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Abstract
Purpose  In silico trials using computational modeling and simulations can complement clinical trials to improve the time-
to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in 
developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed 
for transcatheter aortic valve implantation (TAVI).
Methods  A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling 
the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques 
were utilized not only for risk stratification and classification but also for predicting the physiological variability within the 
original patient population.
Results  By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, 
forming the synthetic cohort. Validation against the original patient population was conducted using morphological measure-
ments. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted 
the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural 
network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98).
Conclusion  The study highlights the potential of integrating computational predictions, advanced machine learning tech-
niques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico 
trials.

Keywords  Transcatheter aortic valve replacement · Statistical shape analysis · Machine learning

1  Introduction

Transcatheter heart valves need many tests in the develop-
ment stage and relies on clinical trials for demonstrating 
the safety and efficacy of the intended medical treatment. 
As in other engineering fields and industries, the design 

and efficacy of biomedical devices can be greatly improved 
by using computer modeling and simulations, which can 
play a pivotal role in accelerating the design phase and 
thus help companies develop more effective and reliable 
solutions [1]. Clinical trials offer a detailed assessment and 
validation of the cardiovascular device in the clinical envi-
ronment but are costly, time-consuming, and have limited 
ability to acquire data on outlier patients [2].

There is therefore an emerging interest in developing in 
silico trials to provide clinically oriented data and improve 
the time-to-market of complex cardiovascular devices 
in humans [3]. In silico trials can augment an original 
patient population to obtain evidences in synthetic models 
using simulation and provide novel insights in borderline 
anatomies commonly excluded from clinical trials [4]. 
For instance, in the setting of transcatheter aortic valve 
replacement (TAVI), initial clinical trials [5] excluded 
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patients with bicuspid aortic valve or young individuals. 
Later, specific trials extended the clinical outcome on the 
safety and efficacy of TAVI in stenotic bicuspid aortic 
valves [6] with life expectancy longer than the originally 
treated TAVI patient population. In silico trials can be 
used to investigate the causes of device underperformance 
in complex anatomies, which can in turn inform improve-
ments in device design.

To implement an in silico clinical trials for TAVI, a 
synthetic cohort of patients with different degrees of aor-
tic valve stenosis needs to be developed from an original 
patient population. Thus, the variability of the targeted 
patient population should be quantified and expanded to 
generate a virtual cohort mimicking the patients’ anato-
mies. To accomplish this task, statistical shape modeling 
(SSM) represents a powerful technique to extrapolate 
shape features that, if combined with machine learning 
models, can also provide predictions on the mechanistic 
link between shape and function [7]. The virtual cohort 
should be clearly credible and replicate the morphological 
and functional characteristics of the original patient popu-
lation. Thus, the application of in silico trials for providing 
clinical evidence requires demonstration and the establish-
ment of a regulatory framework [8].

In this study, we propose a framework to extract shape 
features of TAVI patients using geometric decomposition 
techniques. As a proof-of-concept, a synthetic cohort of 
one hundred patient models was derived and then vali-
dated against geometric parameters computed for both the 
synthetic and original TAVI study group. Later, a regres-
sion model was developed aimed at directly inferring the 
pressure gradient of stenotic valve based on the informa-
tion derived from the previously computed shape features. 
Correlations between shape modes and functional patient 
parameters were also quantified. In particular, regression 
and correlation analyses were conducted to explore the 
feasibility of estimating functional parameters for syn-
thetic models based on the functional clinical data of the 
original population and the shape features. As a second 
aim, we also explored the feasibility of predicting the 
optimal size of the bioprosthesis from the SSM-related 
anatomic features using machine learning. This can be 
potentially used for stratification of borderline anatomies 
at risk of underperformance of the implanted device.

2 � Materials and methods

A prospective clinical study was conducted to enroll 68 
patients undergoing TAVI with the Edwards SAPIEN 3 (S3) 
transcatheter heart valve. Patients were recruited within the 
scope of the H2020 project SimInSitu. They presented vary-
ing degrees of aortic valve stenosis and were treated with 

device sizes of 23 mm or 26 mm. Patients treated with the 
29-mm device were not included, as it is rarely used in our 
hospital institution (incidence < 5%). All patients underwent 
a rigorous diagnostic imaging protocol. Upon in-hospital 
admission, both transthoracic echocardiography and elec-
trocardiogram-gated computed tomography (ECG-gated 
CT) imaging were performed to plan the TAVI procedure. 
Clinical procedures were performed by the Heart team using 
transfemoral access under general anesthesia. The implanta-
tion depth of the S3 device was established in accordance 
with the manufacturer’s recommendations and patient ana-
tomic constraints. Table 1 summarizes demographic and 
clinical data for each patient.

2.1 � TAVI segmentation

ECG-gated CT images at 80% of the R-R interval cor-
responding to late diastole were employed for the seg-
mentation of aortic root geometry using Mimics medical 
imaging software (v21, Materialize, Belgium). The seg-
mentation process encompassed the isolation of the aortic 
root vessel, extending from the aortic valve annulus to 
the ascending aorta, as well as the identification of cal-
cified plaques. Semi-automatic thresholding of contrast-
enhanced images was employed, followed by manual edit-
ing and smoothing of the reconstructed mask, to obtain the 
aortic wall based on the connectivity of gray values within 
a dynamically selected range. A seed point is identified 
in the aortic lumen at the mid-ascending aorta, and the 
mask is then generated by comparing the gray value of the 
seed point with that of neighboring pixels. Segmentation 
automatically halts when the gray values deviate from the 
seed point by more than ± 70 Hounsfield units. Segmenta-
tion of the stenotic valve leaflets was omitted due to their 
thin structure not clearly visible at ECG-gated CT imag-
ing. For the detection of calcification, a distinct mask was 
generated through fully automatic thresholding of bright 
plaque calcium [9]. The grey intensity value ranged from 
1500 to 1850 Hounsfield units, with differences attributed 
to the ECG-gated CT imaging procedure.

The geometries of both the aortic root and calcifications 
were subsequently imported as stereolithographic files into 
Rhinoceros (v7, McNeel & Associates, USA) for further 
manual editing. Specifically, the aortic root surface was 
sectioned at a mid-height of the ascending aorta and just 
below the aortic root annulus for subsequent analyses. This 
approach is not based on an automatic cutting procedure, 
as described in other studies [10, 11].

2.2 � Statistical shape modeling implementation

An in silico virtual cohort of TAVI patients was developed 
using a SSM to generate the patient atlas, comprising the 
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mean shape and its variations. The SSM was constructed 
within the MATLAB mathematical programming language 
(R2020, MathWorks Inc., Natick, MA, USA), as previously 
described in earlier studies conducted by our group on the 
aneurysmal aorta [12], left ventricle [13] and spine [14]. 
To generate a new virtual model, the mean shape of the 
TAVI patient population can be deformed based on desired 
standard deviation (σ) values for each shape mode. The latter 
allows capturing specific anatomical features of the TAVI 
patient population. The development of the in silico virtual 
cohort began with preprocessing segmented aortic root sur-
faces, followed by automatic alignment through registration 
and transformation algorithms and subsequent application 
of principal component analysis (PCA) for shape mode 
extraction.

After importing the aortic root and calcification surfaces 
into MATLAB, the geometries were resampled to sufficient 
resolution by reducing the total number of 3D point coor-
dinates without altering the original vessel morphology, 

ensuring computational efficiency. Initially, random sam-
pling of the original grid was performed to generate various 
refinement levels. Subsequently, the first shape mode was 
derived using PCA and plotted against the mesh resolution 
to assess the convergence of the surface grid. Convergence 
was indicated by a change of less than 5% in the first shape 
mode. This optimization process of geometric models 
resulted in 30,000 point coordinates for the aortic root wall 
and 50,000 points for the calcifications.

To develop the SSM, a reference patient model needs 
to be extracted from the patient population to align all 
aortic root and calcifications to the reference one. Align-
ment involved an initial rigid iterative closest point (ICP) 
transformation to ensure consistent orientation and position 
among shapes, followed by a nonrigid ICP for shape scal-
ing to further enhance point cloud alignment. For both rigid 
and nonrigid transformations, the algorithm halted when 
the average difference between estimated rigid transforma-
tions in the three most recent consecutive iterations was less 
than the specified tolerance of 0.01 mm. A maximum of 
120 iterations was set during which the function attempts to 
converge the two point clouds. The alignment process was 
distinctly performed for the aortic wall and calcification, as 
these shapes were common to all patients. For calcifications, 
alignment was performed subsequent to the alignment of the 
aortic sinuses (i.e., aortic wall and calcification) by manual 
rotation to ensure consistency from leaflet to leaflet. Then, 
alignment was carried out solely for the calcific plaques of 
each patient while relaxing the alignment tolerance param-
eter to 0.2 mm to avoid excessive rotation and translation. It 
should be noted that calcifications do not follow a predict-
able pattern across patients, and there is no consistent rule 
for how they correspond from one individual to another. 
Therefore, the approach used in this study assumes that cal-
cific plaques are present on all valve leaflets across the entire 
patient population when determining the correspondence of 
calcification patterns.

Consistency in the final patient model was achieved as 
each aortic wall and calcification was aligned to the same 
reference shape. Given a potential bias in alignment with 
respect to the arbitrary reference shape, transformations 
were iteratively applied from the initial template shape to 
each rigidly aligned shape. This process was repeated using 
the mean shape surfaces as the reference shape. To further 
reduce bias, the preceding steps of rigid alignment, shape 
transformation, and subsequent rigid alignment were itera-
tively repeated until the average shape no longer changed. 
The aligned shapes were then prepared for PCA by con-
catenating the point coordinates of each shape into a vec-
tor, which were then assembled into a matrix comprising 
all patient models. PCA served as an unsupervised tech-
nique for extracting the required shape features essential 
for the virtual expansion of the patient cohort. The primary 

Table 1   Study population characteristics of patients prior TAVI pro-
cedure

BMI, body mass index; BSA, body surface area; Psys, systolic pres-
sure; Pdia, diastolic pressure; EF, ejection fraction; PAPs, pulmonary 
arterial pressure

TAVI patient

(N = 68)
Age (years) 80.52 ± 5.99
Height (cm) 159.25 ± 8.54
mass (kg) 71.17 ± 13.55
BMI (-) 28.11 ± 4.88
BSA (m2) 1.77 ± 0.20
Psys (mmHg) 127.15 ± 19.13
Pdia (mmHg) 63.27 ± 10.92
Heart rate (bpm) 71.25 ± 9.87
ECG-gated CT data

  Valve area AVA (cm2) 0.61 ± 0.13
  Indexed valve area (cm2) 0.35 ± 0.07
  Peak gradient (mmHg) 79.11 ± 14.59
  Mean gradient (mmHg) 48.58 ± 9.87
  Maximum jet velocity (m/s) 4.40 ± 0.50
  EF % 59.82 ± 7.82
  PAPs (mmHg) 32.72 ± 11.75
  Calcium score (AU) 2120 ± 770
  Stroke volume (ml)
Stroke volume/BSA (ml/m2)

58.51 ± 14.95

  Cardiac output (l/min) 4.11 ± 1.15
  End diastolic left ventricular volume (ml) 99.68 ± 26.76
  End systolic left ventricular volume (ml) 41.18 ± 17.37

Categorical variables
  Male (N (%)) 66 (50.77)
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contributor to shape variability can be quantified by the first 
mode, with each subsequent mode capturing the highest 
remaining residual variance. The mean shape represents the 
average anatomy of the TAVI patient population, while the 
standard deviation measures the variability and deviations 
from this mean shape.

To evaluate the quality of the SSM, generalization was 
computed to assess the SSM’s ability to represent unseen 
data. This is done by calculating the average sum of squared 
errors using a leave-one-out procedure. In this approach, one 
patient is excluded each time, and a new statistical shape 
model is created using the remaining aortic roots. The new 
SSM is then used to reconstruct the shape of the excluded 
patient, and the difference between the original shape and 
the reconstruction is quantified by the mean squared error, 
progressively including additional shape mode. The gener-
alization parameter is therefore given by:

where N is the number of patients, xi and x̂i are the original 
and rebuilt left-out shape and M is the shape modes.

2.3 � Virtual patient cohort generation

As a proof-of-concept, a cohort of 100 virtual patients was 
generated by randomly varying the statistical shape modes 
retaining the 90% of the overall shape variability upon a value 
of ± 2σ. This was achieved by varying the shape boundary in 
steps of 0.5 σ, both positively and negatively. The adopted 
deviation was decided after several attempts acting to deform 
the mean shape of the patient atlas without leading to unre-
alistic shapes or folded geometries. We also computed the 
deformed shape probability indicating the chance that a spe-
cific deformed shape can occur for a given value of the shape 
boundary (i.e., σ) to quantify the number of shape variations 
not included in our in silico cohort. To determine this prob-
ability, we used the Mahalanobis distance and the chi-square 
distribution. The Mahalanobis distance measures how far the 
deformed shape deviates from the mean shape in the context 
of the model’s variance. The squared Mahalanobis distance 
(D2

M
) follows a chi-square distribution assuming k = 3 degrees 

of freedom. The shape probability is given by the chi-square 
cumulative distribution function:

where Σ is the covariance matrix.
Validation of the synthetic patient cohort was assessed by 

comparing geometric parameters (i.e., the diameter of the 
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)

aortic valve annulus and the volume of calcification) between 
synthetic and real aortic root models using both boxplot graphs 
and the Mann–Whitney U-test.

2.4 � Correlation and regression analyses

Pearson’s correlation was conducted to identify linear relation-
ships of the shape modes with clinical and functional vari-
ables. To explore the association between shape features and 
disease status, a regression model was developed to predict the 
peak pressure gradient of the aortic valve stenosis (AS-PPG) 
using the shape modes resulting from PCA. The pressure gra-
dient was obtained for each patient by Doppler echocardiogra-
phy according to clinical guidelines. A subset of shape modes, 
retaining the six most influential shape modes based on their 
correlation with the target variable, was selected. A support 
vector machine (SVM) regression model was developed using 
Bayesian hyper-parameter tuning and tenfold cross-validation 
strategy to identify the optimal parameters while minimizing 
the root mean square error (RMSE) [15]. The R-squared val-
ues were used to explain the variance in the data captured by 
the model, but they do not indicate the predictive accuracy 
of the model. This analysis is relevant in clinical practice for 
developing a risk stratification strategy based on 3D anatomic 
geometry rather than local anatomical measurements.

2.5 � Machine learning for predicting optimal device 
size

The original patient population was categorized into two 
distinct groups based on the size of the implanted device, 
specifically those with the 23-mm device and those with 
the 26-mm device. This aimed to explore the predictive 
capability of the extracted shape features for determining 
the most suitable size of the S3 device for implantation. 
The shape features represented the principal component 
scores returned by the PCA analysis in MATLAB. For 
each patient, machine learning classifiers were adapted to 
predict the size-related group association. F-scores were 
calculated to select the principal component scores with 
the most significant impact on shape variations. Our pre-
dictive modeling approach involved four distinct machine 
learning classifiers: multilayer perceptron (MLP), logistic 
regression (LR), k-nearest neighbors (KNN), and SVM. 
Each model underwent training with the dataset divided 
into a training set (70%) and testing with the remaining 
data (30%), with the evaluation based on the area under the 
receiver operating characteristic (AUROC) curve. Confu-
sion matrices were used to illustrate the performance of 
machine learning models, along with values of accuracy, 
recall and precision for each class.
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3 � Results

Figure 1 illustrates the scree plot, presenting the cumula-
tive variance explained by each mode computed through 
PCA for the aortic root and calcification. To encompass 
90% of the overall shape variability, the first 25 modes 
were necessary to account for the aortic root’s shape vari-
ability, while 32 modes were required for capturing the 
calcification variance.

The first six shape modes for both the aortic root and 
calcific plaques are depicted in Fig. 2. Mode 1 for the 
aortic root represents approximately 39% of the overall 
shape variability and correlates with proportional vessel 
size changes (scale factor). Mode 1 for calcification illus-
trates variations in the distances among calcific plaques, 
accounting for 19% of the shape variations. Mode 2 for 
the aortic root manifests changes in vessel curvature 
(10% of variance), while modes 3 and 4 correlate with 
aortic annulus (3.8%) and sinus (2.9%) dimension varia-
tions, respectively. Notably, mode 4 of the calcification 
variance is linked to changes in plaque volume (3.7% 
of variance), and mode 5 relates to plaque union among 
valve leaflets (2.7%).

The in silico virtual cohort, expanded from the TAVI 
patient population, was effectively generated by deforming 
the first 25 shape modes of the SSM (Figs. 3 and 4). Quali-
tatively, none of the proposed anatomies exhibited overlap-
ping or folded surfaces. Analysis showed a deformed shape 
probability of 30.85%, 15.87%, 6.68%, 2.28%, 0.62%, and 
0.14% for shape deviations of 0.5σ, 1σ, 1.5σ, 2σ, 2.5σ, and 
3σ, respectively. As the synthetic models were obtained 
within ± 2σ, this suggests that only a marginal proportion 
(i.e., < 2.28% of shape variations) of morphological variance 
was not considered in our in silico cohort.

Figure 5 displays boxplot graphs comparing the geom-
etry of synthetic models against the original patient dimen-
sions. The median annulus size for synthetic models falls 
within the 50th percentile of that for TAVI patients, indicat-
ing that synthetic vessels generally mirrored true anatomy. 
However, the median values for synthetic calcification vol-
ume slightly exceed those of TAVI patients, suggesting that 
synthetic calcifications were marginally larger than actual 
calcific plaques on average. Not any statistically significant 
difference was observed at Mann–Whitney U-test compari-
son among groups (i.e., p = 0.425 for the aortic root and 
p = 0.318 for the calcifications). The discrepancies in the 
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Fig. 1   Profile of scree plot (left column) and generalization (right column) of both aortic root and calcification resulting from SSM
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geometric measurement comparison can be attributed to 
several factors, including intra-operator variability and the 
lack of one-to-one correspondence.

Figure 6 demonstrates various associations between 
shape features and functional patient data. A statisti-
cally significant positive relationship was observed 
between the transaortic f low jet and mode 27 of the 

aortic root (R = 0.411, p = 0.001), while mode 4 showed 
a negative association with left ventricular stroke vol-
ume (R =  − 0.384, p = 0.002). The peak pressure gradi-
ent across the implanted device was negatively corre-
lated with both mode 59 of the aortic root (R =  − 0.342, 
p = 0.009) and mode 37 of the calcifications (R =  − 0.342, 
p = 0.009). The S3 diameter at device outflow exhibited 

Fig. 2   Dominant shape modes shown by deformations of the computed template from low (− 3 σ) to high (+ 3 σ) values for A aortic root and B 
calcification
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a statistically significant positive relationship with both 
mode 42 of the aortic root (R = 0.402, p = 0.002) and 
mode 5 of the calcification (R = 0.353, p = 0.008).

Regarding the regression of AS-PPG, Fig. 7 displays the 
comparison between real and predicted pressure gradient 
values for the SVM regression model. Utilizing the six shape 

Fig. 3   Synthetic data of n.100 virtual aortic root model
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Fig. 4   Synthetic data of n.100 virtual calcification
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modes, the SVM regression model with a polynomial ker-
nel achieved an R-squared value of 0.551 and an RMSE of 
11.67 mmHg after parameter optimization (best set with C 
of 11.079, degree of 3, and gamma of 0.149). Differences 
between actual and predicted values can be attributed to 
the predictive capability of the proposed regression model. 
A higher R-squared value indicates a smaller difference 
between actual values and predictions.

For classification, the multilayer perceptron emerged as 
the most effective model, exhibiting superior performance 
across evaluated metrics (refer to Table 2). Figure 8A show-
cases the ROC curves for the six shape mode classifiers. 
Among the machine learning models, the multilayer percep-
tron demonstrated exceptional predictive ability with very 
high sensitivity and specificity in determining the optimal 
device size for implantation using the six shape modes as 
classifiers (AUC = 0.98). A comprehensive assessment of 
model performance is depicted through confusion matrices 
in Fig. 8B.

4 � Discussion

In this study, advanced statistical tools were utilized to 
assess the morphological variance of the aortic root in 
TAVI patients. This process facilitated the creation of a 
synthetic cohort of models designed for in silico trials, 
specifically aimed at evaluating the safety and effective-
ness of transcatheter heart valves. This was achieved by 
developing a SSM using PCA to extract uncorrelated shape 
features from the original patient population treated with 
the S3 device. An ideal in silico cohort should not only 
reflect morphological shape variability but also encom-
pass the physiological variance found within the original 
patient population. To address this, we first validated the 

synthetic models against clinical measurements and then 
assessed the association of extracted shape features with 
pre- and post-TAVI patient functionality. This investiga-
tion employed Pearson’s correlation and machine learn-
ing analysis, revealing that a subset of shape modes (i.e., 
principal component scores) could predict the severity of 
aortic valve stenosis by quantifying the pressure gradient 
via SVM regression. Moreover, our study demonstrated 
the capability of a multilayer perceptron machine learning 
model to predict the optimal choice of the intended device 
size using six shape-related classifiers. Such findings are 
relevant in the clinical setting, as the diameter of the aortic 
valve annulus alone may not suffice for assessing the opti-
mal device size to be implanted. Here, we demonstrated 
that device sizing could be evaluated using 3D anatomic 
features, rather than relying solely on conventional 2D 
imaging or clinicians’ experience. This has the potential 
to enhance clinical decision-making processes. Overall, 
this study adds weight to the utilization of virtual cohorts 
in computational modeling and simulations. The synthetic 
data effectively captured the anatomical and physiological 
variability of TAVI patients, showing promise for diverse 
applications, including augmenting or optimizing clini-
cal data sizes and investigating safety concerns associated 
with current or next-generation transcatheter heart valves.

4.1 � Virtual cohort for in silico trials

In computer modeling and simulations, conducting an in 
silico clinical trial enables the assessment of clinically rel-
evant data regarding the performance of candidate biomedi-
cal devices through numerical simulations of the treatment’s 
physics [2, 16]. This approach not only reduces the costs 
associated with device experimentation but also enhances 
knowledge and confidence in device safety and patient 
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outcomes. However, it is important to recognize that while 
in silico trials offer valuable insights, they come with inher-
ent assumptions and constraints compared to in vivo trials. 
While the paradigm shift toward in silico trials is gaining 
traction, the methodology is still in its infancy in practical 

applications and regulatory sciences. In the context of TAVI, 
creating a virtual cohort for in silico trials necessitates cap-
turing the variability of the patient anatomical population, 
including the degree of aortic valve stenosis and its func-
tionality. Recent findings demonstrated the feasibility to 

Fig. 6   Pearson correlation showing associations of functional patient 
parameters with shape modes; (A) flow jet across the stenotic valve 
versus Mode 27 of the aorta; (B) device diameter at outflow versus 
Mode 42 of the aorta; (C) post-TAVI pressure gradient versus Mode 

59; (D) patient stroke volume before TAVI versus Mode 4 of calcifi-
cation; (E) device diameter at outflow versus Mode 5 of calcification; 
(F) post-TAVI pressure gradient versus Mode 37 of calcification
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treat degenerated transcatheter heart valves with a second 
transcatheter heart valve [17, 18], thereby expanding the 
applications of transcatheter heart valves to a new class of 
patients. It is therefore evident that the development and 
clinical assessment of TAVI device could benefit from in 
silico trials to overcome complications and drive knowl-
edge in borderline anatomies and new patient classes [19]. 
To achieve this, SSMs employing PCA have proven to be a 
powerful technique for extracting shape variability, as high-
lighted by numerous studies in cardiovascular [20, 21] and 
musculoskeletal systems [14]. However, only a few studies 
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Table 2   Classification scores obtained for machine learning models

MLP, multilayer perceptron; LR, logistic regression; KNN, K-nearest 
neighbors; SVM, support vector machines

MLP LR KNN SVM

Accuracy 0.95 0.851 0.750 0.800
Recall [23 mm] 1.00 0.909 0.818 0.833
Precision [23 m] 0.917 0.833 0.750 0.833
Recall [26 mm] 0.889 0.875 0.667 0.751
Precision [26 mm] 1.00 0.778 0.750 0.752
AUC-ROC 0.98 0.941 0.840 0.895

Fig. 8   Machine learning classification showing A ROC curves and B confusion matrices for the investigated models
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have focused on developing and validating virtual cohorts 
using SSMs. For instance, Bridio et al. [22] generated a syn-
thetic cohort of 100 cerebrovascular anatomies via random 
sampling of shape modes, ensuring the rejection of unphysi-
ological anatomies based on defined acceptance criteria. La 
Mattina et al. [23] tested the femoral strength distribution 
in a virtual cohort generated with SSMs and compared it to 
a physical cohort, suggesting the feasibility of expanding 
virtual cohorts like to a phase III clinical trial. In the realm 
of TAVI, Verstraeten et al. [24] expanded a retrospective 
population of 97 stenotic aortic valves to a virtual cohort 
of 500 patients using non-parametric SSMs. However, their 
approach lacked investigation into calcifications.

In this study, we present a method that harnesses both 
local and global shape features of the calcific aortic root 
in TAVI patients and predicts the pressure gradient across 
the stenotic aortic valve using a set of shape modes. This 
approach aims to address the physiological variability of 
this population. As a proof-of-concept, this methodology 
allowed us to construct a synthetic cohort of 100 aortic root 
anatomies suitable for in silico TAVI trials, replicating real-
istic anatomic variability. Our results demonstrated that the 
geometric parameters of the generated virtual population 
aligned closely with those of the original patient popula-
tion on average. Utilizing shape probability parameters, we 
showcased that the synthetic patient cohort spans a broad 
spectrum of anatomic variability, with less than 3% of shape 
boundaries excluded during virtual model generation. This 
ability to capture a wide range of variations is crucial, 
particularly for worst-case scenario considerations if the 
proposed SSM approach is utilized for expanding the orig-
inal patient population. Moreover, correlation and regres-
sion analyses were conducted to quantify the associations 
between shape and function. These statistical approaches 
allow for the extrapolation of aortic valve function estimates, 
such as the pressure gradient across the stenotic aortic valve, 
for each synthetic model. Therefore, while the anatomical 
accuracy of our synthetic cohort is well-established, its 
functional capability is less confirmed. For a comprehen-
sive analysis of in silico trial requirements and develop-
ment, the work by Bischoff and collaborators [16] is highly 
recommended.

4.2 � Assessment of shape features

In the field of TAVI, the study by Bosmans et al. [25] stand 
as the sole demonstration of the utility of a PCA-based SSM 
in determining the optimal size of transcatheter heart valves 
using 3D shape features. Their findings highlighted the 
necessity of the first twenty shape modes to capture 95% of 
the overall shape variability. Specifically, they associated the 
first shape mode with general size variation and the second 
with vessel curvature and angle with respect to the aortic 

annulus. These findings align well with our SSM, confirm-
ing the compactness and shape boundaries observed in the 
aortic root. Moreover, our SSM demonstrated robustness in 
representing unseen patient data, as indicated by the gener-
alization parameter. Notably, our study is unique in explor-
ing variability within calcific plaques, identifying specific 
shape features associated with clinically relevant parameters 
such as calcification volume (e.g., mode 4).

An alternative method to PCA for SSM development 
involves partial least square analysis, enabling the creation of 
a clinically oriented statistical shape decomposition. Bruse 
et al. [20] applied partial least square analysis to develop an 
aortic coarctation SSM based on dependent variables like 
ejection fraction and body surface area. They observed sta-
tistically relevant correlations between functional-derived 
shape modes and clinical measurements. Recently, Geronzi 
et al. [26] employed both PCA and partial least square analy-
sis to implement an SSM of the aneurysmal ascending aorta 
and predict dilatation rates. While lacking comparative anal-
ysis, they noticed a slight difference in the local shape vari-
ation extraction capabilities among the two decomposition 
techniques. Specifically, both the first principal component 
and the partial least square shape mode correlated with the 
pattern of aortic dilatation. However, PCA was linked to 
overall vessel size, while partial least square analysis was 
associated with aneurysm diameter. Nevertheless, the overall 
compactness and generalization were comparable between 
the two decomposition techniques.

4.3 � Correlation and machine learning

Several associations between shape modes and patient func-
tion before and after TAVI were observed, shedding light on 
hemodynamic and structural mechanics. Notably, the corre-
lation between mode 27 of the aortic root and the transaortic 
flow jet of the stenotic valve suggests that sinus shape influ-
ences blood flow dynamics, potentially contributing to aortic 
stenosis development in our patient population. Similarly, 
the link between high calcification volumes (represented 
by changes in mode 4) and low stroke volumes aligns with 
common findings in severe aortic stenosis patients [27]. 
Moreover, our observations indicate that a combination of 
plaque union among leaflets (mode 5) and the circumferen-
tial dimension of the aortic root (mode 42) can estimate the 
device size at implantation. Additionally, high transmural 
pressure across the implanted device is associated with aor-
tic roots having small annulus dimensions (mode 59) and 
large calcifications (mode 37).

In regression analysis, the R-squared value of 0.551 indi-
cates that the SVM regression model can explain approxi-
mately 55.1% of the variance in the pressure gradient of the 
original patient population, with a model deviation of about 
11.67 units from actual values. While this suggests that the 
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SVM model captured a significant portion of pressure gradi-
ent variation based on selected shape modes, there might be 
room for further enhancement. Exploring different model 
architectures, feature engineering, or alternative machine 
learning algorithms could potentially improve predictive 
performance. In similar studies, SSM were combined with 
computational fluid dynamics to predict flow across the aor-
tic valve by meta-models [28] or deep leaning [29].

Combining computational predictions with machine 
learning techniques, Galli et al. [30] showcased the predic-
tive capability of machine learning classifiers in estimat-
ing the probability of developing TAVI-related conduction 
abnormalities. However, to the best or our knowledge, this 
is the first study proposing machine learning classifica-
tion using SSM-derived shape features rather than clinical 
variables. Here the MLP model—a neural network adept 
at deciphering intricate patterns—demonstrated remarkable 
robustness and effectiveness in handling the classification 
task, achieving high accuracy, recall, precision, and a high 
AUC-ROC. With an AUC-ROC of 0.98, the MLP model 
demonstrates a strong ability to differentiate between differ-
ent sizes of the S3 device based on shape features. Moreo-
ver, the model achieved approximately 91.7% accuracy when 
predicting the 23-mm device size and around 88.9% accu-
racy for the 26-mm device. Further analysis might involve 
examining misclassifications and exploring methods to 
maintain or enhance these scores on unseen data. Although 
the in silico cohort was developed before TAVI, the predic-
tive capability of the machine learning model presented here 
is specific to the S3 device and cannot be extended to other 
transcatheter heart valves.

4.4 � Study limitation

The main limitation of the proposed statistical shape atlas 
lies in its inability to represent the native valve leaflets. CT 
imaging inadequately captures the thin structure of these 
leaflets, making their reconstruction challenging using 
thresholding techniques. Various research groups have 
explored parametric modeling based on anatomical land-
marks to address this limitation [31, 32]. However, due to 
uncertainties in native leaflet shape and reconstruction, the 
statistical shape analysis and resultant synthetic cohort lack 
representation of native valve leaflet variability. A potential 
solution involves initially generating the synthetic aortic 
root model and subsequently reconstructing valve leaflets 
using parametric surfaces and imaging measurements. 
Moreover, the approach to aligning calcifications began 
with an initial alignment of the aortic sinuses. This method 
may result in inconsistencies with each patient’s calcifica-
tion patterns. Calcifications can occur at various locations, 
posing challenges for alignment and point correspond-
ence. The approach used to develop the SSM and establish 

correspondence between patients assumes calcification on 
all three leaflets in every patient, limiting its reliability. A 
conditional probabilistic model describing the distribution 
of calcifications based on their location on the leaflets could 
provide a more suitable alternative in this scenario.

The second limitation pertains to the validation method, 
which primarily compared annulus dimensions between 
synthetic and real patient models. It is essential to acknowl-
edge that the SSM inherently relies on the dataset used for 
its construction. Therefore, to ensure robustness, synthetic 
data should exhibit parameter distributions comparable to 
those of an independent dataset. A better strategy would 
be to construct a SSM from a subset of the original clinical 
cohort, utilize the virtual population for training purposes, 
and subsequently evaluate the model on the original clini-
cal subset that was not included in the SSM. Finally, while 
machine learning analysis showed high predictive capability, 
validating the model on a separate test dataset, or using a 
large patient cohort can provide an improved assessment of 
the predictive model capability. The study included a TAVI 
population as homogeneous as possible, excluding patients 
with bicuspid stenotic aortic valves. As a result, the in silico 
cohort did not encompass the full spectrum of the TAVI 
patient population.

5 � Conclusions

The study advanced our understanding of the association 
between vessel shape features and clinical outcomes among 
TAVI patients, leveraging statistical shape analysis and 
machine learning. Particularly noteworthy was the success-
ful development of synthetic data, enabling emulation of 
anatomical and physiological variability. This achievement 
holds significant promise in augmenting in silico trials, 
where cardiovascular devices are tested on virtual patient 
groups represented by computer models. Additionally, our 
findings suggest the effectiveness of machine learning in 
accurately predicting disease status and distinguishing 
between various sizes of TAVI devices based on patient 
morphological features.
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