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Abstract: The aim of this study was to produce a fresh ovine pressed cheese within Pecorino “Pri-
mosale” typology with the addition of citrus essential oils (EOs). For this purpose, ewe’s pasteurized
milk was added with EOs from the peel of lemons, oranges and tangerines. Seven cheese productions
were performed at the pilot plant scale level, including one control production (CP) without the
addition of EOs and six experimental productions obtained by the addition of two EO concentrations
(100 and 200 µL/L) to milk. The acidification process was obtained by means of the starter cultures
Lactococcus lactis CAG4 and PON36. All cheeses showed levels of lactic acid bacteria (LAB) around
109 CFU/g, indicating that citrus EOs did not negatively influence the starter evolution. The addition
of citrus EOs did not determine significant variations for dry matter, fat and protein percentages but
increased the antioxidant capacity of all the experimental cheeses of about 50% in comparison to the
control trial. The citrus EOs impacted cheese VOCs, especially for terpene class (limonene, β-pinene,
myrcene, carene, linalool and α-terpineol). The sensory evaluation showed that cheeses enriched
with 100 µL/L of citrus EOs were mostly appreciated by the panelists.

Keywords: ovine cheese; citrus essential oils; Lactococcus lactis; physicochemical properties; volatile
organic compounds; antioxidant capacity

1. Introduction

In the past few years, the negative consumers’ acceptance for synthetic chemical
preservatives determined an increasing interest in natural alternative preservatives to
produce food with long shelf-lives, high nutritional values and sensory characteristics [1].
Therefore, food industries and academic researchers focused their attention on the use of
active compounds derived from plant and fruit byproducts [2]. This strategy fits well within
the European Green Deal aimed at highlighting environmental sustainability through the
reuse of food wastes of processing industries for a clean and circular economy [3]. In this
context, particular attention has been paid to plant essential oils (EOs) obtained by steam
distillation; dry distillation or a suitable mechanical process of different parts of the plants,
including the leaves, flowers, peels, barks, seeds and roots [4].

EOs are a mixture of secondary bioactive metabolites, such as phenylpropenes, ter-
penes and other volatile constituents [5]. These substances are natural aromatic and volatile
liquids known since ancient times for their flavoring properties [6] and antimicrobial prop-
erties [7]. Nowadays, the positive effects of EOs to exert antioxidant, anti-inflammatory
and antispasmodic actions are well-known [8]. Although some essential oils may cause risk
to human health [9], most of them are harmlessness and classified as Generally Recognized
As Safe (GRAS) by the U.S. Food and Drug Administration, and their use is allowed in all
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foods [10]. Among the raw plant materials used for the extraction of EOs, the byproducts
of the citrus industry have been extensively considered [11].

The region of Sicily is a leader in the cultivation of several citrus genotypes (pummelo,
grapefruit, orange, kumquat, mandarin and lemon) [12], and their fruits are consumed
fresh or processed into juices and candied items [13]. The main waste generated during the
processing of fruits is represented by epicarp or flavedo [14], unexploited byproducts in
juice production [15]. However, this byproduct contains numerous oil glands filled with
EOs [16], which have a wide spectrum of applications, including pharmaceutical, cosmetic,
agricultural and food formulations [17].

The use of citrus EOs in dairy production is not new; so far, this application has only
been performed for bovine milk-derived cheeses in order to improve their microbiological
stability [18,19]. To our knowledge, no studies regarding the addition of citrus EOs to ewes’
milk cheeses are present in the literature. Generally, Sicilian fresh-pressed cheese made
from ewes’ milk are referred to as Pecorino “Primosale” cheeses [20], which are commonly
consumed after a very short ripening time [21].

The purpose of the present research was to produce, for the first time, a new typology
of Pecorino “Primosale” cheese with the addition of three industrial citrus EOs extracted
from oranges, lemons and tangerines and Lactococcus lactis starter cultures. The specific
objectives of the present study were to: (i) evaluate the in vitro inhibitory activity of citrus
EOs against starter cultures; (ii) characterize the citrus EOs for their chemical compositions;
(iii) monitor the ability of starter cultures to drive the fermentation process in the presence
of citrus Eos and (iv) characterize the final cheeses in terms of their physicochemical traits,
antioxidant capacity, volatile organic compounds and sensory characteristics.

2. Materials and Methods
2.1. Raw Materials and Starter Cultures

Three industrial citrus EOs extracted by cold pressing from the peels of oranges
(Citrus sinensis (L.) Osbeck), lemons (Citrus limon (L.) Osbeck) and tangerines (Citrus
reticulata Blanco) were provided by the “EuroFood S.r.l.” facility located in Capo d’Orlando
(Messina, Italy). Whole ewes’ milk used for cheese production was obtained exclusively
from Valle del Belìce breed sheep. Two strains of Lactococcus lactis subsp. lactis (CAG4 and
PON36) belonging to the culture collection of the Department of Agricultural, Food and
Forest Sciences (University of Palermo, Italy), previously isolated from raw ewes’ cheese
productions and evaluated for their dairy traits [22,23], were used as the fermenting agents.

2.2. Inhibitory Assay

In order to evaluate the suitability of citrus EOs to produce Primosale cheese, their
inhibitory activity was tested against the two Lc. lactis starter strains. Following the
methodology described by Gaglio et al. [24], citrus EOs were tested against a cell density
of approximately 107 colony-forming units (CFU)/mL of each Lc. lactis strain in Media
17 (M17) soft agar (0.7% w/v) (Biotec, Grosseto, Italy) applying the paper disc diffusion
method. Sterile water was used as the negative control, while streptomycin (10% w/v) as
the positive control [25]. The inhibitory activity was evaluated after incubation at 30 ◦C for
24 h and was scored positive only in the case of a definite clear area surrounding the paper
discs. This test was carried out in duplicate.

2.3. Development of Natural Milk Starter Culture

The Natural Milk Starter Culture (NMSC) was prepared according to Gaglio et al. [26].
Briefly, the strains Lc. lactis CAG4 and PON36 were reactivated in M17 broth (Biotec)
incubated at 30 ◦C for 24 h. After growth, the cells were centrifuged at 10,000× g for 5 min,
washed and resuspended in Ringer’s solution (Sigma-Aldrich, Milan, Italy). Washed cells
were then inoculated into ovine whole-fat UHT milk (Leeb Vital, Wartberg an der Krems,
Austria) at a final concentration of about 106 CFU/mL. After incubation at 30 ◦C for 24 h,
the NMSC containing the multi-strain culture was used for cheese making.
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2.4. Cheese Productions and Sample Collection

The experimental cheese productions were performed under controlled conditions at
a dairy pilot plant of the dairy factory “Biopek”, located in Gibellina (Trapani, Italy). The
experimental plan included a control production (CP) and two experimental productions
(EP), one for each concentration of citrus EOs (100 and 200 µL/L) added to ewes’ milk; the
EO concentrations were chosen based on the previous study of Marcial et al. [27]. A total of
seven productions were planned (Table 1).

Table 1. Cheese productions.

Trials EOs Concentration (µL/L)

CP - -
EPL100 lemon 100
EPL200 lemon 200
EPO100 orange 100
EPO200 orange 200
EPT100 tangerine 100
EPT200 tangerine 200

Abbreviations: EOs, essential oils; CP, control productions; EPL, experimental production with lemon; EPO,
experimental production with orange; EPT, experimental production with tangerine.

Cheese production was performed by applying the technology for the “Primosale”
pressed cheese type (Figure 1).
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Figure 1. Flow diagrams of Primosale cheese production enriched with citrus essential oils. Abbrevi-
ations: EOs, essential oils; NMSC, natural milk starter cultures.

Briefly, each trial was performed in plastic vats with 25 L pasteurized (72 ◦C for 15 s)
whole ewe’s milk. After cooling at 38 ◦C, the bulk milk was inoculated with the NMSC
(250 mL) and added to 100 or 200 µL/L of each citrus EOs prior the liquid rennet (Clerici
Sacco International, Cadorago, Italy) addition (3 mL). After coagulation, the curd was cut
to the dimension of rice grains, hand-pressed into cylindrical, perforated plastic molds and
subjected to stewing at 40 ◦C for 2 h. The cheeses were salted in saturated brine for 6 h and
ripened for 20 d in a storage chamber at 13 ◦C and 80% relative humidity (RH). Cheese
productions were carried out in duplicate in two consecutive weeks. Samples of raw milk,
pasteurized milk, inoculated milk, curds and the final cheeses were collected for analysis.
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2.5. Microbiological Analyses

Milk samples were directly serially diluted (1:10) in Ringer’s solution (Sigma-Aldrich,
Milan, Italy) into 10-mL/volume test tubes, while the curd and cheese samples (10 g)
were first, homogenized in sodium citrate (2% w/v) solution by means of BagMixer® 400
(Interscience, Saint Nom, France) at the highest speed for 2 min and then serially diluted
in Ringer’s solution. The dilutions of raw milk and pasteurized milk were plated on
agar media to analyze the total mesophilic microorganisms (TMM), and the main pro-
technological (lactic acid bacteria (LAB), including enterococci); spoilage (Pseudomonas spp.)
and pathogenic (members of the Enterobacteriaceae family, coagulase-positive staphylo-
cocci (CPS), Listeria monocytogenes, Escherichia coli and Salmonella spp.) bacterial groups
following the approach of Gaglio et al. [28].

2.6. Isolation, Typing and Identification of LAB Resistant to the Pasteurization Process

After growth, all colonies of presumptive LAB sharing different morphologies in terms
of the shape, size, color, edge, characteristics of the surface and elevation were isolated
from the highest cell densities of pasteurized bulk milk. All isolates were preliminary
characterized by Gram determination applying the method described by Gregersen [29]
and catalase test, determined as reported by Koneman et al. [30]. Only Gram-positive
cultures negative for catalase expression were purified by consecutive subculturing and
differentiated by randomly amplified polymorphic DNA (RAPD)-PCR analysis applying
the protocol described by Gaglio et al. [31]. Gelcompare II software version 6.5 (Applied-
Maths, Sint-Martens-Latem, Belgium) was used to analyze the resulting RAPD profiles.
All different strains were identified at the species level by 16S rRNA gene sequencing
following the approach applied by Gaglio et al. [32]. The sequences were compared with
those available in the GenBank/EMBL/DDBJ (http://www.ncbi.nlm.nih.gov, accessed on
14 September 2022) [33] and EzTaxon-e (http://eztaxon-e.ezbiocloud.net/, accessed on 14
September 2022) databases [34].

2.7. Starter Cultures Recognition

All presumptive LAB collected during cheese making from inoculated milk with
NMSC until the final cheeses were analyzed at the strain level by means of RAPD-PCR in
order to monitor the dominance of lactococci inoculated as starter cultures (Lc. lactis CAG4
and PON36) over LAB resistant to pasteurization.

2.8. Physicochemical Analysis of Cheeses

Cheeses were sampled and evaluated for their physicochemical traits. Cheeses were
assessed for external and internal colors, measured in duplicate by a Minolta Chroma
Meter CR-300 (Minolta, Osaka, Japan) using the illuminant C. The results are expressed as
lightness (L*, from 0 = black to 100 = white), redness (a*, from green = −a to red = +a) and
yellowness (b*, from blue = −b to yellow = +b), according to the CIE L*a*b* system [35].

Cheese hardness was evaluated with an Instron 5564 tester (Instron, Trezzano sul
Naviglio, Milan, Italy) measuring the maximum resistance to compression (compressive
stress, N/mm2) of samples (2 cm × 2 cm × 2 cm) kept at room temperature (22 ◦C).

Water activity (aw) was determined by a HygroPalm water activity indicator (Rotronic,
Bassersdrof, Germany), according to ISO 21807 [36].

The cheese samples were freeze-dried according to the method reported by Rashidine-
jad et al. [37] and analyzed for the contents of dry matter (DM) [38], fat [39] and ash [40],
whereas protein (% DM) was calculated by difference (100—fat % DM—ash % DM).

2.9. Antioxidant Capacity of Cheeses

Cheese samples were analyzed in duplicate for their antioxidant properties, determin-
ing the total polyphenols and the Trolox equivalent antioxidant capacity (TEAC).

Total polyphenols were determined by the Folin–Ciocalteau colorimetric method [41],
with gallic acid as the standard. Briefly, 100 µL of extracted sample were mixed with 900 µL

http://www.ncbi.nlm.nih.gov
http://eztaxon-e.ezbiocloud.net/
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of distilled water and 500 µL of Folin–Ciocalteau reagent diluted in distilled water to a
concentration of 1 N. Then, 2.5 mL of a 20% (w/v) sodium carbonate aqueous solution were
added, and the mixture was vortexed for 30 s and incubated for 40 min in the dark at
room temperature. The absorbance of the samples was read at 725 nm with the HUCH
DR3900 spectrophotometer. Aqueous solutions of gallic acid with different concentrations
(0–1 mg/mL) were used for the calibration curve (R2 = 0.99). The results were expressed as
gallic acid equivalents (g GAE/kg DM).

The TEAC, a discoloration test measuring the radical scavenging ability of samples
using ABTS radical cation (ABTS • +) and Trolox as the standard [42], was performed to
evaluate the antioxidant activity of cheese extracts as described by Bonanno et al. [43],
with some modifications. Briefly, the radical cation ABTS was obtained by reacting a 14
mM ABTS aqueous solution with an equal volume of 4.9 mM potassium persulfate and
incubating the mixture for 16 h in the dark at room temperature before use. For the assay,
the ABTS solution was diluted with 5 mM phosphate-buffered saline (PBS) (pH 7.4) to an
absorbance of 0.795 (±0.02) at 734 nm. The absorbance of a mixture of 10.5 µL of PBS with
1.5 mL of a diluted ABTS solution was read at 734 nm after incubation for 6 min at 30 ◦C.
In the same way, 10.5 µL of each extracted sample were mixed with 1.5 mL diluted ABTS
radical cation solution, and the absorbance read at 734 nm after incubation at 30 ◦C for
6 min was used to calculate the percentage decrease of the absorbance due to decolorization
in comparison with the absorbance read with PBS. A Trolox solution in PBS, between 0 and
2.5 mM, was used to develop a calibration curve (R2 = 0.99), and the results were expressed
as mmol Trolox/kg DM.

The oxidative stability of cheese fat was evaluated by determining in duplicate the
peroxide value (POV, mEq O2/kg fat) as the index of primary lipid oxidation [44], and the
thiobarbituric acid-reactive substances (TBARs) as products of secondary lipid oxidation
expressed as µg of malonylaldehyde (MDA)/kg DM, according to the methods proposed by
Tarladgis et al. [45] and modified by Mele et al. [46]. Briefly, 2 g of freeze-dried cheese were
mixed with 8 mL of phosphate buffer aqueous solution (pH 7) and homogenized by an Art-
Miccra D-8 high-speed homogenizer (Art Labortechnik, Heitersheim, Germany). After the
addition of 30% (v/v) trichloroacetic acid aqueous solution (2 mL), the sample was vortexed
for a few seconds and filtered with Whatman No. 1 filter paper. An aqueous solution of 0.02
M thiobarbituric acid (5 mL) was added to 5 mL of filtrate, placed in a hot water bath at 90 ◦C
for 20 min and then refrigerated. After centrifugation at 4500 rpm for 5 min, the absorbance
of the supernatant was read at 530 nm using a Hach DR/4000 U spectrophotometer. To
quantify TBARs, 1,1,3,3-tetramethoxypropane solutions at concentrations between 0.016
and 0.165 µg/mL were used for the calibration curve (R2 = 0.99).

2.10. Volatile Organic Compounds

Volatile organic compositions of the citrus EOs and cheese samples (CP and EP)
were performed by GC/MS analysis. The citrus essential oils were directly diluted with
hexane (1:100 ratio), while the cheese samples (2 g) were finely chopped. All samples
were placed in a glass vial for the headspace solid-phase microextraction (SPME). SPME
(DVB/CAR/PDMS, 50 mm, Supelco, Bellefonte, PA, USA) fiber was exposed to the samples
under continuous stirring at 60 ◦C for 15 min. After sampling, the volatile components
were desorbed for 1 min at 250 ◦C through a GC split-less injector with a SPME inlet liner.
GC analyses were performed on an Agilent 6890 gas chromatograph coupled with a mass
selective detector (Agilent 5975 c) using a DB-624 capillary column (Agilent Technologies,
Santa Clara, CA, USA, 60 m, 0.25 mm, 1.40 µm). Helium was used as the carrier gas with
an ionization voltage of 70 eV at a flow rate of 1 mL/min. The oven temperature program
was 5 min isotherm at 40 ◦C, followed by a linear temperature increase of 5 ◦C min up to
200 ◦C, where it was held for 2 min. The transfer line temperature was 230 ◦C, and the
scanning range of the GC/MS was 40–400 amu. The volatile components of the samples
were identified by comparing their mass spectra to the NIST Library and confirmed by
comparison with the Kovat’s Index.
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2.11. Sensory Evaluation

Sensory evaluation of CP and EP cheeses was performed by a descriptive panel of
15 assessors (eight women and seven men aged between 20 and 62 years old). The judges
were trained specifically following the ISO 8589 [47] indications and were asked to score
16 descriptors, including color, structure uniformity, intensity of odor, unpleasant odor, in-
tensity of aroma, salty, sweet, acid, bitter, spicy, unpleasant aroma, adhesiveness, hardness,
humidity, taste persistency and overall acceptability. The assessors scored the level of each
attribute with a mark on a 7-point hedonic scale (0 = extremely low; 7 = extremely high).

2.12. Statistical Analyses

One-Way Analysis of Variance (ANOVA) was applied to identify the differences among
the microbiological and physicochemical data. Tukey’s test was applied for pairwise and
multiple mean comparisons (statistical significance p < 0.05). The values of VOCs emitted
from citrus EOs were graphically represent as a heat map generated using ascendant
hierarchical clustering. The VOC concentrations were graphically represented by a color
change from yellow (lowest concentration) to red (highest concentration). Two-factor
analysis of variance (ANOVA), with judges (i = 1, ..., 15) and cheeses (j = 1, ..., 7) as the
fixed factors, was applied to evaluate the discrimination efficiency of the sensory attributes
for each panelist. t-test with significance levels of p < 0.05 was used to compare the
least square means (LSM). Statistical processing of microbiological and sensory data, as
well as the graphic constructions of VOCs emitted from citrus EOs was performed with
XLStat software version 2020.3.1 for Excel (Addinsoft, New York, NY, USA), while the
physicochemical data were analyzed using the generalized linear model (GLM) procedure
in SAS 9.2 software (SAS Institute Inc., Campus Drive Cary, NC, USA).

3. Results and Discussion
3.1. Suitability of Citrus EOs for Cheese Production

The antimicrobial activity of EOs obtained from the citrus genotypes (oranges, lemons
and tangerines) cultivated in Sicily against the main human pathogens, including E. coli,
L. monocytogenes, Salmonella spp. and Staphylococcus aureus bacteria, is well-known [48,49].
In our work, we tested the three industrial citrus EOs extracted from oranges, lemons
and tangerines against LAB, which are necessary to drive the fermentation process and to
transform milk into cheese [50]. The citrus EOs tested did not inhibit the growth of the
two strains of Lc. lactis (CAG4 and PON36) selected as starter cultures (results not shown).
Thus, these results confirmed the suitability of citrus EOs for Primosale cheese production,
because their presence does not interfere with Lactococcus development.

3.2. Evolution of Microbial Population during Cheese Making

The levels of the different microbial groups investigated in ewes’ milk before and after
pasteurization are reported in Figure 2. The presence of Salmonella spp. and L. monocytogenes
was never found (for this reason, these results are not reported in Figure 2).

Statistically significant differences (p < 0.05) were observed among the raw and pas-
teurized milk for the levels of all the microbial group objects of investigation. Ewes’ milk
before pasteurization hosted levels of TMM of 6.99 CFU/mL, which is higher than the
European limit of <500.000 CFU/mL for raw ewes’ milk [51]. High levels of TMM are often
detected in raw ewe’s milk from the Valle del Belìce breed [52,53], and this is imputable to
the microbial contamination of the udder surface occurring during the milking procedures
or during transport or to the growth of indigenous milk microorganisms during storage [54].
Mesophilic coccus LAB were found at 106 CFU/mL, while mesophilic rod LAB were one
Log cycle lower. After pasteurization, the levels of TMM, mesophilic coccus, rod LAB and
enterococci, decreased by about three Log cycles, showing the ability of some indigenous
milk bacteria to survive until the pasteurization process [55,56]. The levels of undesired
microbial groups, such as members of the Enterobacteriaceae family, CPS and E. coli in
raw milk, were in the range 102–103 CFU/mL and decreased below the detection limit in
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pasteurized milk. A similar trend was previously observed for ewes’ milk by Barbaccia
et al. [57,58]. The analysis of milk after each citrus EO and NMSC addition showed levels
of mesophilic coccus LAB above 7 Log CFU/mL, confirming that Lc. lactis inoculums
occurred at 107 CFU/mL.
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Figure 2. Microbial counts (Log CFU/mL) of raw and pasteurized milk samples. Abbreviations:
TMM, total mesophilic microorganisms; CPS, coagulase-positive staphylococci; E., Escherichia. The
results indicate the mean values and standard deviation of four plate counts (carried out in duplicate
for two independent productions). Different superscript letters indicate significant differences in the
microbial concentrations according to Tukey’s test between the raw and pasteurized milk samples for
p < 0.05.

Table 2 reports the levels of TMM and Lc. lactis, added as a starter culture, on curds
and cheeses samples.

Table 2. Growth of starter LAB during cheese production.

Samples
Bacterial Counts

TMM Lc. lactis

Curd
CP 7.89 ± 0.25 7.99 ± 0.33

EPL100 8.01 ± 0.21 8.11 ± 0.20
EPL200 7.78 ± 0.27 7.90 ± 0.25
EPO100 8.12 ± 0.20 8.15 ± 0.25
EPO200 7.97 ± 0.18 8.01 ± 0.31
EPT100 7.71 ± 0.26 8.07 ± 0.30
EPT200 7.83 ± 0.23 8.03 ± 0.23
p value 0.392 0.937
Cheese

CP 9.03 ± 0.35 9.12 ± 0.29
EPL100 9.01 ± 0.27 9.19± 0.24
EPL200 9.33 ± 0.21 9.38 ± 0.23
EPO100 9.15 ± 0.24 9.35 ± 0.30
EPO200 9.20 ± 0.21 9.33 ± 0.27
EPT100 9.14 ± 0.20 9.24 ± 0.24
EPT200 9.04 ± 0.30 9.20 ± 0.31
p value 0.742 0.878

Units are Log CFU/g. Results indicate the mean values and standard deviation of four plate counts (carried
out in duplicate for two independent productions). Abbreviations: TMM, total mesophilic microorganisms; Lc.,
Lactococcus; CP, control production inoculated with Natural Milk Starter Cultures (NMSC); EPL100, experimental
production inoculated with NMSC + 100 µL/L of lemon essential oils (EOs); EPL200, experimental production
inoculated with NMSC + 200 µL/L of lemon EOs; EPO100, experimental production inoculated with NMSC +
100 µL/L of orange EOs; EPO200, experimental production inoculated with NMSC + 200 µL/L of orange EOs;
EPT100, experimental production inoculated with NMSC + 100 µL/L of tangerine EOs; EPT200, experimental
production inoculated with NMSC + 200 µL/L of tangerine EOs.
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After curdling, TMM and Lc. lactis were counted at 108 CFU/g, while, in the final
control and experimental cheeses, their levels were above 9.0 Log CFU/g. A similar trend
was previously reported by Marcial et al. [27] for bovine pressed cheeses produced with an
oregano EO addition and using selected LAB strains as fermenting agents. These results
highlighted that the addition of citrus EOs did not alter the microbiological parameters of
the final cheeses.

3.3. Composition of Thermoduric LAB Populations

Thirty-three isolates from pasteurized milk were considered presumptive LAB, being
Gram-positive and catalase-negative. After purification, all isolates were analyzed by
RAPD-PCR in order to distinguish the different strains. The dendrogram reported in
Figure 3 shows five different strains.
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Figure 3. Dendrogram obtained with combined RAPD-PCR patterns generated with three primers
for thermoduric indigenous milk LAB strains isolated from pasteurized milk. Abbreviations: En.,
Enterococcus; Lc., Lactococcus; St., Streptococcus.

These strains resistant to the pasteurization process were analyzed by 16S rRNA
gene sequencing. This analysis confirmed their inclusion in the LAB group, since they
were identified as Enterococcus faecalis, Enterococcus faecium, Lc. lactis and Streptococcus
thermophilus. These species are typical of dairy environments [48]. In particular, Lc. lactis
and St. thermophilus are components of the starter LAB (SLAB) responsible for lactic
fermentation, while En. faecalis and En. faecium to the non-starter LAB (NSLAB) community
associated with the development of typical sensory traits [59]. The ability of En. faecalis, En.
faecium and St. thermophilus to survive the pasteurization process is well-known [60,61],
while Lc. lactis is a species sensitive to heat treatments [62], and for this reason, its presence
in pasteurized ewes’ milk could be imputable to post-pasteurization contamination [63].

3.4. Persistence of the Added Starter LAB Strains

The dominance of Lc. lactis CAG4 and PON36 during cheese making was evaluated
by means of RAPD profile comparisons. This technique, commonly used to monitor the
LAB starter cultures in dairy production [64,65], showed the dominance of the added
strains over those that survived the thermal treatment both in the control and experimental
productions, excluding any negative influence of EOs.

3.5. Physicochemical Characterisation of Cheeses

The physical properties and the chemical compositions of the cheeses are reported in
Table 3.

The effect of production was statistically significant for all cheese color indexes. Indeed,
the external and internal surfaces of cheeses performed with lemon and tangerine EOs at
both levels showed lower values of lightness (L*) and redness (a*) and a corresponding
higher yellow index (b*) in comparison with the other cheeses. This effect is presumably
related to the transfer of a larger amount of carotenoid pigments that, among those isolable
from the respective EOs [66], were able to induce a higher yellow color. Overall, the indexes
of internal colors recorded in CP cheeses were within the ranges observed for Primosale
cheeses [26,43].
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Table 3. Physicochemical traits of Primosale cheeses.

Samples
SEM p-Value

CP EPL100 EPL200 EPO100 EPO200 EPT100 EPT200

External color
Lightness, L* 79.39 abc 77.32 bc 76.38 c 82.12 a 81.61 a 79.70 ab 77.07 bc 0.56 0.0009
Redness, a* −2.23 a −4.12 cd −4.51 d −3.21 b −3.46 bc −4.34 d −4.15 cd 0.15 0.0001

Yellowness, b* 17.75 a 16.69 ab 16.52 ab 12.65 c 14.75 bc 14.66 bc 14.77 abc 0.53 0.0032
Internal color
Lightness, L* 85.81 a 80.23 b 80.94 b 87.31 a 85.76 a 77.96 b 76.97 b 0.71 <0.0001
Redness, a* −3.54 abc −4.36 cd −4.29 bcd −3.18 a −3.29 ab −4.93 d −4.85 d 0.18 0.0010

Yellowness, b* 13.36 ab 13.61 ab 14.65 a 12.23 b 12.44 b 14.49 a 13.57 ab 0.34 0.0092
Hardness, N/mm2 0.63 ab 0.56 b 0.58 ab 0.75 a 0.58 ab 0.51 b 0.57 ab 0.032 0.0194
Water activity, aw 0.97 0.98 0.98 0.97 0.96 0.98 0.99 0.028 0.9970

Dry matter (DM), % 57.05 59.72 57.76 58.47 59.70 57.36 59.27 1.69 0.8428
Fat, % DM 45.90 42.25 43.27 42.81 44.45 43.48 45.01 1.27 0.4417

Protein, % DM 46.91 50.51 49.29 49.54 47.42 48.91 48.30 1.48 0.6457
Ash, % DM 7.19 ab 7.24 ab 7.45 ab 7.65 ab 8.13 a 7.61 ab 6.69 b 0.21 0.0106

Results indicate the mean values of determinations carried out in duplicate for each of the two independent
productions. Data within a row followed by different letters are significantly different according to Tukey’s
test (p < 0.05). Abbreviations: SEM = standard error of the mean; CP, control production inoculated with the
Natural Milk Starter Cultures (NMSC); EPL100, experimental production inoculated with NMSC + 100 µL/L
of lemon essential oils (EOs); EPL200, experimental production inoculated with NMSC + 200 µL/L of lemon
EOs; EPO100, experimental production inoculated with NMSC + 100 µL/L of orange EOs; EPO200, experimental
production inoculated with NMSC + 200 µL/L of orange EOs; EPT100, experimental production inoculated with
NMSC + 100 µL/L of tangerine EOs; EPT200, experimental production inoculated with NMSC + 200 µL/L of
tangerine EOs.

The hardness of the pastes was comparable among the cheeses from different produc-
tions, apart from the highest consistency recorded for the cheeses of EPO100 production,
which differed significantly from the EPT100 cheeses. No explanation based on variations
in chemical components, as increasing the humidity or fat reduction, was found to justify
this increase; however, the major consistency of the EPO100 cheeses corresponded to their
tendency towards a higher adhesiveness perceived at the sensory level.

The chemical composition of the cheeses in terms of the DM, fat and protein, as well
as aw, were not affected by the addition of citrus EOs. Indeed, a slightly higher ash content
emerged in EPO200 cheeses, with a significant difference in EPT200 cheeses, which can be
attributed to the major ash content of orange EOs or to a greater amount of salt absorbed
by cheeses. Additionally, the chemical components of the Primosale cheeses ranged into
the levels found by other investigations [26,67,68].

3.6. Antioxidant Capacity of Cheeses

The results of the antioxidant capacity of the cheese analyses are reported in Table 4.
As expected, the cheeses from all the experimental productions displayed a higher

antioxidant capacity, expressed as TEAC, than the control cheeses, without differences
between the Eos and their addition levels. This result confirmed the well-known antioxi-
dant properties of citrus EOs [69], mainly due to their components such as terpenes and
phenolic compounds. For this reason, citrus EOs are commonly incorporated into foods to
prevent oxidation, to increase the shelf life and to provide health benefits [70]. However, the
total polyphenols content did not differ significantly among the experimental and control
productions. Thus, the improvement of the antioxidant activity of cheeses fortified with
citrus EOs is mainly attributable to other antioxidant molecules, especially terpenes. Fur-
thermore, the antioxidant activity of Eos also derives from the synergic actions of various
molecules [71]. Although limonene was the major terpene in all the experimental cheeses,
its antioxidant contribution is reported to be limited [72].

Although the inclusion of Eos was able to improve the antioxidant capacity of the
experimental cheeses, it was not effective in preserving the cheese fat from oxidation.
Indeed, the primary lipid oxidation, expressed as the peroxide value, was lower only in the
cheeses fortified with lemon EOs, whereas TBARS, indicating the secondary lipid oxidation,
was higher in the experimental cheeses than in the control cheese, although the orange and
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tangerine EOs induced a better protection from oxidation when used at the highest level.
Based on these results, the potential of citrus EOs as sources of antioxidant compounds to
preserve cheese fat from oxidation needs to be further investigated, while also considering
the maintenance of oxidative stability during the storage time.

Table 4. Antioxidant capacity of the Primosale cheeses.

Samples Polyphenols
(g GAE/kg DM)

TEAC
(mmol/kg DM)

POV
(mEq O2/kg fat)

TBARS
(mg MDA/kg

DM)

CP 5.45 40.66 b 2.20 bc 3.07 e
EPL100 5.99 63.82 a 2.09 d 4.75 d
EPL200 6.13 59.56 a 2.07 d 4.07 d
EPO100 5.47 61.88 a 2.15 c 7.73 b
EPO200 5.84 59.41 a 2.25 a 4.24 d
EPT100 5.90 59.05 a 2.19 bc 10.23 a
EPT200 6.60 60.13 a 2.21 ab 5.99 c

SEM 0.49 4.46 0.011 0.16
p-value 0.6883 0.0179 <0.0001 <0.0001

Results indicate the mean values of the determinations carried out in duplicate for each of the two independent
productions. Data within a column followed by different letters are significantly different according to Tukey’s
test (p < 0.05). Abbreviations: CP, control production inoculated with the Natural Milk Starter Cultures (NMSC);
EPL100, experimental production inoculated with NMSC + 100 µL/L of lemon essential oils (EOs); EPL200, experi-
mental production inoculated with NMSC + 200 µL/L of lemon EOs; EPO100, experimental production inoculated
with NMSC + 100 µL/L of orange EOs; EPO200, experimental production inoculated with NMSC + 200 µL/L
of orange EOs; EPT100, experimental production inoculated with NMSC + 100 µL/L of tangerine EOs; EPT200,
experimental production inoculated with NMSC + 200 µL/L of tangerine EOs; SEM = standard error of mean;
GAE, gallic acid equivalent; DM, dry matter; TEAC, Trolox equivalent antioxidant capacity; POV, peroxide value;
TBARS, thiobarbituric acid-reactive substances; MDA, malonylaldehyde.

3.7. Volatile Organic Compounds Emitted from Citrus EOs and Cheeses

The volatile profiles generated by the citrus EOs are reported in Figure 4.
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Figure 4. Distribution of the volatile organic compounds among the citrus EOs. The heat map plot
depicts the relative concentration of each VOC. Abbreviations: LEOs, lemon essential oils; OEOs,
orange essential oils; TEOs, tangerine essential oils.
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The dendrogram resulting from the cluster analysis and the heat map showed the
formation of two clusters. The orange and tangerine EOs clustered together into one main
group, while the lemon EOs were in a separate single cluster. In particular, in lemon, orange
and tangerine Eos, a total of 32, 31 and 26 volatile compounds were identified, respec-
tively. Three phytochemical groups, including monoterpene hydrocarbons, oxygenated
monoterpenes and sesquiterpene, were recognized in all three citrus EOs. The monoterpene
hydrocarbons constitute the most representative group of volatile compounds, with 94%
in the orange EOs, 92% in the tangerine Eos and 87% in the lemon EOs. In all three EOs,
the most quantitatively relevant compounds were limonene, β-pinene and γ-terpinene.
Limonene, the major compound of the present study, is a cyclic monoterpene with a lemon-
like odor and is considered to be the major chemical constituents in various EOs of citrus
species [73,74]. In addition to limonene, all three citrus EOs were characterized by the
presence of linalool and citral. These components are reported to exert an antimicrobial
activity towards bacteria and fungi [75,76]. Basically, the volatile compounds identified in
citrus EOs analyzed in this study were similar to those found by other authors [74,77].

Table 5 reports the VOCs emitted from cheeses sample with and without EO additions.
The control cheese profile was characterized by 20 compounds belonging to the classes
of acids, ketones, aldehydes, alcohols and monoterpene. The main acids identified were
hexanoic, butyric and 2-hydroxy4-methyl-pentanoic acids. These compounds contribute
to the formation of cheese flavor both directly and indirectly as precursors of odor-active
compounds such as ketones and aldehydes [78,79]. Hexenal and heptanal were the main
aldehydes detected in the control cheese, and the main alcohol was 1-butanol-3-methyl.
Similar volatile compound profiles were also observed in other cheeses produced from
sheep’s milk [26,53,80]. The cheeses processed with citrus EO additions emitted 24 VOCs
in the presence of lemon EOs and 23 in the presence of orange, as well as tangerine,
EOs. Cheeses produced with citrus EOs differed from the control cheeses, especially for
the limonene, β-pinene, myrcene, carene, linalool and α-terpineol concentrations. No
statistically significant differences were found among the experimental cheeses produced
with the addition of 100 and 200 µL/L of citrus EOs. The most abundant VOC found in all
the enriched cheeses with citrus EOs was limonene, which showed a slight increase with
the increasing percentage of citrus EOs added to milk. The only terpene found both in the
control and experimental cheese is α-pinene, commonly present in cheese as a result of
pasture feeding [81,82]. The monoterpene hydrocarbons constitute the most representative
group of VOCs in experimental cheeses. In particular, in cheeses enriched with 100 and
200 µL/L of lemon, orange and tangerine Eos, monoterpene hydrocarbons accounted for
82%, 83% and 85%, respectively. This class of compounds is commonly found in cheeses
enriched with different types of essential oils [83,84]. The higher carryovers observed for
monoterpene hydrocarbons with respect to the oxygenated compounds may be explained
by possible interactions with fat, carbohydrate and protein matrices in cheese [85–87].
Specifically, hydroxyl groups can interact with the receptor groups of proteins, such as
NH and CO, determining the higher retention rate for oxygenated compounds in the food
matrix, restricting their ability to be transferred [88].
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Table 5. Volatile organic compounds emitted Primosale cheeses.

Chemical Compounds
Samples

p Value
CP EPL100 EPL200 EPO100 EPO200 EPT100 EPT200

Acids
Acetic acid 3.73 ± 0.74 a 0.38 ± 0.07 b 0.28 ± 0.07 b 0.41 ± 0.07 b 0.28 ± 0.0 b 0.40 ± 0.08 b 0.31 ± 0.08 b <0.0001

Butanoic acid 7.96 ± 1.42 a 1.49 ± 0.23 b 1.29 ± 0.32 b 1.47 ± 0.29 b 1.18 ± 0.29 b 1.67 ± 0.30 b 1.37 ± 0.35 b <0.0001
Exanoinc acid 14.77 ± 2.77 a 3.00 ± 0.61 b 2.42 ± 0.57 b 2.44 ± 0.52 b 2.05 ± 0.51 b 3.18 ± 0.69 b 2.66 ± 0.67 b <0.0001

Pentanoinc
acid-2-hydroxy-4-methyl 9.99 ± 2.12 a 1.43 ± 0.26 b 1.2 ± 0.29 b 1.21 ± 0.32 b 0.99 ± 0.25 b 1.37 ± 0.28 b 1.09 ± 0.25 b <0.0001

Octanoic Acid 5.13 ± 0.76 a 1.14 ± 0.22 b 0.99 ± 0.25 bc 0.74 ± 0.13 bc 0.17 ± 0.04 c 0.99 ± 0.19 bc 0.77 ± 0.18 bc <0.0001
Nonanoic Acid 0.83 ± 0.14 a n.d. b n.d. b n.d. b n.d. b n.d. b n.d. b <0.0001

Ketons
2-pentanone 1.34 ± 0.26 a 0.15 ± 0.03 b 0.010 ± 0.002 b 0.11 ± 0.02 b 0.05 ± 0.01 b 0.07 ± 0.01 b 0.06 ± 0.01 b <0.0001

3-hydroxy-2-butanone 0.06 ± 0.01 a n.d. b n.d. b n.d. b n.d. b n.d. b n.d. b <0.0001
3,5 octadien-2-one 0.39 ± 0.07 a 0.20 ± 0.03 b 0.12 ± 0.02 bcd 0.12 ± 0.02 bcd 0.03 ± 0.01 d 0.10 ± 0.01 cd 0.14 ± 0.03 bc <0.0001

Alcohol
1-butanol-3-methyl 7.02 ± 1.41 a 1.24 ± 0.38 b 0.99 ± 0.24 b 0.90 ± 0.23 b 0.72 ± 0.18 b 1.27 ± 0.29 b 1.02 ± 0.25 b <0.0001

1 pentanol 0.81 ± 0.11 a 0.10 ± 0.0 b 0.07 ± 0.01 b 0.06 ± 0.01 b 0.03 ± 0.01 b 0.06 ± 0.01 b 0.04 ± 0.01 b <0.0001
4 methyl-1-pentanol n.d. e 0.09 ± 0.01 a 0.06 ± 0.01 bc 0.07 ± 0.01 ab 0.04 ± 0.01 cd 0.03 ± 0.01 d 0.02 ± 0.01 de <0.0001

Octan-1-ol 2.79 ± 0.46 a 0.78 ± 0.13 bc 0.05 ± 0.01 d 1.09 ± 0.19 b 0.45 ± 0.10 cd 0.59 ± 0.1 bcd 0.20 ± 0.05 d <0.0001
Aldeyde

2-pentenal 0.65 ± 0.09 a 0.08 ± 0.01 b 0.03 ± 0.01 b 0.07 ± 0.01 b 0.03 ± 0.01 b 0.05 ± 0.01 b 0.04 ± 0.01 b <0.0001
Hexanal 16.02 ± 2.01 a 2.73 ± 0.50 b 2.01 ± 0.48 b 1.77 ± 0.32 b 1.46 ± 0.38 b 1.70 ± 0.40 b 1.37 ± 0.34 b <0.0001
2-butanal 0.18 ± 0.03 a 0.20 ± 0.04 a 0.11 ± 0.027 bc 0.17 ± 0.03 ab 0.04 ± 0.01 d 0.07 ± 0.01 cd 0.010 ± 0.002 d <0.0001
Heptanal 17.72 ± 3.60 a 3.63 ± 0.64 b 2.90 ± 0.68 b 3.24 ± 0.75 b 2.51 ± 0.65 b 2.79 ± 0.51 b 2.31 ± 0.6 b <0.0001
Nonanal 1.83 ± 0.36 a n.d. b n.d. b n.d. b n.d. b n.d. b n.d. b <0.0001
2-octenal 1.74 ± 0.37 a n.d. b n.d. b n.d. b n.d. b n.d. b n.d. b <0.0001
2-nonenal 5.27 ± 0.98 a 0.91 ± 0.12 b 0.79 ± 0.19 b 0.84 ± 0.14 b 0.54 ± 0.13 b 0.22 ± 0.03 b 0.19 ± 0.04 b <0.0001

Monoterpene
Hydrocarbons

α-pinene 1.78 ± 0.29 a 0.76 ± 0.14 b 0.47 ± 0.12 bc 0.20 ± 0.04 c 0.17 ± 0.04 c 0.71 ± 0.14 b 0.50 ± 0.13 bc <0.0001
β-pinene n.d. d 0.11 ± 0.02 c 0.07 ± 0.01 cd 0.24 ± 0.04 b 0.09 ± 0.01 cd 0.38 ± 0.06 a 0.33 ± 0.07 ab <0.0001
Myrcene n.d. c 0.06 ± 0.01 c 0.020 ± 0.004 c 2.04 ± 0.42 ab 1.99 ± 0.51 b 3.05 ± 0.63 a 1.84 ± 0.42 b <0.0001

Phellandrene n.d. b 0.040 ± 0.008 a 0.03 ± 0.01 a n.d. b n.d. b n.d. b n.d. b <0.0001
Limonene n.d. b 77.99 ± 3.96 a 84.2 ± 3.36 a 80.79 ± 3.79 a 86.09 ± 3.44 a 79.39 ± 3.49 a 85.18 ± 4.26 a <0.0001

Carene n.d. d 2.70 ± 0.47 a 1.99 ± 0.43 ab 0.07 ± 0.01 d 0.020 ± 0.005 d 1.29 ± 0.28 bc 0.99 ± 0.22 c <0.0001
Oxygenated monoterpenes

Linalool n.d. c 0.42 ± 0.07 c 0.32 ± 0.07 c 1.83 ± 0.37 a 1.06 ± 0.24 b 0.37 ± 0.07 c 0.10 ± 0.02 c <0.0001
α -Terpineol n.d. d 0.39 ± 0.08 a 0.10 ± 0.02 cd 0.12 ± 0.02 c 0.05 ± 0.01 cd 0.25 ± 0.05 b 0.09 ± 0.02 cd <0.0001

Results indicate the mean percentage values of three measurements and are expressed as relative peak areas (peak area of each compound/total area of the significant peaks in all
samples) × l00. Data within a row followed by different letters are significantly different, according to Tukey’s test (p < 0.05). Abbreviations: CP, control production inoculated with the
Natural Milk Starter Cultures (NMSC); EPL100, experimental production inoculated with NMSC + 100 µL/L of lemon essential oils (EOs); n.d., not detectable.



Antioxidants 2022, 11, 2004 13 of 17

3.8. Sensory Aspects of Cheeses

The results of the sensory evaluation are reported in Table 6. This evaluation is
commonly used to determine the tasters’ acceptance of a new food product before market-
ing [89].

Table 6. Evaluation of the sensory attributes of Primosale cheeses.

Attributes
Trial

SEM
p-Value

CP EPL100 EPL200 EPO100 EPO200 EPT100 EPT200 Judges Cheeses

Color 3.87 3.95 4.05 3.85 3.95 3.91 4.03 0.06 0.929 0.962
Structure

uniformity 5.41 5.25 5.33 5.26 5.27 5.36 5.45 0.06 0.536 0.967

Intensity of odor 4.88 c 5.38 abc 5.85 ab 5.29 bc 5.67 ab 5.62 ab 5.96 a 0.07 0.179 <0.0001
Unpleasant odor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

Intensity of aroma 5.19 d 5.59 bdc 6.05 ab 5.46 cd 5.95 abc 5.67 bcd 6.25 a 0.06 0.259 <0.0001
Sweet 5.24 5.19 5.10 5.22 5.15 5.05 5.01 0.05 0.052 0.826
Salty 3.54 3.42 3.48 3.56 3.55 3.46 3.50 0.03 0.444 0.933
Acid 2.39 2.61 2.81 2.48 2.84 2.74 2.92 0.06 0.068 0.092
Bitter 1.51 1.49 1.62 1.57 1.65 1.65 1.59 0.04 0.435 0.895
Spicy 1.93 1.81 1.94 2.05 2.06 1.91 2.05 0.05 0.155 0.828

Adhesiveness 2.53 ab 2.35 b 2.65 ab 2.87 a 2.69 ab 2.66 ab 2.82 ab 0.05 0.213 0.062
Hardness 3.93 3.65 3.62 3.88 3.72 3.51 3.83 0.06 0.586 0.376
Humidity 2.81 2.59 2.52 2.37 2.47 2.77 2.41 0.05 0.244 0.053

Taste persistency 3.15 c 3.49 bc 3.98 a 3.31 c 3.79 ab 3.55 bc 4.16 a 0.06 0.969 <0.0001
Unpleasant aroma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

Overall
acceptability 4.73 c 6.05 a 4.27 c 5.43 b 4.09 c 5.69 ab 4.21 c 0.10 0.998 <0.0001

Results indicate the mean value. Data within a row followed by the same letter are not significantly different
according to Tukey’s test. Abbreviations: CP, control production inoculated with the Natural Milk Starter Cultures
(NMSC); EPL100, experimental production inoculated with NMSC + 100 µL/L of lemon essential oils (EOs);
EPL200, experimental production inoculated with NMSC + 200 µL/L of lemon EOs; EPO100, experimental
production inoculated with NMSC + 100 µL/L of orange EOs; EPO200, experimental production inoculated
with NMSC + 200 µL/L of orange EOs; EPT100, experimental production inoculated with NMSC + 100 µL/L of
tangerine EOs; EPT200, experimental production inoculated with NMSC + 200 µL/L of tangerine EOs.

In this study, this analysis showed that the addition of citrus EOs led to the production
of Primosale cheeses characterized by a sensory profile not particularly different from
that generally recognized for traditional Primosale cheeses. In particular, except for the
intensity of odor, intensity of aroma and taste persistency that were scored different for
the cheeses, all other sensory traits evaluated were not influenced by the addition of citrus
EOs. In detail, the intensity of odor and of aroma and taste persistency increased with the
concentration of citrus EOs added, confirming the previous findings of Marcial et al. [27],
who tested different concentrations of oregano EO to fortify a traditional Argentinean
fresh bovine cheese. Although it is well-known the EOs have a strong flavor that can alter
the sensory acceptability of dairy products [90], our results highlighted that the cheeses
produced with 100 µL/L of citrus EOs were the most appreciated ones by the panelists.

4. Conclusions

This study provided an analysis of the microbiological, physicochemical and sensory
characteristics of a Primosale cheese processed with citrus EOs extracted from peels of
lemons, oranges and tangerines. The enrichment of milk at 100 and 200 µL/L did not
negatively influence the fermentation activity of the two Lc. lactis (CAG4 and PON36)
used as the starter cultures. The addition of citrus EOs to milk did not affect the chemical
compositions of the Primosale cheeses while determining a relevant increase of the antioxi-
dant capacity. The volatile profiles of the cheeses enriched with citrus EOs were impacted
with monoterpene hydrocarbons and oxygenated monoterpenes compounds. The sensory
evaluation indicated that Primosale cheeses enriched with 100 µL/L of lemon, orange and
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tangerine EOs were characterized by the highest overall acceptability. These results clearly
highlighted that the addition of citrus EOs to milk determined the production of novel
fresh cheeses able to enlarge the Sicilian ewes’ milk dairy products portfolio.
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