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Exploring the genetic landscape
of nitrogen uptake in
durum wheat: genome-wide
characterization and
expression profiling of NPF
and NRT2 gene families
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Alfonso S. Frenda1, Alex Harkess3, Francesco Sunseri2,4*

and Francesco Mercati2*

1Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy,
2Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy,
3HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States, 4Department Agraria ,
University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter

1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we

extensively characterized the NPF and NRT2 families in the durum wheat

genome, revealing 211 NPF and 20 NRT2 genes. The two families share many

Cis Regulatory Elements (CREs) and Transcription Factor binding sites,

highlighting a partially overlapping regulatory system and suggesting a

coordinated response for nitrate transport and utilization. Analyzing RNA-seq

data from 9 tissues and 20 cultivars, we explored expression profiles and co-

expression relationships of both gene families. We observed a strong correlation

between nucleotide variation and gene expression within the NRT2 gene family,

implicating a shared selection mechanism operating on both coding and

regulatory regions. Furthermore, NPF genes showed highly tissue-specific

expression profiles, while NRT2s were mainly divided in two co-expression

modules, one expressed in roots (NAR2/NRT3 dependent) and the other

induced in anthers and/ovaries during maturation. Our evidences confirmed

that the majority of these genes were retained after small-scale duplication

events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s.

Altogether, these findings indicate that the expansion of these gene families in

durum wheat could provide valuable genetic variability useful to identify NUE-

related and candidate genes for future breeding programs in the context of low-

impact and sustainable agriculture.

KEYWORDS

durum wheat, nitrogen, N uptake, nitrate transporters, NPF and NRT2 family, Nitrogen
Use Efficiency (NUE), N uptake, Weighted Gene Co-expression Network
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1 Introduction

Nitrogen (N) is a crucial nutrient for plant growth and

development. Suboptimal nitrogen utilization can lead to

diminished yields and significant environmental repercussions.

Excessive or misapplied nitrogen fertilizers often lead to an

increased risk of nitrogen escaping into the environment through

processes like denitrification, leaching, or volatilization. This

contributes to higher levels of nitrate in both surface and

groundwater, as well as the release of N2O and NH3 into the

atmosphere. Therefore, improving the efficiency of nitrogen

utilization is crucial to address issues such as environmental

degradation, climate change, and food security (Javed et al.,

2022). Despite valuable research efforts in this field and the

development of various technologies (i.e., slow-release fertilizers,

inhibitors for nitrification and urease, fertigation, and advanced

precision agriculture techniques) nitrogen efficiency remains

relatively low for many crops, particularly for cereals where it

typically ranges between 25% and 50% of the applied nitrogen

(Giambalvo et al., 2018; Javed et al., 2022). This can be attributed to

the complexity of Nitrogen Use Efficiency (NUE), which involves a

multitude of factors related to agronomy, physiology, and molecular

biology. Nitrate (NO3
-) is one of the major N-forms taken up by

plants from the soil. NO3
- availability in the soil is highly variable

and its uptake is governed by at least two transport systems,

depending on soil NO3
- concentrations: the low affinity NO3

-

transport (LATS) and the high affinity NO3
- transport (HATS)

systems. LATS is mediated by the NO3
- transporter 1/peptide

transporter (NRT1/NPF) family, which comprises a diverse array

of membrane transport proteins found within multiple cell types

and tissues, whereas HATS is facilitated by the NRT2 family, and is

specific for NO3
-. These two transport systems are responsible for

the uptake of NO3
- at different range of concentrations from

millimolar to micromolar. N uptake is an important component

of NUE, defined as the total biomass (or yield) per unit of N

supplied (Moll et al., 1982), it is a complex trait influenced by

interacting environmental factors and controlled by gene networks

involved in N uptake, assimilation, and remobilization. NUE is

divided in two main components, the Nitrogen Uptake Efficiency

(NUpE), referred to the ability of the plant to take up N from the

soil, and the Nitrogen Utilization Efficiency (NUtE), which

encompasses the ability of the plant to assimilate, transfer, and

utilize N to the harvestable part of the crop (Good et al., 2004; Xu

et al., 2012).

The NPF and NRT2 families differ in both their structure and

copy number across angiosperms. The NPF family harbors a

conserved structural arrangement consisting of twelve

transmembrane domains (TM) connected by short peptides and a

central hydrophilic loop of about 90 amino acids between the sixth

and the seventh TM domains (Wang et al., 2018b). They were

previously known as NRT1s (NO3
- transporters) and/or PTRs

(peptide transporters) depending on their first discovered

substrates. Based on a wide multi-species phylogenetic analysis,

Léran et al. (2014) proposed a unified nomenclature for the NO3
-

transporter/Peptide transporter family (NPF), defining eight

subfamilies (NPF1-8). The first NPF gene member isolated in
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plants and one of the most studied is the Arabidopsis thaliana

NPF6.3 (AtNPF6.3), previously known as CHL1/AtNRT1.1. It is

considered a dual-affinity NO3
- transporter contributing to root

NO3
- uptake at both low (LATS) and high (HATS) NO3

-

availability, acting also as an NO3
- sensor or ‘transceptor’ (Liu

et al., 1999; Gojon et al., 2011; Xuan et al., 2017). AtNPF6.3 can also

act as a chlorate transporter (per the old name CHL1 was awarded)

when NO3
- is less available and as an auxin transporter, a process

negatively regulated by NO3
- (Mounier et al., 2014; Maghiaoui et al.,

2020; Meier et al., 2020). The interaction between auxin and NO3
- is

associated to NO3
- sensing and it is involved in the regulation of N-

dependent root development (Bouguyon et al., 2015). NPF proteins

can transport a high number of different substrates other than NO3
-,

including phytohormones such as ABA and auxin, but also

peptides, potassium, and secondary metabolites (Chiba et al.,

2015; Tal et al., 2016; Kanstrup and Nour-Eldin, 2022). Although

the NPF family is often involved in the LATS, many members also

show high affinity transport in many species such as ZmNPF6.6 and

MtNPF6.8 in maize and Medicago truncatula, respectively (Bagchi

et al., 2012; Wen et al., 2017).

Land plant genomes typically contain a higher number of NPF/

PTR genes compared to bacteria, animals, and algae, with 20

members in the moss Physcomitrella patens, 52 members in

Arabidopsis thaliana and even more members in polyploid

species such as Brassica napus (199) and Triticum aestivum (331)

(Bajgain et al., 2018; Longo et al., 2018). In Brassica napus,

allopolyploidy greatly contributed to the gene family expansion of

the NPF family (Wen et al., 2020). A recent characterization of the

NPF and NRT2 families in bread wheat also showed an expansion

of these families (331 and 46, respectively) mainly due to tandem

and segmental duplication (Bajgain et al., 2018; Li et al., 2021). The

retention of multiple gene copies, after duplication, can be

associated with the acquisition of new beneficial functions or the

reduction of their full capacity, compared to that of the single-copy

ancestral gene (Lynch and Conery, 2000). The high number of NPF

genes in allopolyploid species suggested that the transporters

encoded by these genes may have evolved for new unknown roles

in plants (Corratg’e-Faillie and Lacombe, 2017; Longo et al., 2018).

Thus, exploration for novel functions within these large gene

families in polyploid crops is necessary. The NRT2 genes are

primarily involved in HATS, and mainly active in roots, although

some members are expressed in other tissues such as seeds or leaves

to allow NO3
- remobilization and storage (Chopin et al., 2007;

Miller et al., 2007). Seven members were characterized in

Arabidopsis thaliana, while five were detected in Oryza sativa.

Similarly to the NPF family, a higher number of NRT2 members

were discovered in allopolyploid species such as Triticum aestivum

and Brassica napus with 47 and 17 genes, respectively (Tong et al.,

2020; Li et al., 2021). This family was deeply studied in Arabidopsis

thaliana, AtNRT2.1 resulted the most studied member due to its

main role in high affinity NO3
- uptake in roots (Li et al., 2007). The

NRT2 genes are usually identified based on the sequence homology

to known NO3
- transporters, then their functions are predicted

through gene expression analysis and heterologous expression in

Xenopus oocytes. Nonetheless, several studies on monocot species

such as wheat and rice have highlighted high sequence divergence
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with dicot species, making it hard to directly infer gene functions

relying only on sequence identity (Plett et al., 2010; Pellizzaro et al.,

2015; Wang et al., 2019a). Therefore, the utilization of multi-tissue

and -condition expression data become mandatory to fully

characterize these genes in monocot crops, mainly in

the allopolyploids.

The hexaploid bread wheat (Triticum aestivum L.; genome

AABBDD) is among the most important global crop species, shaped

heavily by polyploidy and hybridization between the tetraploid

durum wheat (Triticum turgidum L.; genome AABB) and

Aegilops tauschii (genome DD). The NPF and NRT2 gene

families have been investigated mainly in bread wheat, exploring

their expression levels under different abiotic stresses, such as

drought, salt and N deficiency, in response to Arbuscular

Mycorrhizal Fungi (AMF), and in several tissues and

development stages (Buchner and Hawkesford, 2014; Duan et al.,

2016; Tian et al., 2017; Bajgain et al., 2018). Recently, the increase of

grain NO3
- uptake through the TaNRT2.5 overexpression, localized

in the grain cell tonoplast, was reported (Li et al., 2020). Many other

studies highlighted improved crop yield, shoot biomass, and N

uptake when NPF or NRT2 genes were overexpressed (Hu et al.,

2015; Fan et al., 2016; Sol et al., 2019; Wang et al., 2021).

Furthermore, the nucleotide variability in protein-coding regions

of the NPF genes seems to affect NUE related traits such as yield and

shoot N content (Li et al., 2021). These findings suggested that

further efforts in the detection and functional characterization of

both gene families may greatly aid the selection of N-use efficient

wheat cultivars. The high wheat genetic variability, the high number

of duplicated genes, and its economic relevance make this plant a

key species for the screening of potentially beneficial genes.

Compared to bread wheat, much less is known about the

phylogenetic diversity, evolution, and expression of the NPF and

NRT2 gene families in tetraploid durum wheat, which is an

important crop in the Mediterranean basin (Hawkesford, 2017;

Hawkesford and Griffiths, 2019; Lupini et al., 2021). The

detection of key genes involved in NO3
- transport is a primary

goal for NUE improvement, and a gene family comparison

between durum and bread wheat can elucidate the impact of

polyploidy on NUE components. Hence, it is crucial to

undertake a thorough characterization and annotation of

nitrate transporters in the durum wheat genome. In this study,

we have identified and analyzed both NPF and NRT2 gene

families, exploring their phylogenetic relationships, gene and

protein structures, regulatory elements, and expression profiles

within the durum wheat genome.
2 Materials and methods

2.1 NPF and NRT2 identification in durum
wheat genome

To identify NPF and NRT2 genes in the durum wheat

genome, the protein sequences of NPF and NRT2 genes of

Arabidopsis thaliana, barley (Hordeum vulgare), maize (Zea
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mays), rice (Oryza sativa), and bread wheat (Triticum

aestivum) were downloaded from Ensembl plants (http://

plants.ensembl.org/). These sequences were used for a BLASTP

search against the entire durum wheat proteome, also

downloaded from Ensembl plants, using an e-value threshold

of 1e-10 and a minimum sequence identity of 50%. The durum

wheat BLASTP best hits were then used as input for HMMER3

(Mistry et al., 2013), using the hmmscan command and the

‘Proton-dependent o l i gopept ide t ranspor te r f ami ly ’

(IPR000109) HMM profile with an e-value cut-off of 1e-05 for

the NPF genes. Furthermore, Pfam (Bateman et al., 2004) and

NCBI protein sequence analysis tools were used to check that all

the NPF protein sequences belonged to the PTR2 family

(PF00854) and that all the NRT2 protein sequences contained

the NCBI conserved domain PLN00028. The final set of genes

was then used to identify homologous groups. These were

defined through a reciprocal BLASTN using nucleotide

sequence identity >95%.
2.2 Motif discovery, TF binding site, CREs
prediction, and gene structure analysis

Gene structure of both TdNPF and TdNRT2 family

members using Webscipio2 was analyzed (Hatje et al., 2011).

The Multiple Em for Motif Elicitation (MEME) suite (Bailey

et al., 2015) was used to identify conserved motifs with the

following parameters: classic mode algorithm, 6 and 100 for

minimum and maximum motif width, and a maximum number

of 30 motifs per sequence. Conserved motifs were further

analyzed through the NCBI protein domain search tool

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and

the Conserved Domain Database (CDD), using an e-value

threshold of 0.01. Transmembrane helices and protein

localization prediction was performed using the TMHMM2.0

tool (Krogh et al., 2001) and both WoLF PSORT (Horton et al.,

2007) and PProwler1.2 (Hawkins and Bodén, 2006), respectively.

Chromosome location was extracted from the durum wheat

genome annotation v1.0 and then displayed using the MG2C

online tool (Chao et al. , 2021). Significantly enriched

chromosomal locations for both NPF and NRT2 were detected

with ShinyGO (Ge et al., 2020) using a sliding window size of

6Mb and an FDR cutoff of 1e-05. The same tool was used to

perform a GO enrichment analysis of both TdNPF and

TdNRT2 genes.

Transcription Factor (TF) binding site prediction was

performed on the promoter region using the binding site

prediction tool of the Plant Transcription Factor Database (http://

plantregmap.gao-lab.org/binding_site_prediction.php) with a p-

value threshold of 1e-06 and the Triticum aestivum orthologs.

The UniProtKB database (www.uniprot.org) was then used to

extract protein domain information and annotation of the

predicted TFs. Cis-regulatory Elements (CREs) in upstream

promoter regions (− 2000 bp) of TdNPFs and TdNRT2s were

predicted using PlantCARE (Lescot et al., 2002).
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2.3 Collinearity and gene
duplications analysis

The intraspecific collinearity was analyzed using both

TdNPF and TdNRT2 gene sets. A reciprocal BLASTP was

performed using an e-value threshold of 1e-10. MCScanX was

used to evaluate collinearity and duplication events using an e-

value threshold of 1e-05 and a match score of 50. MCScanX was

also used to display the collinear blocks among five Poaceae

species selected on the knowledge about the genesis of both

durum and bread wheat (Kimber and Feldman, 1987; Matsuoka,

2011) (Aegilops speltoides Tausch: closer to B genome, Triticum

urartu: A genome, Triticum durum: A and B genomes, Triticum

aestivum: A, B and D genomes, and Aegilops tauschii: D

genome). Collinear blocks between species were used for the

evaluation of non-synonymous (Ka) and synonymous (Ks)

values using TBtools (Chen et al., 2020). Tandem and collinear

gene pairs inside the durum wheat genome were further used to

evaluate both Ka and Ks using TBtools.
2.4 Phylogenetic analyses

Phylogenetic trees including Arabidopsis thaliana and Oryza

sativa NPF and NRT2 genes and those here identified on durum

wheat were constructed. The final dataset included 357 and 31

protein sequences for NPF and NRT2 families, respectively.

Alignment was performed with the online tool CLUSTALW

(Sievers et al., 2011) with default parameters. The unrooted

phylogenetic tree was generated through the IQ-TREE software

v. 2.2 (Nguyen et al., 2015) with the maximum likelihood

method, 1000 bootstrap replicates, and the JTT + G4 model

for both NPF and NRT2 trees, selected by the IQ-TREE best-fit

model selection. Gene trees were visualized and analyzed

through FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/

figtree/).
2.5 Expression profiles of TdNPF and
TdNRT2 genes and co-expression analysis

A total of 195 wheat RNA-Seq datasets were downloaded

from the Sequence Read Archive (SRA). These included 13

durum cultivars, 9 tissues, and 25 phenological stages (Zadoks

scale: from Z12 to Z90) (Table S1). Raw reads were trimmed with

the Trimmomatic tool (Bolger et al., 2014) using the options:

LEADING : 3 TRAIL ING : 3 SL ID INGWINDOW:4 : 2 0

MINLEN:50. Clean reads were then quantified using Salmon

(Patro et al., 2017) with default parameters and normalized

through DESeq2 (Love et al., 2014). Reads were further filtered

using the SVA package (Leek et al., 2012) to remove any batch

effect or unwanted sources of variation using 10 surrogate

variables. A co-expression network analysis was carried out by

using the Weighted Gene Co-Expression Analysis (WGCNA)

method (Langfelder and Horvath, 2008) with the following
Frontiers in Plant Science 04
parameters: soft threshold=12, minimum module size=100,

mergeCutHeight=0.3. Co-expression networks for each module

were analyzed using Cytoscape (Shannon, 2003) and the hub

genes for each network were selected using the CytoHubba

pluging (Chin et al. , 2014). Furthermore, module-trait

(conditions) relationship was evaluated as correlation between

the eigengenes of each module and a binary matrix representing

each condition. Heatmaps were generated using the Pheatmap R

package (Kolde and Kolde, 2018) using log-transformed

normalized counts.
2.6 Data retrieval

The sequences and annotation files of all genomes were

downloaded from the Ensembl plants database (http://

plants.ensembl.org) (Bolser et al., 2016). The Aegilops speltoides

Tausch. genome was obtained from the e!DAL - Plant Genomics &

Phenomics Research Data Repository (https://doi.org/10.5447/ipk/

2022/0) (Avni et al., 2022). The RNA-Seq datasets used for the

expression profile and the co-expression analyses were obtained

from the SRA archive (Leinonen et al., 2010) (Table S1).
3 Results

3.1 Durum wheat NPF and NRT2
genes identification

To identify NRT2 and NPF genes in durum wheat, a BLASTP

search against all predicted protein sequences of the genome using

the full-length amino acid sequences from five different plant

species was carried out. The output of the BLAST search was

further scanned using the HMMER3 tool with the ‘Proton-

dependent oligopeptide transporter family’ profile (IPR000109)

and the PLN00028 NCBI domain, and finally 211 and 20 NPF

and NRT2 genes, respectively in the durum wheat genome were

identified. NPFs and NRT2s showed 103 and 6 homologous groups,

respectively, between A and B genomes.

The TdNPFs showed high variability in both gene length and

amino acids content. The nucleotide sequences of the 211 genes

showed a 3400 bp average gene length and encoded proteins

ranging from 71 to 943 amino acids, with an average length of

583 amino acids, and molecular weights ranging from 7 to 105

kDa.Eighty percent of the TdNPF proteins showed 12 predicted

transmembrane domains, while almost 95% of these proteins were

localized in the plasma membrane (Figure S1). Like in durum

wheat, NRT2 is a smaller gene family with a lower variability

compared to the NPF family. The twenty TdNRT2 members

showed a 1600 bp average gene length and encoded proteins

ranging from 113 to 573 amino acids, with a mean length of 509

amino acids. Their molecular weights ranged from 12 to 62 kDa.

Seventy-five percent of the TdNRT2 proteins showed 12 predicted

transmembrane domains, while 90% were predicted to be localized

in the plasma membrane (Table S2).
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3.2 TdNPFs and TdNRT2s
phylogenetic analysis

To explore the molecular evolution and the TdNPF gene

family organization, we performed a phylogenetic analysis

including protein sequences from Arabidopsis thaliana (53

AtNPFs), Oryza sativa (93 OsNPFs), and the 211 TdNPFs here

identified in Triticum durum for a total of 357 NPF sequences.

The Multiple Sequence Alignment (MSA) performed by

CLUSTALW was used as input to IQ-TREE for both the model

selection and the maximum-likelihood tree estimation. The

phylogenetic tree showed a distinct clustering among the eight

known NPF sub-families (Figure 1A). All the key nodes between

sub-families are well supported with bootstrap values > 98 and

all the genes from Arabidopsis and rice belonging to the same

sub-family clustered together (Figure 1B). These results ensured

the accuracy and reliability of the tree construction, suggesting a

higher sequence variability between sub-families compared to

the interspecific variability of each sub-family. The TdNPFs were

assigned to the eight sub-families, namely from TdNPF1 to

TdNPF8, following the tree topology and the previous

classifications from other species. The sub-families TdNPF5

and TdNPF8 included the highest numbers of members (63

and 52, respectively), while TdNPF1 and TdNPF3 were the

smaller sub-families with four and 8 genes, respectively (Table

S2). TdNPF4, TdNPF5 and TdNPF6 were the only monophyletic

groups, while the sub-families TdNPF1, TdNPF2, TdNPF3 and

TdNPF7, TdNPF8 formed two distinct clusters with TdNPF1

clustering inside the TdNPF2 branch.
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The NRT2 gene family was analyzed by using a similar

approach; the maximum-likelihood phylogenetic tree was

constructed based on the 31 NRT2 protein sequences, of which 7,

4 and 20 from Arabidopsis, rice and durum wheat, respectively. The

phylogenetic tree revealed distinct evolutionary relationships

among the NRT2 proteins of durum wheat and the other two

species. Specifically, almost all the durum wheat NRT2 proteins

formed a separate cluster, with only one protein (TdNRT2.2) closely

grouped with the NRT2 proteins of Oryza sativa (OsNRT2.1 and

2.2) (Figure 1B). More interestingly, two other proteins

(TdNRT2.19 and TdNRT2.20) showed a more ancient

evolutionary divergence compared to all other TdNRT2 proteins,

forming adistinct basal cluster, while all the AtNRT2 proteins

clustered in three sub-clusters.
3.3 Chromosome location

The TdNPFs were evenly distributed along chromosomes in the A

and B genomes (Figure S2A). The 2B chromosomal region (R2B)

showed the highest gene density while the central chromosomal regions

showed a lower gene density on average. Interestingly, four NPFs-

enriched regions in chromosomes 2B, 3A, 3B, and 4B, also located in the

R2B, were found, ranging from 5 to 7 genes per window (6Mb).

By contrast, the TdNRT2s were unevenly distributed along the

genome, with chromosome 6 in both genomes (A and B)

significantly enriched with 9 and 8 genes in 6B and 6A

chromosomes, respectively (Figure S2B). Interestingly, all the

TdNRT2s on chromosome 6 were located in the R1 in a
BA

FIGURE 1

Phylogenetic analysis of the two gene families from Arabidopsis thaliana, Oryza sativa and Triticum durum. (A) Maximum likelihood tree of the NPFs
full length protein sequences. The eight NPF sub-families are highlighted using colors: 1:Turquoise – 2:Orange – 3:Pink – 4:Green – 5:Blue – 6:
Violet – 7:Cyan – 8:Red. (B) Maximum likelihood tree of the NRT2s full length protein sequences. The three species were highlighted using colors as
indicated in the figure legend. Species specific branches were further highlighted using the same colors. Both trees were constructed using
iqtree2.2, visualized, and modified using Figtree. Bootstrap values (1000 replicates) are shown for each node.
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significantly enriched window in both genomes (A and B) while

only two gene members were found in the R2B (Figure S2A).
3.4 Gene structure and conserved
motifs prediction

The gene structure of both gene families showed a significant

difference in the number of exons and transcript isoforms (Figure

S3). Most of the 211 TdNPFs exhibited more than two exons, with

85% of genes ranging from 3 to 6. The distribution of the transcript

isoforms number was significantly different compared to the

genome, with an average number of 3 transcript isoforms per

gene. The TdNRT2 gene family showed a lower number of exons

(9 out of 20 genes with one exon) and a lower number of transcripts

per gene with more than 50% of genes showing only one

transcript isoform.

To highlight conserved motifs and analyze their distribution

among sub-families, protein motif analysis was carried out using the

MEME tool. All the TdNPF proteins showed highly conserved

motifs patterns (Figure S4). Despite that, the spatial organization

and distance between conserved motifs were highly variable. The

intra-motif variability was very high, with only few positions

conserved in almost all the protein sequences (Figure S5).

Functional characterization of these motifs was performed using

the NCBI protein domain search using the most represented

sequence for each of the 25 conserved motifs. 14 motifs were

assigned to the Major Facilitator Superfamily (MFS) while the

remaining (11) were not assigned to any known protein domain.

The motif#1 was identified in all the 211 NPF proteins, while the less

conserved motif#19 and motif#21 were found only in 98 and 99

proteins, respectively. Furthermore, motif#18 (FILGNEFFER

LAYYG), shared by 147 TdNPF proteins, contains the highly

conserved ExxER/K peptide, suggesting its involvement in proton

binding and transport. Among these sequences, both glutamic acids

(E) were conserved in 80% of sequences, while the arginine residue

(R) is less conserved. Rare motif variants such as ExxDR and ExxEE

were also detected.

15 conserved motifs were identified in the TdNRT2 gene

family (Figure S6). Nine out of 15 were assigned to the NO3
-

transmembrane transporter superfamily (PLN00028) .

Moreover, the distribution and position of the motifs created

regular patterns and showed lower sequence variability

compared to TdNPF family. Almost all the NRT2 genes

shared many of the conserved motifs, except four highly

variable genes (TRITD7Av1G231010, TRITD7Bv1G180680,

TRITD2Av1G017380, TRITD6Bv1G008700).
3.5 Transcription factor binding sites, and
CREs prediction

Transcription Factors (TFs) are essential for modulating gene

transcription levels and many TFs directly regulate the expression

of NPF and NRT2 genes (Marchive et al., 2013; Liu et al., 2017). We

predicted the TF binding sites in promoter regions (3,000 bp
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upstream of transcription start site) of TdNPFs and TdNRT2

using the Binding Site Prediction tool of the PlantTFDB, and

more than four thousand (4,072) binding sites for 163 TFs were

identified in the promoter regions of 197 TdNPFs. The most

abundant families of TFs were MYB, AP2, and NAC (Figure S7).

One hundred twenty (120) binding sites for 53 TFs were detected in

the promoter region of 19 TdNRT2s, of which the AP2 family

resulted the most abundant. Interestingly, almost 96% (51 out of 53)

of the TFs families were shared between NPF and NRT2 genes

promoter region.

Cis-regulatory elements (CRE) are non-coding DNA regions

also involved in the transcription regulation of neighboring

genes (Bai et al., 2013). Here, we predicted CREs in the

promoter regions of both TdNPFs and TdNRT2s using

PlantCARE. Five thousand one hundred and twenty-one

(5,121) CREs of 27 different types in the 211 promoter regions

of TdNPF were found (Figure S7). The most abundant sites were

the ABA responsive element (ABRE), DRE and MYB binding

sites, activation sequence-1 (as-1), and the stress response

element STRE, accounting for 70% of all the CREs. Other less

abundant CREs were involved in light-response (G-box), biotic

and abiotic stress response (MYC), and the common TATA-box

and CAAT-box. One thousand five hundred and eighteen

(1,518) CREs were predicted in the promoter regions of

TdNRT2s. They were highly enriched in MYB and MYC

binding sites, with many genes showing more than 5 sites in

their upstream sequence accounting for almost 40% of CREs, in

agreement with the previously described TF binding

site prediction.
3.6 Expression profiles and
co-expression analysis

The expression profiles of 211 TdNPF and 20 TdNRT2 genes

were detected using publicly available RNA-seq datasets from the

Sequence Reads Archive (SRA) covering 9 tissues at different

growth stages from 13 different cultivars (Figure 2A). The

hierarchical clustering based on TdNPF genes showed a clear

tissue-specific signal, with almost all the samples from the same

tissue clustering together (Figure 2B). The 211 NPF genes were

further divided roughly into 9 clusters based on their expression

patterns. These clusters ranged from 7 to 79 genes, with an average

of 18 genes. Almost all the clusters showed the highest expression in

roots, stem, and leaf, with five clusters being the most expressed

(Cluster1-5). Interestingly, the cluster with the higher number of

genes (Cluster 6) showed very constant low gene expression levels

in almost all samples, except two small groups of genes induced in

anthers, endosperm and roots.

TdNRT2 showed an opposite trend compared to TdNPF,

with limited correlation between gene expression and tissue,

except in the roots and seedlings (Figure S8). As might be

expected, the higher gene expression was detected in roots, with

7 NRT2 members, highly similar to AtNRT2.1 and AtNRT2.4,

that showed higher expression (TdNRT2.3,.4,.5,.6,.7,.8,.9)

(Figure S8).
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The same dataset was used to evaluate the co-expression of both

NRT2 and NPF gene families adopting the Weighted Gene Co-

expression Network Analysis (WGCNA) method. We detected

fourteen co-expression modules which showed highly variable

expression profiles. 87.2% of durum wheat genes were assigned to

co-expression modules, with four modules, colored salmon, red,

blue and brown, showing a significantly higher number of genes

ranging from roughly thirteen thousand to eight thousand. Module-

tissue relationships were evaluated to highlight each module

expression profile (Figure 3A). TdNRT2s were assigned to

modules brown (8), green (8), red (2) and turquoise (2) which

were highly induced in roots, anthers, endosperm-apex and leaves-

flag leaves, respectively (Table S7). These expression profiles closely

correlated to the phylogenetic tree distribution of the NRT2 genes,

with almost all TdNRT2 in the same co-expression module

clustering together (Figure 3B). Furthermore, all six NAR2/NRT3

genes in the durum wheat genome were assigned to the brown

module, highlighting their combined action mainly in roots.

TdNPFs showed a wider range of expression patterns, in

agreement with the hierarchical clustering. They were assigned

to ten of the fourteen modules detected. The majority of NPF

genes belonged to the brown (52) and salmon (48) modules which

were induced in root and flag leaf, respectively (Figure 3C).

Interestingly 35 TdNPFs were assigned to three modules, red

(23), yellow (9) and pink (3), highly upregulated in the caryopsis,

especially in the endosperm, with three slightly different

expression profiles (Figure S9). Furthermore, the network

analysis allowed us to detect the hub-genes in each module.
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Among these we detected three NPF genes, TdNPF6.12,

TdNPF6.8 and TdNPF5.61, belonging to brown, red and salmon

modules, respectively. We further used co-expression modules to

detect expression patterns in homologous genes among the two

genomes (A and B). The half (50.4%) of the TdNPFs homologous

belonged to different co-expression modules while only two NRT2

genes did not cluster in the same module.
3.7 NPF gene sequence divergence
and collinearity in five species of the
Triticeae tribe

Evolutionary constraints of durum wheat NPF and NRT2 genes

was evaluated through pairwise comparisons of Ka/Ks values from

five species belonging to the Triticeae tribe (Figure 4). In detail, the

durum wheat TdNPFs were compared to their orthologs in T.

urartu, Ae. speltoides, Ae. tauschii and T. aestivum genomes.

Furthermore, the Ka/Ks values of each duplicated TdNPF gene

pairs were also evaluated. Ka/Ks was evaluated for 170, 91, 83, 74

orthologs in the durum/aestivum, durum/speltoides, durum/urartu

and aestivum/tauschii comparisons, respectively. Interestingly, both

the durum/speltoides and the aestivum/tauschii comparison

showed very low Ka/Ks values with an average of 0.19 and 0.23,

respectively, by contrast, the highest values were detected in the

durum/aestivum comparison with an average of 0.49. Five genes

(TdNPF3.5, TdNPF4.7, TdNPF5.42, TdNPF7.12, TdNPF8.38)

exhibited Ka/Ks values greater than 1.5, indicating a substantial
BA

FIGURE 2

RNA-Seq of 195 samples obtained from the Short Reads Archive (SRA). (A) Principal Component Analysis performed with DESeq2 after the SVA
correction. We highlighted SRA experiments (Top) and tissues (bottom). (B) Expression profiles of TdNPF genes in 9 tissues. Hierarchical clustering
was performed both on rows and columns. Rows were roughly divided into 9 groups according to the similar expression levels. Pie charts were used
to highlight the abundance of each NPF sub-family in each cluster. Tissues were highlighted as colored bars at the top of the heatmap.
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positive selection acting on these genes. On the other hand, ten

genes displayed a Ka/Ks value close to 1, suggesting a relatively

neutral selection. Among the five genes with Ka/Ks > 1.5, three were

associated with the brown co-expression module, indicating their

upregulation specifically in roots. Based on these results, the

significant difference between durum/aestivum and the other

three comparisons was confirmed by Tukey’s test (Figure S10).

Ka/Ks was evaluated also on durum wheat NPF and NRT2

tandem duplicated genes and NPF collinear genes between the two

sub-genomes. All the gene pairs comparisons showed Ka/Ks values

lower than 1, rarely higher than 0.5, suggesting strong purifying

selection acting on duplicated genes, regardless the duplication

event type. In particular, tandem duplications showed a slightly

higher Ka/Ks among the NPF genes with an average of 0.31

compared to collinear duplicated NPF genes between sub-genome

A and B (average 0.26). Finally, NRT2 showed a drastically lower

Ka/Ks value ranging from 0.1 to 0.01.

Furthermore, using collinearity analysis through MCScanX we

were able to characterize the relationships and the duplication
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events of both gene families inside the durum wheat genome and

between these five species (Figure 5). In the durum wheat genome,

almost 45% of TdNPFs were included in collinear pairs detected

between A and B genomes. In detail, 77 segmental and 94 tandem

duplications, as well as fewer dispersed (30) and proximal

duplication (10) were detected; 42% of TdNPFs formed tandem

blocks, with 11 blocks including three or more genes.

TdNRT2s are mainly located in two enriched regions on

chromosomes 6A and 6B, as previously highlighted. These

formed 5 tandem blocks, 3 and 2 located on 6B and 6A

chromosomes, respectively. Furthermore, 14 tandem and no

segmental duplications were detected.

Interspecific analysis of NPF genes revealed 23 and 25 collinear

blocks in durum-speltoides and durum-urartu comparisons,

respectively, 48 and 75 pairs in aestivum-aegilops and durum-

aestivum comparisons, respectively. Almost all the blocks were

detected between homologous chromosomes among the five

genomes, significant differences in the number of blocks between

A, B or D sub-genomes were not detected.
B

CA

FIGURE 3

Weighted Gene Co-expression Network Analysis (WGCNA). (A) Heatmap of the Correlation coefficients between Module Eigengenes (WGCNA) and
tissues. Pearson Correlation coefficient was evaluated using a binary matrix representing each tissue (1) against all the others (0). (B) Phylogenetic
tree of TdNRT2 genes. Genes within each co-expression module form distinct clusters on the tree, visually distinguished by the use of module-
specific colors (turquoise, red, brown and green). (C) Expression profile of the three most abundant co-expression modules visualized using the
Boxplots of Module Eigengenes. Each tissue was highlighted in facets, while the developmental stage (Zadok) was highlighted on the X-axis.
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4 Discussion

In plants, both the NPF and the NRT2 gene families are

involved in nitrate/nitrite uptake, translocation and remobilization.

NPFs are also involved in the transport of many other substrates

such as hormones, secondary metabolites, peptides, chloride and

potassium. A deeper characterization of these gene families is

crucial to understand plant nitrate and metabolite transport.

In the present study, 211 TdNPFs and 20 TdNRT2s were

identified in the Triticum turgidum L. subsp. durum (Desf.) Husn.

genome. These numbers were comparable to other allopolyploid

species such as Brassica napus (199 NPFs, 17 NRT2s), Saccharum

spontaneum (178, 20), and Triticum aestivum (331, 46) and

significantly higher than many diploid monocots and dicots such
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as Arabidopsis thaliana (53 and 7), Oryza sativa (93, 4) and Zea

mays (79, 1). The NPF gene family expansion in plants seems to

have arisen from neo- and sub-functionalization, as suggested by

many reports (Lynch and Conery, 2000; O’Brien et al., 2016;

Jørgensen et al., 2017; Wang et al., 2019a). In wheat, the large

number of members in both gene families could be involved in

highly differentiated responses to the availability of various

substrates. Indeed, the high number of TdNPF and TdNRT2

genes, deriving from recent polyploidization and duplication

events, may provide a higher modularity in terms of substrate

affinity, condition or tissue specific gene expression induction and

new protein-protein interactions. Similar effects were reported in

many allopolyploid species such as rice, soybean, cotton and, in the

MIKC-type MADS-box gene group, in bread wheat (Flagel et al.,
FIGURE 5

Collinearity analysis of NPF genes between five species from the Trititceae tribe. Grey lines indicate collinear blocks between genomes, while the
colored lines indicate NPF genes detected inside collinear blocks. Sub-genomes were highlighted using the A, B or D letters.
FIGURE 4

Boxplots of the Ka/Ks values for the orthologous NPF genes between five poaceae species: Durum wheat (Triticum turgidum subsp. durum), Bread
wheat (Triticum aestivum), Aegilops speltoides Tausch, Triticum urartu and Aegilops tauschii. Two scatter plots (left: TdNPF on the A sub-genome;
right: TdNPF on the B sub-genome) highlights the single Ka/Ks for each gene pairs.
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2008; Schilling et al., 2020; Lee and Szymanski, 2021). In Triticum

aestivum, the diversification of both NPF and NRT2 gene families

was likely due to drift, leading to significant differences in the N-use

efficiency of subpopulations clustered based on Single Nucleotide

Polymorphisms (SNPs) within the NPF and NRT2 genes (Li

et al., 2021).

Our phylogenetic analysis highlighted a high divergence among

NRT2 genes from durum wheat, rice and Arabidopsis with genes

from each species clustering together in distinguished groups. The

best hit (BLASTP) of many TdNRT2s against the Arabidopsis NRT2

protein sequences is often AtNRT2.1, making it hard to functionally

characterize these transporters solely based on their sequence

homology, thus the association of previous functional annotations

from model species to the newly identified genes in durum wheat

become challenging. Here, we focused on sequence, gene expression

and protein domains characterization, but further studies will be

needed to fully describe TdNRT2s at a functional level.

The phylogenetic analysis on the NPF genes yielded more

informative results, with all the orthologous genes belonging to the

same sub-family clustering together, allowing us a much more reliable

annotation of the novel TdNPFs. These results support the hypothesis

of NPF family divergence before the separation of monocots and

dicots, as suggested by Wang et al. (2019b). Furthermore, the NPF1

branch clustered inside the NPF2 branch, breaking it in two sub-

classes. This feature was observed in other species such as Brassica

napus and often led to the definition of more than eight sub-families,

with NPF2 split into NPF2-1 and NPF2-2(Wen et al., 2020).

Interestingly, this split was not detected in Triticum aestivum (Li

et al., 2021; Kumar et al., 2022) potentially due to slightly different

plant species utilized or to slightly different clustering method.

The chromosome location of both transporter families showed a

non-random distribution inside the genome. Interestingly, TdNRT2s

are highly concentrated on chromosomes 6 from both genomes (A and

B), probably due to the multiple tandem duplication events, as shown

by the results of collinearity analysis. In Arabidopsis, the AtNRT2.1 and

AtNRT2.2 genes are adjacent, and end to end on chromosome 1, and

this apparent duplication has been seen for orthologues in other

species. AtNRT2.5 is also located on chromosome 1. Three other

NRT2s are located on chromosome 5, with only AtNR2.6 located on

chromosome 3. A similar enrichment on chromosome 6 of all three

genomes (A, B and D) was detected in bread wheat, also deriving from

tandem duplication that was suggested to have arisen from unequal

crossing-over events (Li et al., 2021). Although similar, the number of

NRT2 genes in these genomic regions is higher in bread wheat,

suggesting that some of these duplication events should have

occurred after or during the hybridization of durum wheat with

Aegilops tauschii (genome D) as supposed by the International

Wheat Genome Sequencing Consortium (IWGSC) (2014). Further

studies on the intraspecific variability of these gene families among the

main wheat species could help to deeply understand how their

expansions occurred and what type of mechanisms underlie their

preservation after duplication.

In Arabidopsis, several putative NO3
− response cis-regulatory

elements (CREs) have been detected in many promoters of N-

related genes, while limited information is available for other plant

species (Konishi and Yanagisawa, 2010; Wang et al., 2010; Rolly and
Frontiers in Plant Science 10
Yun, 2021). Here, a high number of CREs related to ABA signaling

and binding of Drought Responsive Element (DRE) and MYB TFs

were detected in the TdNPFs promoter regions. Interestingly, the

TdNRT2s upstream region was also highly enriched with MYB

binding sites, as shown by both CREs and TF binding site

prediction. MYB TFs are often involved in abiotic and biotic

stress responses as well as in plant development, root and flower

development (Kaur et al., 2017), although their role in NO3
–related

regulation has also been reported (Todd et al., 2004; Wang et al.,

2018a; Zhang et al., 2021; Puccio et al., 2022). Interestingly, both

gene family promoters showed multiple putative MYB binding sites

for many genes. The presence of multiple binding sites for the same

TF on the promoter of one or more genes has been often associated

with a higher sensitivity to specific TFs (Howard and Davidson,

2004; Yáñez-Cuna et al., 2013; Brendolise et al., 2017).

The presence of many CREs and the partial overlap of their

functions between the two gene families suggested that a complex

regulatory network may be involved in modulating and fine-tuning

their expression, with some TFs putatively involved in the

regulation of members of both families. These could be involved

in the spatiotemporal- or tissue-specific activation of transporter

genes or may take part in the signaling cascade in response to the

fluctuations of specific substrates concentration into the soil.

Interestingly, the same analysis performed on the NPFs from

Brassica napus yielded similar results on NPF genes (Wen et al.,

2020), suggesting that the regulation of this gene family may involve

the same TFs classes and could be evolutionarily conserved.

Fourteen motifs were assigned to the Major Facilitator

Superfamily (MFS), the remaining 11 were not assigned to any

known protein domain, suggesting a highly specific function for

these peptides (putatively species-specific). Interestingly, 11 TdNPF7

proteins showed the monocot-specific variant ExxES, which is

associated to non-proton dependent nitrate uptake and specific to

the NPF7 sub-family (Longo et al., 2018). These genes were defined as

NPF7a in rice, involved in the low-affinity nitrate transport system

with some being tonoplast located (Hu et al., 2016).

Overall, NPFs showed a more variable gene structure and

sequence variability in their conserved motifs compared to

NRT2s. Interestingly, the NRT2s showed a simpler gene structure,

with only one or two exons and highly clustered genomic locations.

Both the gene structure and the chromosome locations of NRT2s

seemed highly conserved among many monocots such as

Brachypodium distachyon, Saccharum spontaneum, and bread

wheat, mainly distributed on two chromosomes and harboring

mainly one or two exons (Wang et al., 2019a; Li et al., 2021).

The high percentage of NPFs deriving from segmental and

tandem duplication (37% and 44%, respectively) found in durum

wheat supported the role of these genomic events in the expansion

of NPF genes already reported in bread wheat (Li et al., 2021).

Furthermore, the collinear analysis between durum and bread

wheat and the putative A, B and D genomes was not able to

detect a significantly higher number of collinear blocks between

each putative sub-genome donor and the respective sub-genomes in

durum or bread wheat. This observation does not directly support

the idea that the expansion of these families derives from ancient

duplication events in diploid wheat species, which should have
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occurred before hybridization into allopolyploid species (Salse et al.,

2008). Instead, our results indirectly support the idea that the

substantial increase in gene members in both these families is

mainly due to tandem and segmental duplications in the

tetraploid or hexaploid ancestral genomes, and not in the diploid

ancestral genomes. These duplications seemed favored by

polyploidization events, with bread wheat showing a higher

number of duplication events (Buchner and Hawkesford, 2014;

Kumar et al., 2022). Furthermore, tandem duplicated NPF genes in

durum wheat genomes showed strong purifying selection,

suggesting preserved function after duplication, in agreement with

many studies on other gene families (Hu et al., 2018; Hajiahmadi

et al., 2020; Zhu et al., 2020).

In allopolyploid species, gene expression patterns can be

significantly altered and this is one of the main sources of

phenotypic variation (Jackson and Chen, 2010). Here, by using

195 RNA-seq durum wheat datasets the expression profiles

highlighted different trends in both gene families. The TdNPFs

expression patterns resulted highly tissue-specific, with most

samples from specific tissue forming distinct clusters. By contrast,

NRT2 genes were predominantly expressed in roots and anthers,

being assigned to brown and green modules. The distinctiveness of

these two groups of TdNRT2s becomes even more evident, as we

observed that all the NAR2/NRT3 genes are present in the brown

module. This finding implies that most of the NRT2 genes in wheat

are either engaged in root uptake, facilitated by NAR2/NRT3, or

have undergone evolutionary adaptations for translocation or

accumulation in anthers/seeds. Additionally, four members of

TdNRT2 showed a more complex expression profile, with

TdNRT2.2 and TdNRT2.16 being highly induced in apex, grain

and endosperm during maturation, while TdNRT2.19 and

TdNRT2.20 being expressed in leaves and flag-leaves. The

detection of NRT2 genes responsible for seed N-accumulation,

such as TdNRT2.2 and TdNRT2.16, could be crucial to increase

yield and higher N content, as already demonstrated by their

overexpression in bread wheat (Li et al., 2020). TdNRT2.19 and

TdNRT2.20 were the most basal genes in our phylogenetic analysis

together with OsNRT2.4 and AtNRT2.7 in agreement with recent

reports (Li et al., 2021; Deng et al., 2023; Kumar et al., 2023).

Interestingly, both OsNRT2.4 and AtNRT2.7 are mainly expressed

in the tonoplast of maturing seeds and roots, which seems to suggest

differentiated functions of these basal genes in the vacuole (Chopin

et al., 2007; Wei et al., 2018) and contrasting with most other family

members located in the plasma membrane.

TdNRT2.2 was closely related to both OsNRT2.1 and OsNRT2.2,

which are usually expressed in root and germinating seeds (Feng

et al., 2011). Furthermore, both phylogenetic and co-expression

clustering yielded mostly the same results, with almost all the

TdNRT2s from the same phylogenetic branch belonging to the

same co-expression module. These results highlighted a close

relationship between nucleotide variation and gene expression in

this family, suggesting a shared selection mechanism between

coding and regulatory regions. Similar coordinated evolution has

been already observed in many gene families in mammals and

plants (Necsulea and Kaessmann, 2014; Wang et al., 2020;

Winkelmüller et al., 2021). Furthermore, duplication events may
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induce expression shifts favored by gene neo-functionalization as

suggested by Fukushima and Pollock (2020), and this hypothesis

could enhance the co-evolution of genome and transcriptome in the

NRT2 gene family in durum wheat.

The expression profiles of homologous genes showed significant

variation, mainly within the NPF family. Indeed, about half of the

NPF homologues exhibited dissimilar expression patterns.

Although these differences may have already been present in

ancestral genomes, the maintenance or development of highly

similar genes with different expression patterns may provide a

greater degree of modularity for regulation.
5 Conclusions

Our approach led to a comprehensive characterization of the

NPF and NRT2 gene families in the durum wheat genome. Manual

annotation of these transporters is crucial for understanding NO3
-

and N dynamics and their impact on NUE in durum wheat. This

study identified 211 TdNPF and 20 TdNRT2 genes for the first time,

providing detailed insights into their protein sequences and

conserved domains and on their regulatory elements. By

extensively analyzing nearly all publicly available RNA-seq

datasets, we achieved the most comprehensive characterization of

both gene expression profiles and co-expression relationships. This

investigation confirmed that a considerable number of these genes

underwent neo- or sub-functionalization following small-scale

duplication events. These findings indicate that the expansion of

these gene families in wheat holds promising potential as a valuable

resource for identifying NUE-related genes and as potential

candidates for molecular markers and the development of

transgenic plants. By understanding the key players involved in

durum wheat production and incorporating these findings into

future research, we can take significant steps towards more eco-

friendly and sustainable durum wheat fertilization management,

addressing a critical challenge in modern agriculture.
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Rogers, J., Doležel, J., Pozniak, C., Eversole, K., et al. (2014). A chromosome-based
draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345,
1251788. doi: 10.1126/science.1251788

Jackson, S., and Chen, Z. J. (2010). Genomic and expression plasticity of polyploidy.
Curr. Opin. Plant Biol. 13, 153–159. doi: 10.1016/j.pbi.2009.11.004

Javed, T., Singhal, R., Shabbir, R., Kumar, P., Shah, A. N., Jinger, D., et al. (2022).
Recent advances in agronomic and physio-molecular approaches for improving
nitrogen use efficiency in crop plants. Front. Plant Sci. 13, 877544. doi: 10.3389/
fpls.2022.877544

Jørgensen, M. E., Xu, D., Crocoll, C., Ernst, H. A., Ramıŕez, D., Motawia, M. S., et al.
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