τ
0 (Ω) = C1,τ (Ω) ∩ C1

0 (Ω), ‖un‖C1,τ (Ω) ≤ c13 for all n ∈ N. (72)

From (72) and the compact embedding of C1,τ
0 (Ω) into C1

0 (Ω), we have that

un → u in C1
0 (Ω), uλ̃ ≤ u (see (71)) and so u 6= 0,

⇒ u ∈ Sλ ⊆ int C+, u ∈ C,

⇒ λ ∈ S−(C) and so S−(C) is closed in L.

This proves the upper semicontinuity of the solution multifunction λ →

Sλ.

By strengthening the conditions on the data of (Pλ), we can also show lower180

semicontinuity of the solution multifunction.

The new conditions on the perturbation f(z, x) are the following:

H ′: f : Ω× R→ R is a function which is measurable in z ∈ Ω and such that

(i) |f(z, x)−f(z, y)| ≤ k̂(z)|x−y| for a.a. z ∈ Ω, all x, y ≥ 0 with k̂ ∈ L∞(Ω);

hypotheses H ′ (ii), (iii), (iv) are the same as the corresponding hypotheses185

H (ii), (iii), (iv).

Remark 4. By taking y = 0 in hypothesis H ′ (i) (recall f(z, 0) = 0 for a.a.

z ∈ Ω), we have

0 ≤ f(z, x) ≤ k̂(z)ρ for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ,

and so hypothesis H (i) holds.

Proposition 15. If hypotheses H ′ hold, then the solution multifunction λ→ Sλ

is lsc.

Proof. According to Proposition 2.6, p. 37, of Hu-Papageorgiou [7], it suffices

to show that if λn → λ in L, λ ∈ L, then we have

Sλ ⊆ lim inf
n→+∞

Sλn = {u ∈ C1
0 (Ω) : un ∈ Sλn , un → u in C1

0 (Ω)}.
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Let u ∈ Sλ ⊆ intC+ and 0 < λ̃ ≤ λn for all n ∈ N. Then λ̃ ≤ λ and so we

have

uλ̃ ≤ u (see Propositions 4 and 6),

⇒ u−η ∈ Ls(Ω) s > N (see (8)).

We consider the following singular Dirichlet (p, q)-problem:−∆pu
0
n(z)−∆qu

0
n(z) = λnu(z)−η + f(z, u(z)) in Ω,

u0
n

∣∣
∂Ω

= 0, 1 < q < p.

(73)

We have λnu(·)−η + f(·, u(·)) ∈ Ls(Ω), s > N , and so problem (73) has

a solution u0
n ∈ intC+ (nonlinear regularity, see [10], and the nonlinear max-

imum principle, see [23]) and this solution is unique on account of the strict

monotonicity of the operator u→ Ap(u)+Aq(u) (see Proposition 1). Moreover,

since

0 ≤ λnu(z)−η + f(z, u(z)) ≤ c14

[
uλ̃(z)−η + 1

]
for a.a. z ∈ Ω, all n ∈ N, some c14 > 0 and u−η

λ̃
∈ Ls(Ω), s > N , we have that

{u0
n}n≥1 ⊆ C1

0 (Ω) is relatively compact

(see the proof of Proposition 14). We may assume that

u0
n → ũ in C1

0 (Ω) as n→ +∞, uλ̃ ≤ ũ. (74)

Passing to the limit as n→ +∞ in (73) and using (74), we obtain

−∆pũ(z)−∆qũ(z) = λu(z)−η + f(z, u(z)) in Ω, ũ
∣∣
∂Ω

= 0.

This problem has a unique solution u ∈ Sλ. Therefore

ũ = u ∈ Sλ ⊆ intC+.

Hence for the original sequence we have

u0
n → u in C1

0 (Ω) as n→ +∞.
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We consider the following singular Dirichlet (p, q)-problem:−∆pu
1
n(z)−∆qu

1
n(z) = λnu

0
n(z)−η + f(z, u0

n(z)) in Ω,

u1
n

∣∣
∂Ω

= 0, 1 < q < p.

(75)

As above, we have that (75) has a unique solution u1
n ∈ intC+ and

u1
n → u in C1

0 (Ω) as n→ +∞.

We continue this way and generate a sequence {ukn}k≥1 ⊆ intC+ such that−∆pu
k
n(z)−∆qu

k
n(z) = λnu

k−1
n (z)−η + f(z, uk−1

n (z)) in Ω,

ukn
∣∣
∂Ω

= 0, for all n ∈ N,
(76)

and for each k ∈ N0, we have190

ukn → u in C1
0 (Ω) as n→ +∞. (77)

We consider the sequence {ukn}k≥0 and we show that it is bounded inW 1,p
0 (Ω).

Arguing by contradiction, suppose that

‖ukn‖ → +∞ as k → +∞ (n ∈ N). (78)

Let yk =
ukn
‖ukn‖

, k ∈ N0. Then ‖yk‖ = 1, yk ≥ 0 for all k ∈ N0. We may

assume that

yk
w−→ y in W 1,p

0 (Ω) and yk → y in Lp(Ω) as k → +∞. (79)

We have

〈Ap(ukn), h〉+ 〈Aq(ukn), h〉 =

∫
Ω

[
λn(uk−1

n )−η + f(z, uk−1
n )

]
hdz

for all h ∈W 1,p
0 (Ω),

⇒ 〈Ap(yk), h〉+
1

‖ukn‖p−q
〈Aq(yk), h〉

=

∫
Ω

[
λn

(uk−1
n )−η

‖ukn‖p−1
+
f(z, uk−1

n )

‖ukn‖p−1

]
hdz for all h ∈W 1,p

0 (Ω). (80)
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Without any loss of generality we may assume that {‖ukn‖}k≥0 is nonde-

creasing (see (78)). On account of hypotheses H ′ (i), (ii), we have

0 ≤ f(z, uk−1
n ) ≤ c15

[
1 + uk−1

n (z)p−1
]

for a.a. z ∈ Ω, some c15 > 0,

⇒ f(·, uk−1
n (·))

‖ukn‖p−1
≤ c15

[
1

‖ukn‖p−1
+

(
‖uk−1

n ‖
‖ukn‖

)p−1

yk−1(z)p−1

]

≤ c15

[
1

‖ukn‖p−1
+ yk−1(z)p−1

]
for a.a. z ∈ Ω,

⇒
{
f(·, uk−1

n (·))
‖ukn‖p

}
k≥0

⊆ Lp
′
(Ω) is bounded. (81)

From hypothesis H ′ (i) we have

f(z, ukn(z))

‖ukn‖p−1
− k̂(z)|ukn(z)− uk−1

n (z)|
‖ukn‖p−1

≤ f(z, uk−1
n (z))

‖ukn‖p−1

≤ f(z, ukn(z))

‖ukn‖p−1
+
k̂(z)|ukn(z)− uk−1

n (z)|
‖ukn‖p−1

for a.a. z ∈ Ω. (82)

From (81), (82) and using hypothesis H ′ (ii), we have that

f(·, uk−1
n (·))

‖ukn‖p−1

w−→ η̃(·)y(·)p−1 in Lp
′

(83)

with η(z) ≤ η̃(z) ≤ η̂(z) for a.a. z ∈ Ω (see [1]). In (80) first we choose

h = yk − y ∈ W 1,p
0 (Ω), pass to the limit as k → +∞ and use (78), (81). We

obtain

lim
n→+∞

〈Ap(yk), yk − y〉 = 0,

⇒ yk → y in W 1,p
0 (Ω) (see Proposition 1), hence ‖y‖ = 1, y ≥ 0. (84)

Then if in (80) we pass to the limit as k → +∞ and use (84), (79) and (83),

we obtain

〈Ap(y), h〉 =

∫
Ω

η̃(z)yp−1hdz for all h ∈W 1,p
0 (Ω),

⇒ −∆py(z) = η̃(z)y(z)p−1 in Ω, y
∣∣
∂Ω

= 0.

As before (see, for example, the Claim in the proof of Proposition 12), using

(83) and Proposition 3, we infer that y must be nodal, a contradiction to (84).
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Therefore we have that

{ukn}k≥0 ⊆W 1,p
0 (Ω) is bounded.

From this, via the nonlinear regularity theory (see [8] and [10]), we obtain

that

{ukn}k≥0 ⊆ C1
0 (Ω) is relatively compact.

So, we may assume that

ukn → un in C1
0 (Ω) as k → +∞.

From (76) we see that

−∆pun(z)−∆qun(z) = λnun(z)−η + f(z, un(z)) in Ω, un
∣∣
∂Ω

= 0,

⇒ un ∈ Sλn ⊆ intC+ for all n ∈ N.

From (77) and the double limit lemma (see Hu-Papageorgiou [7], Proposition

A.1.107, p. 901), we have

un → u in C1
0 (Ω) as n→ +∞,

⇒ u ∈ lim inf
n→+∞

Sλn ,

⇒ λ→ Sλ is lsc on L = (0, λ∗].

Then from Propositions 14 and 15 it follows that under hypotheses H ′,

the solution multifunction is Vietoris continuous. Since the multifunction is195

Pk(C1
0 (Ω))-valued, it is also h-continuous.

Summarizing our findings for the solution multifunction λ → Sλ on L =

(0, λ∗], we can state the following theorem.

Theorem 2. If hypotheses H ′ hold, then the solution multifunction λ → Sλ

from L = (0, λ∗] into Pk(C1
0 (Ω)) is Vietoris continuous and h-continuous.200
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5. Minimal Positive Solutions

In this section we show that for every λ ∈ L = (0, λ∗] problem (Pλ) has a

smallest positive solution u∗λ ∈ intC+ (that is, u∗λ ≤ u for all u ∈ Sλ) and we

examine the monotonicity and continuity properties of the map λ→ u∗λ.

Proposition 16. If hypotheses H hold and λ ∈ L = (0, λ∗], then problem (Pλ)205

admits a smallest positive solution u∗λ ∈ intC+.

Proof. From Proposition 18 of Papageorgiou-Rădulescu-Repovš [18], we know

that Sλ is downward directed. Then using Lemma 3.10, p. 178, of Hu-Papageorgiu

[7], we can find {un}n≥1 ⊆ Sλ decreasing such that

uλ ≤ un ≤ u1 for all n ∈ N, inf
n≥1

un = inf Sλ. (85)

We have

〈Ap(un), h〉+ 〈Aq(un), h〉 =

∫
Ω

[λu−ηn + f(z, un)]hdz for all h ∈W 1,p
0 (Ω). (86)

If in (86) we choose h = un ∈W 1,p
0 (Ω) and use (85), we obtain that

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded.

We may assume that

un
w−→ u∗λ in W 1,p

0 (Ω) and un → u∗λ in Lp(Ω). (87)

From (87) as in the proof of Proposition 12 (see the part of the proof after

(66)), we obtain that

un → u∗λ in W 1,p
0 (Ω). (88)

Passing to the limit as n→ +∞ in (86) and using (88) and (85), we have

〈Ap(u∗λ), h〉+ 〈Aq(u∗λ), h〉 =

∫
Ω

[λ(u∗λ)−η + f(z, u∗λ)]hdz for all h ∈W 1,p
0 (Ω),

uλ ≤ u∗λ.

It follows that

u∗λ ∈ Sλ ⊆ intC+ and u∗λ = inf Sλ.
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Next we determine the monotonicity and continuity properties of the map

λ→ u∗λ from L into C1
0 (Ω).

Proposition 17. If hypotheses H hold, then the minimal positive solution map210

λ→ u∗λ from L = (0, λ∗] into C1
0 (Ω) has the following properties:

(a) it is strictly increasing, that is,

0 < µ < λ ≤ λ∗ ⇒ u∗λ − u∗µ ∈ intC+;

(b) it is left continuous.

Proof. (a) According to Proposition 10, we can find u ∈ Sµ ⊆ intC+ such that

u∗λ − u ∈ intC+,

⇒ u∗λ − u∗µ ∈ intC+ (since u∗µ ≤ u),

⇒ λ→ u∗λ is strictly increasing.

(b) Let {λn}n≥1 ⊆ L = (0, λ∗] and assume that λn → λ−. Let u∗n = u∗λn ∈

Sλn ⊆ intC+ be the minimal positive solution of (Pλn) produced in Proposition

16. We have

uλ1
≤ u∗n ≤ u∗λ∗ for all n ∈ N,

⇒ {u∗n}n≥1 ⊆W 1,p
0 (Ω) is bounded.

From this as before (see, for example, the last part of the proof of Proposition

8), from the nonlinear regularity theory of Lieberman [10] we have that

{u∗n}n≥1 ⊆ C1
0 (Ω) is relatively compact.

Since {u∗n}n≥1 is increasing (see part (a)), we have

u∗n → ũ∗λ in C1
0 (Ω) as n→ +∞. (89)

We claim that ũ∗λ = u∗λ. If this is not true, we can find z0 ∈ Ω such that

u∗λ(z0) < ũ∗λ(z0),

⇒ u∗λ(z0) < u∗n(z0) for all n ≥ n0 (see (89)),
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which contradicts part (a). Therefore ũ∗λ = u∗λ and this proves that the map

λ→ u∗λ is left continuous.

215

We can state the following theorem.

Theorem 3. If hypotheses H hold and λ ∈ L = (0, λ∗], then problem (Pλ) has

a smallest positive solution u∗λ ∈ intC+ and the minimal positive solution map

λ→ u∗λ from L into C1
0 (Ω) is strictly increasing and left continuous.
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