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Abstract— This is the first part of a paper, divided into two 
parts, dealing with the definition of a space-vector dynamic 
model of the linear Induction motor (LIM) taking into 
consideration both the dynamic end-effects and the iron losses 
and its off-line identification. This first part specifically treats 
the theoretical formulation of this model, which has been 
expressed in a state form, so to be, in perspective, suitably 
adopted for developing novel non–linear control techniques, 
non-linear observers as well as electrical losses minimization 
techniques (ELMTs). Besides the formulation of the dynamic 
model in space-vector state form, a steady-state analysis is 
proposed, highlighting the combined effects of the dynamic 
end-effects and the iron losses on the main electrical quantities 
of the LIM. 
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NOMENCLATURE 

= primary voltages space-vector in the primary 
reference frame; 

 = primary currents space-vector in the primary 
reference frame; 

 = secondary currents space-vector in the 
primary reference frame; 

= primary flux space-vector in the primary 
reference frame; 

= secondary flux space-vector in the primary 
reference frame; 

, ,  = primary, secondary and three-phase 
magnetizing inductances; 

, = primary and secondary leakage inductances; 
,   = primary and secondary resistances; 

p = number of pole pairs; 
 = angular rotor speed (in electrical angles per second); 

v = linear speed; 
tm = length of the primary; 
tp = polar pitch. 

 

I. INTRODUCTION  
Linear Induction Motors (LIMs) have been widely 

studied because their capability to generate a direct linear 
motion without the need of any gearbox for the motion 
transformation (from rotating to linear) [1]-[5]. This positive 
prerogative of LIMs is counterbalanced by several 
drawbacks, specifically related to such machines. In 
particular, as for their dynamic modelling, it reveals 
particularly complex due to the so-called end-effects and 
border effects. These effects affect significantly the 
performance of LIMs in terms of propulsive force magnitude 
and its controllability. The existence of such effects calls for 
suitable models of LIMs that can properly account for these 
effects [6]-[14].  

As for some very early works, [6] has proposed a 
dynamic model of the LIM, developed on the basis of the the 
generalized machine theory by G. Kron. Adopting the 
Fourier series space harmonic, the short-stator end-effects 
have been explained in terms of harmonic asynchronous 
forces. [7], starting from previous works in the literature, has 
retained the classical assumption of an effective distribution 
of sinusoidal rotor windings. As a result, it has used the 
conventional theory in the calculation of all parameters 
required in the model. [8] has established the accuracy of the 
pole-by-pole model by comparing results predicted by the 
model with the steady-state experimental ones. The key 
assumption of the pole-by-pole model is that, because of the 
finite length of the primary, rail poles must be assumed 
independent and mutually coupled. 

Afterwards, [9][10] has proposed a dynamic model of 
LIM whose formulation is based on the machine 
constructional elements (pole pitch, air-gap length, thickness 
of the secondary track, slot width and depth, number of turns 
for phases, etc.). The standpoint of such a model is the 
definition of a suitable air-gap function, which inherently 
permits both the static and dynamic end-effects to be 
accounted. The set of models in [6]-[10] presents, however, 
the following important drawbacks, that the model proposed 
in this paper tries to overcome: 1) they are complex and 
computational demanding to be implemented, 2) their 
parameterization cannot be easily made with a set of input–
output measurements, as classic machine dynamic models, 3) 
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they require several design data, hardly at the disposal of the 
final user.  

The set of dynamic models in [12]-[14] present a more 
classic space-vector-based approach, taking inspiration from 
[15]. None of the above cited models, however, takes into 
consideration either the static end-effects or the transversal 
edge effects, while they all take into consideration the 
dynamic end-effects with several approaches.  

A further different approach for the dynamic modelling 
of LIMs has been followed by [17], whose approach is based 
on the static model proposed in [16]. Specifically, in [16], 
end-effects and the transversal edge effects are accounted by 
the definition of specific coefficients multiplying the 
electrical parameters of the LIM. As for the dynamic model 
in [17], it has proposed a circuital model of the LIM based on 
the winding function method.  

More recently, [19][20] has proposed a space-vector 
dynamic model of the LIM, taking into consideration the 
dynamic end-effects, which has been expressed in a state 
form and afterwards successfully exploited for the definition 
of non-linear control techniques suited for LIMs [21]-[24], 
non-linear observers and finally sensorless techniques 
[25][26]. Such a model presents also the equation of the 
braking force due to the dynamic end-effects, expressed as a 
function of the chosen state variables.  

None of the above cited dynamic models, however, takes 
into consideration the iron losses of the LIM. Accounting for 
the iron losses is, in the LIM case, even more significant than 
in the RIM (Rotating Induction Motor) case, as explained in 
section II. To the best of the authors knowledge, only [27] 
presents a dynamic model and a related control technique of 
LIMs with short secondary which accounts for the iron 
losses. From the dynamic point of view, however, such a 
model has the structure of the classic RIM model, thus 
neither the static nor the dynamic end-effects have been 
accounted for. In [27], a non-linear function is derived from 
closed-form design calculations and electromagnetic finite-
element analysis to properly take into consideration the 
saturation of the iron core.  

This is the first part of a paper, divided into two parts, 
dealing with the definition of an original space-vector 
dynamic model of the LIM taking into consideration both the 
dynamic end-effects and the iron losses and its off-line 
identification. The first part is devoted to the theoretical 
formulation of the space-vector model of the LIM 
considering both the dynamic end-effects and iron losses as 
well as to the steady-state analysis and its experimental 
validation. It highlights the combined effects of the dynamic 
end-effects and the iron losses on the main electro-
mechanical quantities of the LIM: propulsive force, magnetic 
flux and machine equivalent impedance. The proposed 
dynamic model has been expressed in a state form, so to be, 
in perspective, suitably adopted for developing novel non-
linear control techniques and non-linear observers. The 
second part is devoted to the development of an 
identification technique, suitable for the estimation of the 
model parameters, including the additional ones arising from 
considering the iron losses as well as to the description of the 
results validating the proposed model. This paper is an 
improvement and extension of [28].  

In synthesis, the proposed model tries to overcome the 
most common drawbacks of LIM dynamic models: 

o It is less complex and computationally 
demanding than the dynamic models in [6]-[10]. 
Moreover, differently from them, it can be 
easily parametrized with input-output tests, 
without the need of design or constructional 
data. 

o Differently from [6]-[19], besides the dynamic 
end-effects, it accounts also for the iron losses. 

 

II. STATE SPACE-VECTOR MODEL OF THE LIM 
INCLUDING END-EFFECTS AND IRON LOSSES  

A. Model Assumptions 
The proposed space-vector dynamic model of the LIM 
including the dynamic end-effects and the iron losses is 
based on the following hypothesis: 

• Infinite permeability of iron (no saturation effect is 
considered); 

• Orthogonal direction of the flux density in the air 
gap; 

• Primary slotting effects are neglected; 
• Each primary and secondary is considered as a full-

pitch multi-turn winding; 
• The axes of each primary and secondary three-

phase windings are displaced by the angle 2π/3 
from each other; 

• Dynamic end-effects are considered; 
• Static end-effects are not considered; 
• Transversal-edge effects are not considered; 
•  No zero-sequence stator current is present. 

Accounting the iron losses is, in the LIM case, even more 
significant than in the RIM case. The reason is that, while in 
the RIM the part of the machine that is interested by the 
rotating air-gap field at supply frequency is the stator core, 
which is laminated, in the LIM, if the moving part is 
supposed to be the primary, the part interested by the 
translating air-gap field at supply frequency is the 
secondary, whose back iron is frequently not laminated. In 
LIMs, thus, differently from RIMs, iron losses are 
concentrated in the secondary track and can be hardly 
neglected. 
A specific consideration must be made with reference to 
assumption of infinite permeability of the iron. The 
proposed LIM dynamic model inherently does not account 
for the saturation of the iron core. From this point of view, 
however, it should be noted that saturation phenomena in 
LIMs are significantly less present than in RIMs. This is 
mainly due to the very large air-gap compared to that typical 
of a RIM, which increases significantly both the reluctance 
of the main flux path and the leakage flux. In addition, the 
back iron of the secondary track presents very often a 
limited thickness, which sometimes is absent at all, further 
increasing the part of the magnetic circuit not made in 
ferromagnetic material. With specific reference to the LIM 
under test, the entire magnetic characterization of the 
machine has been shown in [29]. In particular, [29] has 
proposed a procedure for identifying the dependences of all 
the electric parameters of the model from the secondary 
magnetizing current. Results presented in [29] clearly show 



that the magnetic saturation does not play a significant role. 
As a matter of fact, both the primary and the three-phase 
magnetizing inductances show limited variations with the 
secondary magnetizing current. Correspondingly, the non-
linearity of the LIM magnetizing curve is very limited and 
saturation of the core becomes noticeable only at very high 
values of the magnetizing current. This justifies the 
neglection of the magnetic saturation in the proposed model. 
 

B. Dynamic End-effects Modeling 
The proposed model, exactly as that in [19][20], takes into 
consideration the LIM dynamic end-effects, while is able to 
account neither the static end-effects nor the transversal-
edge effects. In the following, only some considerations 
about dynamic end-effects will be given for ease of 
readiness of the model. For further details, the reader can 
refer to [19][20]. 
Differently from the static ones, the dynamic end-effects are 
generated by the relative motion between the primary and 
the secondary. Such a motion leads to a decrease of the air-
gap flux density at entrance of the motion and to a decrease 
of it at the exit of the motion. As an overall effect, an 
average decrease of the magnetization level of the machine 
occurs as well as an increase of the overall power losses. 
Such a phenomenon increases at increasing speeds of the 
primary. In the scientific literature, there are several ways in 
which such phenomenon has been modeled. One of the most 
interesting ways is the definition of the a so-called called 
end effect factor Q [15]: 

     (1) 

Q represents the attitude of the LIM to resist the loss of 
output caused by the end-effects; in this sense, it is inversely 
proportional to the so-called goodness factor defined in 
[1][3]. It can be observed that, the higher the machine speed, 
the higher the air-gap thickness (higher leakage inductance) 
and the lower the primary length, the lower the factor Q. It 
means that the end-effects increase with the machine speed, 
with the air-gap thickness and reduces with the primary 
length.  
Correspondingly, the three-phase magnetizing inductance 
varies with Q in the following way: 

    (2) 

with: 
     (3) 

Eq. (2) implies that the inductance virtually reduces with the 
end-effects resulting in an overall demagnetization of the 
LIM.  
A detailed computation of the overall losses of the machine 
highlights that an additional resistance appears in the 
transversal branch; this resistance accounts for the 
additional joule losses in the secondary. This resistance is 
equal to:  

     (4) 
 

C. State Formulation 
The space-vector electrical circuit of the LIM including the 
end-effects as well the related dynamic model in state form 
has been proposed in [19][20]. As an upgrade, in this paper, 
besides the time-varying electrical parameters accounting 
for the end-effects, also a further resistance R0 in the 
transversal branch is present, taking into consideration the 
iron losses. According to the definition of all these time-
varying parameters, the space-vector equivalent circuit of 
the LIM sketched in Fig. 1 has been deduced expressed in 
the primary (stator) reference frame, which is different from 
that of the Rotating Induction Motor (RIM) because of the 
dynamic end-effect terms, but it is also different from that in 
[19][20], because of the presence of the iron losses term. It 
should be noted that all the time-varying terms are located in 
the transversal branch of the electrical scheme. As for the 
classic space-vector electric circuit of the RIM, even if it 
presents 3 inductances, which would theoretically account 
for 6 state electrical scalar variables (the mechanical 
variables are not accounted in the following), the real state 
scalar variables are 4. This is due to the presence of the node 
on the transversal branch and the related constraint on the 
sum of the concurring currents. If the resistance R0 
accounting for the iron losses is to be considered, then the 
constraint linking together the currents flowing in the 3 
inductances is not valid any more. Consequently, the 
electrical state variables increase from 4 to 6 scalar ones. A 
possible choice of state variables, particularly suited if the 
secondary flux oriented control is supposed to be integrated 
in the drive, is composed by the direct and quadrature 
components of the primary (stator) currents, the 3-phase 
magnetizing flux and the secondary (rotor) flux, as follows: 

   (5). 

Starting from the electric scheme in Fig. 1, the following 
space-vector voltage equations can be written on the 
primary (a) and secondary (b) circuits: 

, 

            (6 a, b) 

For the meaning of symbols, the reader can refer to 
nomenclature at the beginning of the paper.  
Eq.s (6 a, b) have been written exploiting the following 
current balance equation at the node: 

    (7) 

 
Fig. 1. Space-vector equivalent circuit of the LIM including dynamic end 
effects and iron losses 
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Eq.s (6 a, b) are different from both the equations of the LIM 
accounting for the end-effects and those of the RIM 
including the iron losses. With respect to the RIM model 
including the iron losses, they include the voltage drop on 
the variable resistance  due to the magnetizing current 

. The flux equations can be written as: 

, 

              (8 a, b) 
Even flux equations (8 a, b) are different with respect to the 
corresponding ones of the RIM, for two reasons: firstly, the 
three-phase magnetizing inductance is a speed-varying 
quantity, because of the LIM end-effects and secondly, the 
current equation at the node is different because of the 
presence of the current on the transversal branch resistance 
R0 accounting for the iron losses.  
A further equation, not present either in classic RIM model 
or in the LIM model accounting for the end-effects, is the 
voltage equation across R0: 

  (9) 

If the secondary current is expressed as a function of the 
three-phase magnetizing and the secondary fluxes, 
respectively  and , then: 

     (10) 

The current  can be expressed exploiting eq. (7) as a 
function of the primary current, the three-phase magnetizing 
and the secondary fluxes:  

   (11) 

If eq. (10) is substituted in eq. (9), the following state 
equation can be written: 

 (12) 

Eq. (12) is the second component of the state model of the 
machine, where the state variable is the three-phase 
magnetizing flux . If R0 tends to infinity, eq. (12) 
becomes the static relationship between the three-phase 
magnetizing flux versus the primary current and the 

secondary . 
To obtain the third component of the state model of the LIM, 
eq. (10) is substituted in eq. (6 b) under the assumption 

, leading to:  

  (13) 

Eq. (13) is the third component of the state model of the 
LIM, where the state variable is the secondary flux . If 

 is assumed null, implying that the LIM end-effects are 
neglected, eq. (13) coincides with the rotor equation of the 

RIM including the iron losses, since the three-phase 
magnetizing flux can be expressed as a function of the 
primary current and secondary flux on the basis of eq. (9). If 
R0 tends to infinity, implying that eq. (9) becomes a static 
relationship between the three-phase magnetizing flux 

versus the primary current and the secondary flux 

, eq. (13) coincides with the classic current model of the 
RIM. Finally, if eq. (8 a) is substituted in eq. (6 a), and the 
derivative of the three-phase magnetizing flux is taken from 
eq. (12), the following expression of the primary current 
derivative can be obtained: 

 

      (14) 
Eq. (14) is the first component of the state model of the 
LIM, where the state variable is the primary current. Eq. 
(14) coincides with the corresponding state equation of the 
RIM model including the iron losses, excepted that the 
three-phase magnetizing inductance is a time-varying 
quantity due to the dynamic end-effects. 
The complete state representation of the LIM including both 
the dynamic end-effects and the iron losses can be written as 
follows: 

 

      (15 a) 
reproducing the classic system equation in state form:  

    (15 b) 
The definition of eq. (15 a) is one of the major contribution 
of this paper. Fig. 2 shows the entire block diagram of the 
space-vector model of the LIM taking into consideration 
both the end-effects and the iron losses, expressed in state 
form. This block diagram properly describes state eq. (15). 
From the block diagram, the three subsystems describing 
respectively the primary current, the three-phase 
magnetizing flux and the secondary flux equations are easily 
recognizable, as well as the relationships and feedbacks of 
the state variables.  
 

D. Mechanical equation 
The mechanical equation of the motion of a LIM is: 

    (16) 

where F is the net propulsive force generated by the LIM, Fr 
is the friction force, varying with the speed v by a nonlinear 
low, FL is the load force and M is the overall mass of the 
system (motor plus payload).  
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Fig. 2. Block diagram of the LIM dynamic model including end-effects and iron losses in the primary reference frame, expressed in state form  

Differently from the RIM case, in the LIM the net thrust is 
the algebraic sum of the electromagnetic propulsive force Fe 
(analogous to the torque expression of the RIM) and the 
braking force due to the end-effects Feb.  
The mechanical power Pe associated with the 
electromagnetic force Fe can be written as:  

    (17) 

where the symbol ‘*’ stands for complex conjugate. Taking 
 from eq. (8 b) and substituting it into eq. (17), the 

electromagnetic force is obtained: 

    (18) 

Eq. (18) provides the real electromagnetic force produced 
by the LIM, taking into consideration both the iron losses 
and the dynamic end-effects, and furnishes interesting 
information. In particular, as far as the field orientation 
condition is concerned, the maximum force of the LIM is 
obtained boosting the quadrature component of the three-
phase magnetizing flux, expressed in the secondary flux 
oriented reference frame. If R0 tends to infinite, the force 
expression in eq. (18) becomes equal to that in [19][20]. The 
equation of the braking force produced by the LIM dynamic 
end-effects can be retrieved from the expression of the 
active power dissipated as Joule effect on the additional 
resistance  in the transversal branch of the 
equivalent circuit of the LIM (Fig. 1). This power can be 
written as: 

    (19) 

where is the magnetizing current space-vector. Since 

, it follows that: 

  (20) 

Eq. (20) depends on the machine speed, changing its sign 
with it and being always subtractive with respect to the 
propulsion force. Moreover, at zero speed, this force is non-

null and is proportional to the square of the three-phase 
magnetizing flux amplitude. 
 

E.  Iron Losses Formulation 
In general, it can be stated that the iron core losses ΔPcore of 
an IM, both the RIM and the LIM cases, can be divided in 
two terms, respectively the hysteresis and the eddy current 
losses, as in the following: 

   (21 a, b) 

where Bp is the peak value of the flux density, f is the 
fundamental frequency, x is the Steinmetz coefficient, a and 
b are coefficients depending on the material and on the flux 
density. 
In the proposed model, the iron losses have represented in 
the space-vector electrical circuit of the LIM by means of a 
constant resistance R0 in the transversal branch. Such an 
assumption implies a representation of the iron losses with a 
quadratic dependence from the air-gap flux density and 
therefore from the three-phase magnetizing flux amplitude, 
as follows: 

 

      (22) 
where ωmm and |ψm| are respectively the angular speed and 
the amplitude of the three-phase magnetizing flux space-
vector. 
 

F. LIM Pole Analysis 
Fig. 3 shows the locus of poles of the LIM model described 
by the eigenvalues of the A matrix of eq. (15 a). The locus 
of the poles has been traced considering a set of LIM speeds 
in the range ±10 m/s (slightly higher than the rated speed).  
In particular, the following considerations could be made. 
The poles related to the secondary flux are positioned more 
on the left than those related to the primary current. It means 
that the dynamics of the secondary flux is faster than that of 
the primary current. The real part of such poles is positioned 
around 500, about 2.5 times higher than the biggest poles of 
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the primary currents, that are around 200. This is the dual 
situation with respect to the typical RIM dynamics and is 
due to the very low secondary time constant of the LIM. It 
can be explained by the relatively low value of the 
magnetizing inductance caused by the large air-gap and the 
relatively high value of the secondary track resistance, 
caused by the small value of its thickness. As clearly 
explained in ref. [19][20], the presence of the dynamic end-
effects is cause of an increase of the amplitude of the poles 
for a given speed, in particular for the poles related to the 
primary current, corresponding to a fastening of the related 
dynamics caused by the reduction of the transient time 
constant. At the same time, a reduction of the damping 
factor occurs, in particular for the poles related to the 
secondary flux linkage. Furthermore, a couple of additional 
poles appear, which is related to the dynamics of the three-
phase magnetizing flux. Such poles are complex conjugate, 
presenting a real part higher than those of the primary 
current and secondary flux poles (due to the higher value of 
R0). The real part of such poles is positioned around 10000, 
about 200 times higher than the biggest poles of the primary 
currents, that are around 200. It means that the dynamics of 
the three-phase magnetizing flux is much faster than those 
of both the primary current and secondary flux. On the basis 
of the above considerations, the transient validation of the 
proposed model has not repeated in this paper, since it has 
already been experimentally performed in [19][20]. The 
pole analysis emphasizes that the dynamics of the primary 
currents and secondary flux is negligibly influenced by the 
presence of the iron losses. This is true, even if iron losses 
are more present in LIMs than in RIMs. As a matter of fact, 
R0 is in the LIM case much smaller than that in the RIM case 
(146 Ω in the LIM case versus about 1300 Ω in the RIM 
case). The physical explanation of such a small value of R0 
has been given above. Correspondingly, the pole branch of 
the three-phase magnetizing flux, in the LIM case, presents 
a real part which is lower than that in the RIM case. 
 

 
Fig. 3. Poles of the LIM model considering both the dynamic end-effects 
and the iron losses 

III. STEADY-STATE ANALYSIS  
Starting from the dynamic model described in section II, the 
steady-state analysis of the LIM considering the dynamic 
end-effects and the iron losses can be made. To perform the 
steady-state analysis, however, the set of equations (9, 12, 
13) must be vector rotated from the primary reference frame 
to the secondary flux reference frame (all variables in this 
last reference frame present  in apex). In such a 
reference frame, the derivative of all the state variables is 
null at steady-state, which permits to find out the static 
relationship between the state variables of the LIM. Starting 
from eq. (12), after the above cited vector rotation and 
imposing that , the following relationship 
between the amplitudes of the secondary flux and the three-
phase magnetizing flux holds: 

   (23) 

where  is a complex operator depending on the LIM speed 
via  and on the LIM load via the slip speed . 
If eq. (12) is considered, after the above cited vector 
rotation, exploiting eq. (23) and imposing that , 
the following relationship between the amplitudes of the 
three-phase magnetizing flux and the primary current holds: 

  (24) 

where  is a complex operator depending on the LIM speed 
via   and , as well as on the supply pulsation via . 
Finally, if (14) is considered, after the above cited vector 
rotation, exploiting eq.s (23), (24) and imposing that 

, the following relationship between the 
amplitudes of the primary current and the primary voltage 
holds: 

  (25)  

From eq. (25), the expression of the equivalent steady-state 

impedance of the LIM can be retrieved as: 
 (26) 

in eq. (26), the dependence of the equivalent impedance 
 from the LIM speed and load is inside the coefficients 

 and . 
If eq.s (23) and (24) are substituted in eq. (18), after 
expressing the steady state primary current space-vector as a 
function of the steady-state primary voltage space-vector, 
the expression of the LIM steady-state propulsive force can 
be found as: 

   (27) 
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Analogously, the steady-state braking force can be 
computed as: 

   (28) 

The following results have been obtained adopting, as for 
the parameters of the above described model, those retrieved 
with the identification techniques described in [30]. The LIM 
experimental prototype to which the following graphs are 
related has been fully described in [19] and [30]. Fig. 3 
shows the  loci, real part vs imaginary one, for values of 
the slip ranging between – 1 and 1. Each plot has been drawn 
for a specific set of supply voltages and frequencies. The 
ratio between the voltage amplitude and frequency has been 
kept constant in the different plots (260 V RMS - 60 Hz, 130 
V RMS - 30 Hz, 65 V RMS - 15 Hz), excepted for one case 
related to the field weakening working condition (260 V 
RMS - 120 Hz). It should be noted that, if the model 
accounting neither the dynamic end-effects nor the iron 
losses is considered (blue trace), the  locus is almost 
symmetrical with respect to the imaginary axis. The higher 
the supply frequency is, the higher the machine impedance 
is, as expected. The machine presents its maximum inductive 
and its minimum resistive behaviours at almost null slip, as 
expected. Moreover, for negative values of the slip, the 
machine presents always a negative resistance, connoting the 
behaviour of the machine as a generator. On the contrary, if 
the model accounting the dynamic end-effects while not 
considering the iron losses is considered (green trace), the 

 locus becomes more asymmetrical with respect to the 
imaginary axis. Moreover, the higher the supply frequency is 
(higher steady-state speed), the bigger the difference between 
the green and blue traces is. In particular, at high supply 
frequency, the LIM exhibits a less inductive behaviour 
because of the reduction of the three-phase magnetizing 
inductance due to the dynamic end-effects. Moreover, 
because of the end-effects, the locus becomes more 
asymmetrical with respect to the imaginary axis, and it can 
be explained observing that the end-effects play a major role 
at super-synchronous speeds. If the model not accounting the 
dynamic end-effects while considering the iron losses is 
considered (black trace), the  locus is almost 
superimposed to the blue trace at low supply frequencies, 
while becoming different at high supply frequencies, where 
the iron losses play a more significant role. Moreover, 
because of the iron losses, the locus becomes more 
asymmetrical with respect to the imaginary axis, and it can 
be explained observing that the iron losses play a major role 
at super-synchronous speeds. If both end effects and iron 
losses are considered (red trace), the biggest difference with 
respect to the blue trace is observable, in particular at high 
supply frequencies and at super-synchronous speeds. In 
particular, the because of the combined effect of iron losses 
and end effects, the working region in which the machine 
behaves as generator reduces significantly, becoming almost 
null in field weakening region. 

Fig. 4 shows the steady-state characteristic, three-phase 
magnetizing flux versus slip, traced for values of the slip 
ranging between – 1 and 1. Each plot has been drawn for the 
same set of supply voltages and frequencies represented in 
the graphs of the equivalent impedance.  

 

Fig. 4. Steady-state  of the LIM (‘+’ corresponds to s=1. ‘*’ 

corresponds to s=-1) 

 

Fig. 5. Steady-state vs slip of the LIM 

 

Fig. 6. Steady-state mechanical characteristic force vs slip of the LIM 
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Fig. 7. Steady-state mechanical characteristic force vs speed of the LIM 

 

It can be observed that, moving from the working conditions 
at null slip, a reduction of the three-phase magnetizing flux 
occurs for increasing values of the slip because of the 
presence of both iron losses and end-effects, playing the iron 
losses a major role especially at low supply frequencies. At 
slip equal to 1, a reduction of three-phase magnetizing flux 
occurs, caused only by the iron losses, since the end-effects 
do not play any role. At increasing supply frequencies and 
super-synchronous speeds, the end-effects tend to play a 
major role in the flux reduction, especially at high supply 
frequencies and in particular in field weakening region. Fig. 
5 shows the steady-state mechanical characteristic, force 
versus slip, of the LIM, under the supply voltage of 260 V 
RMS, and frequency of 60 Hz. Such characteristic has been 
traced twice, respectively considering both the end-effects 
and the iron losses (red trace) and considering end-effects but 
neglecting the iron losses (green trace), to highlight just the 
effect of the presence of the iron losses. The same graph 
presents also the trace of the end-effects braking force, in the 
same two cases. As a first major consideration, it can be 
noted that the mechanical characteristic of the LIM prototype 
under analysis presents an always-decreasing shape with the 
slip, differently from the classic shape of the RIM 
characteristic. It can be explained considering the high value 
of the secondary track resistance, due to its limited thickness, 
as well as the high value of the secondary leakage flux, due 
to the big air-gap. It can be further noted that the presence of 
the iron losses causes a strong reduction of the start-up force 
of the LIM (s=1). Moreover, the reduction of the propulsive 
force is even higher at super-synchronous speed, as expected. 
The no-load speed of the machine is achieved for a slip value 
higher than zero, because of the end-effects. The end-effect 
braking force slightly reduces because of the presence of iron 
losses, that can be explained with the reduction of the three-
phase magnetizing flux in the entire slip range because of the 
iron losses (see Fig. 4). 

Fig. 6 shows a set of mechanical characteristics of the 
LIM, net force versus speed drawn for the same set of supply 
voltages and frequencies represented in the graph of the 
equivalent impedance. Results are coherent with those 
deducible from the analysis of Fig. 5. It must be noted that 
the net force in generating mode is always much higher than 

that in motoring mode. The ratio between the peak force 
amplitudes in generating and motoring modes is, however, 
much higher at low speeds than at high speed, particularly in 
field weakening region. This is due to the combined effect of 
the iron losses and end-effects. In particular, at lower supply 
frequencies end-effects play a major role in force reduction 
with respect to iron losses, while it is vice versa at higher 
supply frequencies. At very low speed, whatever the supply 
frequency is, the net force reduction is caused mainly by the 
iron losses. 

 

IV. STEADY-STATE EXPERIMENTAL VALIDATION 
As recalled in section II.F, the pole analysis performed on 
the basis of the proposed dynamic model emphasizes that 
the transient behavior of the LIM is negligibly influenced by 
the presence of the iron losses. For this reason, the transient 
validation of the model presented in [19][20] is assumed 
valid and reliable and will not repeated in the following. 
Only the steady state experimental validation of the model 
will be thus shown. As for the LIM prototype under test, all 
the details related to the experimental set-up have been 
described in [19][20], repeated for the sake of readability in 
part II of this manuscript. The experimental measurements 
performed for the validation of the proposed model have 
required particular care. As a matter of fact, the limited 
length of the secondary track (1.6 m) has imposed the LIM 
to be supplied at limited values of voltage amplitude and 
frequency, corresponding to very low values of the no-load 
speed. The secondary track rail presents, additionally, a very 
high mechanical friction. To make the experimental results 
reliable, the PMSM drive adopted as active load has been 
given, for each measurement, a bias of propulsive reference 
force exactly equal to the friction force load, in order the 
friction not influence the measurements and the real 
mechanical characteristic to be retrieved.  
Fig. 8 shows the steady-state equivalent impedance,  , 
locus under the supply voltage of 30.5 V RMS, 8 Hz. The 
test has been performed in the entire slip range between 0 
and 1. The graph shows the locus obtained with the 
proposed model as well as the experimental measurements. 
It can be observed that the experimental points very well 
track the curve obtained with the model, for the entire range 
of the slip. 
Fig. 9 shows the mechanical characteristic of the LIM, 
propulsive force versus speed, obtained under the same 
supply conditions. The test has been performed in the entire 
slip range between 0 and 1. Even in this case, the graph 
shows the mechanical characteristic obtained with the 
proposed model as well as the experimental measurements. 
It can be observed that the experimental points very well 
track the curve obtained with the model, for the entire range 
of the slip. The above two graphs permit the proposed 
model to be suitably validated. 
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Fig. 8. Steady-state  of the LIM – model vs experiments 

 

Fig. 9. Steady-state mechanical characteristic force vs speed of the LIM – 
model vs experiments 

 

V. CONCLUSIONS 
This is the first part of a paper divided in two parts, dealing 
with the development of a space-vector dynamic model of 
the LIM, which takes into consideration both the dynamic 
end-effects and also the iron losses. The proposed dynamic 
model has been expressed in a state form, so to be, in 
perspective, suitably adopted for developing novel non–
linear control techniques and non-linear observers. Besides 
the formulation of the dynamic model in space-vector state 
form, a steady-state analysis is proposed, highlighting the 
combined effects of the dynamic end-effects and the iron 
losses on the main electrical quantities of the LIM. The 
model has been parametrized and further validated 
experimentally on a suitably developed test set-up.  
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