Positive solutions for parametric singular Dirichlet (p, q)-equations

Nikolaos S. Papageorgiou ${ }^{\text {a }}$, Calogero Vetro ${ }^{\text {b }}$, Youpei Zhang ${ }^{\text {c,* }}$
${ }^{a}$ National Technical University, Department of Mathematics, Zografou Campus, 15780 Athens, Greece
${ }^{b}$ University of Palermo, Department of Mathematics and Computer Science, Via Archirafi 34, 90123 Palermo, Italy
${ }^{c}$ Central South University, School of Mathematics and Statistics, Changsha, Hunan 410083, People's Republic of China \& Department of Mathematics, University of Craiova, Street A.I. Cuza no. 13, 200585 Craiova, Romania

Abstract

We consider a nonlinear elliptic Dirichlet problem driven by the (p, q)-Laplacian and a reaction consisting of a parametric singular term plus a Carathéodory perturbation $f(z, x)$ which is $(p-1)$-linear as $x \rightarrow+\infty$. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter $\lambda>0$ moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u_{λ}^{*} and investigate the monotonicity and continuity properties of the map $\lambda \rightarrow u_{\lambda}^{*}$.

Keywords: Nonlinear regularity, nonlinear maximum principle, bifurcation-type theorem, solution multifunction, minimal solution

2010 MSC: 35J20, 35J75, 35J92

[^0]
1. Introduction

In this paper we study the following parametric singular (p, q)-Dirichlet problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)-\Delta_{q} u(z)=\lambda u(z)^{-\eta}+f(z, u(z)) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad u>0, \lambda>0,1<q<p, 0<\eta<1
\end{array}\right.
$$

In this problem $\Omega \subseteq \mathbb{R}^{N}$ is a bounded domain with a C^{2}-boundary $\partial \Omega$. For every $r \in(1,+\infty)$, by Δ_{r} we denote the r-Laplace differential operator defined by

$$
\Delta_{r} u=\operatorname{div}\left(|\nabla u|^{r-2} \nabla u\right) \quad \text { for all } u \in W_{0}^{1, r}(\Omega)
$$

So, in problem P_{λ} the differential operator is the sum of two such operators and therefore it is not homogeneous. Operators of this kind arise in many mathematical models of physical processes. We refer to the work of Bahrouni5 Rădulescu-Repovš [2] and the references therein. In the reaction of P_{λ}, we have a parametric singular term $\left(u \rightarrow \lambda u^{-\eta}\right)$ and a Carathéodory perturbation $f(z, x)$ (that is, for all $x \in \mathbb{R}, z \rightarrow f(z, x)$ is measurable and for a.a. $z \in \Omega$, $x \rightarrow f(z, x)$ is continuous). We assume that this perturbation is $(p-1)$-linear as $x \rightarrow+\infty$. Our goal is to determine the precise dependence of the set of positive solutions on the parameter $\lambda>0$. In this direction, we prove a bifurcation-type theorem describing the changes in the set of positive solutions of P_{λ} as the parameter λ moves in $\stackrel{\circ}{\mathbb{R}}_{+}=(0,+\infty)$. Also, we study the properties of the solution multifunction and produce minimal positive solutions.

Recently Papageorgiou-Rădulescu-Repovš [18] examined problem P_{λ} assuming that the perturbation $f(z, \cdot)$ is $(p-1)$-superlinear but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. In fact the formulation of the problem in [18] is more general, since the differential operator is nonhomogeneous including as a special case the (p, q)-Laplacian and the singular term is more general having as a special case the function $x \rightarrow \lambda x^{-\eta}$. For
${ }_{20}$ the sake of simplicity in the presentation, we have decided to proceed with the (p, q)-Laplacian and the standard singularity $u \rightarrow \lambda u^{-\eta}$. The work here can also be extended to the more general framework in [18].

Bai-Motreanu-Zeng [3] considered parametric singular equations driven by the p-Laplacian and studied the continuity properties of the solution multifunction. Our results in Section 4 extend their work to (p, q)-equations. Finally we mention the nonsingular works on parametric $(p, 2)$-equations of PapageorgiouRădulescu [12, Papageorgiou-Rădulescu-Repovš [14, 16, 17], Papageorgiou-Scapellato [19], Papageorgiou-Vetro-Vetro [21], Papageorgiou-Zhang [22].

2. Mathematical Background - Hypotheses

The main spaces in the analysis of problem P_{λ} are the Sobolev space $W_{0}^{1, p}(\Omega)$ and the Banach space $C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\}$. By $\|\cdot\|$ we denote the norm of the Sobolev space $W_{0}^{1, p}(\Omega)$. On account of the Poincaré inequality, we have

$$
\|u\|=\|\nabla u\|_{p} \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

The Banach space $C_{0}^{1}(\bar{\Omega})$ is ordered with positive (order) cone

$$
C_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \Omega,\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}<0\right\}
$$

By $\frac{\partial u}{\partial n}$ we denote the normal derivative of $u(\cdot)$. We know that

$$
\frac{\partial u}{\partial n}(z)=(\nabla u(z), n)_{\mathbb{R}^{N}} \quad \text { for all } z \in \partial \Omega, \text { all } u \in W_{0}^{1, p}(\Omega) \cap C^{1}(\bar{\Omega})
$$

30 and $n(\cdot)$ is the outward unit normal on $\partial \Omega$.
For every $r \in(1,+\infty)$ by $A_{r}: W_{0}^{1, r}(\Omega) \rightarrow W_{0}^{1, r}(\Omega)^{*}=W^{-1, r^{\prime}}(\Omega)\left(\frac{1}{r}+\frac{1}{r^{\prime}}=\right.$ 1) we denote the nonlinear map defined by

$$
\left\langle A_{r}(u), h\right\rangle=\int_{\Omega}|\nabla u|^{r-2}(\nabla u, \nabla h)_{\mathbb{R}^{N}} d z \quad \text { for all } u, h \in W_{0}^{1, r}(\Omega)
$$

This map has the following well-known properties (see Gasiński-Papageorgiou [5], Problem 2.192, p. 279).

Proposition 1. The map $A_{r}: W_{0}^{1, r}(\Omega) \rightarrow W^{-1, r^{\prime}}(\Omega)$ is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (hence max$\lim \sup _{n \rightarrow+\infty}\left\langle A_{r}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$ imply $u_{n} \rightarrow u$ in $\left.W_{0}^{1, r}(\Omega)\right)$.

We will need some facts about the spectrum of the Dirichlet r-Laplacian. So, we consider the following nonlinear eigenvalue problem

$$
\begin{equation*}
-\Delta_{r} u(z)=\widehat{\lambda}|u(z)|^{r-2} u(z) \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 \tag{1}
\end{equation*}
$$

We known (see Gasiński-Papageorgiou [4) that this problem has a smallest eigenvalue $\widehat{\lambda}_{1}(r)$, which has the following properties:

- $0<\widehat{\lambda}_{1}(r)=\inf \left[\frac{\|\nabla u\|_{r}^{r}}{\|u\|_{r}^{r}}: u \in W_{0}^{1, r}(\Omega), u \neq 0\right]$;
- $\widehat{\lambda}_{1}(r)>0$ is isolated in the spectrum $\widehat{\sigma}(r)$ of (1), that is, there exists $\varepsilon>0$ such that $\left(\widehat{\lambda}_{1}(r), \widehat{\lambda}_{1}(r)+\varepsilon\right) \cap \widehat{\sigma}(r)=\emptyset$;
- $\widehat{\lambda}_{1}(r)>0$ is simple, that is, if $\widehat{u}, \widehat{v} \in W_{0}^{1, r}(\Omega)$ are eigenfunctions corresponding to $\widehat{\lambda}_{1}(r)$, then $\widehat{u}=\mu \widehat{v}$ for some $\mu \in \mathbb{R} \backslash\{0\}$.

So, by this last property, the eigenspace corresponding to $\widehat{\lambda}_{1}(r)>0$ is onedimensional. The infimum in (2) is realized on this eigenspace. Moreover, it is clear that the elements of this eigenspace have fixed sign. By $\widehat{u}_{1}(r)$ we denote the
40 positive, L^{r}-normalized (that is, $\left\|\widehat{u}_{1}(r)\right\|_{r}=1$) eigenfunction corresponding to $\widehat{\lambda}_{1}(r)$. The nonlinear regularity theory (see Lieberman [10) and the nonlinear moaximum principle (see Pucci-Serrin [23]) imply that $\widehat{u}_{1}(r) \in \operatorname{int} C_{+}$. Employing the Ljusternik-Schnirelmann minimax scheme, we can produce a whole sequence of distinct eigenvalues $\left\{\widehat{\lambda}_{k}(r)\right\}_{k \geq 1}$ with $\widehat{\lambda}_{k}(r) \rightarrow+\infty$ as $k \rightarrow+\infty$. We
${ }_{45}$ do not know if these variational eigenvalues exhaust the spectrum $\widehat{\sigma}(r)$. This is the case if $r=2$ (linear eigenvalue problem) or if $N=1$ (scalar eigenvalue problem).

An easy consequence of the above properties of $\widehat{\lambda}_{1}(r)>0$ is the following result (see Mugnai-Papageorgiou [11, Lemma 4.11).
${ }_{50}$ Proposition 2. If $\eta_{0} \in L^{\infty}(\Omega), \eta_{0}(z) \leq \widehat{\lambda}_{1}(r)$ for a.a. $z \in \Omega$ and $\eta_{0} \not \equiv \widehat{\lambda}_{1}(r)$, then $\|\nabla u\|_{r}^{r}-\int_{\Omega} \eta_{0}(z)|u|^{r} d z \geq c_{0}\|u\|^{r}$ for some $c_{0}>0$, all $u \in W_{0}^{1, r}(\Omega)$.

We mention that $\widehat{\lambda}_{1}(r)$ is the only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have eigenfunctions which are nodal (that is, sign changing).

We will also consider a weighted version of problem (2). So, let $m \in L^{\infty}(\Omega)$ such that $m(z) \geq 0$ for a.a. $z \in \Omega, m \not \equiv 0$ and consider the following nonlinear weighted eigenvalue problem:

$$
\begin{equation*}
-\Delta_{r} u(z)=\widetilde{\lambda} m(z)|u(z)|^{r-2} u(z) \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 \tag{3}
\end{equation*}
$$

Problem (3) has the same properties as problem (2). In particular there is a smallest eigenvalue $\widetilde{\lambda}_{1}(m, r)>0$, which is isolated, simple and admits the following variational characterization

$$
\begin{equation*}
\tilde{\lambda}_{1}(m, r)=\inf \left[\frac{\|\nabla u\|_{r}^{r}}{\int_{\Omega} m(z)|u|^{r} d z}: u \in W_{0}^{1, r}(\Omega), u \neq 0\right] . \tag{4}
\end{equation*}
$$

The infimum in $\sqrt[4]{4}$ is realized on the corresponding one-dimensional eigenspace. Using (4) one can show the following strict monotonicity property for the map $m \rightarrow \widetilde{\lambda}_{1}(m, r)$.

Proposition 3. If $m_{1}, m_{2} \in L^{\infty}(\Omega), 0 \leq m_{1}(z) \leq m_{2}(z)$ for a.a. $z \in \Omega$, $m_{1} \not \equiv 0, m_{1} \not \equiv m_{2}$, then $\widetilde{\lambda}_{1}\left(m_{2}, r\right)<\widetilde{\lambda}_{1}\left(m_{1}, r\right)$.

For $x \in \mathbb{R}$, we set $x^{ \pm}=\max \{ \pm x, 0\}$. Then given $u \in W_{0}^{1, p}(\Omega)$, we define $u^{ \pm}(z)=u(z)^{ \pm}$for all $z \in \Omega$. We know that

$$
u^{ \pm} \in W_{0}^{1, p}(\Omega), u=u^{+}-u^{-},|u|=u^{+}+u^{-}
$$

Given $h_{1}, h_{2}: \Omega \rightarrow \mathbb{R}$ measurable functions, we write $h_{1} \prec h_{2}$ if for every $K \subseteq \Omega$ compact, we have

$$
0<c_{K} \leq h_{2}(z)-h_{1}(z) \quad \text { for a.a. } z \in K
$$

Evidently if $h_{1}, h_{2} \in C(\Omega)$ and $h_{1}(z)<h_{2}(z)$ for all $z \in \Omega$, then $h_{1} \prec h_{2}$.

A set $S \subseteq W_{0}^{1, p}(\Omega)$ is said to be "downward directed" if for every pair $\left(u_{1}, u_{2}\right) \in S \times S$, we can find $u \in S$ such that $u \leq u_{1}, u \leq u_{2}$.

Given $u, v \in W_{0}^{1, p}(\Omega)$ with $u \leq v$, we define

$$
\begin{aligned}
& {[u, v]=\left\{h \in W_{0}^{1, p}(\Omega): u(z) \leq h(z) \leq v(z) \text { for a.a. } z \in \Omega\right\}} \\
& {[u)=\left\{h \in W_{0}^{1, p}(\Omega): u(z) \leq h(z) \text { for a.a. } z \in \Omega\right\}}
\end{aligned}
$$

Let X be a Banach space and $\varphi \in C^{1}(X, \mathbb{R})$. We say that $\varphi(\cdot)$ satisfies the " C-condition" if the following property holds:
"Every sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and $\left(1+\left\|u_{n}\right\|_{X}\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow+\infty$, admits a strongly convergent subsequence".

We set $K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\}$, the critical set of φ.
Our hypotheses on the perturbation $f(z, x)$ are the following:
70
$\underline{H}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that
(i) for every $\rho>0$, there exists $a_{\rho} \in L^{\infty}(\Omega)$ such that

$$
0 \leq f(z, x) \leq a_{\rho}(z) \quad \text { for a.a. } z \in \Omega, \text { all } 0 \leq x \leq \rho
$$

(ii) there exist functions $\eta, \widehat{\eta} \in L^{\infty}(\Omega)$ such that

$$
\begin{aligned}
& \widehat{\lambda}_{1}(p) \leq \eta(z) \leq \widehat{\eta}(z) \text { for a.a. } z \in \Omega, \eta \not \equiv \widehat{\lambda}_{1}(p) \\
& \eta(z) \leq \liminf _{x \rightarrow+\infty} \frac{f(z, x)}{x^{p-1}} \leq \limsup _{x \rightarrow+\infty} \frac{f(z, x)}{x^{p-1}} \leq \widehat{\eta}(z) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iii) there exists a function $\eta_{0} \in L^{\infty}(\Omega)$ such that

$$
\begin{aligned}
& \eta_{0}(z) \leq \widehat{\lambda}_{1}(q) \text { for a.a. } z \in \Omega, \eta_{0} \not \equiv \widehat{\lambda}_{1}(q) \\
& \limsup _{x \rightarrow 0^{+}} \frac{f(z, x)}{x^{q-1}} \leq \eta_{0}(z) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iv) for every $\rho>0$, there exists $\widehat{\xi}_{\rho}>0$ such that for a.a. $z \in \Omega$ the function $x \rightarrow f(z, x)+\widehat{\xi}_{\rho} x^{p-1}$ is nondecreasing on $[0, \rho]$.

Remark 1. Since our goal is to find positive solutions and all the above hypotheses concern the positive semiaxis $\mathbb{R}_{+}=[0,+\infty)$, without any loss of generality, we may assume that

$$
\begin{equation*}
f(z, x)=0 \quad \text { for a.a. } z \in \Omega, \text { all } x \leq 0 . \tag{5}
\end{equation*}
$$

Note that hypotheses $H(i i i),(i v)$ imply that $f(z, 0)=0$ for a.a. $z \in \Omega$. Hypothesis $H(i i i)$ implies that $f(z, \cdot)$ is $(p-1)$-linear near $+\infty$ and also makes ${ }_{75}$ the energy functional of the problem noncoercive.

By a solution of problem P_{λ} we mean a function $u \in W_{0}^{1, p}(\Omega)$ such that $u^{-\eta} h \in L^{1}(\Omega)$ for all $h \in W_{0}^{1, p}(\Omega)$ and

$$
\left\langle A_{p}(u), h\right\rangle+\left\langle A_{q}(u), h\right\rangle=\lambda \int_{\Omega} u^{-\eta} h d z+\int_{\Omega} f(z, u) h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega)
$$

The difficulty we encounter in dealing with problem $\left(P_{\lambda}\right)$ is that the energy (Euler) functional $\varphi_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ for the problem, defined by

$$
\varphi_{\lambda}(u)=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{q}\|\nabla u\|_{q}^{q}-\frac{\lambda}{1-\eta} \int_{\Omega}\left(u^{+}\right)^{1-\eta} d z-\int_{\Omega} F\left(z, u^{+}\right) d z
$$

for all $u \in W_{0}^{1, p}(\Omega)$, with $F(z, x)=\int_{0}^{x} f(z, s) d s$, is not C^{1} on account of the singular (third) term. Therefore the minimax techniques of critical point theory are not directly applicable to the functional $\varphi_{\lambda}(\cdot)$. We need to find ways to bypass the singularity and deal with C^{1}-functionals.

For this reason, first we consider the following purely singular auxiliary Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)-\Delta_{q} u(z)=\lambda u(z)^{-\eta} \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0, \quad u>0, \lambda>0,1<q<p, 0<\eta<1
\end{array}\right.
$$

Consider the ordered Banach space $C_{0}(\bar{\Omega})=\left\{u \in C(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\}$ with positive cone $K_{+}=\left\{u \in C_{0}(\bar{\Omega}): u(z) \geq 0\right.$ for all $\left.z \in \bar{\Omega}\right\}$. This cone has a nonempty interior given by

$$
\operatorname{int} K_{+}=\left\{u \in K_{+}: c_{u} \widehat{d} \leq u \text { for some } c_{u}>0\right\}
$$

where $\widehat{d}(z)=d(z, \partial \Omega)$ for all $z \in \bar{\Omega}$. Lemma 14.16 , p. 335, of Gilbarg-Trudinger [6] implies that there exists $\delta>0$ small such that $\widehat{d} \in C^{2}\left(\Omega_{\delta}\right)$ with $\Omega_{\delta}=\{z \in$ $\bar{\Omega}: \widehat{d}(z)<\delta\}$. Therefore $\widehat{d} \in \operatorname{int} C_{+}$and then using Proposition 4.1.22, p. 274, of Papageorgiou-Rădulescu-Repovš [15], we see that given $\underline{u} \in \operatorname{int} C_{+}$we can find constants $0<c_{1} \leq c_{2}$ such that

$$
\begin{align*}
& c_{1} \widehat{d} \leq \underline{u} \leq c_{2} \widehat{d} \\
\Rightarrow \quad & \underline{u} \in \operatorname{int} K_{+} \tag{6}
\end{align*}
$$

Given $s>N$, we have $\widehat{u}_{1}(p)^{1 / s} \in K_{+}$and so on account of (6) we can find $c_{3}>0$ such that

$$
\begin{aligned}
& 0 \leq \widehat{u}_{1}(p)^{1 / s} \leq c_{3} \underline{u} \\
& \Rightarrow \quad \underline{u}^{-\eta} \leq c_{4} \widehat{u}_{1}(p)^{-\eta / s} \quad \text { for some } c_{4}>0
\end{aligned}
$$

The Lemma in Lazer-McKenna [9] implies that

$$
\begin{equation*}
\underline{u}^{-\eta} \in L^{s}(\Omega) \quad(s>N) . \tag{7}
\end{equation*}
$$

For problem Q_{λ} we have the following result
Proposition 4. For every $\lambda>0$ problem Q_{λ} has a unique positive solution $\underline{u}_{\lambda} \in \operatorname{int} C_{+}$and the map $\lambda \rightarrow \underline{u}_{\lambda}$ from $\stackrel{\circ}{\mathbb{R}}_{+}=(0,+\infty)$ into $C_{0}^{1}(\bar{\Omega})$ is nondecreasing, that is, $0<\mu<\lambda$ implies $\underline{u}_{\mu} \leq \underline{u}_{\lambda}$.

Proof. The existence and uniqueness of the solution $\underline{u}_{\lambda} \in \operatorname{int} C_{+}$follows from Proposition 10 of Papageorgiou-Rădulescu-Repovš [18]. We have

$$
\begin{equation*}
\underline{u}_{\lambda}^{-\eta} \in L^{s}(\Omega) \quad s>N(\text { see }(7)) . \tag{8}
\end{equation*}
$$

Let $0<\mu<\lambda$ and consider the Carathéodory function $\widehat{w}_{\mu}(z, x)$ defined by

$$
\widehat{w}_{\mu}(z, x)=\left\{\begin{array}{ll}
\mu\left(x^{+}\right)^{-\eta} & \text { if } x \leq \underline{u}_{\lambda}(z), \tag{9}\\
\mu \underline{u}_{\lambda}(z)^{-\eta} & \text { if } \underline{u}_{\lambda}(z)<x
\end{array} \quad(\text { see (8) }) .\right.
$$

We consider the following Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)-\Delta_{q} u(z)=\widehat{w}_{\mu}(z, u(z)) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0, \quad u>0, \quad 1<q<p
\end{array}\right.
$$

Again using Proposition 10 of [18, we see that (9) has a solution $\widetilde{u}_{\mu} \in \operatorname{int} C_{+}$. We have

$$
\begin{equation*}
\left\langle A_{p}\left(\widetilde{u}_{\mu}\right), h\right\rangle+\left\langle A_{q}\left(\widetilde{u}_{\mu}\right), h\right\rangle=\int_{\Omega} \widehat{w}_{\mu}\left(z, \widetilde{u}_{\mu}\right) h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega) \tag{10}
\end{equation*}
$$

In (10) we choose $h=\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+} \in W_{0}^{1, p}(\Omega)$. Then we have

$$
\begin{aligned}
& \left\langle A_{p}\left(\widetilde{u}_{\mu}\right),\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+}\right\rangle+\left\langle A_{q}\left(\widetilde{u}_{\mu}\right),\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+}\right\rangle \\
& =\int_{\Omega} \mu \underline{u}_{\lambda}^{-\eta}\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+} d z \quad(\text { see } \sqrt[9]{ }) \\
& \leq \int_{\Omega} \lambda \underline{u}_{\lambda}^{-\eta}\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+} d z \quad(\text { since } \mu<\lambda) \\
& =\left\langle A_{p}\left(\underline{u}_{\lambda}\right),\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+}\right\rangle+\left\langle A_{q}\left(\underline{u}_{\lambda}\right),\left(\widetilde{u}_{\mu}-\underline{u}_{\lambda}\right)^{+}\right\rangle \\
\Rightarrow \quad & \widetilde{u}_{\mu} \leq \underline{u}_{\lambda} \quad(\text { see Proposition 11 }, \\
\Rightarrow \quad & \widetilde{u}_{\mu}=\underline{u}_{\mu} \in \operatorname{int} C_{+} \quad\left(\text { from the uniqueness of the solution of }\left(Q_{\mu}\right)\right), \\
\Rightarrow \quad & \underline{u}_{\mu} \leq \underline{u}_{\lambda} .
\end{aligned}
$$

In the next section we will use this solution to isolate the singularity and use the minimax techniques of critical point theory.

3. Bifurcation-Type Theorem

In this section we prove a bifurcation-type theorem which describes in a precise way the changes in the set of positive solutions as the parameter $\lambda>0$ moves.

We introduce the following two sets

$$
\begin{aligned}
\mathcal{L} & =\left\{\lambda>0: \text { problem } P_{\lambda} \text { has a positive solution }\right\} \\
S_{\lambda} & =\text { set of positive solutions of } P_{\lambda} .
\end{aligned}
$$

Proposition 5. If hypotheses H hold, then $\mathcal{L} \neq \emptyset$.

Proof. For $\lambda>0$, let $\underline{u}_{\lambda} \in \operatorname{int} C_{+}$be the unique positive solution of Q_{λ} (see Proposition (4). We introduce the following truncation of the reaction in problem (P_{λ}

$$
g_{\lambda}(z, x)= \begin{cases}\lambda \underline{u}_{\lambda}(z)^{-\eta}+f\left(z, x^{+}\right) & \text {if } x \leq \underline{u}_{\lambda}(z) \tag{11}\\ \lambda x^{-\eta}+f(z, x) & \text { if } \underline{u}_{\lambda}(z)<x\end{cases}
$$

(recall that $\underline{u}_{\lambda}(z)^{-\eta} \in L^{s}(\Omega), s>N$, see 8). This is a Carathéodory function. We set $G_{\lambda}(z, x)=\int_{0}^{x} g_{\lambda}(z, s) d s$ and consider the C^{1}-functional $\widehat{\varphi}_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow$ \mathbb{R} defined by

$$
\widehat{\varphi}_{\lambda}(u)=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{q}\|\nabla u\|_{q}^{q}-\int_{\Omega} G_{\lambda}(z, u) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

(see also Papageorgiou-Smyrlis [20], Proposition 3).
Let $r>p$. On account of hypotheses $H(i),(i i),(i i i)$, given $\varepsilon>0$, we can find $c_{5}=c_{5}(\varepsilon, r)>0$ such that

$$
\begin{equation*}
F(z, x) \leq \frac{1}{p}\left[\eta_{0}(z)+\varepsilon\right] x^{q}+c_{5} x^{r} \quad \text { for a.a. } z \in \Omega, \text { all } x \geq 0 \tag{12}
\end{equation*}
$$

Using (11) and (12), we have

$$
\begin{gather*}
\widehat{\varphi}_{\lambda}(u) \geq \frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{q}\left[\|\nabla u\|_{q}^{q}-\int_{\Omega} \eta_{0}(z)|u|^{q} d z-\varepsilon\|u\|_{q}^{q}\right]-c_{6}\|u\|^{r} \\
-\lambda \int_{\left\{u \leq_{\lambda}\right\}} \underline{u}_{\lambda}^{-\eta} u d z-\frac{\lambda}{1-\eta} \int_{\left\{\underline{u}_{\lambda}<u\right\}}\left[u^{1-\eta}-\underline{u}_{\lambda}^{1-\eta}\right] d z \tag{13}\\
\quad \text { for some } c_{6}>0, \text { all } u \in W_{0}^{1, p}(\Omega) .
\end{gather*}
$$

From Proposition 2, we have

$$
\|\nabla u\|_{q}^{q}-\int_{\Omega} \eta_{0}(z)|u|^{q} d z \geq c_{7}\|\nabla u\|_{q}^{q} \quad \text { for some } c_{7}>0, \text { all } u \in W_{0}^{1, p}(\Omega)
$$

Therefore

$$
\begin{align*}
\|\nabla u\|_{q}^{q}-\int_{\Omega} \eta_{0}(z)|u|^{q} d z-\varepsilon\|u\|_{q}^{q} & \geq\left[c_{7}-\frac{\varepsilon}{\widehat{\lambda}_{1}(q)}\right]\|\nabla u\|_{q}^{q} \quad(\text { see } 22) \\
& \geq 0 \quad \text { choosing } \varepsilon \in\left(0, \widehat{\lambda}_{1}(q) c_{7}\right] \tag{14}
\end{align*}
$$

Also we have

$$
\begin{align*}
& \lambda \int_{\left\{u \leq \underline{u}_{\lambda}\right\}} \underline{u}_{\lambda}^{-\eta} u d z+\frac{\lambda}{1-\eta} \int_{\left\{\underline{u}_{\lambda}<u\right\}}\left[u^{1-\eta}-\underline{u}_{\lambda}^{1-\eta}\right] d z \\
& \leq \lambda \int_{\left\{u \leq_{\left.u_{\lambda}\right\}}\right.} u^{1-\eta} u d z+\frac{\lambda}{1-\eta} \int_{\left\{\underline{u}_{\lambda}<u\right\}} u^{1-\eta} d z \\
& \leq \lambda c_{8}\|u\|^{1-\eta} \text { for some } c_{8}>0 \tag{15}
\end{align*}
$$

We return to (13) and use $\sqrt[14]{ }$ and 15 . We obtain

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}(u) \geq \frac{1}{p}\|u\|^{p}-c_{6}\|u\|^{r}-\lambda c_{8}\|u\|^{1-\eta} \tag{16}
\end{equation*}
$$

Choose $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\frac{1}{p} \rho^{p}-c_{6} \rho^{r} \geq \mu_{0}>0 \quad(\text { recall } p<r) \tag{17}
\end{equation*}
$$

We fix such a $\rho \in(0,1)$ and then choose $\lambda_{0}>0$ such that

$$
\begin{equation*}
\lambda c_{8} \rho^{1-\eta}<\frac{\mu_{0}}{2} \quad \text { for all } \lambda \in\left(0, \lambda_{0}\right] \tag{18}
\end{equation*}
$$

So, if in (16), we use (17), 18), then

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}(u) \geq \frac{\mu_{0}}{2}>0 \quad \text { for all } u \in W_{0}^{1, p}(\Omega),\|u\|=\rho \tag{19}
\end{equation*}
$$

Let $B_{\rho}=\left\{u \in W_{0}^{1, p}(\Omega):\|u\|<\rho\right\}$. Since $W_{0}^{1, p}(\Omega)$ is reflexive, by the Eberlein-Smulian theorem the set \bar{B}_{ρ} is sequentially weakly compact. Moreover, using the Sobolev embedding theorem, we see that $\widehat{\varphi}_{\lambda}(\cdot)$ is sequentially weakly lower semicontinuous. Therefore, by the Weierstrass-Tonelli theorem, there exists $u_{\lambda} \in \bar{B}_{\rho}$ such that

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}\left(u_{\lambda}\right)=\min \left[\widehat{\varphi}_{\lambda}(u): u \in \bar{B}_{\rho}\right] . \tag{20}
\end{equation*}
$$

Let $u \in \operatorname{int} C_{+}$and choose $t \in(0,1)$ small such that

$$
\begin{equation*}
t u \leq \underline{u}_{\lambda} \quad\left(\text { recall } \underline{u}_{\lambda} \in \operatorname{int} C_{+}\right) \tag{21}
\end{equation*}
$$

Then from (21) and (11), we have

$$
\begin{aligned}
\widehat{\varphi}_{\lambda}(t u) & =\frac{t^{p}}{p}\|\nabla u\|_{p}^{p}+\frac{t^{q}}{q}\|\nabla u\|_{q}^{q}-\int_{\Omega}\left[\lambda \underline{u}_{\lambda}^{-\eta}(t u)+F(z, t u)\right] d z \\
& \leq t^{q}\left[\|\nabla u\|_{p}^{p}+\|\nabla u\|_{q}^{q}\right]-\lambda t \int_{\Omega} \underline{u}_{\lambda}^{-\eta} u d z
\end{aligned}
$$

(since $t \in(0,1), 1<q<p$ and $F \geq 0$).

Since $q>1$, choosing $t \in(0,1)$ even smaller if necessary, we have

$$
\begin{aligned}
& \widehat{\varphi}_{\lambda}(t u)<0 \text { and }\|t u\| \leq \rho \\
\Rightarrow & \widehat{\varphi}_{\lambda}\left(u_{\lambda}\right)<0=\widehat{\varphi}_{\lambda}(0) \quad(\text { see }(20)), \\
\Rightarrow & u_{\lambda} \neq 0
\end{aligned}
$$

On account of 19 we have

$$
\begin{equation*}
\left\|u_{\lambda}\right\|<\rho, \quad u_{\lambda} \neq 0 \tag{22}
\end{equation*}
$$

From $\sqrt[22]{2}$ and $\sqrt{20}$, it follows that

$$
\begin{align*}
& \widehat{\varphi}_{\lambda}^{\prime}\left(u_{\lambda}\right)=0 \\
\Rightarrow \quad & \left\langle A_{p}\left(u_{\lambda}\right), h\right\rangle+\left\langle A_{q}\left(u_{\lambda}\right), h\right\rangle=\int_{\Omega} g_{\lambda}\left(z, u_{\lambda}\right) h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega) . \tag{23}
\end{align*}
$$

In (23) first we choose $h=-u_{\lambda}^{-} \in W_{0}^{1, p}(\Omega)$. We obtain

$$
\begin{align*}
& \left\|u_{\lambda}^{-}\right\|^{p} \leq 0 \\
\Rightarrow \quad & u_{\lambda} \geq 0, \quad u_{\lambda} \neq 0 \tag{24}
\end{align*}
$$

Next in (23) we choose $h=\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+} \in W_{0}^{1, p}(\Omega)$. We obtain

$$
\begin{aligned}
&\left\langle A_{p}\left(u_{\lambda}\right),\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+}\right\rangle+\left\langle A_{q}\left(u_{\lambda}\right),\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+}\right\rangle \\
&\left.=\int_{\Omega}\left[\lambda \underline{u}_{\lambda}^{-\eta}+f\left(z, u_{\lambda}\right)\right]\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+} d z \quad(\text { see } 11) \text { and (24) }\right) \\
& \geq \int_{\Omega} \lambda \underline{u}_{\lambda}^{-\eta}\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+} d z \quad(\text { since } f \geq 0) \\
&=\left\langle A_{p}\left(\underline{u}_{\lambda}\right),\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+}\right\rangle+\left\langle A_{q}\left(\underline{u}_{\lambda}\right),\left(\underline{u}_{\lambda}-u_{\lambda}\right)^{+}\right\rangle \\
& \Rightarrow \quad \underline{u}_{\lambda} \leq u_{\lambda} \quad(\text { see Proposition 11). }
\end{aligned}
$$

Then from (11) and 23 it follows that $u_{\lambda} \in S_{\lambda}$ and so $\left(0, \lambda_{0}\right] \subseteq \mathcal{L} \neq \emptyset$.
Proposition 6. If hypotheses H hold and $\lambda \in \mathcal{L}$, then $\underline{u}_{\lambda} \leq u$ for all $u \in S_{\lambda}$.
Proof. Let $u \in S_{\lambda} \subseteq W_{0}^{1, p}(\Omega)$. We introduce the function $e_{\lambda}: \Omega \times \stackrel{\circ}{\mathbb{R}}_{+} \rightarrow \mathbb{R}$ defined by

$$
e_{\lambda}(z, x)= \begin{cases}\lambda x^{-\eta} & \text { if } 0<x \leq u(z) \tag{25}\\ \lambda u(z)^{-\eta} & \text { if } u(z)<x\end{cases}
$$

This is a Carathéodory function on $\Omega \times \stackrel{\circ}{\mathbb{R}}_{+}$. We consider the following Dirichlet (p, q)-equation

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)-\Delta_{q} u(z)=e_{\lambda}(z, u(z)) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0, \quad u>0, \lambda>0, \quad 1<q<p
\end{array}\right.
$$

Invoking Proposition 10 of Papageorgiou-Rădulescu-Repovš [18, we see that problem E_{λ} admits a solution $\widetilde{u}_{\lambda} \in W_{0}^{1, p}(\Omega), \widetilde{u}_{\lambda} \geq 0, \widetilde{u}_{\lambda} \neq 0$. We have

$$
\begin{aligned}
& \left\langle A_{p}\left(\widetilde{u}_{\lambda}\right),\left(\widetilde{u}_{\lambda}-u\right)^{+}\right\rangle+\left\langle A_{q}\left(\widetilde{u}_{\lambda}\right),\left(\widetilde{u}_{\lambda}-u\right)^{+}\right\rangle \\
& \left.=\int_{\Omega} \lambda u^{-\eta}\left(\widetilde{u}_{\lambda}-u\right)^{+} d z \quad(\text { see } 25)\right) \\
& \leq \int_{\Omega}\left[\lambda u^{-\eta}+f(z, u)\right]\left(\widetilde{u}_{\lambda}-u\right)^{+} d z \quad(\text { since } f \geq 0) \\
& =\left\langle A_{p}(u),\left(\widetilde{u}_{\lambda}-u\right)^{+}\right\rangle+\left\langle A_{q}(u),\left(\widetilde{u}_{\lambda}-u\right)^{+}\right\rangle \quad\left(\text { since } u \in S_{\lambda}\right), \\
\Rightarrow \quad & \widetilde{u}_{\lambda} \leq u
\end{aligned}
$$

So, we have proved that

$$
\begin{equation*}
\widetilde{u}_{\lambda} \in[0, u], \quad \widetilde{u}_{\lambda} \neq 0 \tag{26}
\end{equation*}
$$

From 26, 25) and Proposition 4 it follows that

$$
\begin{gathered}
\widetilde{u}_{\lambda}=\underline{u}_{\lambda} \in \operatorname{int} C_{+}, \\
\Rightarrow \quad \underline{u}_{\lambda} \leq u \quad \text { for all } u \in S_{\lambda} .
\end{gathered}
$$

Proposition 7. If hypotheses H hold, then $S_{\lambda} \subseteq \operatorname{int} C_{+}$.
Proof. Let $u \in S_{\lambda}$. From Proposition 6, we know that $\underline{u}_{\lambda} \leq u$, hence $u^{-\eta} \in$ $L^{s}(\Omega), s>N($ see 8$)$). Then we have

$$
\begin{equation*}
-\Delta_{p} u(z)-\Delta_{q} u(z)=\lambda u(z)^{-\eta}+f(z, u(z)) \quad \text { for a.a. } z \in \Omega \tag{27}
\end{equation*}
$$

Consider the linear Dirichlet problem

$$
\begin{equation*}
-\Delta v(z)=\lambda u(z)^{-\eta} \quad \text { in } \Omega,\left.\quad v\right|_{\partial \Omega}=0 \tag{28}
\end{equation*}
$$

Using Theorem 9.15, p. 241, of Gilbarg-Trudinger [6], we have that problem (28) admits a unique solution $v_{\lambda} \in W^{2, s}(\Omega)$. Since $s>N$, by the Sobolev embedding theorem we have that $v_{\lambda} \in C^{1, \alpha}(\bar{\Omega})$ with $\alpha=\frac{N}{s} \in(0,1)$. Let $w_{\lambda}=\nabla v_{\lambda}$. Then $w_{\lambda} \in C^{0, \alpha}\left(\bar{\Omega}, \mathbb{R}^{N}\right)$. Using $w_{\lambda}(\cdot)$, we rewrite (27) as follows

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+|\nabla u|^{q-2} \nabla u-w_{\lambda}\right)=0 \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 \tag{29}
\end{equation*}
$$

From (29) and Theorem 7.1, p. 286, of Ladyzhenskaya-Ural'tseva [8] we have that $u \in L^{\infty}(\Omega)$. Then the nonlinear regularity theory of Lieberman 10] implies that $u \in C_{+} \backslash\{0\}$. Moreover, from 27) we see that

$$
\begin{aligned}
& \Delta_{p} u(z)+\Delta_{q} u(z) \leq 0 \quad \text { for a.a. } z \in \Omega \\
\Rightarrow & u \in \operatorname{int} C_{+} \quad \text { (see Pucci-Serrin [23], pp. 111, 120). }
\end{aligned}
$$

Proposition 8. If hypotheses H hold and $\lambda \in \mathcal{L}$, then $S_{\lambda} \subseteq C_{0}^{1}(\bar{\Omega})$ is compact. Proof. First we show that $S_{\lambda} \subseteq W_{0}^{1, p}(\Omega)$ is bounded.

We argue indirectly. So, suppose we can find $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \rightarrow+\infty \quad \text { as } n \rightarrow+\infty \tag{30}
\end{equation*}
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1, y_{n} \geq 0$ for all $n \in \mathbb{N}$. So, we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{p}(\Omega) \text { as } n \rightarrow+\infty, y \geq 0 . \tag{31}
\end{equation*}
$$

For every $n \in \mathbb{N}$, we have

$$
\begin{array}{r}
\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A_{q}\left(u_{n}\right), h\right\rangle=\int_{\Omega}\left[\lambda u_{n}^{-\eta}+f\left(z, u_{n}\right)\right] h d z \text { for all } h \in W_{0}^{1, p}(\Omega), \\
\Rightarrow\left\langle A_{p}\left(y_{n}\right), h\right\rangle+\frac{1}{\left\|u_{n}\right\|^{p-q}}\left\langle A_{q}\left(y_{n}\right), h\right\rangle=\int_{\Omega}\left[\lambda \frac{u_{n}^{-\eta}}{\left\|u_{n}\right\|^{p-1}}+\frac{f\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p-1}}\right] h d z \quad(32) \tag{32}\\
\text { for all } h \in W_{0}^{1, p}(\Omega) .
\end{array}
$$

On account of hypotheses $H(i),(i i)$, we have

$$
\begin{align*}
& 0 \leq f(z, x) \leq c_{9}\left[1+x^{p-1}\right] \text { for a.a. } z \in \Omega, \text { all } x \geq 0, \text { some } c_{9}>0, \\
\Rightarrow & \left\{\frac{f\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p-1}}\right\} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded. } \tag{33}
\end{align*}
$$

From (33) and hypothesis $H(i i)$, we infer that at least for a subsequence we have

$$
\begin{equation*}
\frac{f\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p-1}} \xrightarrow{w} \widetilde{\eta}(\cdot) y(\cdot)^{p-1} \quad \text { in } L^{p^{\prime}}(\Omega) \text { as } n \rightarrow+\infty \tag{34}
\end{equation*}
$$

with $\eta(z) \leq \widetilde{\eta}(z) \leq \widehat{\eta}(z)$ for a.a. $z \in \Omega$ (see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16). In (32), we choose $h=y_{n}-y \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow+\infty$ and use (30) (recall that $q<p$), (31) and (34). We obtain

$$
\begin{align*}
& \lim _{n \rightarrow+\infty}\left\langle A_{p}\left(y_{n}\right), y_{n}-y\right\rangle=0 \\
\Rightarrow \quad & y_{n} \rightarrow y \text { in } W_{0}^{1, p}(\Omega) \text { (see Proposition 1), hence }\|y\|=1, y \geq 0 \tag{35}
\end{align*}
$$

So, if in (32) we pass to the limit as $n \rightarrow+\infty$ and use (35), 30) and (34), then we have

$$
\begin{aligned}
\left\langle A_{p}(y), h\right\rangle & =\int_{\Omega} \widetilde{\eta}(z) y^{p-1} h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega), \\
\Rightarrow \quad-\Delta_{p} y(z) & =\widetilde{\eta}(z) y(z)^{p-1} \quad \text { in } \Omega,\left.\quad y\right|_{\partial \Omega}=0 .
\end{aligned}
$$

On account of Proposition 3, we have

$$
\begin{aligned}
& \widetilde{\lambda}_{1}(\widetilde{\eta}, p)<\widetilde{\lambda}_{1}\left(\widehat{\lambda}_{1}, p\right)=1 \quad(\text { see }(34) \text { and hypothesis } H(i i i)), \\
\Rightarrow \quad & y \neq 0, \quad(\text { see }(35) \text { must be nodal. }
\end{aligned}
$$

This contradicts (35).
Therefore $S_{\lambda} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. As before (see the proof of Proposition 7), using the nonlinear regularity theory (see [8] and [10]), we see that we can find $\beta \in(0,1)$ and $c_{10}>0$ such that

$$
u \in C^{1, \beta}(\bar{\Omega}) \cap C_{0}^{1}(\bar{\Omega}) \text { and }\|u\|_{C^{1, \beta}(\bar{\Omega})} \leq c_{10}
$$

The compact embedding of $C^{1, \beta}(\bar{\Omega}) \cap C_{0}^{1}(\bar{\Omega})$ into $C_{0}^{1}(\bar{\Omega})$ implies that

$$
S_{\lambda} \subseteq C_{0}^{1}(\bar{\Omega}) \text { is relatively compact. }
$$

But clearly the set $S_{\lambda} \subseteq C_{0}^{1}(\bar{\Omega})$ is closed. Therefore we conclude that $S_{\lambda} \subseteq$ $C_{0}^{1}(\bar{\Omega})$ is compact.

Next we show that \mathcal{L} is connected (that is, \mathcal{L} is an interval).

Proposition 9. If hypotheses H hold, $\lambda \in \mathcal{L}$ and $0<\mu<\lambda$, then $\mu \in \mathcal{L}$.

Proof. Since $\lambda \in \mathcal{L}$ we can find $u \in S_{\lambda} \subseteq \operatorname{int} C_{+}$(see Proposition 7). We have $\underline{u}_{\mu} \leq \underline{u}_{\lambda} \leq u$ (see Propositions 4 and 6). Hence we can define the following truncation of the reaction in problem $\left(P_{\mu}\right)$

$$
k_{\mu}(z, x)= \begin{cases}\mu \underline{u}_{\mu}(z)^{-\eta}+f\left(z, \underline{u}_{\mu}(z)\right) & \text { if } x<\underline{u}_{\mu}(z) \tag{36}\\ \mu x^{-\eta}+f(z, x) & \text { if } \underline{u}_{\mu}(z) \leq x \leq u(z) \\ \mu u(z)^{-\eta}+f(z, u(z)) & \text { if } u(z)<x\end{cases}
$$

This is a Carathéodory function. We set $K_{\mu}(z, x)=\int_{0}^{x} k_{\mu}(z, s) d s$ and consider the functional $\sigma_{\mu}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\sigma_{\mu}(u)=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{q}\|\nabla u\|_{q}^{q}-\int_{\Omega} K_{\mu}(z, u) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

We have $\sigma_{\mu} \in C^{1}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right)$ (see also Papageorgiou-Smyrlis [20], Proposition 3). From (36) it is clear that $\sigma_{\mu}(\cdot)$ is coercive. Also, it is sequentially weakly lower semicontinuous. By the Weierstrass-Tonelli theorem, we can find $u_{\mu} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{align*}
& \sigma_{\mu}\left(u_{\mu}\right)=\min \left[\sigma_{\mu}(u): u \in W_{0}^{1, p}(\Omega)\right] \\
\Rightarrow & \sigma_{\mu}^{\prime}\left(u_{\mu}\right)=0 \\
\Rightarrow & \left\langle A_{p}\left(u_{\mu}\right), h\right\rangle+\left\langle A_{q}\left(u_{\mu}\right), h\right\rangle=\int_{\Omega} k_{\mu}\left(z, u_{\mu}\right) h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega) . \tag{37}
\end{align*}
$$

In 37 first we choose $h=\left(\underline{u}_{\mu}-u_{\mu}\right)^{+} \in W_{0}^{1, p}(\Omega)$. We have

$$
\begin{aligned}
& \left\langle A_{p}\left(u_{\mu}\right),\left(\underline{u}_{\mu}-u_{\mu}\right)^{+}\right\rangle+\left\langle A_{q}\left(u_{\mu}\right),\left(\underline{u}_{\mu}-u_{\mu}\right)^{+}\right\rangle \\
& \left.=\int_{\Omega}\left[\mu \underline{u}_{\mu}^{-\eta}+f\left(z, \underline{u}_{\mu}\right)\right]\left(\underline{u}_{\mu}-u_{\mu}\right)^{+} d z \quad(\text { see } \sqrt{36})\right) \\
& \geq \int_{\Omega} \mu \underline{u}_{\mu}^{-\eta}\left(\underline{u}_{\mu}-u_{\mu}\right)^{+} d z \quad(\text { since } f \geq 0) \\
& =\left\langle A_{p}\left(\underline{u}_{\mu}\right),\left(\underline{u}_{\mu}-u_{\mu}\right)^{+}\right\rangle+\left\langle A_{q}\left(\underline{u}_{\mu}\right),\left(\underline{u}_{\mu}-u_{\mu}\right)^{+}\right\rangle \quad \text { (see Proposition 4), } \\
\Rightarrow \quad & \underline{u}_{\mu} \leq u_{\mu} \quad(\text { see Proposition 11). }
\end{aligned}
$$

Next in (37) we choose $h=\left(u_{\mu}-u\right)^{+} \in W_{0}^{1, p}(\Omega)$. We have

$$
\begin{aligned}
& \left\langle A_{p}\left(u_{\mu}\right),\left(u_{\mu}-u\right)^{+}\right\rangle+\left\langle A_{q}\left(u_{\mu}\right),\left(u_{\mu}-u\right)^{+}\right\rangle \\
& =\int_{\Omega}\left[\mu u^{-\eta}+f(z, u)\right]\left(u_{\mu}-u\right)^{+} d z \quad(\text { see } \sqrt{36}) \\
& \leq \int_{\Omega}\left[\lambda u^{-\eta}+f(z, u)\right]\left(u_{\mu}-u\right)^{+} d z \quad(\text { since } \mu<\lambda) \\
& =\left\langle A_{p}(u),\left(u_{\mu}-u\right)^{+}\right\rangle+\left\langle A_{q}(u),\left(u_{\mu}-u\right)^{+}\right\rangle \quad\left(\text { since } u \in S_{\lambda}\right), \\
\Rightarrow \quad & u_{\mu} \leq u \quad(\text { see Proposition 11). }
\end{aligned}
$$

So, we have proved that

$$
\begin{equation*}
u_{\mu} \in\left[\underline{u}_{\mu}, u\right] . \tag{38}
\end{equation*}
$$

From (38, 36) and (37) it follows that $u_{\mu} \in S_{\mu} \subseteq \operatorname{int} C_{+}$and so $\mu \in \mathcal{L}$.
A byproduct of the above proof is the following corollary.

Corollary 1. If hypotheses H hold, $\lambda \in \mathcal{L}, u_{\lambda} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$and $0<\mu<\lambda$, then $\mu \in \mathcal{L}$ and we can find $u_{\mu} \in S_{\mu} \subseteq \operatorname{int} C_{+}$such that $u_{\mu} \leq u_{\lambda}$.

In fact we can improve this corollary as follows.
Proposition 10. If hypotheses H hold, $\lambda \in \mathcal{L}, u_{\lambda} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$and $0<\mu<$ λ, then $\mu \in \mathcal{L}$ and we can find $u_{\mu} \in S_{\mu} \subseteq \operatorname{int} C_{+}$such that $u_{\lambda}-u_{\mu} \in \operatorname{int} C_{+}$.

Proof. From Corollary 1, we know that $\mu \in \mathcal{L}$ and that there exists $u_{\mu} \in S_{\mu} \subseteq$ int C_{+}such that

$$
\begin{equation*}
u_{\mu} \leq u_{\lambda} \tag{39}
\end{equation*}
$$

Let $\rho=\left\|u_{\lambda}\right\|_{\infty}$ and let $\widehat{\xi}_{\rho}>0$ be as postulated by hypothesis $H(i v)$. We have

$$
\begin{align*}
& -\Delta_{p} u_{\mu}(z)-\Delta_{q} u_{\mu}(z)+\widehat{\xi}_{\rho} u_{\mu}(z)^{p-1}-\lambda u_{\mu}(z)^{-\eta} \\
& =[\mu-\lambda] u_{\mu}(z)^{-\eta}+f\left(z, u_{\mu}(z)\right)+\widehat{\xi}_{\rho} u_{\mu}(z)^{p-1} \\
& \leq f\left(z, u_{\lambda}(z)\right)+\widehat{\xi}_{\rho} u_{\lambda}(z)^{p-1} \quad(\text { see hypothesis } H(i v) \text { and recall } \mu<\lambda) \\
& =-\Delta_{p} u_{\lambda}(z)-\Delta_{q} u_{\lambda}(z)+\widehat{\xi}_{\rho} u_{\lambda}(z)^{p-1}-\lambda u_{\lambda}(z)^{-\eta} \quad \text { for a.a. } z \in \Omega \tag{40}
\end{align*}
$$

Note that $0 \prec[\lambda-\mu] u_{\mu}^{-\eta}$. So 40 and Proposition 7 of Papageorgiou-Rădulescu-Repovš [18] imply that $u_{\lambda}-u_{\mu} \in \operatorname{int} C_{+}$.

Let $\lambda^{*}=\sup \mathcal{L}$.

115
Proposition 11. If hypotheses H hold, then $\lambda^{*}<+\infty$.
Proof. On account of hypotheses H (iii), we see that we can find $\widehat{\lambda}>0$ such that

$$
\begin{equation*}
\widehat{\lambda} x^{-\eta}+f(z, x) \geq \frac{\widehat{\lambda}_{1}(p)}{2} x^{p-1} \quad \text { for a.a. } z \in \Omega, \text { all } x>0 \tag{41}
\end{equation*}
$$

Let $\lambda>\hat{\lambda}$ and suppose that $\lambda \in \mathcal{L}$. Then we can find $u_{\lambda} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$(see Proposition 7. Let $\Omega_{0} \subset \subset \Omega$ with a C^{2}-boundary $\partial \Omega_{0}$ and let $m_{0}=\min _{\bar{\Omega}_{0}} u_{\lambda}>0$ (since $u_{\lambda} \in \operatorname{int} C_{+}$). For $\delta \in(0,1)$ we set $m_{0}^{\delta}=m_{0}+\delta, \rho=\max \left\{\left\|u_{\lambda}\right\|_{\infty}, m_{0}^{1}\right\}$ and let $\widehat{\xi}_{\rho}>0$ be as postulated by hypothesis $H(i v)$. For $\delta \in\left(0, \min \left\{1, m_{0}\right\}\right]$, we have

$$
\begin{align*}
& -\Delta_{p} m_{0}^{\delta}-\Delta_{q} m_{0}^{\delta}+\widehat{\xi}_{\rho}\left(m_{0}^{\delta}\right)^{p-1}-\lambda\left(m_{0}^{\delta}\right)^{-\eta} \\
& \leq\left[\widehat{\xi}_{\rho}+\frac{\widehat{\lambda}_{1}(p)}{2}\right] m_{0}^{p-1}+\chi(\delta)-\frac{\lambda}{2} m_{0}^{-\eta} \quad \text { with } \chi(\delta) \rightarrow 0^{+} \text {as } \delta \rightarrow 0^{+} \\
& \left.\leq f\left(z, m_{0}\right)+\widehat{\xi}_{\rho} m_{0}^{p-1}+\chi(\delta)-\frac{\lambda}{2} m_{0}^{-\eta} \quad(\text { see } 41) \text { and recall } \widehat{\lambda}<\lambda\right) \\
& \leq f\left(z, u_{\lambda}(z)\right)+\widehat{\xi}_{\rho} u_{\lambda}(z)^{p-1} \quad \text { for } \delta>0 \text { small } \\
& =-\Delta_{p} u_{\lambda}(z)-\Delta_{q} u_{\lambda}(z)+\widehat{\xi}_{\rho} u_{\lambda}(z)^{p-1}-\lambda u_{\lambda}(z)^{-\eta} \quad \text { for a.a. } z \in \Omega_{0} \tag{42}
\end{align*}
$$

Note that for $\delta>0$ small, we have

$$
\widehat{\lambda} m_{0}^{-\eta}-\chi(\delta) \geq \widehat{\mu}_{0}>0
$$

Then from 42) and Proposition 6 of Papageorgiou-Rădulescu-Repovš [18, we have

$$
m_{0}^{\delta} \leq u_{\lambda}(z) \quad \text { for all } z \in \bar{\Omega}_{0}, \delta>0 \text { small }
$$

a contradiction to the definition of m_{0}. Therefore $\lambda^{*} \leq \widehat{\lambda}<+\infty$.

Proposition 12. If hypotheses H hold and $\lambda \in\left(0, \lambda^{*}\right)$, then problem P_{λ} has at least two positive solutions $u_{0}, \widehat{u} \in \operatorname{int} C_{+}, u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u}$.

Proof. Let $0<\lambda<\vartheta<\lambda^{*}$. We have $\lambda, \vartheta \in \mathcal{L}$ and using Proposition 10 we can find $u_{0} \in S_{\lambda} \subseteq \operatorname{int} C_{+}$and $u_{\vartheta} \in S_{\vartheta} \subseteq \operatorname{int} C_{+}$such that

$$
\begin{equation*}
u_{\vartheta}-u_{0} \in \operatorname{int} C_{+} . \tag{43}
\end{equation*}
$$

Also from Proposition 6 we know that $\underline{u}_{\lambda} \leq u_{0}$ and so $u_{0}^{-\eta} \in L^{s}(\Omega), s>N$ (see (8)). We introduce the following Carathéodory functions:

$$
\begin{align*}
& \beta_{\lambda}(z, x)= \begin{cases}\lambda u_{0}(z)^{-\eta}+f\left(z, u_{0}(z)\right) & \text { if } x \leq u_{0}(z), \\
\lambda x^{-\eta}+f(z, x) & \text { if } u_{0}(z)<x\end{cases} \tag{44}\\
& \widehat{\beta}_{\lambda}(z, x)= \begin{cases}\beta_{\lambda}(z, x) & \text { if } x \leq u_{\vartheta}(z) \\
\beta_{\lambda}\left(z, u_{\vartheta}(z)\right) & \text { if } u_{\vartheta}(z)<x .\end{cases} \tag{45}
\end{align*}
$$

We set $B_{\lambda}(z, x)=\int_{0}^{x} \beta_{\lambda}(z, s) d s$ and $\widehat{B}_{\lambda}(z, x)=\int_{0}^{x} \widehat{\beta}_{\lambda}(z, s) d s$ and consider the C^{1}-functionals $\gamma_{\lambda}, \widehat{\gamma}_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{array}{ll}
\gamma_{\lambda}(u)=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{q}\|\nabla u\|_{q}^{q}-\int_{\Omega} B_{\lambda}(z, u) d z & \text { for all } u \in W_{0}^{1, p}(\Omega), \\
\widehat{\gamma}_{\lambda}(u)=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{q}\|\nabla u\|_{q}^{q}-\int_{\Omega} \widehat{B}_{\lambda}(z, u) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
\end{array}
$$

Using (44), 45 and the nonlinear regularity theory, we show that

$$
\begin{align*}
& K_{\gamma_{\lambda}} \subseteq\left[u_{0}\right) \cap \operatorname{int} C_{+} \tag{46}\\
& K_{\widehat{\gamma}_{\lambda}} \subseteq\left[u_{0}, u_{\vartheta}\right] \cap \operatorname{int} C_{+} \tag{47}
\end{align*}
$$

From (44) and 46), we see that we may assume that

$$
\begin{equation*}
K_{\gamma_{\lambda}} \text { is finite and } K_{\gamma_{\lambda}} \cap\left[u_{0}, u_{\vartheta}\right]=\left\{u_{0}\right\} \tag{48}
\end{equation*}
$$

Otherwise, we already have a second positive smooth solution, bigger than u_{0} and so we are done. Also, it is clear from 44 and 45 that

$$
\begin{equation*}
\left.\gamma_{\lambda}\right|_{\left[0, u_{\vartheta}\right]}=\left.\widehat{\gamma}_{\lambda}\right|_{\left[0, u_{\vartheta}\right]} \quad \text { and }\left.\quad \gamma_{\lambda}^{\prime}\right|_{\left[0, u_{\vartheta}\right]}=\left.\widehat{\gamma}_{\lambda}^{\prime}\right|_{\left[0, u_{\vartheta}\right]} \tag{49}
\end{equation*}
$$

From (48) and 49) it follows that

$$
\begin{equation*}
K_{\widehat{\gamma}_{\lambda}}=\left\{u_{0}\right\} . \tag{50}
\end{equation*}
$$

Evidently $\widehat{\gamma}_{\lambda}(\cdot)$ is coercive (see 45) and sequentially weakly lower semicontinuous. So, we can find $\widetilde{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{align*}
& \widehat{\gamma}_{\lambda}(\widetilde{u})=\min \left[\widehat{\gamma}_{\lambda}(u): u \in W_{0}^{1, p}(\Omega)\right], \tag{51}\\
\Rightarrow & \widetilde{u} \in K_{\widehat{\gamma}_{\lambda}}, \\
\Rightarrow & \widetilde{u}=u_{0} \in \operatorname{int} C_{+} \quad(\text { see } 50 p) .
\end{align*}
$$

From (51, 43) and 49) we infer that

$$
\begin{align*}
& u_{0} \text { is a local } C_{0}^{1}(\bar{\Omega}) \text {-minimizer of } \gamma_{\lambda}(\cdot), \\
\Rightarrow \quad & u_{0} \text { is a local } W_{0}^{1, p}(\Omega) \text {-minimizer of } \gamma_{\lambda}(\cdot) \tag{52}\\
& \text { (see Papageorgiou-Rădulescu [13], Proposition 2.12). }
\end{align*}
$$

Using (52), 48) and Theorem 5.7.6, p. 449, of Papageorgiou-RădulescuRepovš [15], we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\gamma_{\lambda}\left(u_{0}\right)<\inf \left[\gamma_{\lambda}(u):\left\|u-u_{0}\right\|=\rho\right]=m_{\lambda} \tag{53}
\end{equation*}
$$

On account of hypothesis $H($ ii $)$, we have

$$
\begin{equation*}
\gamma_{\lambda}\left(t \widehat{u}_{1}(p)\right) \rightarrow-\infty \quad \text { as } t \rightarrow+\infty \tag{54}
\end{equation*}
$$

Claim: The functional $\gamma_{\lambda}(\cdot)$ satisfies the C-condition.
Consider a sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ such that $\left\{\gamma_{\lambda}\left(u_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and

$$
\begin{equation*}
\left(1+\left\|u_{n}\right\|\right) \gamma_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{-1, p^{\prime}}(\Omega)=W_{0}^{1, p}(\Omega)^{*} \text { as } n \rightarrow+\infty \tag{55}
\end{equation*}
$$

From (55) we have

$$
\begin{align*}
& \left|\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A_{q}\left(u_{n}\right), h\right\rangle-\int_{\Omega} \beta_{\lambda}\left(z, u_{n}\right) h d z\right| \leq \frac{\varepsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \tag{56}\\
& \quad \text { for all } h \in W_{0}^{1, p}(\Omega), \text { with } \varepsilon_{n} \rightarrow 0^{+} .
\end{align*}
$$

In (56) first we choose $h=-u_{n}^{-} \in W_{0}^{1, p}(\Omega)$. Using (44) we see that

$$
\begin{align*}
& \left\|u_{n}^{-}\right\|^{p} \leq c_{11} \quad \text { for some } c_{11}>0, \text { all } n \in \mathbb{N} \\
\Rightarrow \quad & \left\{u_{n}^{-}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded } \tag{57}
\end{align*}
$$

Next we show that $\left\{u_{n}^{+}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded too. Arguing by contradiction, suppose that

$$
\begin{equation*}
\left\|u_{n}^{+}\right\| \rightarrow+\infty \quad \text { as } n \rightarrow+\infty \tag{58}
\end{equation*}
$$

We set $y_{n}=\frac{u_{n}^{+}}{\left\|u_{n}^{+}\right\|}, n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1, y_{n} \geq 0$ for all $n \in \mathbb{N}$. So, we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \text { in } L^{p}(\Omega) . \tag{59}
\end{equation*}
$$

From (44) we see that

$$
\begin{align*}
& f(z, x)-c_{12} \leq \beta_{\lambda}(z, x) \leq \lambda u_{0}(z)^{-\eta}+f(z, x)+c_{12} \tag{60}\\
& \text { for a.a. } z \in \Omega, \text { all } x \geq 0, \text { some } c_{12}>0 \\
& \Rightarrow\left\{\frac{\beta_{\lambda}\left(\cdot, u_{n}^{+}(\cdot)\right)}{\left\|u_{n}^{+}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded (see (8) and (58)). }
\end{align*}
$$

Then (60) and hypothesis H (ii) imply that

$$
\begin{equation*}
\frac{\beta_{\lambda}\left(\cdot, u_{n}^{+}(\cdot)\right)}{\left\|u_{n}^{+}\right\|^{p-1}} \xrightarrow{w} \widetilde{\eta}(\cdot) y(\cdot)^{p-1} \text { in } L^{p^{\prime}} \tag{61}
\end{equation*}
$$

with $\eta(z) \leq \widetilde{\eta}(z) \leq \widehat{\eta}(z)$ for a.a. $z \in \Omega$ (see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).

From (56) and (57), we have

$$
\begin{array}{r}
\left|\left\langle A_{p}\left(y_{n}\right), h\right\rangle+\frac{1}{\left\|u_{n}^{+}\right\|^{p-q}}\left\langle A_{q}\left(y_{n}\right), h\right\rangle-\int_{\Omega} \frac{\beta_{\lambda}\left(z, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p-1}} h d z\right| \leq \varepsilon_{n}^{\prime} \tag{62}\\
\text { for all } h \in W_{0}^{1, p}(\Omega), \text { with } \varepsilon_{n}^{\prime} \rightarrow 0^{+} \text {as } n \rightarrow+\infty
\end{array}
$$

In (62) we choose $h=y_{n}-y \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow+\infty$ and use (58), 59) and (61). We obtain

$$
\begin{align*}
& \lim _{n \rightarrow+\infty}\left\langle A_{p}\left(y_{n}\right), y_{n}-y\right\rangle=0 \\
\Rightarrow \quad & y_{n} \rightarrow y \text { in } W_{0}^{1, p}(\Omega) \text { (see Proposition 1), hence }\|y\|=1, y \geq 0 \tag{63}
\end{align*}
$$

In (62) we pass to the limit as $n \rightarrow+\infty$ and use (58, 61) and 63). We obtain

$$
\begin{align*}
\left\langle A_{p}(y), h\right\rangle & =\int_{\Omega} \widetilde{\eta}(z) y^{p-1} h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega), \\
\Rightarrow \quad-\Delta_{p} y(z) & =\widetilde{\eta}(z) y(z)^{p-1} \quad \text { in } \Omega,\left.\quad y\right|_{\partial \Omega}=0 . \tag{64}
\end{align*}
$$

On account of Proposition 3, we have

$$
\begin{equation*}
\widetilde{\lambda}_{1}(\widetilde{\eta}, p)<\widetilde{\lambda}_{1}\left(\widehat{\lambda}_{1}(p), p\right)=1 \tag{65}
\end{equation*}
$$

From (64), 65 and 63), we infer that y must be nodal, a contradiction. So, $\left\{u_{n}^{+}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded, hence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded (see (57).

We may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{n} \rightarrow u \text { in } L^{p}(\Omega) . \tag{66}
\end{equation*}
$$

In (56) we choose $h=u_{n}-u \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow+\infty$ and use (66) and 61. Then

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}\left[\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle A_{q}\left(u_{n}\right), u_{n}-u\right\rangle\right]=0 \\
\Rightarrow & \limsup _{n \rightarrow+\infty}\left[\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle A_{q}(u), u_{n}-u\right\rangle\right] \leq 0 \text { (since } A_{q}(\cdot) \text { is monotone), } \\
\Rightarrow \quad & \limsup _{n \rightarrow+\infty}\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0 \\
\Rightarrow & \left.u_{n} \rightarrow u \text { in } W_{0}^{1, p}(\Omega) \text { (see Proposition } 1\right) .
\end{aligned}
$$

Therefore $\gamma_{\lambda}(\cdot)$ satisfies the C-condition and this proves the Claim.
From (53), 54) and the Claim, we see that we can apply the Mountain Pass Theorem. Therefore we can find $\widehat{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{u} \in K_{\gamma_{\lambda}} \subseteq\left[u_{0}\right) \cap \operatorname{int} C_{+}\left(\text {see 46) and } m_{\lambda} \leq \gamma_{\lambda}(\widehat{u})\right. \tag{67}
\end{equation*}
$$

From (67), (44) and (53) it follows that

$$
\widehat{u} \in S_{\lambda} \subseteq \operatorname{int} C_{+}, \quad u_{0} \leq \widehat{u}, \quad \widehat{u} \neq u_{0}
$$

Proposition 13. If hypotheses H hold, then $\lambda^{*} \in \mathcal{L}$.
Proof. Let $\lambda_{n} \in\left(0, \lambda^{*}\right), n \in \mathbb{N}$, such that $\lambda_{n} \uparrow \lambda^{*}$ as $n \rightarrow+\infty$. Using the contradiction argument in the Claim in the proof of Proposition 12, we can find $u_{n} \in S_{\lambda_{n}} \subseteq \operatorname{int} C_{+}, n \geq 1$ with $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ bounded. Subsequently using Proposition 1, as in the proof of Proposition 12, we show that at least for a subsequence we have

$$
\begin{equation*}
u_{n} \rightarrow u_{*} \text { in } W_{0}^{1, p}(\Omega) \text { as } n \rightarrow+\infty . \tag{68}
\end{equation*}
$$

From Propositions 4 and 6, we have

$$
\begin{align*}
& \underline{u}_{\lambda_{1}} \leq u_{n} \quad \text { for all } n \in \mathbb{N} \\
& \Rightarrow \quad \underline{u}_{\lambda_{1}} \leq u_{*} \tag{69}
\end{align*}
$$

From $\sqrt{68}$ and $\sqrt{69}$, we conclude that

$$
u_{*} \in S_{\lambda_{*}} \subseteq \operatorname{int} C_{+} \text {and so } \lambda^{*} \in \mathcal{L} .
$$

We have proved that

$$
\mathcal{L}=\left(0, \lambda^{*}\right] .
$$

Summarizing our findings in this section, we can state the following bifurcationtype theorem.

Theorem 1. If hypotheses H hold, then there exists $\lambda^{*}>0$ such that
(a) for every $\lambda \in\left(0, \lambda^{*}\right)$ problem P_{λ} has at least two positive solutions u_{0}, $\widehat{u} \in \operatorname{int} C_{+}, u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u} ;$
(b) for $\lambda=\lambda^{*}$ problem (P) has at least one positive solution $u_{*} \in \operatorname{int} C_{+}$;
(c) for every $\lambda>\lambda^{*}$ problem (P) has no positive solutions.

4. The Solution Multifunction

In this section we examine the continuity properties of the solution multifunction $\lambda \rightarrow S_{\lambda}$ from $\mathcal{L}=\left(0, \lambda^{*}\right]$ into $2^{C_{0}^{1}(\bar{\Omega})} \backslash\{\emptyset\}$.

First we need to recall some continuity notions for multifunctions. For details we refer to Hu-Papageorgiou [7].

Let X, Y be Hausdorff topological spaces and $S: X \rightarrow 2^{Y} \backslash\{\emptyset\}$ a multifunction. We introduce the following continuity concepts for $S(\cdot)$.

Definition 1. We say that $S(\cdot)$ is
(a) "upper semicontinuous" ("usc" for short) if for every $C \subseteq Y$ closed, $S^{-}(C)=\{x \in X: S(x) \cap C \neq \emptyset\}$ is closed in $X ;$
(b) "lower semicontinuous" ("lsc" for short) if for every $C \subseteq Y$ closed, $S^{+}(C)=$ $\{x \in X: S(x) \subseteq C\}$ is closed in $X ;$
(c) "continuous" (or "Vietoris continuous") if it is both usc and lsc.

Remark 2. It is clear from Definition 1, that when $S(\cdot)$ is single-valued, then the notions of upper semicontinuity and lower semicontinuity coincide with the usual notion of continuity of a map between Hausdorff topological spaces. In general the two notions of upper and lower semicontinuity are distinct. Upper semicontinuity allows upward jumps (in the sense of inclusion), while lower semicontinuity allows downward jumps (in the sense of inclusion), see Hu-Papageorgiou [7, p. 38.

Next let (Y, d) be a metric space and $A, C \subseteq Y$. We set

$$
h^{*}(A, C)=\sup [d(a, C): a \in A]=\inf \left[\varepsilon>0: A \subseteq C_{\varepsilon}\right],
$$

where $C_{\varepsilon}=\{y \in Y: d(y, C)<\varepsilon\}$ (the open ε-enlargment of C). The Hausdorff distance between A and C is defined by

$$
h(A, C)=\max \left\{h^{*}(A, C), h^{*}(C, A)\right\}=\inf \left[\varepsilon>0: A \subseteq C_{\varepsilon}, C \subseteq A_{\varepsilon}\right] .
$$

Let $P_{k}(Y)=\{A \subseteq Y: A \neq \emptyset, A$ is compact $\}$. Then $\left(P_{k}(Y), h\right)$ is a complete metric space and it is separable (resp. Polish), if Y is separable (resp. Polish), see Hu-Papageorgiou [7], p. 15.

Let X be a Hausdorff topological space, (Y, d) a metric space and $S: X \rightarrow$ $2^{Y} \backslash\{\emptyset\}$ a multifunction.

Definition 2. We say that $S(\cdot)$ is
(a) " h-usc" if for all $x_{0} \in X, x \rightarrow h^{*}\left(S(x), S\left(x_{0}\right)\right)$ is continuous;
(b) " h-lsc" if for all $x_{0} \in X, x \rightarrow h^{*}\left(S\left(x_{0}\right), S(x)\right)$ is continuous;
(c) " h-continuous" if it is both h-usc and h-lsc.

Remark 3. Note that h-continuity of $S(\cdot)$ is continuity from X into the pseudometric space $\left(2^{Y} \backslash\{\emptyset\}, h\right)$. In general we have

$$
\text { "usc } \Rightarrow h \text {-usc" and " } h \text {-lsc } \Rightarrow \text { lsc" }
$$

with the converse implications failing in general. However, if $S(\cdot)$ is $P_{k}(Y)$ valued, then the notions are equivalent and so " $S(\cdot)$ is continuous if and only if $S(\cdot)$ is h-continuous" (see Hu-Papageorgiou [7], pp. 61-62).

According to Proposition 8, for the solution multifunction $\lambda \rightarrow S_{\lambda}$ from $\mathcal{L}=\left(0, \lambda^{*}\right]$ we know that it is $P_{k}\left(C_{0}^{1}(\bar{\Omega})\right)$-valued.

Proposition 14. If hypotheses H hold, then the solution multifunction $\lambda \rightarrow S_{\lambda}$ is usc.

Proof. Let $C \subseteq C_{0}^{1}(\bar{\Omega})$ be closed. According to Definition 1 (a), we need to show that $S^{-}(C)=\left\{\lambda \in \mathcal{L}: S_{\lambda} \cap C \neq \emptyset\right\}$ is closed in \mathcal{L}.

Let $\left\{\lambda_{n}\right\}_{n \geq 1} \subseteq S^{-}(C)$ and assume that $\lambda_{n} \rightarrow \lambda \in \mathcal{L}$. Let $u_{n} \in S_{\lambda_{n}} \subseteq \operatorname{int} C_{+}$, $u_{n} \in C$. Then as in the proof of Proposition 11 (see the Claim in that proof), we show that

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded. } \tag{70}
\end{equation*}
$$

Let $0<\widetilde{\lambda} \leq \lambda_{n}$ for all $n \in \mathbb{N}$. From Propositions 4 and 6 we have

$$
\begin{equation*}
\underline{u}_{\widetilde{\lambda}} \leq u_{n} \quad \text { for all } n \in \mathbb{N} \tag{71}
\end{equation*}
$$

From (70) and the nonlinear regularity theory (see the proof of Proposition 7), we can find $\tau \in(0,1)$ and $c_{13}>0$ such that

$$
\begin{equation*}
u_{n} \in C_{0}^{1, \tau}(\bar{\Omega})=C^{1, \tau}(\bar{\Omega}) \cap C_{0}^{1}(\bar{\Omega}),\left\|u_{n}\right\|_{C^{1, \tau}(\bar{\Omega})} \leq c_{13} \quad \text { for all } n \in \mathbb{N} \tag{72}
\end{equation*}
$$

From 72 and the compact embedding of $C_{0}^{1, \tau}(\bar{\Omega})$ into $C_{0}^{1}(\bar{\Omega})$, we have that

$$
\begin{aligned}
& u_{n} \rightarrow u \text { in } C_{0}^{1}(\bar{\Omega}), \underline{u}_{\lambda} \leq u(\text { see } 71) \text { and so } u \neq 0, \\
\Rightarrow & u \in S_{\lambda} \subseteq \operatorname{int} C_{+}, \quad u \in C, \\
\Rightarrow & \lambda \in S^{-}(C) \text { and so } S^{-}(C) \text { is closed in } \mathcal{L} .
\end{aligned}
$$

This proves the upper semicontinuity of the solution multifunction $\lambda \rightarrow$ S_{λ}.

By strengthening the conditions on the data of P_{λ}, we can also show lower semicontinuity of the solution multifunction.

The new conditions on the perturbation $f(z, x)$ are the following:
$\underline{H^{\prime}}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a function which is measurable in $z \in \Omega$ and such that
(i) $|f(z, x)-f(z, y)| \leq \widehat{k}(z)|x-y|$ for a.a. $z \in \Omega$, all $x, y \geq 0$ with $\widehat{k} \in L^{\infty}(\Omega)$;
hypotheses $H^{\prime}(i i),(i i i),(i v)$ are the same as the corresponding hypotheses $H(i i),(i i i),(i v)$.

Remark 4. By taking $y=0$ in hypothesis $H^{\prime}(i)$ (recall $f(z, 0)=0$ for a.a. $z \in \Omega$), we have

$$
0 \leq f(z, x) \leq \widehat{k}(z) \rho \quad \text { for a.a. } z \in \Omega, \text { all } 0 \leq x \leq \rho
$$

and so hypothesis $H(i)$ holds.
Proposition 15. If hypotheses H^{\prime} hold, then the solution multifunction $\lambda \rightarrow S_{\lambda}$ is lsc.

Proof. According to Proposition 2.6, p. 37, of Hu-Papageorgiou [7], it suffices to show that if $\lambda_{n} \rightarrow \lambda$ in $\mathcal{L}, \lambda \in \mathcal{L}$, then we have

$$
S_{\lambda} \subseteq \liminf _{n \rightarrow+\infty} S_{\lambda_{n}}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u_{n} \in S_{\lambda_{n}}, u_{n} \rightarrow u \text { in } C_{0}^{1}(\bar{\Omega})\right\}
$$

Let $u \in S_{\lambda} \subseteq \operatorname{int} C_{+}$and $0<\widetilde{\lambda} \leq \lambda_{n}$ for all $n \in \mathbb{N}$. Then $\widetilde{\lambda} \leq \lambda$ and so we have

$$
\begin{aligned}
& \underline{u}_{\tilde{\lambda}} \leq u \quad(\text { see Propositions } 4 \text { and 6), } \\
\Rightarrow & u^{-\eta} \in L^{s}(\Omega) \quad s>N(\text { see } 8) .
\end{aligned}
$$

We consider the following singular Dirichlet (p, q)-problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{n}^{0}(z)-\Delta_{q} u_{n}^{0}(z)=\lambda_{n} u(z)^{-\eta}+f(z, u(z)) \quad \text { in } \Omega \tag{73}\\
\left.u_{n}^{0}\right|_{\partial \Omega}=0, \quad 1<q<p
\end{array}\right.
$$

We have $\lambda_{n} u(\cdot)^{-\eta}+f(\cdot, u(\cdot)) \in L^{s}(\Omega), s>N$, and so problem (73) has a solution $u_{n}^{0} \in \operatorname{int} C_{+}$(nonlinear regularity, see [10], and the nonlinear maximum principle, see [23]) and this solution is unique on account of the strict monotonicity of the operator $u \rightarrow A_{p}(u)+A_{q}(u)$ (see Proposition 1). Moreover, since

$$
0 \leq \lambda_{n} u(z)^{-\eta}+f(z, u(z)) \leq c_{14}\left[\underline{u}_{\tilde{\lambda}}(z)^{-\eta}+1\right]
$$

for a.a. $z \in \Omega$, all $n \in \mathbb{N}$, some $c_{14}>0$ and $\underline{u}_{\tilde{\lambda}}^{-\eta} \in L^{s}(\Omega), s>N$, we have that

$$
\left\{u_{n}^{0}\right\}_{n \geq 1} \subseteq C_{0}^{1}(\bar{\Omega}) \text { is relatively compact }
$$

(see the proof of Proposition 14). We may assume that

$$
\begin{equation*}
u_{n}^{0} \rightarrow \widetilde{u} \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow+\infty, \quad \underline{u}_{\tilde{\lambda}} \leq \widetilde{u} \tag{74}
\end{equation*}
$$

Passing to the limit as $n \rightarrow+\infty$ in (73) and using (74), we obtain

$$
-\Delta_{p} \widetilde{u}(z)-\Delta_{q} \widetilde{u}(z)=\lambda u(z)^{-\eta}+f(z, u(z)) \quad \text { in } \Omega,\left.\quad \widetilde{u}\right|_{\partial \Omega}=0
$$

This problem has a unique solution $u \in S_{\lambda}$. Therefore

$$
\widetilde{u}=u \in S_{\lambda} \subseteq \operatorname{int} C_{+}
$$

Hence for the original sequence we have

$$
u_{n}^{0} \rightarrow u \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow+\infty
$$

We consider the following singular Dirichlet (p, q)-problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{n}^{1}(z)-\Delta_{q} u_{n}^{1}(z)=\lambda_{n} u_{n}^{0}(z)^{-\eta}+f\left(z, u_{n}^{0}(z)\right) \quad \text { in } \Omega \tag{75}\\
\left.u_{n}^{1}\right|_{\partial \Omega}=0, \quad 1<q<p
\end{array}\right.
$$

As above, we have that $\sqrt{75}$ has a unique solution $u_{n}^{1} \in \operatorname{int} C_{+}$and

$$
u_{n}^{1} \rightarrow u \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow+\infty
$$

We continue this way and generate a sequence $\left\{u_{n}^{k}\right\}_{k \geq 1} \subseteq \operatorname{int} C_{+}$such that

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{n}^{k}(z)-\Delta_{q} u_{n}^{k}(z)=\lambda_{n} u_{n}^{k-1}(z)^{-\eta}+f\left(z, u_{n}^{k-1}(z)\right) \quad \text { in } \Omega \tag{76}\\
\left.u_{n}^{k}\right|_{\partial \Omega}=0, \quad \text { for all } n \in \mathbb{N}
\end{array}\right.
$$

and for each $k \in \mathbb{N}_{0}$, we have

$$
\begin{equation*}
u_{n}^{k} \rightarrow u \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow+\infty \tag{77}
\end{equation*}
$$

We consider the sequence $\left\{u_{n}^{k}\right\}_{k \geq 0}$ and we show that it is bounded in $W_{0}^{1, p}(\Omega)$. Arguing by contradiction, suppose that

$$
\begin{equation*}
\left\|u_{n}^{k}\right\| \rightarrow+\infty \quad \text { as } k \rightarrow+\infty(n \in \mathbb{N}) \tag{78}
\end{equation*}
$$

Let $y_{k}=\frac{u_{n}^{k}}{\left\|u_{n}^{k}\right\|}, k \in \mathbb{N}_{0}$. Then $\left\|y_{k}\right\|=1, y_{k} \geq 0$ for all $k \in \mathbb{N}_{0}$. We may assume that

$$
\begin{equation*}
y_{k} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{k} \rightarrow y \text { in } L^{p}(\Omega) \text { as } k \rightarrow+\infty \tag{79}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left\langle A_{p}\left(u_{n}^{k}\right), h\right\rangle+\left\langle A_{q}\left(u_{n}^{k}\right), h\right\rangle=\int_{\Omega}\left[\lambda_{n}\left(u_{n}^{k-1}\right)^{-\eta}+f\left(z, u_{n}^{k-1}\right)\right] h d z \\
\Rightarrow \quad & \quad\left\langle A_{p}\left(y_{k}\right), h\right\rangle+\frac{1}{\left\|u_{n}^{k}\right\|^{p-q}}\left\langle A_{q}\left(y_{k}\right), h\right\rangle \quad \text { for all } h \in W_{0}^{1, p}(\Omega), \\
& =\int_{\Omega}\left[\lambda_{n} \frac{\left(u_{n}^{k-1}\right)^{-\eta}}{\left\|u_{n}^{k}\right\|^{p-1}}+\frac{f\left(z, u_{n}^{k-1}\right)}{\left\|u_{n}^{k}\right\|^{p-1}}\right] h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega) .
\end{align*}
$$

Without any loss of generality we may assume that $\left\{\left\|u_{n}^{k}\right\|\right\}_{k \geq 0}$ is nondecreasing (see 78). On account of hypotheses $H^{\prime}(i),(i i)$, we have

$$
\begin{align*}
& 0 \leq f\left(z, u_{n}^{k-1}\right) \leq c_{15}\left[1+u_{n}^{k-1}(z)^{p-1}\right] \\
& \text { for a.a. } z \in \Omega, \text { some } c_{15}>0 \\
& \Rightarrow \quad \frac{f\left(\cdot, u_{n}^{k-1}(\cdot)\right)}{\left\|u_{n}^{k}\right\|^{p-1}} \leq c_{15}\left[\frac{1}{\left\|u_{n}^{k}\right\|^{p-1}}+\left(\frac{\left\|u_{n}^{k-1}\right\|}{\left\|u_{n}^{k}\right\|}\right)^{p-1} y_{k-1}(z)^{p-1}\right] \\
& \leq c_{15}\left[\frac{1}{\left\|u_{n}^{k}\right\|^{p-1}}+y_{k-1}(z)^{p-1}\right] \text { for a.a. } z \in \Omega \\
& \Rightarrow \quad\left\{\frac{f\left(\cdot, u_{n}^{k-1}(\cdot)\right)}{\left\|u_{n}^{k}\right\|^{p}}\right\}_{k \geq 0} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded. } \tag{81}
\end{align*}
$$

From hypothesis $H^{\prime}(i)$ we have

$$
\begin{align*}
& \frac{f\left(z, u_{n}^{k}(z)\right)}{\left\|u_{n}^{k}\right\|^{p-1}}-\frac{\widehat{k}(z)\left|u_{n}^{k}(z)-u_{n}^{k-1}(z)\right|}{\left\|u_{n}^{k}\right\|^{p-1}} \leq \frac{f\left(z, u_{n}^{k-1}(z)\right)}{\left\|u_{n}^{k}\right\|^{p-1}} \\
& \leq \frac{f\left(z, u_{n}^{k}(z)\right)}{\left\|u_{n}^{k}\right\|^{p-1}}+\frac{\widehat{k}(z)\left|u_{n}^{k}(z)-u_{n}^{k-1}(z)\right|}{\left\|u_{n}^{k}\right\|^{p-1}} \quad \text { for a.a. } z \in \Omega \tag{82}
\end{align*}
$$

From (81), 82) and using hypothesis $H^{\prime}(i i)$, we have that

$$
\begin{equation*}
\frac{f\left(\cdot, u_{n}^{k-1}(\cdot)\right)}{\left\|u_{n}^{k}\right\|^{p-1}} \xrightarrow{w} \widetilde{\eta}(\cdot) y(\cdot)^{p-1} \text { in } L^{p^{\prime}} \tag{83}
\end{equation*}
$$

with $\eta(z) \leq \widetilde{\eta}(z) \leq \widehat{\eta}(z)$ for a.a. $z \in \Omega$ (see [1]). In 80) first we choose $h=y_{k}-y \in W_{0}^{1, p}(\Omega)$, pass to the limit as $k \rightarrow+\infty$ and use (78), 81. We obtain

$$
\begin{align*}
& \lim _{n \rightarrow+\infty}\left\langle A_{p}\left(y_{k}\right), y_{k}-y\right\rangle=0 \\
\Rightarrow \quad & y_{k} \rightarrow y \text { in } W_{0}^{1, p}(\Omega) \text { (see Proposition 1), hence }\|y\|=1, y \geq 0 \tag{84}
\end{align*}
$$

Then if in (80) we pass to the limit as $k \rightarrow+\infty$ and use 84, 79 and 83), we obtain

$$
\begin{aligned}
\left\langle A_{p}(y), h\right\rangle & =\int_{\Omega} \widetilde{\eta}(z) y^{p-1} h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega) \\
\Rightarrow \quad-\Delta_{p} y(z) & =\widetilde{\eta}(z) y(z)^{p-1} \quad \text { in } \Omega,\left.\quad y\right|_{\partial \Omega}=0
\end{aligned}
$$

As before (see, for example, the Claim in the proof of Proposition 12), using (83) and Proposition 3, we infer that y must be nodal, a contradiction to 84 .

Therefore we have that

$$
\left\{u_{n}^{k}\right\}_{k \geq 0} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded. }
$$

From this, via the nonlinear regularity theory (see [8] and [10]), we obtain that

$$
\left\{u_{n}^{k}\right\}_{k \geq 0} \subseteq C_{0}^{1}(\bar{\Omega}) \text { is relatively compact. }
$$

So, we may assume that

$$
u_{n}^{k} \rightarrow u_{n} \text { in } C_{0}^{1}(\bar{\Omega}) \quad \text { as } k \rightarrow+\infty
$$

From (76) we see that

$$
-\Delta_{p} u_{n}(z)-\Delta_{q} u_{n}(z)=\lambda_{n} u_{n}(z)^{-\eta}+f\left(z, u_{n}(z)\right) \text { in } \Omega,\left.\quad u_{n}\right|_{\partial \Omega}=0
$$

$$
\Rightarrow \quad u_{n} \in S_{\lambda_{n}} \subseteq \operatorname{int} C_{+} \quad \text { for all } n \in \mathbb{N} .
$$

From (77) and the double limit lemma (see Hu-Papageorgiou [7], Proposition A.1.107, p. 901), we have

$$
\begin{aligned}
& u_{n} \rightarrow u \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow+\infty, \\
\Rightarrow & u \in \liminf _{n \rightarrow+\infty} S_{\lambda_{n}} \\
\Rightarrow & \lambda \rightarrow S_{\lambda} \text { is lsc on } \mathcal{L}=\left(0, \lambda^{*}\right] .
\end{aligned}
$$

Then from Propositions 14 and 15 it follows that under hypotheses H^{\prime}, the solution multifunction is Vietoris continuous. Since the multifunction is $P_{k}\left(C_{0}^{1}(\bar{\Omega})\right)$-valued, it is also h-continuous.

Summarizing our findings for the solution multifunction $\lambda \rightarrow S_{\lambda}$ on $\mathcal{L}=$ $\left(0, \lambda^{*}\right]$, we can state the following theorem.

Theorem 2. If hypotheses H^{\prime} hold, then the solution multifunction $\lambda \rightarrow S_{\lambda}$

5. Minimal Positive Solutions

In this section we show that for every $\lambda \in \mathcal{L}=\left(0, \lambda^{*}\right]$ problem P_{λ} has a smallest positive solution $u_{\lambda}^{*} \in \operatorname{int} C_{+}\left(\right.$that is, $u_{\lambda}^{*} \leq u$ for all $\left.u \in S_{\lambda}\right)$ and we examine the monotonicity and continuity properties of the map $\lambda \rightarrow u_{\lambda}^{*}$.

Proposition 16. If hypotheses H hold and $\lambda \in \mathcal{L}=\left(0, \lambda^{*}\right]$, then problem P_{λ} admits a smallest positive solution $u_{\lambda}^{*} \in \operatorname{int} C_{+}$.

Proof. From Proposition 18 of Papageorgiou-Rădulescu-Repovš [18, we know that S_{λ} is downward directed. Then using Lemma 3.10, p. 178, of Hu-Papageorgiu [7], we can find $\left\{u_{n}\right\}_{n \geq 1} \subseteq S_{\lambda}$ decreasing such that

$$
\begin{equation*}
\underline{u}_{\lambda} \leq u_{n} \leq u_{1} \text { for all } n \in \mathbb{N}, \quad \inf _{n \geq 1} u_{n}=\inf S_{\lambda} \tag{85}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A_{q}\left(u_{n}\right), h\right\rangle=\int_{\Omega}\left[\lambda u_{n}^{-\eta}+f\left(z, u_{n}\right)\right] h d z \text { for all } h \in W_{0}^{1, p}(\Omega) \tag{86}
\end{equation*}
$$

If in (86) we choose $h=u_{n} \in W_{0}^{1, p}(\Omega)$ and use 85), we obtain that

$$
\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded. }
$$

We may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u_{\lambda}^{*} \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{n} \rightarrow u_{\lambda}^{*} \text { in } L^{p}(\Omega) \tag{87}
\end{equation*}
$$

From (87) as in the proof of Proposition 12 (see the part of the proof after (66)), we obtain that

$$
\begin{equation*}
u_{n} \rightarrow u_{\lambda}^{*} \text { in } W_{0}^{1, p}(\Omega) \tag{88}
\end{equation*}
$$

Passing to the limit as $n \rightarrow+\infty$ in (86) and using (88) and 85), we have
$\left\langle A_{p}\left(u_{\lambda}^{*}\right), h\right\rangle+\left\langle A_{q}\left(u_{\lambda}^{*}\right), h\right\rangle=\int_{\Omega}\left[\lambda\left(u_{\lambda}^{*}\right)^{-\eta}+f\left(z, u_{\lambda}^{*}\right)\right] h d z$ for all $h \in W_{0}^{1, p}(\Omega)$,
$\underline{u}_{\lambda} \leq u_{\lambda}^{*}$.
It follows that

$$
u_{\lambda}^{*} \in S_{\lambda} \subseteq \operatorname{int} C_{+} \quad \text { and } \quad u_{\lambda}^{*}=\inf S_{\lambda}
$$

Next we determine the monotonicity and continuity properties of the map $\lambda \rightarrow u_{\lambda}^{*}$ from \mathcal{L} into $C_{0}^{1}(\bar{\Omega})$.
${ }_{210}$ Proposition 17. If hypotheses H hold, then the minimal positive solution map $\lambda \rightarrow u_{\lambda}^{*}$ from $\mathcal{L}=\left(0, \lambda^{*}\right]$ into $C_{0}^{1}(\bar{\Omega})$ has the following properties:
(a) it is strictly increasing, that is,

$$
0<\mu<\lambda \leq \lambda^{*} \Rightarrow u_{\lambda}^{*}-u_{\mu}^{*} \in \operatorname{int} C_{+}
$$

(b) it is left continuous.

Proof. (a) According to Proposition 10, we can find $u \in S_{\mu} \subseteq \operatorname{int} C_{+}$such that

$$
\begin{aligned}
& u_{\lambda}^{*}-u \in \operatorname{int} C_{+}, \\
\Rightarrow & u_{\lambda}^{*}-u_{\mu}^{*} \in \operatorname{int} C_{+} \quad\left(\text { since } u_{\mu}^{*} \leq u\right), \\
\Rightarrow & \lambda \rightarrow u_{\lambda}^{*} \text { is strictly increasing. }
\end{aligned}
$$

(b) Let $\left\{\lambda_{n}\right\}_{n \geq 1} \subseteq \mathcal{L}=\left(0, \lambda^{*}\right]$ and assume that $\lambda_{n} \rightarrow \lambda^{-}$. Let $u_{n}^{*}=u_{\lambda_{n}}^{*} \in$ $S_{\lambda_{n}} \subseteq \operatorname{int} C_{+}$be the minimal positive solution of $\left(P_{\lambda_{n}}\right)$ produced in Proposition 16. We have

$$
\begin{aligned}
& \underline{u}_{\lambda_{1}} \leq u_{n}^{*} \leq u_{\lambda^{*}}^{*} \quad \text { for all } n \in \mathbb{N} \\
\Rightarrow \quad & \left\{u_{n}^{*}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded. }
\end{aligned}
$$

From this as before (see, for example, the last part of the proof of Proposition 8), from the nonlinear regularity theory of Lieberman 10 we have that

$$
\left\{u_{n}^{*}\right\}_{n \geq 1} \subseteq C_{0}^{1}(\bar{\Omega}) \text { is relatively compact. }
$$

Since $\left\{u_{n}^{*}\right\}_{n \geq 1}$ is increasing (see part (a)), we have

$$
\begin{equation*}
u_{n}^{*} \rightarrow \widetilde{u}_{\lambda}^{*} \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow+\infty \tag{89}
\end{equation*}
$$

We claim that $\widetilde{u}_{\lambda}^{*}=u_{\lambda}^{*}$. If this is not true, we can find $z_{0} \in \Omega$ such that

$$
\begin{aligned}
& u_{\lambda}^{*}\left(z_{0}\right)<\widetilde{u}_{\lambda}^{*}\left(z_{0}\right) \\
\Rightarrow \quad & u_{\lambda}^{*}\left(z_{0}\right)<u_{n}^{*}\left(z_{0}\right) \text { for all } n \geq n_{0}(\text { see } \sqrt[89]{)}),
\end{aligned}
$$

which contradicts part (a). Therefore $\widetilde{u}_{\lambda}^{*}=u_{\lambda}^{*}$ and this proves that the map $\lambda \rightarrow u_{\lambda}^{*}$ is left continuous.

We can state the following theorem.

Theorem 3. If hypotheses H hold and $\lambda \in \mathcal{L}=\left(0, \lambda^{*}\right]$, then problem (P_{λ} has a smallest positive solution $u_{\lambda}^{*} \in \operatorname{int} C_{+}$and the minimal positive solution map $\lambda \rightarrow u_{\lambda}^{*}$ from \mathcal{L} into $C_{0}^{1}(\bar{\Omega})$ is strictly increasing and left continuous.

References

[1] S. Aizicovici, N.S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008), 70 pp.
[2] A Bahrouni, V.D. Rădulescu and D.D. Repovš, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), no. 7, 2481-2495.
[3] Y. Bai, D. Motreanu and S. Zeng, Continuity results for parametric nonlinear singular Dirichlet problems, Adv. Nonlinear Anal., 9 (2020), no. 1, 372-387.
[4] L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall / CRC, Boca Raton, FL, (2006).
[5] L. Gasiński and N.S. Papageorgiou, Exercise in Analysis. Part 2: Nonlinear Analysis, Springer, Switzerland, (2016).
[6] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, (1998).
[7] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1997).
[8] O.A. Ladyzhenskaya N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, (1968).
[9] A.C. Lazer and P.J. McKenna, On a singular nonlinear elliptic boundaryvalue problem, Proc. Amer. Math. Soc., 111 (1991), no. 3, 721-730.
[10] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Diff. Equations, 16 (1991), no. 2-3, 311-361.
[12] N.S. Papageorgiou and V.D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl.
[13] N.S. Papageorgiou and V.D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), no. $4,737-764$.
[14] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, ($p, 2$)-equations asymmetric at both zero and infinity, Adv. Nonlinear Anal., 7 (2018), no. 3, 327-351.
[15] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Nonlinear Analysis - Theory and Methods, Springer, Cham (2019).
[16] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc., 147 (2019), no. 7, 2899-2910.
[17] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Ground state and nodal solutions for a class of double phase problems, Z. Angew. Math. Phys., 71 (2020), no. 1, Paper No. 15.
[18] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differential Equations, 59:9 (2020).
[19] N.S. Papageorgiou and A. Scapellato, Constant sign and nodal solutions for parametric ($p, 2$)-equations, Adv. Nonlinear Anal., 9 (2020), no. 1, 449-478.
[20] N.S. Papageorgiou and G. Smyrlis, A bifurcation-type theorem for singular nonlinear elliptic equations, Methods Appl. Anal., 22 (2015), no. 2, 147170.
[21] N.S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions with sign information for a ($p, 2$)-equation with combined nonlinearities, Nonlinear Anal., 192:111716 (2020), 1-25.
[22] N.S. Papageorgiou and C. Zhang, Noncoercive resonant ($p, 2$)-equations with concave terms, Adv. Nonlinear Anal., 9 (2020), no. 1, 228-249.
[23] P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser Verlag, Basel, (2007).

[^0]: * Corresponding author

 Email addresses: npapg@math.ntua.gr (Nikolaos S. Papageorgiou), calogero.vetro@unipa.it (Calogero Vetro), youpei.zhang@inf.ucv.ro zhangypzn@163.com (Youpei Zhang)

