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Abstract. We consider a parametric nonlinear Robin problem driven by the p-
Laplacian and with a reaction having the competing effects of two terms. One is
a parametric (p− 1)-sublinear term (concave nonlinearity) and the other is a (p− 1)-
superlinear term (convex nonlinearity). We assume that the weight of the concave
term is indefinite (that is, sign changing). Using the Nehari method, we show that for
all small values of the parameter λ > 0, the problem has at least two positive solutions
and also we provide information about their regularity.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study
the following nonlinear parametric Robin problem

(Pλ)

−∆pu+ ξ(z)u(z)p−1 = λa(z)u(z)τ−1 + ϑ(z)u(z)η−1 in Ω,
∂u

∂np
+ β(z)up−1 = 0 on ∂Ω, 1 < τ < p < η < p∗, λ > 0, u > 0.

In this problem ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|∇u|p−2∇u) for all u ∈ W 1,p(Ω), p < N.

The potential term ξ ∈ Ls(Ω), s > N/p (so, it may be unbounded) and ξ ≥ 0. In
the reaction (right hand side of (Pλ)), we have the combined effects of two different
nonlinearities. The first is a parametric concave (that is, (p− 1)-sublinear) term (since
τ < p), while the second term is a convex (that is, (p−1)-superlinear) perturbation (since
p < η). The distinguishing feature in this reaction is that the weight a(·) is sign-changing

and unbounded. In the boundary condition,
∂u

∂np
denotes the conormal derivative of

u corresponding to the p-Laplace differential operator. This conormal derivative is
interpreted using the nonlinear Green’s identity (see Papageorgiou-Rǎdulescu-Repovš
[13], p. 35) and we have

∂u

∂np
= |∇u|p−2 ∂u

∂n
for all u ∈ C1(Ω),
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with n(·) being the outward unit normal on ∂Ω. For the boundary coefficient β(·) we
assume that β ∈ L∞(∂Ω), β ≥ 0.

Using the Nehari method, we show that for all λ > 0 small problem (Pλ) has at least
two positive solutions and we also determine the regularity properties of these solutions.

The study of problems with combined nonlinearities was initiated with the seminal
paper of Ambrosetti-Brezis-Cerami [1], where p = 2 (semilinear equation) with Dirichlet
boundary condition and a ≡ ϑ ≡ 1. They prove a bifurcation-type result, producing
a critical parameter value λ∗ > 0 such that for all λ ∈ (0, λ∗) problem (Pλ) has at
least two positive solutions, for λ = λ∗ problem (Pλ) has at least one positive solu-
tion, and for λ > λ∗ there are no positive solutions. Their work was extended to
p-Laplacian equations by Garcia Azorero-Manfredi-Peral Alonso [5] and Guo-Zhang [7].
Further generalizations can be found in the works of Papageorgiou-Rǎdulescu-Repovš
[12] (semilinear Robin problems) and Papageorgiou-Winkert [14] (nonlinear Dirichlet
problems). Problems with indefinite weights were studied primarily in the context of
semilinear Dirichlet equations. We mention the important works of Brown [2], Brown-
Wu [3], Brown-Zhang [4], Papageorgiou-Rǎdulescu [10], Wu [18]. For nonlinear problems
driven by the Dirichlet p-Laplacian, there is the recent work of Silva-Macedo [17], where
a ≡ 1, ϑ ∈ L∞(Ω) is sign-changing.

2. Preliminaries - Hypotheses

Throughout this work we assume that p < N . Then the critical Sobolev exponent is

p∗ =
Np

N − p
. Also if q ∈ [1,+∞), then q′ ∈ (1,+∞] is defined by

1

q
+

1

q′
= 1 (conjugate

exponent).
We will be working on the Sobolev space W 1,p(Ω). By ‖ · ‖ we denote the norm of

W 1,p(Ω) defined by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p
for all u ∈ W 1,p(Ω).

Also, we will use the space C1(Ω) which is an ordered Banach space with positive
(order) cone given by C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a
nonempty interior given by intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using
this measure, we can define in the usual way the boundary Lebesgue spaces Lq(∂Ω),
1 ≤ q ≤ +∞. We know that there exists a unique continuous linear map γ0 : W 1,p(Ω)→
Lp(∂Ω), known as the “trace map”, such that

γ0(u) = u
∣∣∣
∂Ω

for all u ∈ W 1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of boundary values to all Sobolev functions.
We know that

im γ0 = W
1
p′ ,p(∂Ω) and ker γ0 = W 1,p

0 (Ω).

Moreover, the trace map is compact.
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In the sequel for the sake of notational simplicity, we drop the use of the trace map
γ0(·). All the restrictions of Sobolev functions on ∂Ω are understood in the sense of
traces.

Our hypotheses on the data of problem (Pλ) are the following:

H1: ξ ∈ Ls(Ω) with s > N/p, ξ(z) ≥ 0 for a.a. z ∈ Ω, β ∈ L∞(∂Ω), β(z) ≥ 0 for σ-a.a.
z ∈ ∂Ω and ξ 6≡ 0 or β 6≡ 0.
H2: a ∈ Ls(Ω) with s > N/p, and ϑ ∈ L∞(Ω), ϑ(z) ≥ 0 for a.a. z ∈ Ω.

Remark 1. So, the weight of the concave term is indefinite.

In what follows γp : W 1,p(Ω)→ R is the C1-functional defined by

γp(u) = ‖∇u‖pp +

∫
Ω

ξ(z)|u|pdz +

∫
∂Ω

β(z)|u|pdσ for all u ∈ W 1,p(Ω).

For λ > 0, let ϕλ : W 1,p(Ω) → R be the energy (Euler) functional for problem (Pλ)
defined by

ϕλ(u) =
1

p
γp(u)− λ

τ

∫
Ω

a(z)|u|τdz − 1

η

∫
Ω

ϑ(z)|u|ηdz for all u ∈ W 1,p(Ω).

We have ϕλ ∈ C1(W 1,p(Ω)).
We introduce the functional kλ : W 1,p(Ω)→ R defined by

kλ(u) = 〈ϕ′λ(u), u〉 = γp(u)− λ
∫

Ω

a(z)|u|τdz −
∫

Ω

ϑ(z)|u|ηdz for all u ∈ W 1,p(Ω).

Evidently kλ ∈ C1(W 1,p(Ω)). We introduce the Nehari manifold for the functional
ϕλ(·) defined by

Nλ =
{
u ∈ W 1,p(Ω) : 〈ϕ′λ(u), u〉 = kλ(u) = 0, u 6= 0

}
.

We decompose Nλ into three disjoint parts

N+
λ = {u ∈ Nλ : 〈k′λ(u), u〉 > 0} ,

N0
λ = {u ∈ Nλ : 〈k′λ(u), u〉 = 0} ,

N−λ = {u ∈ Nλ : 〈k′λ(u), u〉 < 0} .

The Nehari manifold Nλ is much smaller than W 1,p(Ω) and contains the critical points
of ϕλ(·). We expect ϕλ

∣∣
Nλ

to have properties which fail globally.

3. Multiple positive solutions

Hypotheses H1 together with Lemma 4.11 of Mugnai-Papageorgiou [9] and Proposi-
tion 2.4 of Gasiński-Papageorgiou [6], imply that

(1) γp(u) ≥ c0‖u‖p for all u ∈ W 1,p(Ω), some c0 > 0.

Proposition 1. If hypotheses H1, H2 hold and λ > 0, then ϕλ
∣∣
Nλ

is coercive.
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Proof. From the definition of the Nehari manifold, we have

(2) u ∈ Nλ if and only if γp(u) =

∫
Ω

[λa(z)|u|τ + ϑ(z)|u|η]dz, u 6= 0.

Then for u ∈ Nλ, we have

ϕλ(u) =
1

p
γp(u)− 1

τ

[
γp(u)−

∫
Ω

ϑ(z)|u|ηdz
]
− 1

η

∫
Ω

ϑ(z)|u|ηdz (see (2))

=

[
1

p
− 1

τ

]
γp(u) +

[
1

τ
− 1

η

] ∫
Ω

ϑ(z)|u|ηdz

=

[
1

p
− 1

τ

]
γp(u) +

[
1

τ
− 1

η

]
γp(u)− λ

[
1

τ
− 1

η

] ∫
Ω

a(z)|u|τdz (see (2))

=

[
1

p
− 1

η

]
γp(u)− λ

[
1

τ
− 1

η

] ∫
Ω

a(z)|u|τdz

≥ c1‖u‖p − λc2

∫
Ω

a(z)|u|τdz for some c1 > 0, with c2 =
1

τ
− 1

η
> 0 (see (1)).(3)

By hypothesis H1 we have

s >
N

p
⇒ s′ <

(
N

p

)′
=

N

N − p
,

⇒ τs′ < ps′ =
Np

N − p
= p∗ (recall τ < p).

Therefore |u|τ ∈ Ls
′
(Ω) (by the Sobolev embedding theorem) and using Hölder’s

inequality, we have

(4)

∣∣∣∣∫
Ω

a(z)|u|τdz
∣∣∣∣ ≤ ‖a‖s‖u‖ττs′ .

Since τs′ < p∗ and τ < τs′, using the Sobolev embedding theorem we have

W 1,p(Ω) ↪→ Lτs
′
(Ω) ↪→ Lτ (Ω)

with all embeddings being continuous and the first being also compact. So by Ehrling’s
inequality (see Papageorgiou-Winkert [15], Lemma 4.2.48, p. 317), we can find c3 > 0
such that

‖u‖ττs′ ≤ c3 [‖u‖τ + ‖u‖ττ ] .(5)

We use (5) in (4) and obtain

(6)

∣∣∣∣∫
Ω

a(z)|u|τdz
∣∣∣∣ ≤ c4‖u‖τ for some c4 > 0, all u ∈ W 1,p(Ω).

We return to (3) and use (6). We obtain

(7) ϕλ(u) ≥
[
c1‖u‖p−τ − λc5

]
‖u‖τ for some c5 > 0.

Since τ < p, from (7) we conclude that ϕλ
∣∣
Nλ

is coercive. �
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Next we show that for all λ > 0 small, we have N0
λ = ∅.

Proposition 2. If hypotheses H1, H2 hold, then there exists λ∗ > 0 such that N0
λ = ∅

for all λ ∈ (0, λ∗).

Proof. We argue by contradiction. So, suppose that for all λ > 0, N0
λ 6= ∅. Therefore,

we can find u ∈ Nλ such that

〈k′λ(u), u〉 = 0,

⇒ p〈γ′p(u), u〉 = λτ

∫
Ω

a(z)|u|τdz + η

∫
Ω

ϑ(z)|u|ηdz,

⇒ pγp(u) = λτ

∫
Ω

a(z)|u|τdz + η

∫
Ω

ϑ(z)|u|ηdz.(8)

Since u ∈ Nλ we have

τγp(u) = λτ

∫
Ω

a(z)|u|τdz + τ

∫
Ω

ϑ(z)|u|ηdz (see (2)),

⇒ τγp(u)− τ
∫

Ω

ϑ(z)|u|ηdz = λτ

∫
Ω

a(z)|u|τdz.(9)

We use (9) in (8) and obtain

[p− τ ]γp(u)− [η − τ ]

∫
Ω

ϑ(z)|u|ηdz = 0,

⇒ c6‖u‖p − c7‖u‖η ≤ 0 for some c6, c7 > 0

(see (1), hypothesis H1 and recall that τ < p < η)

⇒
[
c6

c7

] 1
η−p

≤ ‖u‖.(10)

On the other hand from (2), we have

(11) ηγp(u)− λη
∫

Ω

a(z)|u|τdz = η

∫
Ω

ϑ(z)|u|ηdz.

We use (11) in (8) and it follows that

[η − p]γp(u) = λ[η − τ ]

∫
Ω

a(z)|u|τdz,

⇒ ‖u‖p ≤ λc8‖u‖τ for some c8 > 0 (see (2), (4) and recall that τ < p < η),

⇒ ‖u‖ ≤ [λc8]
1

p−τ .

We let λ → 0+ and we have a contradiction to (10). This means that we can find
λ∗ > 0 such that N0

λ = ∅ for all λ ∈ (0, λ∗). �

Proposition 3. If hypotheses H1, H2 hold and λ ∈ (0, λ∗), then ϕλ
∣∣
N+
λ

< 0.
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Proof. Let u ∈ N+
λ . From the definition of N+

λ , we have

(12) 0 < 〈k′λ(u), u〉 = pγp(u)− λτ
∫

Ω

a(z)|u|τdz − η
∫

Ω

ϑ(z)|u|ηdz.

Since u ∈ Nλ, from (2) we have

(13) −τγp(u) + λτ

∫
Ω

a(z)|u|τdz + τ

∫
Ω

ϑ(z)|u|ηdz = 0.

We add (12) and (13) and obtain

[η − τ ]

∫
Ω

ϑ(z)|u|τdz < [p− τ ]γp(u),

⇒
∫

Ω

ϑ(z)|u|τdz <
[
p− τ
η − τ

]
γp(u).(14)

Then we have

ϕλ(u) =
1

p
γp(u)− λ

τ

∫
Ω

a(z)|u|τdz − 1

η

∫
Ω

ϑ(z)|u|ηdz

=
1

p
γp(u)− 1

τ

[
γp(u)−

∫
Ω

ϑ(z)|u|ηdz
]
− 1

η

∫
Ω

ϑ(z)|u|ηdz (since u ∈ Nλ, see (2))

=

[
1

p
− 1

τ

]
γp(u) +

[
1

τ
− 1

η

] ∫
Ω

ϑ(z)|u|ηdz

<

[
1

p
− 1

τ

]
γp(u) +

[
1

τ
− 1

η

] [
p− τ
η − τ

]
γp(u) (see (14))

=

[
τ − p
τp

]
γp(u) +

[
p− τ
τη

]
γp(u)

< 0 (since τ < p < η).

�

Let m+
λ = infN+

λ
ϕλ. From Proposition 3 we have m+

λ < 0.

Proposition 4. If hypotheses H1, H2 hold, then there exists λ̂∗ ∈ (0, λ∗] such that for

all λ ∈ (0, λ̂∗) we can find u∗λ ∈ N+
λ such that ϕλ(u

∗
λ) = m+

λ .

Proof. Let {un}n≥1 ⊆ N+
λ be a minimizing sequence, that is

ϕλ(un) ↓ m+
λ as n→ +∞.

From Proposition 3 we have

(15) ϕλ(un) < 0 for all n ∈ N.
Also, since {un}n≥1 ⊆ N+

λ ⊆ Nλ, using Proposition 1, we have that

{un}n≥1 ⊆ W 1,p(Ω) is bounded.

By passing to a suitable subsequence if necessary, we may assume that

(16) un
w−→ u∗λ in W 1,p(Ω) and un → u∗λ in Lη(Ω) and in Lp(∂Ω).
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Since ϕλ(·) is sequentially weakly lower semicontinuous, from (16) and since τs′ < p,
we have

ϕλ(u
∗
λ) < 0 = ϕλ(0) (recall m+

λ < 0),

⇒ u∗λ 6= 0.

From (15) we have

1

p
γp(un)− λ

τ

∫
Ω

a(z)|un|τdz −
1

η

∫
Ω

ϑ(z)|un|ηdz < 0 for all n ∈ N,

⇒
[

1

p
− 1

η

]
γp(un)− λ

[
1

τ
− 1

η

] ∫
Ω

a(z)|un|τdz < 0 for all n ∈ N,

(recall un ∈ Nλ and see (2))

⇒
[

1

p
− 1

η

]
γp(u

∗
λ)− λ

[
1

τ
− 1

η

] ∫
Ω

a(z)|u∗λ|τdz ≤ 0 (see (16) and recall that ts′ < p)

⇒
[

1

p
− 1

η

]
γp(u

∗
λ) ≤ λ

[
1

τ
− 1

η

] ∫
Ω

a(z)|u∗λ|τdz.

Since τ < p < η and u∗λ 6= 0, using (1) we infer that

(17) 0 <

∫
Ω

a(z)|u∗λ|τdz.

Consider the fibering map

µλ,u∗λ(t) = ϕλ(tu
∗
λ) for all t > 0.

Also, let

wu∗λ(t) = tp−τγp(u
∗
λ)− tη−τ

∫
Ω

ϑ(z)|u∗λ|ηdz for all t > 0.

Since τ < p < η, we see that there exists a unique t0 > 0 such that

wu∗λ(t0) = max{wu∗λ(t) : t > 0},(18)

⇒ w′u∗λ(t0) = 0,

⇒ (p− τ)γp(u
∗
λ) = (η − τ)tη−p0

∫
Ω

ϑ(z)|u∗λ|ηdz,

⇒ t0 =

[
(p− τ)γp(u

∗
λ)

(η − τ)
∫

Ω
ϑ(z)|u∗λ|ηdz

] 1
η−p

,

⇒ wu∗λ(t0) =

[(
p− τ
η − τ

) p−τ
η−p

−
(
p− τ
η − τ

) η−τ
η−p
]

γp(u
∗
λ)

η−τ
η−p[∫

Ω
ϑ(z)|u|ηdz

] p−τ
η−p

> 0.(19)

Note that for t > 0, we have

(20) tu∗λ ∈ Nλ if and only if wu∗λ(t) = λ

∫
Ω

a(z)|u∗λ|τdz (see (2)).
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From (20) and (18), we see that

if λ

∫
Ω

a(z)|u∗λ|τdz > wu∗λ(t0) > 0 (see (19)), then for all t > 0, tu∗λ 6∈ Nλ.

So, let λ̂∗ ∈ (0, λ∗] be small so that

0 < λ

∫
Ω

a(z)|u∗λ|τdz ≤ wu∗λ(t0) for all λ ∈ (0, λ̂∗] (see (19)).

Since τ < p < η, we can find 0 < t1 < t0 < t2 such that

w′u∗λ(t2) < 0 < w′u∗λ(t1),(21)

µ′λ,u∗λ(t1) = 0 = µ′λ,u∗λ(t2) (see Brown-Wu [3], p. 4).(22)

Then we have

µ′′u∗λ(t1) = (p− 1)tp−2
1 γp(u

∗
λ)− λ(t− 1)tτ−2

1

∫
Ω

a(z)|u∗λ|τdz − (η − 1)tη−2
1

∫
Ω

ϑ(z)|u∗λ|ηdz

= (p− 1)tp−2
1 γp(u

∗
λ)− (τ − 1)tp−2

1 γp(u
∗
λ)

− (η − 1)tη−2
1

∫
Ω

ϑ(z)|u∗λ|ηdz + (τ − 1)tη−2
1

∫
Ω

ϑ(z)|u∗λ|ηdz (see (22))

= tτ−1
1

[
(p− τ)tp−τ−1

1 γp(u
∗
λ)− (η − τ)tη−τ−1

1

∫
Ω

ϑ(z)|u∗λ|ηdz
]

= tτ−1
1 w′u∗λ(t1) > 0 (see (21)).(23)

Similarly we show that

(24) µ′′u∗λ(t2) = tτ−1
2 w′u∗λ(t2) < 0.

From (23) and (24) it follows that

t1u
∗
λ ∈ N+

λ and t2u
∗
λ ∈ N−λ .

Claim: un → u∗λ in W 1,p(Ω) as n→ +∞.
If the Claim is not true, then on account of (16) and the sequential weak lower

semicontinuity of γp(·), we have

(25) γp(u
∗
λ) < lim inf

n→+∞
γp(un).

Then we have

lim inf
n→+∞

µ′λ,un(t1)

= lim inf
n→+∞

[
tp−1
1 γp(un)− λtτ−1

1

∫
Ω

a(z)|un|τdz − tη−1
1

∫
Ω

ϑ(z)|un|ηdz
]

> tp−1
1 γp(u

∗
λ)− λtτ−1

1

∫
Ω

a(z)|u∗λ|τdz − t
η−1
1

∫
Ω

ϑ(z)|u∗λ|ηdz (see (25) and (16))

= µ′λ,u∗λ(t1) = 0 (see (22)),
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⇒ µ′λ,un(t1) > 0 for all n ≥ n0.

(26)

Since un ∈ N+
λ ⊆ Nλ for all n ∈ N, we have

µ′λ,un(t) < 0 for all t ∈ (0, 1) and µ′λ,un(1) = 0 for all n ∈ N
(see also Silva-Macedo [17], pp. 1897-1898),

⇒ t1 > 1.(27)

The fibering function µλ,u∗λ(·) is decreasing on (0, t2). So, we have

ϕλ(t1u
∗
λ) ≤ ϕλ(u

∗
λ) (see (27))

≤ lim inf
n→+∞

ϕλ(un) (see (25), (16))

= m+
λ .(28)

But recall that t1u
∗
λ ∈ N+

λ . So, we have

(29) m+
λ ≤ ϕλ(t1u

∗
λ).

Comparing (28) and (29), we have a contradiction. This proves the Claim.
On account of the Claim, we have

ϕλ(un)→ ϕλ(u
∗
λ),

⇒ ϕλ(u
∗
λ) = m+

λ .

Since un ∈ N+
λ for all n ∈ N, we have

〈k′λ(un), un〉 > 0 for all n ∈ N,
⇒ 〈k′λ(u∗λ), u∗λ〉 ≥ 0 (see the Claim).

Recall that λ̂∗ ≤ λ∗ and so by Proposition 2 equality is not possible. Therefore

〈k′λ(u∗λ), u∗λ〉 > 0,

⇒ u∗λ ∈ N+
λ .

�

Next we consider the following minimization problem

(30) m−λ = inf
N−λ

ϕλ.

Proposition 5. If hypotheses H1, H2 hold, then there exists λ̂∗0 ∈ (0, λ̂∗] such that
ϕλ
∣∣
N−λ

> 0 for all λ ∈ (0, λ∗0).

Proof. Let u ∈ N−λ and consider the function

eu(t) =
tp

p
γp(u)− tη

η

∫
Ω

ϑ(z)|u|ηdz for all t > 0.
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Since p < η, we see that eu(·) has a unique maximum t̂ > 0 determined by the
equation

e′u(t̂) = 0,

⇒ t̂p−1γp(u) = t̂η−1

∫
Ω

ϑ(z)|u|ηdz,

⇒ t̂ =

[
γp(u)∫

Ω
ϑ(z)|u|ηdz

] 1
η−p

.

Then we have

eu(t̂) =
1

p

[
γp(u)∫

Ω
ϑ(z)|u|ηdz

] p
η−p

γp(u)− 1

η

[
γp(u)∫

Ω
ϑ(z)|u|ηdz

] η
η−p
∫

Ω

ϑ(z)|u|ηdz.

Note that
p

η − p
+ 1 =

η

η − p
. Hence we have

eu(t̂) =

[
1

p
− 1

η

]
γp(u)

η
η−p[∫

Ω
ϑ(z)|u|ηdz

] p
η−p

=

[
1

p
− 1

η

][
γp(u)η(∫

Ω
ϑ(z)|u|ηdz

)p
] 1
η−p

.(31)

Note that[∫
Ω

ϑ(z)|u|ηdz
] 1
η

≤ c9‖u‖η for some c9 > 0 (see hypotheses H2)

≤ c10‖u‖ for some c10 > 0 (by the Sobolev embedding theorem)

≤ c11γp(u)
1
p for some c11 > 0 (see (1)),

⇒
[∫

Ω

ϑ(z)|u|ηdz
] p
η

≤ cp11γp(u),

⇒
[∫

Ω

ϑ(z)|u|ηdz
]p
≤ c12γp(u)η with c12 = cpη11 > 0.(32)

Returning to (31) and using (32), we obtain

(33) eu(t̂) ≥
[

1

p
− 1

η

] [
γp(u)η

c12γp(u)η

] 1
η−p

= c13 > 0

(the constant c13 > 0 is independent of u ∈ N−λ ).
Then we have

t̂τ

τ

∫
Ω

a(z)|u|τdz

≤ t̂τ

τ
c14‖u‖τ for some c14 > 0 (see (6))
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≤ 1

τ
c15

[
γp(u)∫

Ω
ϑ(z)|u|ηdz

] τ
η−p

γp(u)
τ
p for some c15 > 0

(recall the value of t̂ > 0 and use (1))

≤ 1

τ
c15

[
γp(u)η(∫

Ω
ϑ(z)|u|ηdz

)p
] τ
p(η−p)

≤ c16eu(t̂)
τ
p for some c16 > 0 (see (33)).(34)

It follows that the fibering function µλ,u(·) satisfies

µλ,u(t̂) =
t̂p

p
γp(u)− t̂η

η

∫
Ω

ϑ(z)|u|ηdz − λt̂
τ

τ

∫
Ω

a(z)|u|τdz

≥ eu(t̂)− λc16eu(t̂)
τ
p (see (34))

=
[
eu(t̂)

p−τ
p − λc16

]
eu(t̂)

τ
p

≥
[
c
p−τ
p

13 − λc16

]
eu(t̂)

τ
p (see (33)).

So, we can find λ̂∗0 ∈ (0, λ̂∗] small such that

µλ,u(t̂) > 0 for all λ ∈ (0, λ̂∗0).

Then we have

ϕλ(u) = µλ,u(1) ≥ µλ,u(t̂) > 0 (since u ∈ N−λ ),

⇒ ϕλ
∣∣
N−λ

> 0.

�

Proposition 6. If hypotheses H1, H2 hold and λ ∈ (0, λ̂∗0), then there exists v∗λ ∈ N−λ
such that m−λ = ϕλ(v

∗
λ) > 0.

Proof. The proof is similar to that of Proposition 4.
Consider a minimizing sequence {vn}n≥1 ⊆ N−λ , that is

ϕλ(vn) ↓ m−λ as n→ +∞.
From Proposition 1, we have that

{vn}n≥1 ⊆ W 1,p(Ω) is bounded.

Hence, by passing to a subsequence if necessary, we may assume that

(35) vn
w−→ v∗λ in W 1,p(Ω) and vn → v∗λ in Lη(Ω) and in Lp(∂Ω).

From the proof of Proposition 4, we know that there exists t2 > t0 such that

(36) t2v
∗
λ ∈ N−λ and ϕλ(t2v

∗
λ) ≥ ϕλ(t0v

∗
λ).

Claim: vn → v∗λ in W 1,p(Ω) as n→ +∞.
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Arguing by contradiction, suppose that the Claim is not true. Then on account of
(35) we have

(37) γp(v
∗
λ) < lim inf

n→+∞
γp(vn).

Since vn ∈ N−λ , we have

ϕλ(tvn) ≤ ϕλ(vn) for all t > 0, all n ∈ N (see [3], p. 6)(38)

⇒ ϕλ(t2v
∗
λ) < lim inf

n→+∞

[
tp2
p
γp(un)− λtτ2

τ

∫
Ω

a(z)|vn|τdz −
tη2
η

∫
Ω

ϑ(z)|vn|ηdz
]

(see (37) and (35))

= lim inf
n→+∞

ϕλ(t2vn)

≤ lim inf
n→+∞

ϕλ(vn) = m−λ ,

a contradiction since t2v
∗
λ ∈ N−λ (see (36)). So, the Claim is true and we have

vn → v∗λ in W 1,p(Ω).

From this fact as in the proof of Proposition 4, we obtain

ϕλ(v
∗
λ) = m−λ and v∗λ ∈ N−λ .

�

Proposition 7. If hypotheses H1, H2 hold, u ∈ Nλ is a local minimizer of ϕλ
∣∣
Nλ

and

u 6∈ N0
λ, then u ∈ Kϕλ.

Proof. Recall that kλ : W 1,p(Ω)→ R is the C1-functional defined by

kλ(u) = γp(u)− λ
∫

Ω

a(z)|u|τdz −
∫

Ω

ϑ(z)|u|ηdz for all u ∈ W 1,p(Ω).

We consider the following constrained minimization problem

(39) inf [ϕλ(u) : kλ(u) = 0, u 6= 0] .

On account of the hypothesis and (2), u ∈ Nλ is a local minimizer of (39). Using
the Lagrange multiplier rule (see Papageorgiou-Rǎdulescu-Repovš [14], p. 422), we can
find s ≥ 0 such that

ϕ′λ(u) + sk′λ(u) = 0,

⇒ s〈k′λ(u), u〉 = 0 (since u ∈ Nλ).(40)

But by hypothesis u 6∈ N0
λ . So, from (40) it follows that s = 0. Hence

ϕ′λ(u) = 0,

⇒ u ∈ Kϕλ .

�

Now we are ready for the multiplicity theorem for problem (Pλ).
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Theorem 1. If hypotheses H1, H2 hold, then there exists λ̂∗0 > 0 such that for all

λ ∈ (0, λ̂∗0) problem (Pλ) has at least two positive solutions u∗λ, v
∗
λ ∈ W 1,p(Ω)∩L∞(Ω)∩

C0,α(Ω) (0 < α < 1) such that u∗λ(z) > 0, v∗λ(z) > 0 for all z ∈ Ω, ϕλ(u
∗
λ) < 0 < ϕλ(v

∗
λ).

Proof. From Propositions 2, 4 and 6, we know that there exists λ̂∗0 > 0 such that for all

λ ∈ (0, λ̂∗0) we can find u∗λ ∈ N+
λ and v∗λ ∈ N−λ such that

u∗λ and v∗λ are local minimizers of ϕλ
∣∣
Nλ

,(41)

N0
λ = ∅.(42)

From (41), (42) and Proposition 7 it follows that

u∗λ, v
∗
λ ∈ Kϕλ .

Also from Propositions 4 and 6, we have

ϕλ(u
∗
λ) < 0 < ϕλ(v

∗
λ).

We have that u∗λ, v
∗
λ are weak solutions of (Pλ). From Proposition 2.10 of Papageorgiou-

Rǎdulescu [11], we have that u∗λ, v
∗
λ ∈ L∞(Ω). Since ϕλ(u) = ϕλ(|u|) for all u ∈ W 1,p(Ω),

we may assume that u∗λ, v
∗
λ ≥ 0.

Then using Theorem 7.2.1 (Harnack inequality) and Theorem 7.3.1 (local regularity)
of Pucci-Serrin [16], we have that

u∗λ, v
∗
λ ∈ C0,α(Ω) for some α ∈ (0, 1),

u∗λ(z) > 0, v∗λ(z) > 0 for all z ∈ Ω.

�

If we strengthen the conditions on the data of (Pλ), we can improve the regularity of
the two solutions.

H ′1: ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) (0 < α < 1), ξ(z) ≥ 0 for a.a. z ∈ Ω, β(z) ≥ 0 for all
z ∈ ∂Ω and at least one of them is nonzero.
H ′2: a ∈ L∞(Ω), ϑ ∈ L∞(Ω) and ϑ(z) ≥ 0 for a.a. z ∈ Ω.

Proposition 8. If hypotheses H ′1, H ′2 hold and λ ∈ (0, λ̂∗0), then u∗λ, v
∗
λ ∈ intC+.

Proof. From Theorem 1 we have two nontrivial solutions

u∗λ, v
∗
λ ∈ W 1,p(Ω) ∩ L∞(Ω).

Invoking Theorem 2 of Lieberman [8], we have u∗λ, v
∗
λ ∈ C+. In fact the nonlinear

maximum principle of Pucci-Serrin [16] (p. 120) implies that u∗λ, v
∗
λ ∈ intC+.

�
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