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Abstract 
 

Nonlinear dynamic systems are widely used in modern scientific research to model 

engineering structures, population dynamics, and fuzzy system predictions. However, due to 

the influence of uncertainties, the transient response probability density, which encapsulates 

comprehensive statistical information on stochastic dynamic systems, has become a critical tool 

for deterministic analysis of system evolution. Efficient and accurate construction of transient 

probability density functions has therefore become a key topic in nonlinear science. Complex 

fractional moments, constructed using Mellin transform can equivalently describe the 

probabilistic characteristics of random variables and have shown significant value in accurately 

reconstructing transient probabilities in stochastic dynamic systems. This thesis establishes and 

refines the theoretical framework of complex fractional moment, develops efficient transient 

analysis methods for stochastic dynamic systems under various theoretical models, and 

explores the influence of inherent parameters on the probabilistic evolution of these systems. 

The research contributions are outlined as follows: 

1. To address the complexity and multi-degree-of-freedom characteristics of engineering 

structures, the theory of complex fractional moments is extended to Hamiltonian systems. 

Using the Hamiltonian stochastic averaging principle and considering generalized momentum 

and displacement, a stochastic differential equation for the Hamiltonian function is established, 

leading to a diffusion description. A polynomial approximation for implicit functions in the 

diffusion equation is proposed, and a system of non-homogeneous linear differential equations 

in the complex space for the related complex fractional moments is derived based on initial and 

boundary conditions. By employing the ordinary differential equation and the inverse Mellin 

transform in a probabilistic framework, the transient probability density function is 

reconstructed. Numerical experiments confirm the feasibility of the complex fractional 

moments theory in Hamiltonian systems, and validate the accuracy and efficiency of the 

proposed method. Additionally, the results are used to examine the influence of initial 

conditions and inherent parameters on the transient response probability density evolution. 

2. The complex fractional moment method is refined for stochastic dynamic systems with 

fractional order derivatives, leading to the development of related stochastic reliability theories. 

The transient response and first passage evolution of stochastic dynamic systems with fractional 

order derivatives are explored. Based on generalized harmonic transforms, the fractional-order 

differential operators are approximated, and the equivalent Fokker-Planck-Kolmogorov 

equation for stochastic dynamic systems with fractional order derivatives is derived using the 

amplitude stochastic averaging method. By applying the Mellin transform, a semi-analytical 

ordinary differential equation about the Fokker-Planck-Kolmogorov equation in the complex 

domain is derived based on boundary conditions. Additionally, the differential normalization 

equation for complex fractional moments is established, the equivalent descriptions and 
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algorithms for reliability functions and first passage times in terms of complex fractional 

moments are proposed. Simulation results confirm the feasibility of the related theories and 

analyze the effects of inherent and perturbation parameters on the probabilistic evolution, 

bifurcation behavior, reliability evolution, and first-passage evolution of the system. 

3. To address the singularity in the Mellin transform and the power-law structure of complex 

fractional moments, the concept of exponential-type of complex fractional moments using the 

Laplace transform, referred to as the shifted characteristic function, is proposed. A theoretical 

framework is developed, outlining the existence conditions for shifted characteristic functions, 

their equivalence with probabilistic characteristics, and a switching equation along the real axis. 

A novel double-sided Laplace transform is defined, extending the application of the shifted 

characteristic function to double-sides of the real domain. The shifted characteristic function 

framework is applied to solve the differential equation and Fokker-Planck-Kolmogorov 

equation. Numerical experiments validate the feasibility of the shifted characteristic function 

theory and examine the applicability of the power-law types and exponential types for the drift 

and diffusion term of stochastic dynamic systems. 

4. A framework for generalized complex fractional moment and a related multivariate 

probabilistic evolution analysis method are established. By introducing multidimensional 

Mellin transform in probabilistic setting, the concept of generalized complex fractional moment 

is proposed. Using the existence conditions of multidimensional Mellin transforms in convex 

domains, an equivalent mapping relationship between generalized complex fractional moments 

and multidimensional probability density functions in real and complex spaces is established. 

The equivalence between generalized complex fractional moments and multidimensional 

characteristic functions is discussed based on the Fourier transform and fractional calculus in 

multidimensional space. This equivalence is also extended in marginal probability density 

function. Furthermore, a data-driven method is proposed that combined with generalized 

complex fractional moments for analyzing the transient behavior of multivariate probability 

density functions. The proposed theory is validated in two-dimensional space. 

5. A novel maximum entropy principle method constrained by complex fractional moments 

is proposed, which can be applied for reconstructing of approximate probability distribution 

equations with a limited number of complex fractional moments. By incorporating complex 

fractional moments with complex parameters into the entropy functional, an extended entropy 

functional with unknown Lagrange multipliers is constructed, which is utilized for deriving the 

approximate probability density function. The new method is extended to obtaining transient 

probability density function in stochastic dynamic systems based on the complex fractional 

moment equations which is derived from Fokker-Planck-Kolmogorov equation. Numerical 

simulations verified the effectiveness of the approach. 

Key words ： Transient response, Complex fractional moments, Hamiltonian systems, 

Stochastic reliability, Transform, Multivariate, Maximum entropy principle. 
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Chapter 1. Introduction 

1.1. Historical background 

1.1.1 Historical background of stochastic dynamic system 

Dynamic systems, mathematical models that describe structural systems over time based 

on mechanics, are now widely applied across fields such as physics, biology, and sociology. 

Randomness, a fundamental property of the natural world, plays a crucial role in shaping 

complex phenomena. Dynamic systems with random perturbations thus provide a closer 

approximation to the behavior of real-world systems. In dynamic system theory, the focus is 

typically on invariant factors. For deterministic systems, invariant structures like equilibrium 

points, limit cycles, and other limiting behaviors can be quantitatively or qualitatively analyzed 

using dynamic equations [1, 2] . However, in stochastic systems, where trajectories are highly 

complex and unpredictable, deterministic trajectory analysis is not applicable. Instead, 

stochastic response, bifurcation, reliability, and most probable trajectories, derived from the 

statistical properties of stochastic dynamic systems [3-5], offer a powerful framework for 

describing both local and global dynamics. Based on these insights, a series of researches such 

as engineering structures, energy harvesters [6, 7], micromechanics [8-10], gene transcription 

[11-14], oncotherapy [15, 16] under stochastic perturbations are playing a positive and 

important role in contributing to the development of the objective world. 

The stochastic response of dynamic systems focuses on analyzing system behavior under 

random excitation, including both stable and transient responses, typically represented by 

statistics, correlation functions, power spectral density, and probability distributions. Such 

analysis is crucial for enhancing system reliability and optimizing design. At present, the 

transient response probability density function, which contains the complete statistical 

information of stochastic dynamic systems, has become the primary focus in studying the 

stochastic response. The transient response probability density functions of stochastic dynamic 

systems are governed by the Fokker-Planck-Kolmogorov (FPK) equations, derived from 

stochastic differential equations. However, only a few specific FPK equations, related to one-

dimensional nonlinear systems or multi-degree-of-freedom linear systems, can be solved 

directly. Current research on generalized stochastic dynamic systems focus mainly on the stable 

probability characteristics, where the rate of change on the time scale is zero. The transient 

probability characteristics of the system are typically obtained by solving the FPK equation 

using numerical or approximate methods. Currently, the methods for obtaining transient 

probability density functions include Monte Carlo simulation, path integral method [17, 18] , 

Wiener path integral method [19, 20] , probability density evolution method [21, 22], finite 

element method [23, 24], finite difference methods [25, 26], and so on. In addition, it has been 

shown that the transient response PDF of a single-degree-of-freedom nonlinear stochastic 
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system is expressed as the sum of a set of orthogonal basis functions [27]. However, these 

methods have some limitations, on the one hand, the existing methods can not balance the 

efficiency and calculation economy, on the other hand, the calculation accuracy of these 

methods is insufficient. Therefore, how to obtain the transient response probability 

characteristics of stochastic dynamic systems efficiently and directly is still the focus in the 

field of dynamics. 

1.1.2 Historical background of complex fractional moment 

Observation and statistics have been essential tools for understanding the physical world 

and shaping social civilization, playing a critical role in the origin of science and continuing to 

drive disciplinary growth and exploration today. Statistics has been integral to human 

civilization since ancient times, as reflected in activities such as censuses and land surveys [28, 

29]. In 1662, John Graunt [30] a pioneer of modern statistics, analyzed London’s population 

data, introducing the concept of the law of large numbers, which laid the foundation for modern 

statistics. In 1713, Jakob Bernoulli [31] mathematically formulated probability theory, initiating 

its systematic study. By the 19th century, Carl Friedrich Gauss's method of least squares [32] 

as well as Francis Galton's correlation and regression analyses [33, 34] established statistics as 

a scientific discipline. In the 20th century, Karl Pearson developed the chi-square test and 

correlation coefficient [35] , forming the basis of modern mathematical statistics. Subsequently, 

Ronald Fisher’s maximum likelihood estimation and analysis of variance [36, 37], Neyman and 

Pearson's hypothesis testing theory [38, 39], and Wilcoxon’s nonparametric statistics [40, 41] 

gradually refined the theoretical framework of mathematical statistics. Today, the rise of big 

data, along with advances in system science [42, 43] and artificial intelligence [44] , has 

accelerated the interdisciplinary application of statistics. 

Statistical measures, as direct reflections of observational data, quantify specific attributes 

of sample data through statistical functions, thereby mapping the objective world into 

theoretical space. Statistical measures are primary research objects in modern statistics, defined 

as point estimators of population parameters, possessing properties of unbiasedness, efficiency, 

and consistency. Based on their applications, statistical measures can be categorized into 

descriptive and inferential statistics. Descriptive statistics summarize and describe sample 

features like central tendency, dispersion, and shape, and are applied in fields such as aerospace 

[45], information sensing [46, 47], biomedical engineering [48, 49], micro-nano mechanics [50, 

51], environmental protection [52], and data science [53-55]. Inferential statistics allow for the 

estimation of population characteristics from samples, addressing uncertainties through 

methods like parameter estimation, hypothesis testing, and Bayesian analysis, with applications 

in complex networks, systems science, and structural analysis. Moments, as an important 

branch of statistical measures, play a significant role in both descriptive and inferential statistics. 

Consequently, deeper research into moments can expand foundational scientific theories, 

advance industrial scientific systems, and contribute to human progress. 
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Since the k-th order moments are the coefficient of Taylor expansion of the characteristic 

functions which are used to describe sample distributions, early research on moments in data 

or probability distributions mainly focused on integer forms, i.e.,  ,jE X j +    . However, 

studies on the Hausdorff moment problem in Hilbert space [56, 57] revealed that, for a linear 

operator 
 
2 2

0,1
:A L l→ , the unboundedness of 1A−  causes ill-condition moment problems 

when mapping the function ( )f x  in 
 
2

0,1
L  space to its integer moment sequence 

  2,jE X j l+      by A . Additionally, reconstructing functions can be distorted by weak 

perturbations in integer moments, namely  ,j

jE X j +  +   , where 2

j  is arbitrarily 

small. Fractional moments  ,E X      effectively address this issue. In subsequent 

research, fractional moments combined with the maximum entropy principle have advanced in 

reconstructing probability distributions. However, the maximum entropy method with 

fractional moments does not establish a direct link with the probability density function or 

characteristic function. For special cases like  -stable random variables, the probability 

density function of which exists only under specific conditions (Gaussian distribution when 

2 = , Cauchy distribution when 1 = , Levy distribution when 0.5 = ), Generally, the 

probabilistic characteristics are described by the characteristic function for 0 2  , and 

moments do not exist for 2  . This limitation renders the maximum entropy method based 

on fractional moments unsuitable for reconstructing the probabilistic characteristics of  -

stable random variables. 

Fractional calculus is considered a generalized operation of calculus [58-61] . It provides 

a tool for describing long-memory or hereditary effects and plays an important role in studying 

diffusion, turbulence, fractals, and more. Therefore, it is widely applied in control theory [62], 

life sciences [63, 64] , geological sciences [65, 66], and other fields. Some kinds of fractional 

calculus, such as Riemann-Liouville, Riesz, and Caputo fractional derivatives, have 

increasingly perfected their theoretical frameworks and integrated with other theories. For 

example, the Riesz fractional integral at is equivalent to the Mellin transform, probabilistically, 

this forms the complex fractional moment (CFM) ( )1 1

0
dXE X p x x x 


− −  =   , where    

and i  = + . Different from integer and fractional moments, CFM comply with Mellin 

transform rules, and when the real part of variable  , namely  , is within the Fundamental 

Strips (FS), the Mellin transform of the probability density function ( )Xp x  i.e., the CFM 

1E X  −    exists and is reversible in the Mellin transform sense. This means CFMs are entirely 

equivalent to probability density and characteristic functions. Since the inverse transform 

process along the imaginary axis   with fixed real part  , CFMs are suitable for 

reconstructing the probabilistic characteristics of bounded-moment random variables including 
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 -stable random variables. Additionally, due to the connection between Mellin transforms and 

Riesz fractional integrals, CFMs can be analyzed using fractional calculus theory. Thus, serving 

as a bridge between probability theory, integral transform theory, and fractional calculus, CFMs 

possess significant research value and vast development and application potential. 

In summary, the equivalence between CFMs and probability characteristic shows immense 

research potential in expanding stochastic dynamic system theory. On the other hand, there is 

substantial development for transient probability analysis in stochastic dynamic systems. 

Therefore, the deep integration of complex fractional moments and transient analysis of 

stochastic dynamic systems will significantly promote the development of both fields and the 

broader scientific community. 

1.2. Research Status 

1.2.1 Research status of transient analysis of stochastic dynamic system 

Current research on stochastic dynamic systems focuses primarily on steady-state 

responses. However, due to the influence of initial conditions, inherent parameters, and 

perturbation parameters, systems may suffer damage before reaching a steady state if their 

response exceeds reliability thresholds. Therefore, understanding and analyzing the transient 

response probability density of stochastic dynamic systems has attracted many researchers. The 

transient response probability density of stochastic systems has been explored. Ghanem and 

Spanos [67] summarized and discussed the application of spectral stochastic finite element 

methods to uncertainty response problems from a numerical computation perspective. Roberts 

and Spanos [68] analyzed statistical and equivalent linearization methods in addressing issues 

related to stochastic vibrations, including probability theory, stochastic vibrations, and 

stochastic responses. Kougioumtzoglou [19, 20] and Ghanem [69] discussed the application of 

the Wiener path integral method and stochastic Galerkin expansions in the stochastic response 

problems of nonlinear systems. Jin et al. [70-72], using data-driven methods, determined the 

maximum Lyapunov exponent and reliability function of the system from discrete data, 

exploring the stochastic reliability and first passage time problems in stochastic systems. Chen 

and Qian [73-75] applied radial basis function neural networks to analyze the transient and non-

steady-state stochastic responses of stochastic collision systems and multi-potential well energy 

harvesters. Lyu, Chen, and Li [21, 76, 77] explored the probabilistic response of noise-excited 

nonlinear systems using probability density evolution equations, and analyzed the vulnerability 

of engineering structures to earthquakes [22]. Soize [78] derived probabilistic models using 

entropy optimization principles to construct the transient response of mechanical systems under 

impulsive loading. Liu and Zhu [79] utilized the stochastic averaging method to study the 
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transient stochastic response of quasi-integrable Hamiltonian systems. Yue and Xu [80, 81] 

investigated the transient response of self-sustained oscillators under harmonic and bounded 

noise excitation using the generalized cell mapping method, analyzing the P-bifurcation 

phenomena and the advantages of the method. 

1.2.2 Research status of complex fractional moment 

Research on CFMs originated with Mario Di Paola and his cooperators, who applied 

fractional calculus to study the probabilistic characteristics of random variables [82, 83]. In 

2012, they first proposed the concept of CFMs based on Riesz fractional integrals [84], 

establishing a equivalence between CFMs, probability density functions, and characteristic 

functions. The theory of CFMs has provided valuable insights for probabilistic analysis and has 

been applied to reconstruct transient probabilistic characteristics in stochastic dynamic systems. 

Jin and Di Paola et al. [85, 86] were the first derived the transform equation for CFMs, enabling 

their transfer on the real axis. This work laid the foundation for solving the FPK equation 

through associated ordinary differential equations governing CFMs. They subsequently applied 

this method to nonlinear stochastic dynamic systems, solving the FPK equation and validating 

the method’s efficiency and accuracy. Xie et al. [87] incorporated vibro-impact factors into 

traditional nonlinear systems and employed equivalent vibro-impact transform methods to 

analyze the application of CFMs in stochastic impact systems, and examined the effects of 

collision coefficients on the system. Di Matteo and Pirrotta et al. [88, 89] extended the 

application of CFMs to nonlinear systems excited by non-Gaussian white noise, solving the 

Kolmogorov-Feller equation with high accuracy and efficiency. Alotta et al. [90, 91] combined 

Fourier and Mellin transforms to derive solutions for fractional FPK equations (Einstein-

Smoluchowski equation) using CFMs, and obtaining approximate analytical solutions for 

fractional FPK equations driven by  -stable white noise. Butera et al. [92] directly applied 

the Mellin transform to Riesz fractional differential equations, addressing truncation errors and 

convergence issues arisen by using the Laplace transform to solve fractional differential 

equations involving the Mittag-Leffler function. Subsequently, Di Paola summarized the theory 

and applications of the CFMs method [93]. Recognizing that CFMs are defined in the positive 

real domain, Dai et al. [94] proposed an improved method based on spatial partitioning, 

extending the application of CFMs from the positive real domain to the entire real domain. Niu 

et al. [95] applied the CFMs method to time-delay scenarios and extended its application to the 

transient analysis of nonlinear systems under colored noise excitation [96]. Itoh et al. utilized 

CFMs to analyze nonlinear systems under combined Gaussian white noise and Poisson white 

noise excitation [97], nonlinear rigid systems [98], and systems with fractional differential 

terms [99]. These studies validated the accuracy of CFMs and expanded their application 

domains. 

Additionally, the theoretical framework and applications of CFMs based on Mellin 

transforms are continually expanding. Cottone and Di Paola utilized Mellin transform to extend 
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spectral moments based on power spectral density [100, 101] to fractional spectral moments 

[102]. They discovered that any stationary Gaussian process with a known power spectral 

density can be equivalently represented by its associated fractional spectral moments and Riesz 

fractional integrals [103]. This methodology was applied to the simulation of multivariable 

wind fields [104] and parameter identification in environmental vibration tests [105]. Paolo 

Pinnola developed a new method for describing correlation functions using complex spectral 

moments based on power spectral density [106], providing a probabilistic description of the 

steady-state response of linear fractional oscillators under Gaussian white noise excitation. Di 

Paola and colleagues used Mellin transform properties in fractional calculus to propose a 

wavelet analysis method applicable to arbitrary functions [107], detailing its application to 

CFMs in earthquake engineering [108]. Alotta and others applied complex spectral moments to 

the comprehensively describe normal multivariable random vector processes [109]. 

In summary, there are several key issues in the study of CFMs combined with the transient 

response probability of stochastic dynamic systems: 

1. The application of CFMs to the reconstruction of transient probability in various 

stochastic dynamic systems has significant potential for further development. 

Currently, complex fractional moments are defined by using Mellin integral transforms, 

focusing on power-type moment. This has limited their application primarily to 

Langevin systems with polynomial structures. However, their suitability and 

effectiveness in transient analysis of other systems, such as Hamiltonian systems, 

remain insufficiently investigated. 

2. The potential equivalence concepts of complex fractional moments have not been fully 

explored. While the equivalence between CFMs and probability density functions or 

characteristic functions allows for efficient reconstruction of the probabilistic 

characteristics of stochastic dynamic systems, these characteristics can not fully 

describe the system. For addressing issues like damage analysis, concepts such as 

reliability functions and first passage time are often more relevant. The equivalence 

between CFMs and these concepts has not been established, highlighting the need for 

further research to understand other evolutionary characteristics of systems using 

CFMs. 

3. The theoretical framework of CFMs remains incomplete. Currently, this framework is 

based on the one-dimensional Mellin transform of functions. Expanding this 

framework to encompass higher-dimensional or exponential structures for complex 

fractional moments would be significant for the development of the field of stochastic 

dynamic systems. 
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1.3. Preliminaries 

1.3.1 Wiener process and Gaussian white noise 

 Wiener process, also named as Brownian motion, is defined as a real stochastic process 

with continuous time in mathematics, which was initially used to describe the continuous and 

irregular motion of pollen particles in a liquid. The mathematical definition of the Wiener 

process is as follows [110, 111]: 

Definition 1.1: Let ( ), , P B  be a complete probability space,   ; 0,t t TF  be a system 

increasing with time t  on the  −  subalgebra of B  , and   ; 0,tX t T   be a stochastic 

process on ( ), , P B . ( ), ,t tX PF  can be called a Wiener process if: 

1) The sample path of tX  is time-continuous and 0 0X = . 

2) For t s  ,  , 0,t s T  , t t sE X X  = F   holds by measure, where  |E   denotes the 

conditional expectation with respect to measure P . 

3) For t s ,  , 0,t s T , ( )
2t s tE X X t s − = −

 
F  holds by measure. 

Usually, the Wiener process is expressed as ( )W t . 

Definition 1.2: Denote by ( )t  the Gaussian white noise which is the formal derivative of the 

Wiener process, i.e. ( ) ( )d / dt W t t = , and satisfies: 

1) ( ) 0E t =   . 

2) ( ) ( ) ( )2 ,   E t s t s t s   = −    , where ( )  is a Dirac function. 

3) ( ) ( )20,t N   holds at any moment t. 

 

Figure 1-1 (a): Wiener process; (b): Gaussian white noise. 0.1 = . 

(a) (b) 
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1.3.2 Fractional calculus 

Fractional Calculus is an extension of calculus that extends the traditional integer order 

derivatives and integrals to any real or complex order, and its creation makes it possible to 

model and analyze more complex phenomena. Here we introduce the definitions and properties 

of several common fractional-order differentials and fractional-order integrals. 

Definition 1.3: Denote by ( )( )RLI f x

   the Riemann-Liouville (RL) type fractional order 

integral, which is described by the following definition: 

 ( )( )
( )

( )1

0

1
d ,I f x f x   




−

 = 
   (1-1) 

where ( )  is the Euler gamma function. 

Definition 1.4: The RL fractional-order differential arises based on the definition of RL integral, 

which, denoted ( )( )RLD f x
, can be described in the following form 

 ( )( )
( )

( )
( )1

0

1 d
d ;    1 .

d

n n
n

n
D f x s f x n n

n x

    



− −




= −  
 −   (1-2) 

Definition 1.5: Denote by ( )( )CD f x
 the Caputo type fractional order differential, which is 

described by the following definition: 

 ( )( )
( )

( ) ( ) ( )
1

0

1
d .

t n n

CD f x x f
n

   


− + −
= −
 −   (1-3) 

Definition 1.6: Denote by ( )( )RI f x
 the Riesz fractional order integral, which is defined as 

follows: 

 ( )( )
( ) ( )

( )
11

d .
2 cos / 2

RI f x x f
   

 

 −

−
= −

   (1-4) 

Property 1.1: The RL fractional order integral (1-1) has the following properties in the Fourier 

domain: 

 ( )( )  ( ) ( ) ,; ;iI f x f x 
 

−

 =  (1-5) 

where 

 ( ) ( ) ( ) ( )cos / 2 sign sin / 2 .i i


    
−−

=     (1-6) 

Property 1.2: Caputo type fractional order derivative can be related to Riemann-Liouville (RL) 

fractional order derivative and the associated equation can be described as: 
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 ( )( ) ( ) ( ) ( ) ( )
1

0

0 .
!

km
k

C

k

x
D f x D f x f

k

 
−



=

 
= − 

 
  (1-7) 

Property 1.3: The Riesz-type fractional order integral Fourier transform can be expressed as 

 ( )( )  ( ) ; .;RI f x f x 
 

−
=  (1-8) 

1.3.3 Reliability function and first passage time 

The reliability function and the time of first crossing of a stochastic dynamic system are 

usually used to describe the time that occurs when a critical physical quantity of the system 

exceeds a safety boundary, typically through the probability density function or moments of the 

system. 

Definition 1.7: Consider a one-dimensional diffusion process and denote by ( )0 0, | ,p x t x t  its 

transfer probability density function and ( )0 0, ,R t t x  its reliability function, then ( )0 0, ,R t t x  

can be expressed in the following form: 

 ( ) ( )0 0 0 0, , , | , d .
c

l

x

x
R t t x p x t x t x=   (1-9) 

Here lx   and cx   are absorbing boundaries, so the transfer probability density is 

nonconservative on the interval  ,l cx x . 

 Usually the reliability function is obtained by dominating the backward Kolmogorov 

equation for the transition probability density function ( )0 0, | ,p x t x t  on the interval  ,l cx x , 

i.e.: 

 
( )

( )
( )

( )
( )2

0 0 0 0 0 02

0 0 2

0 0 0

, , , , , ,1
0.

2

R t t x R t t x R t t x
m x x

t x x


  
+ + =

  
 (1-10) 

Let 0=t t − , Eq. (1-10) can be rewritten as: 

 
( )

( )
( )

( )
( )2

0 0 02

0 0 2

0 0

, , ,1
0,

2

R x R x R x
m x x

x x

  




  
− + + =

  
 (1-11) 

Its initial and boundary conditions can be written in the following form: 

 ( ) ( )
0

0 0 00
, 1,  ,  , 0.

c
l c x x

R x x x x R x


 
= =
=   =  (1-12) 

And the probability density function of the first crossing time is generally written as 

 ( )
( ) ( )0 0

0

, ,
, .

T

T

F x R x
p x

 


 

 
= = −

 
 (1-13) 

Figure 1-2 shows the schematic of the first crossing time and reliability function of the system, 
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respectively. 

 

Figure 1-2 (a): Schematic of first crossing time; (b): Schematic of reliability function.  10,10x − . 

1.3.4 Integral transforms and their properties 

Integral transforms enable the conversion of functions between different domains using 

integral operators. This approach facilitates efficient analysis and processing of functions, 

enhancing computational efficiency and providing deeper insights into system behavior. Here 

we introduce several common integral transforms. 

Definition 1.8 (Laplace Transform): Suppose that ( )f x  is a real function defined on the 

interval  0, . By denoting its Laplace transform as ( )f s , the expression is given below: 

 ( )  ( ) ( )
0

; d ;    ,sxf x s f s e f x x s i 


−= == −  (1-14) 

where    denotes the Laplace operator. Functions ( )f x  and ( )f s  are called Laplace 

transform pairs, which implies that one of them can be reconstructed by doing a Laplace 

transform or an inverse Laplace transform on the other. For Eq.(1-14) , the condition for the 

existence of ( )f s  is that there exists a constant c +  such that 

 ( )
0

d .cxf x e x


−    (1-15) 

The constant c  satisfying equations (1-15) usually has a minimum value minc  and ( )min ,c   

is called the Fundamental Strip (FS) of the Laplace transform. If   belongs to the FS, then 

the inverse transform of ( )f s   exists and ( )f x   can be reconstructed by the following 

equations 

 ( ) ( )  ( ) ( )1 1
; d d .

2 2

x
sx i xe

f x f s x f s e f s e


 
 

 
− −

− −
= = =   (1-16) 

(a) (b) 
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Observing Eq. (1-16), we can see that the above integral proceeds along the imaginary axis 

while the real part   remains constant. The properties of Laplace transform are shown below: 

Property 1.4: If the functions ( )f x   and ( )g x   are both one-sided and ( ) ( )*f x g x  

denotes the Laplace transform of the product of the two functions, then: 

 ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( )
0

* d ;  * ; .
x

f x g x f x x g x x f x g x s f s g s= − =  (1-17) 

Property 1.5: Given ( ) ( ) ( )d / d
n n nf x f x x= , then 

 ( ) ( )  ( ) ( ) ( )
1

1

1

; 0 ;  0,1,...
n

n n kn k

k

f x s s f s s f n
−

− −

=

= − =  (1-18) 

 ( )( )  ( ) ( ) ( )
1

1

0

1

; 0 ;  1
n

kc k

x

k

D f x s s f s s f n n   
−

− −

=

= − −    (1-19) 

where 0

c

xD   denotes Caputo type fractional order differentiation. Furthermore, the 

differentiation with respect to the variable s  satisfies the following equation 

 ( ) ( ) ( ) 
d

; ,
d

1
n

n

n

nf s x f s
s

x− =  (1-20) 

 ( ) ( ) 1 ; .d
s

f x f x s 


−=  (1-21) 

Property 1.6: Shift of Laplace Transforms 

 ( )  ( )0

0; ;
s x

e f x s f s s= −  (1-22) 

 ( )  ( ) ( )
1 1

; ; ;  0
s s

f ax s f x f a
a a a a

   
= =    

   
 (1-23) 

Definition 1.9 (Fourier transform): Assuming that ( )f x  is integrable which defined on the 

real number field and forms a Fourier transform pair with a bilateral Fourier transform function 

( )f  , its Fourier transform and inverse Fourier transform are defined as follows: 

 ( )  ( ) ( ); d , i xf x f e f x x 


−
= =   (1-24) 

 ( )  ( ) ( )1
1

; d ,
2

i xf x f x e f  


−


−

−
= =   (1-25) 

where    is the double-sided Fourier transform operator. According to Eqs. (1-24), (1-25), 

(1-14) and (1-16), it can be found that the Fourier transform agrees with the Laplace transform 

when 0 = . When 0s = , according to eq.(1-22) , we can find that the 
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 ( )  ( )  ( ) ( )
0

; ; d .x i xe f x s f x s i f x e x f   


= − = − = =  (1-26) 

( )f   is a one-sided Fourier transform function defined on  )0, . According to Eq. (1-26), 

the properties of the Laplace transform are still valid in the Fourier transform case. 

Definition 1.10 (Mellin transform): Suppose that ( )f x  is a real function defined on  )0,  

and ( ) ( )1ff M = −  is a Mellin transform function of a function ( )f x , then 

 ( ) ( ) ( )  ( ) 1

0
; d1ff f x f x x xM  


−= − ==   (1-27) 

where i  = + , i  is imaginary units. The existence condition for the Mellin transform is 

( ),p q − − , where p  and q  are the orders of the function ( )f x  at 0x =  and x = , 

respectively, i.e. 

 ( ) ( ) ( ) ( )
0

,   .lim limp

x

q

x
f x fx xx

→ →
= =  (1-28) 

Example for ( ) ( )
1

1f x x
−

= +  , then ( ) ( )01

0
lim 1 1
x

x x
−

→
+ = =  , ( ) ( )11lim

x
xf x x−



−

→
= =  , then 

the Mellin transform of the function ( )
1

1 x
−

+  exists when ( )0,1 . 

 If the Mellin transform of a function exists, then the inverse of Eq. (1-27) exist, namely 

 ( ) ( ) ( )  ( )11 1
1 ; d1 .

2
1f f ff xM M Mx x    




− −

−

−


= − = − = −  (1-29) 

Considering Eq. (1-4) the Mellin transform function ( )1fM  −  is equivalent in the fractional 

order integral sense to the expression of the Riesz fractional order integral when 0x = , i.e. 

 ( ) ( )( )( ) ( )2 cos / 2 0 1R

fI f M   = −  (1-30) 

Property 1.7: Shift of Mellin Transform 

 ( )  ( );v vx f x f = +  (1-31) 

 ( )  ( )1 1 ; 1x f x f − − = −  (1-32) 

Property 1.8: Derivatives of Mellin Transform 

 
( ) ( )  ( )

( )

( )
( ); 1

nn
f nf x

n








−

 −
−=  (1-33) 

 ( )  ( );x ff x   = −  (1-34) 
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1.4. Framework 

This thesis focuses on the generalized extension of complex fractional moments in the 

transient analysis of stochastic dynamic systems. By considering the theoretical frameworks 

including evolution analysis, system configuration, and dimension space, the theoretical 

framework of complex fractional moments in a probabilistic sense is established. Related 

concepts of complex fractional moments is proposed and applied in generalized cases to achieve 

efficient transient response analysis of stochastic dynamic systems. The research framework of 

this thesis is illustrated in Figure 1-3, and the specific work is organized as follows: 

 

Figure 1-3 Thesis architecture diagram. 

 

Chapter 1 introduces the background, significance, and current state of research on CFM 

and transient analysis of stochastic dynamic systems. It also defines and explains some concepts, 

such as Wiener processes, various types of fractional calculus, integral transforms, and concepts 
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related to stochastic reliability. 

Chapter 2 extends the application of CFMs to stochastic Hamiltonian systems. It derives 

the CFM equations based on the Hamiltonian function and proposes a polynomial 

approximation method for implicit functions in Hamiltonian diffusion equations. The chapter 

discusses the applicability of the CFM method in Hamiltonian systems and investigates the 

effects of polynomial approximation parameters, system parameters, perturbation parameters, 

and initial conditions on the system behavior and the accuracy of the CFM method. 

Chapter 3 focuses on stochastic systems with Caputo-type fractional-order terms, studying 

the transient analysis and stochastic reliability of CFMs in fractional-order scenarios. It derives 

the associated CFM differential equations, achieves differential normalization of CFMs, and 

establishes equivalent descriptions among CFMs, reliability functions, and first passage times. 

Chapter 4 introduces an exponential configuration of CFMs based on the Laplace 

transform, known as the shifted characteristic function, and establishes its equivalence with the 

probability density function. By exploiting the orthogonal properties of complex exponential 

functions, a switching equation for the shifted characteristic function along the real axis is 

derived, later extending to bilateral cases. This chapter proposes the application of shifted 

characteristic functions in solving FPK equations, analyzing their applicability in terms of 

computational accuracy and efficiency, and discussing the distinct applicable scenarios of 

CFMs and shifted characteristic functions. 

Chapter 5 introduces generalized CFMs in multidimensional contexts. Using the concept 

of multidimensional Mellin transforms, it constructs the equivalence between generalized 

CFMs, multidimensional probability density functions, and multidimensional characteristic 

functions in the positive real domain, extending it to the entire real domain. This chapter 

establishes a direct connection between generalized CFMs and marginal PDFs across the entire 

real domain and proposes a data-driven method for constructing multidimensional evolving 

probability densities. 

Chapter 6 proposes the MEP under CFM constraint, which can be used to approximate the 

PDF based on the known CFMs. By introducing Lagrange multiplier, the CFMs constraint 

equation of extended entropy function is derived, and the probability distribution of random 

variable is approximated by finding the optimal parameter. In addition, the method is extended 

to the transient PDF of stochastic dynamic systems by deriving the moment equation. 

Chapter 7 summarizes the research presented in this thesis, outlines its innovative 

contributions, and provides a plan and outlook for the future development of CFM theory based 

on the completed work. 
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Chapter 2. Transient analysis of complex fractional moments under 

stochastic Hamiltonian systems 

2.1. Introduction 

With the rapid development of engineering technologies in fields such as aerospace 

engineering, robotic arms, and space-deformable structures, the accuracy in describing the 

physical world has greatly improved. However, this progress has also led to increasingly 

complex mechanical models with higher degrees of freedom for analyzing engineering 

structures. For such problems, classical mechanics models become less effective as the degrees 

of freedom increase. In the field of analytical mechanics, due to the difficulty in solving partial 

differential equations, efficiently analyzing multi-degree-of-freedom systems remains a 

significant challenge. 

The Hamiltonian system offers significant advantages in addressing such issues by 

constructing equations of motion for generalized displacement and momentum from an energy 

perspective, making it widely applicable to multi-degree-of-freedom mechanical problems. 

Currently, research on Hamiltonian systems has become widespread, including the 

development of the symplectic Runge-Kutta algorithm for infinite-horizon linear quadratic 

differential games [112], symplectic integration algorithms for separable Hamiltonian functions 

[113], and an unconventional Hamiltonian variational principle in phase space for the dynamics 

of honeycomb sandwich plates [114] . Additionally, Oz H [115, 116] has made outstanding 

contributions in applying Hamilton's principle to derive general solutions for control problems 

and dynamic system algebraic equations. 

However, systems are inevitably subject to internal or external noise, making traditional 

dynamic evolution analysis methods based on system trajectories unsuitable. Analyzing 

systems from a probabilistic evolution perspective often proves more effective. Numerous 

scholars have studied stochastic Hamiltonian systems [117]. Jia developed a stochastic 

averaging method for quasi-integrable Hamiltonian systems under Gaussian white noise and 

Poisson white noise excitation [118] , using perturbation methods to solve the associated FPK 

equation and analyze the system's probabilistic evolution. Deng proposed a stochastic averaging 

method for quasi-integrable Hamiltonian systems under fractional Gaussian noise excitation 

[119], analyzing the system's characteristics and the impact of parameters from the perspectives 

of steady-state probability and mean value. Gan studied the reliability function and first passage 

time for quasi-integrable Hamiltonian systems und er Gaussian white noise excitation [120].  

Nevertheless, the transient response probability analysis of stochastic Hamiltonian 

systems is still primarily based on traditional numerical or semi-analytical methods, and 

improving the accuracy and computational efficiency of these results remains a significant 

challenge in the field of stochastic dynamics. To address these issues, this chapter explores the 
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advantages of complex fractional moments in reconstructing transient probabilities in stochastic 

dynamic systems, extends the theory and its application of CFM to Hamiltonian systems, and 

analyze the transient probabilistic evolution mechanism of stochastic Hamiltonian systems. 

Section 2.2 introduces the stochastic averaging method under Hamiltonian systems and derives 

the governing FPK equation for the Hamiltonian. Section 2.3 applies the Mellin transform to 

derive inhomogeneous linear system of equations for the associated CFMs, and Section 2.4 

proposes a polynomial approximation method for Hamiltonian systems. Numerical experiments 

validate the applicability of the complex fractional moment method in stochastic Hamiltonian 

systems. 

2.2. Stochastic average method for stochastic Hamiltonian systems 

For engineering problems, a stochastic Hamiltonian system with n  degrees of freedom 

can typically be described in the following form: 

 

( )
1

2

1 1

,

, 1,2,..., .

j

j

n m

j jk jl l

k lj k

H
Q

P

H H
P c g W t j n

Q P
 

= =


=


  
= − − + =

 
 

 (2-1) 

Here, jkc  represents the damping coefficient, ( )lW t  represents Gaussian white noise, 

jQ  represents the generalized displacement, jP  represents the generalized momentum,   is 

a small parameter, and jlg  is a function of the generalized displacement and momentum. 

Considering the case of weak damping and weak excitation, Eq. (2-1) can be expressed as a 

quasi-nonintegrable Hamiltonian system. In this section, we consider Eq. (2-1) in the 

Stratonovich form, which can be represented by the following stochastic differential equation: 

 

( )
1

2

1 1

d d ,

d d d ,

j

j

n m

j jk jl l

k lj k

H
Q t

P

H H
P c t g B t

Q P
 

= =


=


   
= − + +    

 

 (2-2) 

where ( )lB t  represent the wiener process. By introducing Wong-Zakai correction term, 

Eq. (2-2) can be transferred into the following equation: 

 ( )
1

2

1 1 , 1 1

d d ,

d d d ,

1,2,..., .

j

j

n n m m
jl

j jk js ks jl l

k k l s lj k k

H
Q t

P

gH H
P c K g t g B t

Q P P

j n

  
= = = =


=


   
= − + + +     

=

    (2-3) 

Due to the influence of the correction term in Eq. (2-3) on the system's restoring force 
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and damping force, we decompose it into a restoring force part and a damping force part. 

According to the formulation of Eq. (2-3), the restoring force part arising from the 

decomposition of the Wong-Zakai correction term is combined with / jH Q−  , resulting in 

a new restoring force term denoted as / jH Q−  , where ( ),H H Q P=  is the modified 

Hamiltonian function. Similarly, the damping force part from the decomposition of the Wong-

Zakai correction term is combined with 
1

/
n

jk k

k

c H P
=

−   , resulting in a new damping force 

term denoted as 
1

/
n

jk k

k

m H P
=

−   , where ( ),jk jkm m Q P=  is the new coefficient matrix. At 

this point, Eq. (2-3) can be transformed into the following equation: 

 

( )
1

2

1 1

d d ,

d d d , 1,2,..., .

j

j

n m

j jk jl l

k lj k

H
Q t

P

H H
P m t g B t j n

Q P
 

= =


=


  
= − + + =    

 

 (2-4) 

Eq. (2-4) represents a fully non-integrable quasi-Hamiltonian system, where H  is the 

Hamiltonian function. According to the Itô derivative rule, the differential equation governing 

the Hamiltonian function can be expressed as: 

 ( )( )
2

1 1 . 1

1
d d d d d , 1,2,..., .

2

n n n

j j j k

j j j kj j j k

H H H
H Q P P P j n

Q P P P= = =

  
= + + =

   
    (2-5) 

Substituting Eq. (2-4) into Eq. (2-5), and the Itô differential equation governing the Hamilton 

function ( )H t  can be obtained as follow: 

 

( )

2

, 1 . 1 . 1

1 3

2 2

1 1

d d

     d d .

n n m

jk ls jl ks

j k j k l sj k j k

n m

jl l

j l j

H H H
H m K g g t

P P P P

H
g B t O t

P

 



= = =

= =

   
= − +      

 
+ +  

  

 



 (2-6) 

Neglecting the high-order term in Eq. (2-6), and approximating the Hamiltonian function 

( )H t  with a Markov process, the Hamiltonian function ( )H t  is governed by the following 

Itô stochastic differential equation: 

 ( ) ( ) ( )d d d ,H m H t H B t= +  (2-7) 

where 

 ( )
2

, 1 . 1 . 1

,
n n m

jk ls jl ks

j k j k l sj k j k

H H H
m H m D g g

P P P P


= = =

   
= − +      
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 ( )2

, 1 , 1

2 .
n m

ls jl ks

j k l s j k

H H
H D g g

P P
 

= =

 
=

 
   

According to the ergodicity of Markov processes, by introducing stochastic averaging and 

time averaging, the drift and diffusion terms in Eq. (2-7) can be expressed as: 

 ( )
2

, 1 . 1 . 1

,
n n m

jk ls jl ks

j k j k l sj k j k t

H H H
m H m D g g

P P P P


= = =

  
= − +

   
   (2-8) 

 ( )2

, 1 , 1

2 .
n m

ls jl ks

j k l s j k t

H H
H D g g

P P
 

= =

 
=

 
  (2-9) 

Here, 
t
 denotes the time average. It is noteworthy that non-integrable Hamiltonian systems 

exhibit ergodicity on the n -dimensional constant energy surface. Therefore, we can replace 

the time average with the spatial average over the fast variable 1 2 2, ,..., , ,...n nQ Q Q P P , that is: 

 
( )

1

1 2 2

1

1
d d d d d ,n nt

H
F F q q q p p

T H p

−



 
=  

 
  (2-10) 

( )T H  denotes the quasi-periodic average for the quasi-Hamiltonian system (2-4), which can 

be expressed as: 

 ( )
1

1 2 2

1

d d d d d .n n

H
T H q q q p p

p

−



 
=  

 
  (2-11) 

 Here, the integration domain   is defined as: 

 ( )1 2 1 2:  , , , 0, .n nH q q q p p p H =   (2-12) 

In general, the drift term ( )m H  and the diffusion coefficient ( )2 H  of a Hamiltonian 

system can be expressed or expanded as polynomials, that is: 

 ( ) ( )
1 2

2

1 0

,    ,
l l

j j

j j

j j

m H a H H b H
=− =

= =   (2-13) 

where ja  and jb  are the polynomial coefficients. At this point, the FPK equation associated 

with the Itô equation (2-7) can be expressed as: 

 
( )

( ) ( ) ( ) ( )( )
2

2

2

, 1
, , ,

2

p H t
m H p H t H p H t

t H H


  
= − +    

 (2-14) 

where ( ),p H t  is the probability density function governing the Hamiltonian function. The 

initial condition for Eq. (2-14) is: 
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 ( ) ( )0,0 .p H p H=  

Here, we assume ( )0p H  is Dirac function ( )0H H − , and the boundary conditions of Eq. 

(2-14) are: 

 ( ) ( )
( )

0

,
lim , ,  lim , 0,  lim 0.
H H H

p H t
p H t p H t

H→ → →


  = →


 (2-15) 

2.3. Application of complex fractional moments method to stochastic 

Hamiltonian systems 

The CFM method utilizes the Mellin transform to convert the FPK equation in the real 

domain into an ordinary differential equation in the complex domain. Subsequently, by 

combining normalization techniques and the inverse Mellin transform, the transient PDF of 

stochastic dynamic system at any given time can be reconstructed. For Eq. (2-14), we multiply 

both sides of the equation by 1H  −  and then integrate the resulting equation over the interval 

( )0, . At this point, equation (2-14) can be expressed as: 

 

( )
( ) ( )

( ) ( )( )

1

10

0

2
2 1

20

, d
, d

1
, d ,

2

p H t H H
m H p H t H H

t H

H p H t H H
H








−


−


−

 
= −    


+








 (2-16) 

where i  = + , i  is the imaginary unit. Applying the method of integration by parts, Eq. 

(2-16) can be transformed into the following form: 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 2

00

2 1 2 2

00

2 3

0

1,
, 1 , d

1 1
, 1 ,

2 2

1
1 2 , d ,

2

H

pM t
m H H p H t m H H p H t H

t

H p H t H H H p H t
H

H H p H t H

 

 






  

  

 
− −

 

− −


−

 −
 = − + − 

 
 + − −   

+ − −





 (2-17) 

where 

 ( ) ( ) 1

0
1, , d .H

pM t p H t H H


−− =   (2-18) 

Eq. (2-18) represents the Mellin transform, ( )1,H

pM t −  denotes the Hamiltonian 

complex fractional moment. According to the definition of the Mellin transform, for a function 

( )f x , when   belongs to the interval ( ),p q− − , Eq. (2-18) has an inverse transform, where 
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 ( )
( )

( )

,  0,

,  .

p

q

x x
f x

x x

 →
= 

→

 

( ),p q− −  is referred to as Fundamental Strip (FS). The inverse Mellin transform of Eq. (2-18) 

can be expressed as: 

 ( ) ( ) ( )
1 1

, 1, d 1, d .
2 2

i
H H

p p
i

p H t M t H M t H
i


 


   

 

+  
− −

−  −
= − = −   (2-19) 

And the discretized form of Eq.(2-19) is: 

 ( ) ( ), 1, ,
2

k

m
H

p k

k m

p H t M t H





−

=−


 −  (2-20) 

where m    is the truncation value and    is the truncation step size. Based on the 

properties of the FPK equation, its boundary conditions can be expressed in the following form: 

 ( ) ( ) ( )
( )0

0

,
lim , ,   lim , 0,  lim 0.
H H H

p H t
p H t H p H t

H→ → →


→ → →


 (2-21) 

Substituting the boundary conditions (2-21) into Eq. (2-17), the non-integral terms on the 

right-hand side of Eq. (2-17) can be ignored. Considering Eq. (2-13), Eq. (2-17) can then be 

expressed as: 

 

( )
( ) ( )

( )( ) ( )

1

2

2

0
1

3

0
0

d 1,
1 , d

d

1
1 2 , d .

2

H l
p j

i

j

l
j

i

j

M t
a H p H t H

t

b H p H t H








 


+ −

=−


+ −

=

−
= −

+ − −

 

 

 (2-22) 

According to Eq. (2-18), Eq. (2-22) can be expressed as: 

 

( )
( ) ( )

( )( ) ( )

1

2

1

0

d 1,
1 2,

d

1
                      1 2 3, .

2

H l
p H

i p

j

l
H

i p

j

M t
a M j t

t

b M j t


 

  

=−

=

−
= − + −

+ − − + −





 (2-23) 

Since ( )1,H

pM t −  , ( )2,H

pM j t + −   and ( )3,H

pM j t + −   are all present within Eq. 

(2-23), According to the literature [85, 121], we introduce a normalization coefficient to unify 

the variables, which is:  

 ( ) ( )/

/
d .

i k s

ksC e
   

 
 

 − − − 

− 
 =   (2-24) 

Utilizing the normalization coefficient, we can achieve the transformation of the 

Hamiltonian complex fractional moment along the real axis, that is: 
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 ( )( ) ( )( ) ( )1 2
1, 1, ,

2

m
H H

p s p k ks

k m

M t M t C


  
 =−


− = −   (2-25) 

where 
( ) ( )2 1

  = +   . Using Eq. (2-25), ( )2,H

p sM j t + −   and ( )3,H

p sM j t + −   can be 

equivalently represented as ( )1,H

p kM t −   However, due to the high dimensionality of the 

equation system or unreasonable step size selection during computation, Eq. (2-23) is prone to 

divergence in calculations. To avoid this issue, according to Eq. (2-20), when    is 

sufficiently small, its integral over the interval ( ) ( )exp / ,exp /   −      is approximately 

1, that is: 

 ( ) ( ), d 1, d 1,
2

k

me e
H

p k
e e

k m

p H t H M t H H

 

 

 

 






 

− −
 

−

=−


 −    (2-26) 

where m k m−   . By substituting Eq. (2-25) and Eq. (2-26) into Eq. (2-23) we obtain a 

set of 2m  ordinary differential equations (ODEs). Solving this ODEs, and combining it with 

the inverse Mellin transform (2-20), allows for the reconstruction of the probabilistic 

characteristics of the stochastic Hamiltonian system. 

2.4. Numerical simulation 

 In this section, we consider the system as follows: 

 
( )( ) ( )

( )( ) ( )

2 2

1 0 1 2 1 1 1 2 1 1 2

2 2

2 0 1 2 2 2 1 2 1 2 2

, ,

, ,

X X X X g X X X

X X X X g X X X

   

   

+ + + + = +

+ + + + = +
 (2-27) 

where , 1,2l l =  is an uncorrelated Gaussian white noise with noise intensity lD . lg  is a 

polynomial in lX  and lX , and 0 ,   are system parameters. Here we set: 

 
( ) ( )

( ) ( )

2 2 2 2 2 2

1 1 2 1 1 1 1 1 2 2 1

2 2 2 2 2 2

2 1 2 2 2 2 1 1 2 2 2

, ,

, .

g X X X X X X

g X X X X X X

   

   

= + +

= + +
 (2-28) 

Let ( ), 1,2l l l lQ X P X l= = = , Eq.(2-27) can be expressed as: 

 
( )( ) ( )2 2

0 1 2 1 2 1 2

,

, ,

l l

l l l l

Q P

P Q Q P g Q Q Q   

=

= − + + − + +
 (2-29) 

The Hamiltonian function associated with system (2-29) can be described as:  

 ( ) ( )
2

2

1 2

1

1
, , ,

2
i

i

H Q P P U Q Q
=

= +  (2-30) 

where 
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 ( ) ( ) ( )
2

2 2 2 2 2 2 2 2

1 2 1 1 2 2 1 1 2 2

1 1
, .

2 4
U Q Q Q Q Q Q    = + + +  (2-31) 

According to Eq. (2-7)-(2-12), the Itô differential equation governing the Hamiltonian function 

can be described as: 

 ( ) ( ) ( ) ( )d d d ,H t m H t H B t= +  (2-32) 

Where ( )m H  and ( )H are drift term and diffusion term, satisfying:  

 ( )
( )

( )( ) ( )
2 2

2 2 2 2

0 1 2 1 2 1 2 2

1 1 1

1 1
d d d ,i j

i j

m H Q Q P D Q D Q Q P
T H P

 


= =

 
= − + + + +  

 
   (2-33) 

 ( )
( )

2 2 2 2 2

1 2 1 1 2 2 2 1 2 2

1

1 1
2 d d d ,H D D Q P D Q P Q Q P

T H P



 = + +   (2-34) 

where 

 ( ) 1 2 2

1

1
d d d .T H Q Q P

P
=   (2-35) 

The integration domain    satisfies ( ) ( ) 1 2 1 2 1 2 2, , , , ,0,Q Q P P H Q Q P H =   . To facilitate 

the solution of Eq. (2-33) to (2-35), we introduce the following transform: 

 
1 2

cos , sin ,
R R

x y 
 

= =  (2-36) 

hence, the drift term and diffusion term can be expressed as: 

( ) 2 2

1 0 22 2 2 2

1 2 1 2

1 1 1 1 1 1 1 1
2 2 ,

4 12 2 3 8 4
m H D H R R H R R R D R

 
 

   

      
= − − − − + − − + +      

      

 (2-37) 

 ( )2 2 2

1 2 2 2

1 2

1 1 1 1 1
4 ,

4 12 2 3 8
H D H R R D H R R R

 


 

    
= − − + + − −    

    
 (2-38) 

where R  is the solution of the following equation: 

 2 2 2 4 .R R H  + =  (2-39) 

Substituting Eq. (2-39) into Eq. (2-37) and (2-38), we can obtain: 

 ( ) 1 2 3 4 ,m H s s R s H s HR= + + +  (2-40) 

 ( )2

5 6 7 .H s R s H s HR = + +  (2-41) 

The coefficient of (2-40) and (2-41) are: 
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1 1

0 2
2 2 2 2 2

1 2 1 2

0
3 42 2 2 2

1 2 1 2

2 1
5 2 2

1 2

1 2
6 2 2

1 2

2
7 2 2

1 2

2 ,

1 1 1 1
,

6 4 12

41 1 1 1
, ,

6 3 4

1 1
,

12 3

8 1 1
,

3 6

1 1
.

4

s D

D
s

s s

D D
s

D D
s

D
s

 

    

 

    

  

  

 

=

   
= + + − +   

   

   
= + − = − +   

   

  
= + −   

  

  
= − +   

  

 
= + 

 

 (2-42) 

Since Eq. (2-39) is in implicit form, to facilitate its solution, we propose an approximate 

transformation method. Considering the variable   when it is sufficiently large, we have: 

 ( )
1

2
1 2 1

1 4 1 .R H H
 

= + −  −  (2-43) 

Substituting Eq. (2-43) into Eq. (2-40) and (2-41), the new expression of (2-40) and (2-41) 

are: 

 ( )
1 3

2 2 4 42 2
1 3

2 2
,

s s s s
m H s H s H H

  

    
= − + + − +    
    

 (2-44) 

 ( )
1 3

2 5 5 7 72 2
6

2 2
.

s s s s
H H s H H

  

 
= − + + − + 

 
 (2-45) 

And the related FPK equation is: 

 
( )

( ) ( ) ( ) ( )( )
2

2

2

, 1
, , .

2

p H t
m H p H t H p H t

t H H


  
= − +    

 (2-46) 

Applying Eqs. (2-16) to (2-26), the Hamiltonian CFM differential equation can be obtained 

as follows: 

 

( )
( )

( ) ( )

1 2 3

4 5 6

d 1, 1 3
1, , ,

d 2 2

5
2, , 3, ,

2

H

p H H H

p p p

H H H

p p p

M t
L M t L M t L M t

t

L M t L M t L M t


  

  

−    
= − + − + −   

   

 
+ − + − + − 

 

 (2-47) 

where 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )( )

( )( )

1 3 4 2 4

7
3 2

7
4 1 2 6

5
5

5
6

1 2
1 , 1 ,

2
1 1 2 ,

1 1
1 1 2 ,

2

21
1 2 ,

2

1
1 2 ,

2

L s s L s

s
L s

s
L s s s

s
L

s
L

 
 

  
 

  
 

 


 


 
= − − = − 

 

   
= − + − −   

   

  
= − − + − − −   

   

 
= − −  

 

 
= − − − 

 

 (2-48) 

Using the above equation, we can obtain a semi-analytical solution for the transient probability 

density function of system (2-27). 

 In this section, the parameters are selected as Table 2-1: 

Table 2-1  Parameters 

Parameters Values Parameters Values 

0  -0.015   0.05 

  10 1D  0.01 

2D  0.1 1  1 

2  2   2.1 

m  120   0.3 

 

The trajectory and phase diagrams of system (2-27) are shown in Figure 2-1. According 

to the results, it is observed that the two sets of generalized coordinates converge to a stable 

point and a stable limit cycle, respectively. Figure 2-2 presents the potential function of the 

system. From the figure, it can be seen that the system has a minimum potential energy at the 

point ( )0,0 . 
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Figure 2-1 (a) Trajectory. (b) Phase diagram 

 

Figure 2-2 Potential function 

 ( ) ( ) ( )
1

1
, ,

N

CFM i MCS i

i

Ae t p H t p H t
N =

= −  (2-49) 

To quantify the accuracy of the CFM method and observe the trend of its error, we introduce 

the average error ( )Ae t , as expressed in equation (2-49). Figure 2-3 shows the influence of 

truncation values m   on the ( )Ae t   when 5,10, 20t =  . The results indicate that when 

10m   , the average error is nearly zero. However, when the truncation value m   fixed, 

increasing the time necessitates a higher truncation value m  to maintain accuracy. 

 

(a) (b) 
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Figure 2-3 The average error of the CFM method 

Figure 2-4 shows the real and imaginary parts of the CFM of system (2-27) when 

10,20,30,40t = . Figure 2-5 (a) illustrates the evolution of the system’s transient probability 

density function with time, where the lines represent results obtained using the CFM method 

and the scatter points represent results from Monte Carlo simulations. Figure 2-5(b) displays 

the joint Hamiltonian transient probability density function, where the lines indicate the peak 

positions of the transient probability density function at different times. The results indicate that 

the CFM method effectively reconstructs the evolutionary probabilistic characteristics of the 

stochastic Hamiltonian system. Additionally, the CFM method can compute the system's 

probabilistic characteristics at 40t =   within 3 seconds, while the Monte Carlo method 

requires over 500 seconds for the same calculation under identical conditions. Moreover, the 

results obtained using the CFM method exhibit greater continuity compared to those from the 

Monte Carlo method. From the perspective of the system itself, the peak value of the transient 

probability characteristics of system (2-27) decreases as time progresses, while the position of 

the probability peak increases over time. 

 

Figure 2-4  The (a) real part and (b) imaginary part of CFM when 10,20,30,40t =  

(a) (b) 
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Figure 2-5  (a) The transient PDF with different t , where the line is results by CFM method, the dot is 

the results by Monte-Carlo method; (b) The distribution map of the peak of transient PDF 

Figure 2-6 (a) illustrates the impact of parameter 0  on the system's transient PDF. The 

lines represent results obtained from the CFM method, while the points are derived from Monte 

Carlo simulations. The results show that an increase in parameter 0  reduces the peak of the 

transient PDF, indicating an enhanced diffusion effect in the system. Figure 2-6 (b) displays the 

distribution of the peak values of the PDF in the phase space ( )0,t  . It is evident that increases 

in both time t  and parameter 0  lead to greater system diffusion. 

 

Figure 2-6  (a) The transient response PDF with different 0  when 20t = . (b) The peak value of 

transient PDF in the parameter space ( ),t   

Figures 2-7 (a-b) show the variation in the transient PDF of a Hamiltonian system at time 

20t =  with respect to additive noise intensity 1D  and multiplicative noise intensity 2D . The 

results indicate that increases in both external and parametric excitation reduce the peak value 

of the transient PDF. Figure 2-8 illustrates the distribution of the peak values of the transient 

(a) (b) 

(a) 
(b) 
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PDF in the parameter space ( )1 2,D D . The results show that increases in both 1D  and 2D  

enhance the system’s diffusion trend. 

 

Figure 2-7  The transient response PDF with different noise intensity when 20t = . (a) 1D ; (b) 2D  

 

Figure 2-8  The peak value of transient PDF in the parameter space ( )1 2,D D  when 20t =  

This chapter proposes an approximate transformation method suitable for Hamiltonian 

systems, which effective for large  . To examine the influence of   on the accuracy of CFM 

method, Figure 2-9 (a) shows the transient PDFs for different system parameters  . Figure 2-

9 (b) illustrates the change in average error at 5t =  and 20t =  when  7,30 . The results 

indicate that changes in parameter   consistently have a minimal and stable impact on the 

outcomes at different times. 

 

 

 

(a) (b) 
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Figure 2-9 (a) The influence of   on transient PDF of system; (b) Average error of the CFM method 

with   when 5t =  and 20t =  

Additionally, we examined the impact of initial values on the accuracy of CFM method in 

Hamiltonian systems and its effect on probability evolution. Using the initial value parameters 

shown in Table 2-2, Figure 2-10 depicts the distribution of the transient PDF at 10t = . The 

results indicate that the accuracy of the CFM method which applied to stochastic Hamiltonian 

systems is not sensitive to initial values. However, from the system’s perspective, increasing 

the initial values significantly reduces the peak of the transient probability density function, 

promoting diffusion behavior in stochastic Hamiltonian systems. 

Table 2-2  Initial value 

1Q  2Q  1P  2P  H  

0 0 0 0 0 

0.5 0 0 0 0.2813 

1 0 0 0 3 

1 0.5 1 1 12 

 

Figure 2-10 Transient response with different initial value when 10t =  

 

(a) (b) 
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2.5. Conclusion 

This chapter evaluates the applicability of the complex fractional moment method in 

stochastic Hamiltonian systems excited by additive and multiplicative Gaussian white noise. It 

investigates the effects of time and parameter variations on the system using results obtained 

from the complex fractional moment method. First, the Hamiltonian stochastic averaging 

method is used to derive a one-dimensional Hamiltonian Itô stochastic differential equation and 

the corresponding FPK equation. Subsequently, the Mellin transform is applied to derive ODEs 

for the complex fractional moments, leading to a set of 2m   ODEs through variable 

normalization. By solving these equations numerically and applying the inverse Mellin 

transform, a semi-analytical solution for the transient probability density function of the system 

at various times is reconstructed. The numerical results indicate that the complex fractional 

moment method is applicable to stochastic Hamiltonian systems, including cases where drift 

and diffusion terms are non-integer polynomials. The method demonstrates both high accuracy 

and computational efficiency in stochastic Hamiltonian systems. Additionally, this chapter 

explores the influence of parameter changes on the system’s transient probability characteristics, 

showing the increases in time, noise intensity, and initial values enhance system diffusion. 

Finally, a polynomial approximation method for the Hamiltonian system is proposed and its 

effectiveness is validated through numerical analysis under different values and times. 
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Chapter 3. Analysis of probabilistic evolution and first passage 

based on complex fractional moments in stochastic dynamic 

systems with fractional order differential operators 

3.1. Introduction 

Due to the superiority of fractional calculus in describing problems such as 

electrochemistry [122], porous media materials [123], turbulence [124], and biological 

characteristics [125], and it has garnered increasing attention from scholars. Currently, 

combining fractional calculus with the stochastic dynamic systems has become a new research 

hotspot, with many scholars attempting to study such systems. Examples include the stochastic 

response problem of self-excited systems with fractional derivative and the bifurcation behavior 

of oscillators under noise [126, 127]. Chen et al. studied the stable response of a Duffing 

oscillator with fractional derivatives under Gaussian white noise excitation [128] and extended 

fractional derivative terms to Hamiltonian systems [129] . Sun et al. examined the stochastic P-

bifurcation of stochastic nonlinear systems using fractional derivatives [130], providing critical 

conditions for parameter-induced stochastic bifurcations based on changes in the extremum of 

the probability density function. Zhang et al. analyzed the stochastic bifurcation of a double-

rhythmic system with fractional damping under different noise excitations for multi-attractor 

energy harvesters [4]. However, research on stochastic dynamic systems with fractional 

derivatives has largely focuses on stable situations, with little exploration of the probabilistic 

evolution of such systems. 

So far, efficiently and accurately obtaining the transient response probability density 

function for stochastic dynamic systems remains a significant challenge. Some methods, such 

as the Galerkin method, finite element method, finite difference method, path integral method, 

Wiener path integral method, and radial basis function neural network method, can provide 

numerical or semi-analytical solutions for the transient probability density function of 

stochastic dynamic systems. However, their computational efficiency can still be improved. The 

stochastic variable transform method [131, 132] has been shown to solve the first probability 

density function of stochastic homogeneous linear second-order complex differential equations. 

Since the transient response probability density function contains complete statistical 

information of the stochastic dynamic system, developing an efficient and accurate method for 

this purpose remains crucial, particularly for extended applications like system reliability. 

To address this issue, this chapter examines the probabilistic evolution and first passage 

problems of dynamic systems with Caputo-type fractional derivative terms under additive and 

multiplicative Gaussian white noise based on the complex fractional moment method. Section 

3.2 introduces the generalized harmonic transform method to equivalently replace fractional 

terms and derives the system’s FPK equation using the stochastic averaging method. Section 
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3.3 applies the complex fractional moment method to obtain a semi-analytical solution for the 

FPK equation. Section 3.4 establishes the equivalent description of the system’s complex 

fractional moments with the reliability function and first passage time. In Section 3.5, numerical 

experiments analyze the influence of system parameters on probabilistic evolution and verify 

the effectiveness of the stochastic reliability theory based on complex fractional moments. 

Finally, Section 3.6 summarizes the findings of this chapter. 

3.2. Equivalent expression and stochastic average of stochastic systems 

with fractional differential terms 

In this section, we consider stochastic dynamic systems with Caputo-type fractional 

derivatives. The equation of motion is described as follows: 

 ( ) ( ) ( ) ( )2

0

1

, , ,
n

C k k

k

X D X f X X X X g X X t   
=

+ + + =  (3-1) 

where ( ),0 1CD    represents the Caputo-type fractional derivatives operator, ( ),f x x

and ( ),kg x x  are polynomial with respect to x  and x , and ( )k t  are Gaussian white noise, 

and satisfied: 

 

( )

( ) ( ) ( )

( ) ( )

0,

2 ,

0, .

k

k k k

k j

E t

E t t D

E t t k j



    

  

=  

+ =  

 + =  

 (3-2) 

Where kD   represent the intensity of noise. In the case of weak damping and weak 

excitation, the Eq. (3-1) can be regarded as the system with a family of quasi-periodic solutions 

according to its the quasi-conservative property. According to the generalized harmonic 

function, the solution of the system (3-1) can be assumed as follow: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0cos , sin , ,x t A t t x t A t t t t t  =  = −   = +  (3-3) 

where ( )A t  and ( )t  represent the amplitude process and the phase process, respectively. 

and the fractional differential term of a system is not only related to the damping force, but also 

to the restoring force. Therefore, the Caputo fractional derivative term is expressed in the 

following format: 

 ( ) ( ) ( ) ( ) ( ).CD x C x t K x t  = +  (3-4) 

    To obtain the analytic expression of ( )C    and ( )K   , we introduce the following 

formulae: 
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( )
( )

( )
( )

0 1

0
0

0 1

0
0

sin
lim d 1 cos ,

2

cos
lim d 1 sin ,

2

T

T

T

T

t
t

t

t
t

t









 
 

 
 

−

→

−

→

=  −

=  −





 (3-5) 

and ( )C   can be obtained as follow: 

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )( ) ( )

( )

( )

( )

2

0
0

0

2

0
0

2

0
0

0 0
0

0

0

1
sin cos sin d

1
        sin d

1
        cos sin d

1 1
        lim cos sin d

sin2 1
        lim

1

C

T

C
T

T

C C A t K A t t
A

C x t K x t
A

D A
A

D A t t t
A T

u

T t u












   
 

 
 

 

   
 

 



→

→

 = − −  +    

= − +    

= −   

= − + +

 +
= 
 − −









( )0
0 0

sin d .
T t

du t t 
     
  +  
      

 

 (3-6) 

Let s t u= − , and Eq. (3-6) can be rewritten as: 

 

( )
( )

( )
( )

( )

( )
( ) ( )

( )

( )

0 0

0
0 0

0

0 0
0 0

0

0

sin2 1
lim sin d

1

cos2 1
        lim sin sin d

1

sin2 1
        lim

1

T t

T

T t

T

t

T

t s
C ds t t

T s

s
ds t t t

T s

s
ds

T s







  
  




   







→

→

→

  + −  
= +    
 −      

    
= + +    
 −      

  
−   
 −    

 

 

 ( ) ( )0 0
0

cos sin d ,
T

t t t   
  

+ + 
  



 (3-7) 

Appling Eq. (3-5), one can obtain: 

 ( ) ( )1

0 sin / 2 .C   −=  (3-8) 

After the similar procedure, the ( )K   can be obtained as follow: 

 ( ) ( )
2

0
0

0

1
cos cos d cos .

2
CK D A


  

 


=    =  (3-9) 

Substituting Eq.(3-8) and Eq.(3-9) into Eq. (3-4), we can obtain the equation as follow: 

 ( ) ( ) ( )1

0 0sin cos .
2 2

CD X X t X t   
 −= +  (3-10) 

Substituting Eq.(3-10) into Eq. (3-1), one can obtain the equivalent equation without fractional 

derivative: 
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 ( ) ( ) ( ) ( )2

1

, , ,0 1,
n

i k

k

X C f x x X X g X X t     
=

+ + + =       (3-11) 

where ( )2 2

0K   = +  The above method approximates the non-Markov system (3-1) with 

a Markov system (3-11). Utilizing Eqs. (3-1) and (3-3), we can obtain: 

 ( ) ( ) ( ) ( ) ( )
1

sin
, , ,

n

k k

k

A t C f x x x g x x t   
 =

  
= + −   

 
  (3-12) 

 ( ) ( ) ( ) ( ) ( )
1

cos
, , .

n

k k

k

t C f x x x g x x t
A

    
 =

  
= + −   

 
  (3-13) 

Let ( ) ( )1

sin
, = ,k kg x x g x x




 , ( ) ( )2

cos
, = ,k kg x x g x x

A


 , and applying the stochastic 

averaging method, the fast variables of the system are eliminated, the Itô stochastic differential 

equation governing the slow variable amplitude process can be expressed as: 

 ( ) ( ) ( )d d d ,A m A t A B t= +  (3-14) 

where 

( ) ( ) ( ) ( )
( )

( )
2

1

1 , 1

,sin 1
, , ,

2

n
r

rs ls

l r s l t

g A t
m A C f x x x R h g A t h

x
  

 = =


= + + +   



 (3-15) 

 ( ) ( ) ( ) ( )2

1 1

, 1

, , ,
n

rs r s

r s t

A R h g A t g A t h
=

= +  (3-16) 

where ( )rsR h  are the correlation functions of two Gaussian white noises, and 

 
2

0 0

1 1
lim  d  d ,

2

T

t T
f f t f

T



→
= =    (3-17) 

Usually, the drift term ( )m A  and the diffusion term ( )2 A  are the polynomial functions of

A , satisfy 

 ( ) ( )
1 2

2

1 2

1 0

,   ,
l l

j j

j j

j j

m A c A A c A
=− =

= =   (3-18) 

where 1 2,j jc c   are the polynomial coefficients. The FPK equation of system (3-11) can be 

expressed as： 

 
( )

( ) ( ) ( ) ( )
2

2

2

, 1
, , ,

2

A

A A

p a t
m a p a t a p a t

t a a


  
 = − +      

 (3-19) 

where ( ),Ap a t  is transient PDF, and the initial condition is ( ) ( )0,A Ap a t p a= , where 
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 ( ) ( )0 0 ,Ap a a a= −  (3-20) 

( )0a a −  is Dirac-Delta function. The boundary conditions of Eq. (3-19) are 

 ( ) ( ) ( )
0

lim , ,  lim , 0,  lim , / 0.A A A
a a a

p a t p a t p a t a
→ → →

 →   →  (3-21) 

3.3. Application of complex fractional moment method 

The CFM method is a semi-analytic method based on Mellin transform and the FPK 

equation to obtain the PDF of the system transient response. According to the definition of CFM, 

we denote the CFM of PDF ( )Ap a  in probability sense by ( ) ;Ap a   as: 

 ( )  ( ) ( ) 1 1

0
; 1 d ,A p Ap a M p a a a E A  


− − = − = =    (3-22) 

where i  = + , i  represents the imaginary unit. The existence of the inverse of Eq. (3-22)

is that the real part of   belongs to FS, namely ( ),p q − − , where 

 ( ) ( ) ( ) ( ), 0;   , ,p q

A Ap a a a p a a a= → = →  (3-23) 

which is introduced in section 1.3.4. If the inverse Mellin transform exist, then we have 

 ( ) ( ) 
1

; d .
2

A Ap a p a a  



−

−
=   (3-24) 

According to CFM method, and substituting Eq. (3-18) and Eq. (3-22) into Eq. (3-19), 

we can obtain the following equation: 

 

( )
( ) ( )

( )( ) ( )

1

2

1

1

2

0

           .        

d
2

     

1,
1 ,

d

1
1 2 3 ,

2

l
p

j p

j

l

j p

j

M t
c M j t

t

c M j t


 

  

=−

=

−
= − − +

+ − − − +





 (3-25) 

Due to the existence of multiple variables in Eq. (3-25), it cannot be solved directly. Here 

we introduce the normalized equation, 

 ( )

( ) ( )

( )

( ) ( ) ( )

1 1

0

0

0 0 0

e e
2 / 1,

1

1, ,

exp 1 exp 1 / 1

j j
m

p j

j m j
j

p

M t

M t

 
 

 

  



 

  
 

− − −
 

=−


 
− 

 − − − + 
 − =

    
− − − − − +    
     



 (3-26) 

and the normalization condition, 
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where 
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According to Eqs. (3-24)-(3-28), the semi-analytical solution of Eq. (3-19) can be 

obtained as follow: 
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d 1,
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d
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−
= − +  (3-29) 

where 0A  is a matrix with 2 2m m  elements, 0B  is a vector with 2 1m  elements. 

3.4. Reliable function and first passage time 

 In this section, we propose a new method to obtain the first passage time based on the 

definition of fractional moments. According to the definition of fractional moments and the 

description in Section 1.3.3, we substitute Eq. (3-24) into Eq. (1-9), then  
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where  ,l ca a  is the integral domain, and 
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Therefore, the discretization equation of Eq. (3-30) can be expressed as 
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According to the definition of first passage time, we have 
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Based on Eq. (3-30), Eq. (3-33) can be rewritten as: 
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thus 

 ( ) ( ) ( )
1
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−
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where 

 ( ) ( )0 01, 1, .p pM t A M t B − = − +  (3-36) 
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The discretization form of Eq. (3-35) can be expressed as 
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or 
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Since ( )0 1,pM t −   are represented as a linear combination of ( )1,p jM t −  , here, we 

introduce the normalization expression of the derivatives of CFM. According to Eq. (3-26), By 

differentiating both sides of the equation with respect to t , we obtain 
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 (3-39) 

Substitute Eq. (3-39) into Eq. (3-38), ( ),Tp t a  can be obtained quickly and directly.  

3.5. Numerical simulation 

Usually, the dynamic system is subjected to internal and external noise excitation, where 

additive noise and multiplicative noise are used to describe these two types of noise, 

respectively. The research shows that when additive and multiplicative noises exist in the 

system simultaneously, the system may lead to asymmetric or skewed non-Gaussian probability 

distribution. In addition, the exist of multiplicative noise can cause more complex dynamics in 

the phase space of the system. Thus, considering the following system:  

 ( ) ( ) ( )2 4 2

1 2 0 1 1 2 21 ,CX D X b X b X X X c t c X t    + + + + + = +  (3-40) 

where 0 1  , and the fractional term is the Caputo-type fractional derivative introduced in 

section 1.3.4, which is defined as: 

 ( )( )
( )

( )

( )0

1
d .

1

t

C

X s
D X t s

t s




=
 − −

  (3-41) 

According to Eq. (3-10), Eq.(3-40) can be written as: 
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Here, Eq. (3-42) can be rewritten as follows: 
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 ( ) ( )2 4 2

1 1 2 1 1 2 2 ,X b X b X X X c t c X t      + + + + = +   (3-43) 

where 1

1 0 sin
2

 
  −= + , and 2 2

0 0cos
2

 
  = + . Utilizing Eqs. (3-12)-(3-18), the 

drift term and diffusion coefficient can be expressed as: 
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c D c D
A A

 
= +  (3-45) 

3.5.1 Error analysis 

 
Table 3-1  System parameters 

Parameters Values Parameters Values 

  4.1 m  120 

  0.5   -0.01 

  0.9   0.05 

0  1 1b  0.1 

2b  0.1 1D  0.01 

2D  0.1 1 2,c c  1 

 

 
(a) (b) 
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Figure 3-1 The average error of CFM method with the cutoff value m  and fractional order  . The 

distribution map when (a) 10t = ; (c) 15t = ; (e) 20t = . The PDF obtained by CFM method with different 

cutoff value when (b) 10t = ; (d) 15t = ; (f) 20t =  when 0.5 =  

 

In this section, we use the system parameters listed in Table 3-1. Figures 3-1 (a)(c)(e) show 

the trends of average error in the CFM method with respect to time t , truncation value m , 

and fractional order   , where the z-axis represents the error magnitude. The definition of 

average error in this section is the same as in Eq. (2-49) in Chapter 2. As illustrated in Figure 

3-1, when 26m , the CFM method is not applicable for solving the transient response PDF 

of system (3-40). The results also indicate that the fractional order   has an insignificant 

impact on the probability evolution of system (3-40). Figures 3-1 (b), (d), and (f) depict the 

transient probability characteristics obtained under different truncation values and time 

conditions. The results indicate that the error of the CFM method decreases with increasing 

truncation values, while the required truncation value for accuracy increases with time. 

(c) (d) 

(e) (f) 
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Figure 3-2  (a) The trajectory of system amplitude; (b1-b5) The PDF when 4,8,12,16,20t =  

 

Figure 3-2 (a) illustrates the evolution of the amplitude of system (3-40), with red dots 

marking the peak positions of the transient probability characteristics at different times. Figures 

3-2 (b1-b5) present the transient PDF of the system when 4,8,12,16,20t = , where the lines 

represent results obtained using CFM method and the scatter points correspond to Monte Carlo 

Simulation results. A stepwise algorithm was used to handle the fractional differential terms in 

the system. The results demonstrate that the CFM method accurately captures the transient 

response PDF at different times. Moreover, the CFM method is computationally efficient, with 

computation times for the results at different times remaining within 3 seconds. Furthermore, 

from the system's perspective, an increase in time reduces the peak of the transient probability 

characteristics. 

 

Figure 3-3 (a1-a4) The trajectory of system amplitude; (b1-b4) The PDF when 10t =  and 

0.1,0.2,0.5,0.9 =  

 

Figure 3-3 (a1-a4) display the trajectories of amplitude of the system (3-40) with different 



Chapter 3 Analysis of probabilistic evolution and first passage based on complex fractional moments  

 41 

   when 10t =  , in which the red points are the positions of the probability peaks when 

0.1,0.2,0.5,0.9 = . Figure 3-3 (b1-b4) are the amplitude PDF with different   when 10t = .  

According to the pictures, the CFM method remains high computational efficiency when   

changed. In addition, the change of   has no obvious effect on the evolution of the system. 

 

Figure 3-4 (a1-a4) The trajectory of system amplitude; (b1-b4) The PDF when 10t =  and 

1 0.001,0.01,0.1,0.2D =  

Figure 3-4 (a1-a4) exhibit the amplitude trajectories of the system (3-40) when 1 0.001D =  

and 0.01,0.1,0.2 , in which the red points are the positions of the probability peaks. Figure 3-4 

(b1-b4) are amplitude PDFs with different noise intensities 1D . According to the results, the 

CFM method can still maintain high computational accuracy for different noise intensities 1D . 

In addition, the increase of the noise intensity 1D  will reduce the peak value of the transient 

PDF of the system, and the position of the peak appears to move to a larger amplitude. 

 

Figure 3-5 (a1-a4) The trajectory of system amplitude with 2D ; (b1-b4) The PDF when 10t =  and 

2 0.001,0.01,0.1,0.5D =  

Figure 3-5 (a1-a4) display the amplitude trajectories of the system (3-40) under different 
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noise intensities 2D , in which the red points are the positions of probability peaks when 10t = . 

Figure 3-5 (b1-b4) are the transient PDF when 10t = . From Figure 3-5, the change of 2D  will 

not affect the accuracy of the CFM method. In addition, the increase of noise intensity 2D  will 

decrease the transient amplitude PDF of the system peak, but the location of the peaks does not 

change significantly. 

3.5.2 Probability evolution analysis 

Currently, research on the steady-state probability density functions of stochastic dynamic 

systems is relatively advanced within the field of stochastic dynamics. The influence of system 

parameters on the evolution of steady-state probability densities, such as the mechanisms 

driving stochastic P-bifurcation, is well understood. However, there has been limited discussion 

regarding the probabilistic evolution characteristics during stochastic bifurcation. This section 

aims to analyze this issue. Based on Eqs. (3-44) and (3-45), we can derive the system's FPK 

equation. Let ( ), / 0p a t t  = , then the stationary PDF can be obtained as follows: 

 ( ) ( ) 1
22 2 2 2

1 1 2 24 4 ,
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Ap a aN c D c D a e= +  (3-46) 
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and N  is the normalization constant. Based on Eq.(3-46), let ( ) / 0p a a  = , then we can 

obtain: 

 ( )2 6 2 4 2 2 2 2

2 1 1 2 2 1 12 8 2 8 0.b a b a c D a c D   + + − − =  (3-48) 

 

Figure 3-6 Stationary bifurcation diagram of system 
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Figure 3-6 presents the bifurcation diagram in the parameter space ( )1 2,b b , where 1 , 

2  and 3  denote that Eq. (3-48) has zero, one and two positive real roots, respectively. 

According to the bifurcation diagram, the parameters used in the following analysis are shown 

in Table 3-2.  

 

Table 3-2  System parameters 

Parameters Values Parameters Values 

  4.1 m  200 

  0.48   0.05 

  0.5   0.05 

0  1 1b  0.5 

2b  -0.015 1D  0.1 

2D  2 1 2,c c  1 

 

 

Figure 3-7 (a) Stationary PDF of system with different  ; (b-d) Joint PDF when 0.05,1,1.3 =  

Figure 3-7 (a) shows the stable PDF of system (3-40), with the red dot indicating the 

coordinate of the peak of stable PDF. Figure 3-7 (b-d) display the joint PDF of displacement 

and velocity for different parameter values. The results indicate that as   changes, both the 

number and shape of the peak in the stable PDF of system (3-40) change. Additionally, the 

(a) 

(a) 

(b) (c) (d) 
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joint probability distribution of the system transitions between unimodal and bimodal, 

indicating the occurrence of stochastic P-bifurcation. 

 

Figure 3-8 (a) Joint transient PDF；(b) Diagram of peak coordinate 

 

Figure 3-9 The diagram of modulus of joint CFM 

 

The joint amplitude PDF of amplitude and time is shown in Figure 3-8 (a), where the gray 

line is the peak position of the PDF. Figure 3-8 (b) presents the diagram of peak position 

associated with Figure 3-8 (a). In this part, we define the left, middle, and right part of Figure 

3-8 (b) as the first, second, and third stages, respectively. From the diagram, the transient PDF 

located in first stage is characterized by single peak with small values. The transient PDF 

evolves into double peaks in the second stage when 3.6t = , then transfer to the third stage 

when 12.8t =  , where the transient PDF is characterized by single peak with large values. 

Figure 3-9 presents the modulus of joint CFM of m  and time, which correspond to Figure 3-

8. From Figure 3-9, the modulus of CFM of the system enters the “surge region” and “plateau 

region” when 3.6t =  and 12.8t = , respectively. 

(a) (b) 

(a) (b) 



Chapter 3 Analysis of probabilistic evolution and first passage based on complex fractional moments  

 45 

 

Figure 3-10 The transient amplitude PDF for different time. (a) 2t = ; (b) 10t = ; (c) 23t =  

 

Figure 3-11 Joint PDF of displacement and velocity when (a) 2t = ; (b) 10t = ; (c) 23t =  

 

The transient PDF of the system when 2,10, 23t =  is shown in Figure 3-10 (a-c), in which 

the lines are the results obtained by the CFM method, and the scattered points are the results 

obtained by the MCS method. According to the results, the error of the CFM method increases 

slightly, but it can accurately describe the state of the transient PDF. Figure 3-11 (a-c) are the 

joint transient PDF of displacement and velocity. The joint PDF of the system appears “one 

peak”, “three peaks”, and “two peaks” in three stages, respectively. 

 

(a) (b) (c) 

(a) (b) (c) 
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Figure 3-12 Distribution of peak for different parameters. (a) 0.9 = ; (b) 0.1 = − ; (c) 1 0.2D = ; (d)

0.1 =  

 

The influence on the evolution of transient PDF when the system parameters change is 

shown in Figure 3-12 (a-d). Compared to Figure 3-8 (b), the increase of   has little effect on 

the evolution from the first stage to the second stage, but it will accelerate the evolution from 

the second stage to the third stage, which means that the second stage of evolution will be 

shorter. Furthermore, the decrease of    will extend the evolution time from first stage to 

second stage and accelerate the evolution from second stage to third stage. In addition, the 

increase of the noise intensity 1D  will accelerate the probability evolution, the evolution time 

of the first and second stages will be shortened. Besides, the increase of   will delay the 

evolution time of the system probability from the second stage to the third stage, but the 

evolution time in the first stage has not changed, which means that the time the probability 

evolution stays in the second stage increases. 

 

(a) (b) 

(a) (b) 

(c) (d) 

(c) (d) 
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3.5.3 Reliability function and first passage analysis 

In this section, we mainly consider the first passage time of stochastic dynamic system. 

Here, the system parameters are selected as follows: 

 

Table 3-3  System parameters 

Parameters Values Parameters Values 

  4.1 m  120 

  0.5   -0.01 

  0.5   0.05 

0  1 1b  0.1 

2b  0.1 1D  0.01 

2D  0.1 1 2,c c  1 

lA  0.1 cA  0.8 

 

Figure 3-13 Schematic diagram of reliability function 

 

According to the definition of the reliability function, the reliability function is the 

probability that the system is between  ,l cA A   when time is t  . The schematic diagram of 

reliability function is shown in Figure 3-13, where the line is the PDF of the system when 

4,8,12,16,20t = , and the shaded area is the range of the reliability function. According to the 

novel method proposed in this chapter, the reliability function and the first passage time of the 

system can be obtained by Eq. (3-30) and Eq. (3-39). 
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Parameter of   

 

Figure 3-14 The diagram of (a) Reliability function; (b) FPT with different   

 

Figure 3-15 (a) Average error of reliability function. (b) Average error of FPT. with 

 

Figure 3-16 (a) Joint distribution of reliability function in ( ),t  ; (b) Joint distribution of FPT in ( ),t   

(a) (b) 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 3-14 shows the reliability function and first passage time of the system under 

different  , where the line represent the results obtained by the novel method, and the scatter 

represent the results obtained by MCS method. Figure 3-15 presents the average error of the 

novel method. Compared to MCS method, the novel method has high accuracy, and greatly 

improve the calculation speed in the process of calculation. In addition, the increase of   

reduce the reliability in the tail. Figure 3-16 displays the joint distribution diagram of the 

reliability function and the FPT with time and  . 

 

Parameter of 1D  

 

Figure 3-17 The diagram of (a) Reliability function; (b) FPT with different 1D  

 

Figure 3-18 Average error of (a) Reliability function; (b) FPT with different 1D  

(a) (b) 

(a) (b) 
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Figure 3-19 (a) Joint distribution of reliability function in ( )1,t D ; (b) Joint distribution of FPT in ( )1,t D  

 

Figure 3-17 shows the diagram of reliability function and FPT when the noise intensity 1D  

change, and Figure 3-18 displays the average error of CFM method. It can be seen from the 

pictures that the novel method has high accuracy for different 1D  in calculating the reliability 

function and the FPT. In addition, the increase of 1D , will obviously change the reliability 

function and the FPT of the system, which will increase the value of reliability function. Figure 

3-19 exhibits the joint distribution diagram of the reliability function and the FPT of noise 

intensity 1D  and t . 

 

Parameter of   

 

Figure 3-20 The diagram of (a) Reliability function; (b) FPT with different   

(b) (a) 

(a) (b) 

(a) (b) 
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Figure 3-21 Average error of (a) Reliability function; (b) FPT with different   

 

Figure 3-20 presents the reliability function and the FPT of the system under different 

values of parameter  , where the lines represent results obtained by novel method, and the 

scatter is the results obtained by MCS method. Figure 3-21 illustrates the average error of the 

novel method. According to the pictures, the novel method can accurately solve reliability 

function and the FPT under different  . In addition, the results exhibit that the increase of   

will increase the results of the reliability function and the FPT when t  is large. Figure 3-22 

shows the joint distribution diagram of the reliability function and the FPT of   and t . 

 

Figure 3-22  (a) Joint distribution of reliability function in ( ),t  ; (b) Joint distribution of FPT in ( ),t   

3.6. Conclusion 

This chapter examines the applicability of the complex fractional moment method for 

stochastic dynamic systems with Caputo-type fractional derivatives under additive and 

multiplicative Gaussian white noise excitation, focusing on their probabilistic evolution 

characteristics and reliability. Using the stochastic averaging method, we derived the stochastic 

(a) (b) 

(a) (b) 

(a) (b) 
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Itô differential equation governing the slow variable amplitude process of the system, as well 

as the FPK equation governing the system's transient probability density. The complex 

fractional moment method was introduced to obtain a semi-analytical solution for this equation. 

Compared to traditional methods based on data statistics for obtaining probabilistic 

characteristics, the complex fractional moment method maintains computational accuracy 

across different scenarios and significantly improves computational efficiency. Furthermore, 

based on the results obtained through the complex fractional moment method, this chapter 

discusses the evolution process of the transient amplitude response probability density function 

and the joint transient probability density function, as well as the effects mechanisms of time 

growth and system parameter changes. Additionally, for the first time, the mechanisms through 

fractional orders, noise intensity, and system parameters influence the transient probability 

density during stochastic P-bifurcation in steady-state scenarios were discussed. Moreover, a 

new method is proposed based on complex fractional moments to obtain the reliability function 

and first passage time, equivalence between the reliability function, first passage time, and 

complex fractional moments is established. Numerical simulations demonstrate that the 

proposed method offers both high accuracy and computational efficiency. The results indicate 

that the fractional order has a minimal impact on the reliability function and first passage time, 

while variations in noise intensity and system parameters significantly affect the system's 

reliability function and first passage time. 
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Chapter 4. Laplacian generalization and application of complex 

fractional moments 

4.1. Introduction 

The Probability Density function (PDF), or equivalently its Fourier Transform (FT), known 

as the Characteristic Function (CF), fully characterize the Random Variables within a 

probabilistic framework. In various fields, including physics, biomechanics, heat transportation, 

the governing differential equations are typically nonlinear and incorporate stochastic inputs 

such as Normal, Poisson,  -stable white noises. The evolution of the PDF is described by the 

associated Fokker-Planck-Kolmogorov (FPK) equation. As regards, numerous methods, both 

approximate and exact, exist for determining the PDF of the response process. Additionally, 

techniques such as the path integral method, based on the Chapman-Kolmogorov equation, are 

explored in [133-135]. This approach is particularly effective for systems driven by Gaussian 

or Poisson white noise, especially in addressing the barrier problem [82, 136, 137]. To address 

the loss of Markovianity in response processes involving fractional derivatives, recent literature 

has proposed the Wiener path integration method.  

One notable drawback of the path integral method is its time-consuming nature, particularly 

when dealing with distributions that exhibit heavy tails, such as the  -stable distribution [138, 

139]. Another significant limitation arises when random phenomena are derived from 

experimental data or Monte Carlo simulations; methods relying on integer moments or 

moments of the form JE X
 

   with J
+  prove inadequate for accurately reconstructing 

the PDF [140, 141]. Solutions to the Fokker-Planck equation that utilize Taylor expansion of 

the CF in terms of integer moments or cumulants often yield unsatisfactory results for nonlinear 

systems. This is because the governing equations involve an infinite hierarchy of differential 

equations, and truncating the Taylor expansion of the CF produces divergent CF values, and 

consequently the PDF may not be reconstructed by the expansion of the CF. Additionally, 

methods based on Maximum Entropy Principle in terms of integer moments or fractional 

moments work well only for some distributions of the PDF. 

Further, the reconstruction of the PDF with a limited amount of information is not 

applicable to all probability distributions. This is because all available information is evaluated 

in real domain, and for  -stable distribution ( )0 2  , moments of order JE X
 

   exist 

only for J = , meaning that the moment greater than two does not exist. To address these 

challenges, recently studies propose a method for reconstructing the PDF (or equivalently, the 

CF), based on the evaluation of Complex Fractional Moments of the type 
1E X  −    , 

i  = + . These CFMs are basically the Mellin Transform (MT) of the PDF. If   is properly 
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selected, the inverse MT returns the PDF as a Fourier series in logarithmic scale of the domain 

x  of the PDF. Using this concept, numerous publications for solving various problems are 

available.  

Drawing from this experience, we recognize that working in the complex domain can 

effectively reconstruct the PDF using integral transforms. However, these transforms come with 

distinct applications and limitations; for instance, the Mellin transform has a singularity at 

0x =  . To extend the theoretical framework for reconstructing the PDF invoking complex 

quantities, a method based on Laplace transform is discussed in detail and compared with the 

method based on the MT. It is shown that the presented method leads to work with moments of 

the form ( )expE sX−    , where s i = −  . These moments, derived from the Laplace 

transform, generate the so called, Shifted Characteristic Function (SCF), as the presence of   

corresponds to the shift property of the Laplace transform. Utilizing these complex quantities, 

the PDF can also be reconstructed.  

Furthermore, a new definition of double-sided LT is introduced, remaining valid for PDF 

reconstruction. The solutions to the Fokker-Planck-Kolmogorov (FPK) equations for the 

double-sided PDF are presented. To demonstrate the versatility of the Laplace transform method, 

examples illustrating solutions for classical differential equations, fractional differential 

equations, and FPK equations are included. Lastly, a comparison between the Laplace and 

Mellin transform methods is provided. In the latter, a refined definition of the inverse Mellin 

transform is proposed to address the singularity issue at 0x = , which has been a concern in 

previous studies. 

4.2. Discretization of the inverse LT for the Probability Density Function 

First of all, representing the generic function ( )f x  in Eq. (1-14) as ( )Xp x , namely the 

PDF of the RV X  with domain 0x  , the FT of ( )Xp x  is, by definition, the Characteristic 

Function (CF) labeled as ( )X  , which is given by: 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0 0

d

cos d sin d ,
X X

i X i x

X X X

X X p p

E e e p x x p

x p x x i x p x x A iB

   

   



 

 = = = 

= + = +



 
 (4-1) 

where  E  represents the mean value of the RV, ( )
XpA   and ( )

XpB   are the real and the 

imaginary part of ( )X  , respectively. 

 The cosine transform ( ( )
XpA  ) and the sine transform ( ( )

XpB  ) are even and odd function 

with respect to   , respectively. Moreover ( )
XpB    is the Hilbert transform of ( )

XpA   , 

namely 
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 ( ) ( ) ( )
11
d ,ˆ

X X Xp p pB AA     




−

−

== −  (4-2) 

where the symbol  in Eq. (4-2) stands for Cauchy Principle Value (PV) of the integral in 

parenthesis, and the superimposed   stands for the Hilbert transform operator. 

 On the other hand, since  

 ( ) ( )  ( ) 
0

; ; ,d X

x x

X

i x

Xe xp x e x e p p x s  − −


==  (4-3) 

the LT of the one-sided PDF may be considered as a Shifted Characteristic Function (SCF), 

namely 

( )  ( ) ( ) ( ) 
0

; d ; .S x i x x sX

X X X Xp x s i e p x e x e p x E e     


− − − = − = = =    (4-4) 

Where the apex S  in the CF means shifted. 

 The inverse LT, according to Eq. (1-16), returns ( )Xp x  in the form 

 ( )
1

d .
2

sX sx

Xp x E e e 



− −

−
 =    (4-5) 

Let 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

cos d sin d ,
X X Xp

S x x

X p XA s xi e p x x x i e p x xB s     
 

− −++= =    (4-6) 

where ( ) ( )X
X

ppB s A s= . The discretized form of Eq. (4-5), obtained by dividing the   axis 

in small intervals   of equal length, can be expressed as: 

 ( ) ( )  ,;
1

2
k

X k

s x

X

k

p x sp x e
b



=−

   (4-7) 

where /b  =   , /ks ik b = +  . By taking into account ( ) ( )
X Xp pA i A i   + = −   and 

( ) ( )
X Xp pB i B i   + = − − , Eq. (4-7) may be rewritten as: 

 ( ) ( ) ( ) ( )
1

2 cos sin ,
2 X X X

x m

X p p k p k

k

e k k
p x A A s x B s x

b b b

  


=

     
+ +     

     
  (4-8) 

where m  is the cut-off value in the domain  . In passing we observe the significance of the 

first term that is ( ) ( )exp
XpA E X = −   , it follows that the higher  , the larger the shift of 

SCF is. The coefficient can be expressed as: 
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( ) ( )

( ) ( )

( ) ( )

2

0

2

0

2

0

d ,

cos d cos ,

sin d sin .

X

X

X

b
x X

p X

b
x X

p k X

b
x X

p k X

A p x e x E e

k k
A s p x e x x E e X

b b

k k
B s p x e x x E e X

b b

 

 

 



 

 

− −

− −

− −

 = =  

    
= =    

    

    
= =    

    







 (4-9) 

From Eq. (4-9), we observe that only in the limit as 0 → (b→ ), for 0 = , the 

total area of the PDF is unitary. This observation is useful for properly selected   and the 

corresponding b  to ensure an accurate representation of the PDF in discretized form. 

As previously stated the very relevant aspect in the inverse Laplace transform in Eq. (4-5) 

is that the integral is performed along the imaginary axis   while   remain constant, this 

implies that the existence of statistical moments of the form ( )expE X−    guarantee the 

existence of ( )( )expE i X  − −   for every value of  . 

In many engineering problems, the governing Fokker Planck equations involves derivative 

of the PDF, along with products of the PDF by some non-linear functions of the form 

( ) ( )
1

exp /
n

j X

j

x p x x
=

  − 
   . This results in the corresponding SCF being evaluated in 

different values of  . Consequently, such equations may not be solvable in Laplace domain. 

To solve these problems by using the representation of the PDF in terms ( )
Xp kA s , ( )

Xp kB s , 

we need to address the following problem: Is it possible finding ( )
Xp kA s +  and 

( )
Xp kB s +   if ( )

Xp kA s  , ( )
Xp kB s   are known? In order to solve this crucial issue, we 

observe that ( )Xp x  in Eq. (4-8) is independent on  , provided that   belongs to the FS 

of the LT, it follows that from Eq. (4-8), we can write 

    

( ) ( ) ( )

( ) ( ) ( )

1

1

2 cos sin

2 cos sin ,

X X X

X X X

m

p p k p k

k

m
x

p p k p k

k

k k
A A s x B s x

b b

k k
e A A s x B s x

b b



 
   

 


=

−

=

    
+  + +  + +     

    

     
= + +     

     





     (4-10) 

by multiplying both sides of Eq. (4-10) by cos d ,  1,2,...,
J x

x J m
b

 
= 

 
 and sin d

J x
x

b

 
 
 

, 

and integrating in the range  0,2b , due to the orthogonality conditions of the trigonometric 

function in  , 2a a b+ , we get: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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1 1
,

2

1 1
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 (4-11) 

where 
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J
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b
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=
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 (4-12) 

Eq.(4-12) constitute a set of 2 1m+   linear algebra equations that can be expressed in 

matrix form as: 

 ( ) ( )
1

;   ,   0,
2

p ps s s i
b

   +  = = −  a D a  (4-13) 

 ( )

( )

( )

( )

( )

( )

( )

( )

00 0 0

0

0

2 2 ;  ;  .

2 2

X X

X X

X X

p pJ J

J p p k p p k

J p k p k

A Aa

s s s s

s s

  

 



 



   +  
    

= = + = +    
        +      

D A C a a

C B

a b

a A A

b B B

 (4-14) 

Here, ( )p +a s  and ( )pa s  are vectors with 2 1m+  components. In the matrix D , the 

first row of the ( ) ( )2 1 2 1m m+  +   matrix D   contains 00a  , ( )0 0,...,J J m =a   and 

( )0 1,2,...,J J m =b , the symmetric matrix A  is a m m  matrix, where ,J k  element is Jka , 

the matrix B   is a m m   symmetric matrix where ,J k   element are Jkb  . Moreover the 

matrix C  is a m m  matrix where ,J k  element is Jkc . If 0 = , then D  is 2 12 mb +I , 

being 2 1m+I  the ( ) ( )2 1 2 1m m+  +  identity matrix. By means of Eq. (4-13), the vector 

( )p s +a  is constructed by knowing ( )p sa , Eqs. (4-10)-(4-14) remain valid provided   

and  +   belong to the FS of the Laplace transform. From Eq. (4-13), we realize that if we 
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select 0 = , the vector ( )p sa  becomes the corresponding Fourier vector, and the matrix 

D  reverts to the corresponding D . 

 

4.3. Generalization for double-sided PDF 

The probability density function of a RV is generally not one-sided. In this case, we need 

to adapt the concepts used in the previous sections to the double-sided case. First of all, noticing 

that the Laplace Transform applies to one sided function and is widely used for solving 

differential equation with assigned initial conditions in zero. It follows that in probabilistic 

setting for double-sided PDF, we need to generalize LT in the domain x   defined in 

x−  , leading to the definition of the double-sided LT.  

In some textbooks [142, 143] and in the tables of transform, the double-sided Laplace 

transform, labeled as ( )f s , and its inverse are defined as 

 

( ) ( )  ( )

( )( ) ( )( )

( ) ( )

0 0

; d

          d d ;

1
.                                     

2
d

sx

x i x x i x

sx

sf f x e f x x

f x e e x f x e e

s

f

x

sf x e

   





−

−

 
− −



=−

==

= + −

=



 



 (4-15) 

From the definition Eq. (4-15), we realize that the double sided LT is the summation of 

two one-sided LT terms, one in the negative range ( 0x  ), and the other one in the positive 

range 0x  . This definition is valid in the integral form, provided that the FS of the LT is 

properly selected. However, taking into account that ( )lim x

x
f x e

→
− , for large value of  , the 

reconstructed function may be divergent. Such an example, let 

 ( ) ( )( )exp 0 ,f x x = −   (4-16) 

in this case, the one-sided LT of ( ) ( )f x U x  in Eq. (4-15) has a FS in the range 0    , 

while for ( ) ( )f x U x−  , the integral converges for 0     . It follows that the FS for 

( ) ( )expf x x= −  is 0    . In any cases, also by selecting   into the FS, the inverse 

LT by using Eq. (4-15) returns ( )f x  in the whole domain, but produces inaccurate results in 

the corresponding discretized form when 0  . 

 In order to overcome this drawback, we propose a new definition of the double-sided LT 

in the form 

 
( ) ( )  ( )( ) ( )

( ) ( ) 

sign
; d

          d ; ;

i x x

X X X

x xi x

X X

p s p x s e p x x

e p x e x e p x

 

  

 − −

−

 − −

−

= =

= =




 (4-17) 
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And then its inverse reconstructed by the double-sided PDF is given as: 

 ( ) ( ) ( ) .
1

d d
2 2

x
x i

X

x i

X

x

X

e
p ep px e s es


 

 

 
 

 

=− =−

− −


= =   (4-18) 

With this definition, the aforementioned problem disappear because the ( ) ( )Xp x U x  and 

( ) ( )Xp x U x−  are both multiplied by ( )exp x− , thus ( )Xp x  and ( )Xp x−  are weighted 

in the same manner. Such an example for the non-symmetric case ( ) ( )exp
2

Xp x x


 = − − , 

the double-sided LT evaluated by Eq. (4-15), is given 

 ( )
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2

2

2 2

2

2 2

2

2

; , 0;

; , 0
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X v s

e
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s
p s

v v
s i

s vs i v v

e

s i
e e e x

e e

 

   

 

 
  










 




 − −

− − −

−




+ −
= 



− = + 
−

=

− = − 
−− −

  (4-19) 

The corresponding ( )Xp s  for 0 =  is 

 ( ) ( )2 2 2/ .X

ip e    = +  (4-20) 

The derivative of the double-sided LT, by using Eq. (4-17) instead of the classical 

definition is given as 

( )
( )

( ) ( ) ( )
dd

; d ;   sign .
d d

nn
nX x i x

X Xn n

p x
p x s e x s p s s x i

x x

 
 

 − +

−

    = = − = − 
 



 (4-21) 

The discretized form of Eq. (4-18), taking into account that ( )pA s   and ( )pB s   are 

symmetric and antisymmetric with respect to  , respectively, is given as: 

 

( ) ( ) 

( ) ( ) ( )
1

;
2

           = 2 sin ,
2

cos

k

x m
i x

X X

k m

x m

p p k p k

k

e
p x p x s e

b

e
A A s B s

b

k k
x x

b b







 

−

=−

=



  
+ +  

  

   
   
   





 (4-22) 

where   is the step-size of discretization in   domain. 

For symmetric PDF ( ( ) ( )X Xp x p x= − ), the imaginary part of Eq. (4-17) is zero, while 

the real part is the LT of ( ) ( )2 Xp x U x   (one-sided). This implies that the PDF can be 

reconstructed by using the inverse Laplace Transform ( ( ) ;Xp x s  ) by assuming for 

( ) ( ) ( )X Xp x p x U x=  , and the PDF in the negative x   domain obeys to the symmetry 

condition. For 0 =  , Eq. (4-17) coalesces with the classical definition of the FT when 
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( )Xp x   defined in the range ( ),−   . Therefore, Eq. (4-22) remain valid by substituting 

0 =  into Eq. (4-17) and evaluating ( )
Xp kA s  and ( )

Xp kB s  in Eq. (4-22). However, the 

trigonometric Fourier series exhibit the aliasing effect, when reconstructing the PDF by using 

Eq. (4-22) for 0   . It follows that ( )Xp x   reconstructed by using Eq. (4-22) has to be 

multiplied by a window function ( ) ( )U x b U x b+ − −  in range  ,b b− .  

From Eq. (4-15) and Eq. (4-22), we realize that with a limited values of quantities 

( )p kA s  and ( )p kB s , we may reconstruct the PDF. In the practical applications, the PDF is 

often unknown, but the realization of a RV or from the data coming from Monte-Carlo 

simulations are available. Constructing the PDF from such data can be challenging, as it 

requires a large number of samples. In contrast, evaluating moments of the form 

( )( )( )exp signE i X X  − −
 

  is straightforward using the generic formula, which is also 

valid in complex domain, namely 

 ( ) ( )( )
1

1
exp exp

N
k

k

E s X s X
N =

 − = −    (4-23) 

where N  is the number of samples, and 
( )k

X  is the k -th realization of the RV X .                  

 In Figure 4-1, the double-sided LT of PDF 

 ( ) ( )exp
2

Xp x x


 = − −  (4-24) 

is plotted for for 0.1 =  and 0.35 . The Shifted CF is plotted according to the double-sided 

LT according to Eq. (4-19). The discretized version, evaluated by Eq. (4-22) is contrasted with 

the exact PDF, the parameter selected for 0.2 = , and 78m = . 

 
(a) (b) 
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Figure 4-1 / 15.7b  =  = , 0.5 = , 0.2 = , 78m = , and m b .(a) The continuous line plot by 

the exact PDF, dashed line and dotted line reconstructed by Eq. (4-22) with  =  , respectively; 

(b) SCF of Eq. (4-19) for different values of  , the continuous line represent the real part, the dashed line 

represent the imaginary part; (c) The continuous line plot by the exact PDF, dashed line and dotted line 

reconstructed by Eq. with  =  , respectively; (d) SCF of Eq. (4-15) for different values of  , 

the continuous line represent the real part, the dashed line represent the imaginary part 

 

In Figure 4-1, the difference appeared in Figure 4-1(c) between the exact PDF and that 

reconstructed PDF by means of the double-sided definition given in Eq. (4-15) can be avoided 

by the new definition (4-19) with the same parameters. 

From the results of this section on the SCF method for reconstructing the PDF with a limited 

number of information, some conclusions may be withdrawn: 

1) For one-sided PDF, both Fourier and Laplace operators are able to reconstruct the PDF of a 

RV or a stochastic process. 

2) For double-sided distribution, the FT may be used without any problem, as all PDFs are 

Fourier transformable. However, for the SCF, the double-sided definition given in Eq. 

(4-17) must be applied. 

3) Since in Eq. (4-22), the PDF is reconstructed in the discretized form over the range

b x b−     in a classical Fourier series of orthogonal trigonometric function, the PDF 

remains valid only in the interval  ,b b−  , which has to be considered zero outside the 

interval due to the aliasing effects. These effect persist in both FT and LT methods, also the 

double-sided definition of  and is used in Eq. (4-22) as it is shown in Figure 4-2. 

4) A close inspection of the double sided LT in Eq. (4-17) and (4-18) reveals that the SCF 

exhibits a smooth trend, which means that    may be selected without needing to be 

excessively small. Conversely, for 0  , Eq. (4-15) does not work well for two main 

reasons: a) The SCF exhibits a more pronounced oscillatory trend compared to the SCF 

evaluated in Eq. (4-22), leading to that    has to be selected smaller; b) If the order 

(c) (d) 
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  , the PDF reconstructed by Eq. (4-15) is inaccurate when the discretized equation is 

used. 

5) If the RV X  is characterized by the CF rather than the PDF, as in the case of  -stable 

RVs, the Fourier or the Laplace transform method can be directly applied to the real and 

imaginary parts of CF. 

6) The SCF method is useful for solving the fractional differential equations with variable 

coefficients expressed in exponential form. 

 
Figure 4-2  The aliasing problem with 0 = , 2 = , 0.2 = , 78m = , / 15.7b  =  =  

4.4. Application of SCF method in solving FPK equation 

This section presents two different applications of one-sided and double-sided LT. The first 

involves using the LT for solving deterministic differential equation (both classical and 

fractional) with time-dependent coefficients, while the second focuses on solving the Fokker-

Planck-Kolmogorov (FPK) equation. 

4.4.1 One-sided  

Let us now show the simple example in which the PDF is ruled by a FPK equation defined 

in the range  )0, . The equation of motion of the one-degree-of-freedom oscillator enforced 

by the multiplicative noise is given as: 

 
( )

( ) ( )

2

1 1

0 00 ,   0

X c X X e X t

X X X X

  + + =


= =

 (4-25) 

where X  and X  are the abbreviation of ( )X t  and ( )X t  represent the displacement and 

velocity of the system, respectively.   is the frequency, and ( )t  is a zero mean normal 

white noise process fully characterized in probabilistic setting by its correlation function given 

as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 2 1, .R t t E t t q t t t q t t t    = = − = −    (4-26) 
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Where  E  is the mathematical expectation, is the strength of the white noise. If ( )t  is 

stationary, then ( ) ( ) ( )1 2 2 1 2 1,R t t R t t q t t  = − = − . 

 With the weak excitation and weak damping, assuming the Wong-Zakai correction term 

produces no additional force, Eq. (4-25) has the quasi-periodic solutions due to it is the quasi-

conservative system, which means that we can express the ( )X t  and ( )X t  as follow: 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )cos ,  sin ,X t A t t X t A t t=  = −   (4-27) 

where ( )A t  is the amplitude process and ( )t t  = +  is the phase process. Substituting Eq. 

(4-27)into (4-25), and applying the stochastic averaging technique, one can obtain the Itô 

stochastic differential equation 

 
( ) ( )( ) ( )( ) ( )

( ) 0

d d d ,

0 ,

A t m A t t A t W t

A A

 = +


=

 (4-28) 

where ( )W t  is the Winner process defined in section 1.3.1, ( ) 00A A=  is the initial condition, 

which is a RV with assigned PDF. ( )( )m A t  and ( )( )A t  is the drift term and diffusion term, 

respectively, which are expresses as 
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 (4-29) 

Where 
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1 1
1 2

3

8 2
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= − , 

2
2 1
2 24

e q
z


= . The FPK associated to eq.(4-28) is given as: 
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 (4-30) 

where ( ),Ap a t   is the PDF of the slowly varying process ( )A t   and ( )
0Ap a   is the 

corresponding assigned initial condition of the amplitude ( )A t  at 0t = . By assuming that at 

each time t , we multiply Eq. (4-30) with sae− , and integrate from 0 to Infinity, then we have: 
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 (4-31) 
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where 

 ( ) ( )
0

, d,
A

sa

Ap e p as at t


−=   (4-32) 

is the SCF in t . Considering the initial condition, the first, third and fourth term in the right 

side of eq (4-31) can be vanished, applying eq.(4-29) , we can rewritten eq. (4-31) as: 

 
( )

( ) ( )
2 2 2

21 1 1

2 20 0

d 3
, d , d .

d

,

8 2 8

A sp a sa

A A

e q c s e q
s ap a t e a a p a

t

s
t

t
e a

 

 
− − 

= − − + 
 

   (4-33) 

According to the property of Laplace transform, Eq. (4-33) can be rewritten as: 
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 (4-34) 

( ),
Ap s t   and ( ),

Ap s t   means the first and second order derivative of ( ),
Ap s t   with s  . 

Applying the differential methods, the discretized form of eq.(4-34) can be rewritten as： 
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 (4-35) 

Noticed that the solution of Eq. (4-35) may be divergent during the calculation because at each 

new time instant, we introduce the following equation from Eq. (4-7) according to the 

information that the total area of the PDF is 1, then we have 

  
2

0

1
d 1

2
, k

A

m b
s

p

x

m

k

k

s et x
b =−

=   (4-36) 

Which also means 

    0

0
0

1
, 2 , .

A A

m

k

k

m
k

p p ks t b s t c
c =−



 
 = −
 
 
 

  (4-37) 

Where ( )2
1 /kbs

k kc e s= −  . It worth noticed that 0 2c b=   if 0 =  . Eqs. (4-35) and (4-37) 

give a set of 2m  ordinary differential equations, where ,..., 1,1,...s m m= − − . Here, we select 

the parameter of system as 1 0.05c = −  , 1 1e =  , 1 =  , 0.01q =  , and the initial condition is 

( ) ( ),0 1Xp x a= − , of which the SCF is ( ) ( ),0 exp
Ap s s= − . 



Chapter 4. Laplacian generalization and application of complex fractional moments 

 65 

 
Figure 4-3 The reconstructed PDF when 10t =  with different cut-off value m  

  

The result with different cut-off value m  when 10t =  by LT method and Monte-Carlo 

Simulation is plotted in Figure 4-3. on which we choose the parameter as 0 = , 0.1 = . 

From the pictures, we may observe that with the increase of m , the accuracy is increase. The 

calculation time is 0.8s, 3.3s, and 20s when 100,200m =   and 500. Figure 4-4 (a) and (b) 

displays the evolution of real part and imaginary part of SCF when  0,10t , where the black 

dotted line is plotted in 0m = . 

 
Figure 4-4 (a) The real part of SCF and (b) The imaginary part of SCF when  0,10t . The black dotted 

line is drawn when 0m =  

a b 

(a) (b) 
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Figure 4-5 500m = . (a) The reconstructed PDF when = 5,10,15t ; (b) The reconstructed PDF when 

= 0.01,0.05,0.1q  and = 10t  

 

Figure 4-5 exhibits the reconstructed PDF with the change of time t  and the intensity of 

noise q , where the line is obtained from LT method, and the dot is obtained from Mont Carlo 

Simulation. The results verified the accuracy of LT method in solving FPK equation. 

4.4.2 Double-sided  

 Let the stochastic differential equation be given in the form 

 
( ) ( )( ) ( )

( ) 0

,

0 ,

X t f X t t

X X

 = +


=

 (4-38) 

where ( )t  is a zero-mean normal white noise as mentioned in Eq. (4-25). 0X  is a RV with 

assigned PDF ( ) ( )
0 0

,0X Xp x p x= . In Eq. (4-38), ( )( )f X t  is a nonlinear function of the 

stochastic process ( )X t . The FPK equation, ruling the evolution of the PDF of the stochastic 

process ( )X t  is given as:  

 
( ) ( ) ( )

( )

( ) ( ) ( )
0

2

2

,
, , ,

.2

,0                                       Assigned  

X

X X

X X

p x tq
p x t f x t p x t

t x x

p x p x

      = − +     
 =

 (4-39) 

To consider a generalized situation, in this application, we assume that 

( ) ( ),0Xp x x a= − , 0a   and ( ) ( )x xf x a e e c −= + + . In this case, the ( ),Xp x t  is not 

symmetric, and thus the double-sided LT can be applied. By making the Laplace transform of 

both members of Eq. (4-39), according to Eq. (4-17), and applying double-sided Laplace 

transform to Eq. (4-39), we can obtain: 

a b 

(a) (b) 
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( ) ( ) ( ) ( )( )
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s
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 − +

−

 − +

−

−


= − +




+ − +


= −



 =





  (4-40) 

the Laplace transform can be transferred along the real axis. To simplify the calculation, we 

suppose 0 = , then Eq. (4-40) can also be rewritten as: 

 
( ) ( ) ( ) ( )

  ( ) 

2

0

,
d

, , ,

;

d 2

   

,

,0 ;

p p p p

p p

q
ia ia it t t tc

t

x a

            

   

  
= + + − 

 


+ −

= −

 (4-41) 

where ( ),p t   is the double-sided Fourier transform of PDF, namely the Characteristic 

function, and 

 
( ) ( )

( ) ( )

, d ;

, d .

,

,

x i x

X

x i x

X

p

p

e p x t

t

t x

e p x t x

 

 

  

  


− +

−


+

−

+ =

− =




 (4-42) 

The SCF can be translated along the real axis, which means that the ( ),p J t  +  can be 

expressed as a set of 2 1m+  ( ),p k t   according to Eq. (4-11), where ,...,k m m= −  . To 

prevent divergence in the results, we introduce the normalization condition, which is 

 ( ) ( ) ( )
0

0

1
, d d 1,,

2
, k

mb

X

i x
b

b b
k m
k

p p kp x t x x
b

t t e
   

− −
=−


−

 
  
 
 
 

+    (4-43) 

namely 

 ( ) ( )0

0

1
., ,

2
1

k k

k

i b i b

p p k

k

m

m
k

e e
t t

ib

 

   
−

−

=


−
= +   (4-44) 

Substitute Eq. (4-42)-(4-44) into (4-41), we can obtain a set of 2m  ODEs, where 

,..., 1,1,...,J m m= − − . Solving the ODEs, and we can reconstruct the double-sided PDF over 

time t  . In this case, we select 0.1a = −  , 0.3c =  , 0.1 =  , 0.01q =  , 120m =  , and 

0.2 = . And the initial condition is ( ) 0,0
ai

p e
  = , 0 0a = , and the transient PDF can be 

reconstructed as follow. 
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Figure 4-6 (a) The real part of SCF and (b) The imaginary part of SCF when  0,15t . The black dotted 

line is drawn when 0m =  

 

 
Figure 4-7 (a) The reconstructed PDF when 0,5,10,15t =  and 0.01q = ; (b) The reconstructed PDF when 

0,0.01,0.02,0.05q =  and 10t = . The line is the reconstructed PDF by SCF method, and the dotted is the 

results obtained by Monte Carlo simulation 

 

Figure 4-6 exhibits the SCF when 0 = , where the Figure 4-6 (a) is the real part, and the 

Figure 4-6 (b) is the imaginary part. Figure 4-7 displays the PDF vary with time t  and the 

intensity of noise q . According to the calculation process, the calculation time using the SCF 

method is within 1 second. Comparing to the Monte Carlo Simulation, the SCF method is both 

efficient and accurate in reconstructing the double-sided PDF. Especially, the results 

demonstrate that the SCF remains highly accurate for different time and noise intensities. 

4.5. Comparison of SCF and CFM in Reconstructing the PDF of a 

Random Variable 

Several studies have focused on reconstructing the PDF of RVs using a limited amount of 

information, primarily through complex fractional moments based on the Mellin transform. 

a b 

(a) (b) 

a b 

(a) (b) 
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This method has been applied to solve the FPK equation. In this section, a critical review of 

reconstruction of PDF by CFM and SCF methods is presented. The CFM method is based on 

the Mellin transform of the one-sided PDF, namely 

 ( )  ( )1 1

0
; d ;    .X Xp x x p x x E X i    


− − = = = +   (4-45) 

 The MT exists if the real part of   belongs to the FS of the Mellin transform, for a wider 

discussion or of the domain of existence of the MT. The Shift property in the Mellin domain is 

given by 

 ( )  ( ) ; ;X Xx p x p x   = −  (4-46) 

Provided   belongs to the FS, the inverse MT return the PDF in the form: 

   ( )1 1 11
; d .

2
XE X x E X x p x  







− − − −

=−
   = =     (4-47) 

The discrete form of the Eq. (4-47) obtained by discretization of the    axis into small 

intervals of equal length  , is: 

( ) ( ) ( )1 1

1

1
d 2 cos sin d ,

2

m

X p k p k

k

k y k y
x p x x E X A B y

b b b

   
 − −

=

     
 = + +      

     


 (4-48) 

where /b  =  , ( ) ( )1
Re k

p kA E X
 − =   , ( ) ( )1

Im k

p kB E X
 − =   , /k ik b  = + ,  

and lny x= , d d /y x x= . 

 As in the SCF method at the r.h.s of Eq. (4-48), a Fourier series appear. The difference 

between the CFM and the Fourier series is that the trigonometric functions in the CFM method 

are represented on a logarithmic scale over the interval  ,b b−  in y  axis. Additionally, in the 

CFM method for 1 = , corresponding to 0 =  in the SCF, the first term of the r.h.s of Eq. 

(4-48) is 1/ 2b  . In the discretized form at the r.h.s of Eq. (4-48), the integral has been 

approximated by truncating the Fourier series in the   domain, retaining m  terms instead of 

  terms ( )/m m b  = .  

For the one sided PDF, the integration in  0,b  at the r.h.s of Eq. (4-48) in y  domain 

corresponds to an integration in ,b be e−     in x   domain, and thus for 1 =  , 

( )d 1
b

b

e

X
e

p x x
−

 , that is a measure of the error obtained by truncating the Fourier series given 

in Eq. (4-48) in the    domain. By selecting 2 =   in Eq. (4-45), the one sided PDF is 

reconstructed by considering the centroid of the PDF as the reference line in   domain, as in 

the classical definition of the probabilistic analysis, where the cumulants are referred to a central 
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line  ( )E X E X −  , we will refer to 2 =  in the MT and 1 =  in LT as central CFM and 

central SCF, respectively. The case of double-sided PDF was addressed, where the problem is 

solved by writing  

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
1 1

,
2 2

X X x X X X Xp x u x v x p x p x p x p x= + = + − + − −  (4-49) 

namely the PDF is divided into a symmetric and antisymmetric parts, and the one sided MT is 

applied to both ( )Xu x  and ( )Xv x . However, reconstructing the PDF by using the Eq. (4-48), 

produces unsatisfactory results due to the singularity of the factor x − →  in zero. To 

address this issue, the double-sided MT is introduced with the aid of the aid of ( )Xu x  and 

( )Xv x , 
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; d ,

; sign d .

X X

X X
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x xv v x x x

u








 −

−

 −

−

=

=




 (4-50) 

Since ( )Xu x   and ( )Xv x   are symmetric and antisymmetric function, respectively, the 

inverse double-sided MT is expressed as: 

( ) ( )  ( ) ( ) 
1

; d sign ; d ,
4 4

X X Xp x xu x x x xv
 

 
   

 

 − −

=− =−
= + 

 (4-51) 

of which the discretized form is: 
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(4-52) 

where ( ) ( ) ( ) ( )signp k u k v kA xA A  = +  , ( ) ( ) ( ) ( )signp k u k v kB xB B  = +  , ( )u kA   , 

( )v kA    and ( )u kB   , ( )v kB    are the real part and imaginary part of ( ) ;X ku x   

and ( ) ;X kv x   , x   is the unit step in x   axis. The presence of the Cauchy Principle 

Value (PV) is essential for overcoming the singularity at zero. In this way, the problem of the 

singular kernel in the symmetric part of the PDF in 0x =  disappear when the principle value 

is taken into account, and the translated function along real axis is introduced. In Figure 4-7 and 

4-8, the asymmetric Gaussian distribution is reconstructed using ( ) ;Xp x s  , 
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( ) ;Xu x    and ( ) ;Xv x   . For comparison purposes, the SCF is calculated with 

1 = , 0.1,0.12,0.24 = , and for the CFM with 2 = , 0.2,0.4,0.6 = . The selection of 

n  (in Laplace) and m  (in Mellin) is shown below: 

In the asymmetric case, we choose the Gaussian distribution with X  the mean value and 

2

X  the standard deviation, namely 

 ( )
( )

2

21
;  ,

2

X

X

x

X

X

p x e x







−
−

= −     (4-53) 

Thus we have 
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 ( ) 
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1

1 1 2

1 1 1
; , , ,

2 2 22

X
X X
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u x F  
 



−  − 
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 (4-55) 

 ( ) 
2

2

1 1 2

2 1 3
; 1 , , .

2 2 2

X X
X X

X

v x F  
 



−  + 
=  − −  

   
 (4-56) 

where ( )Erfc  represents the complementary error function, and ( )1 1F  represents the 

Kummer confluent hypergeometric function. Figure 4-8 and Figure 4-9 display the 

reconstructed PDF and the double-sided LT and double-sided MT of PDF for the case 1.5X =  

and 1X = . The results with and without PV is shown in Figure 4-9 (a). 

 
Figure 4-8 1 = . Case 1 0.1 = , 240n = ; Case 2 0.12 = , 200n = ; Case 3 0.24 = . (a) 

Continuous line plot of exact PDF, dashed line and dotted line reconstruction of the PDF by SCF; (b) The 

(a) (b) 
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real part and imaginary part of ( ) ;p Xp x s  

 
Figure 4-9 2 = . Case 1: 0.2 = , 120m = ; Case 2: 0.4 = , 60m = ; Case 3: 0.6 = , 40m = . 

(a): Continuous line plot of exact PDF, dashed line and dotted line reconstruction of the PDF by CFM; (b): 

The real part and imaginary part of ( ) ;u Xu x   and ( ) ;v Xv x  .  

 

As concluding remark, both the double-sided LT and MT can be effectively used to 

reconstruct the PDF with a limited number of complex quantities, which can be easily evaluated 

from experimental data or from Monte Carlo Simulation. It is to be remarked that the selection 

of   in the SCF or   in CFM methods has to be selected properly ( 0 1   or 1 2  ) 

in the two methods in order to avoid that MT or LT have high oscillatory trend in the 

corresponding imaginary axis. 

 At this stage, peoples may ask a question: since both Laplace and Mellin transform can be 

used to reconstruct the solution of linear fractional differential equations in deterministic setting 

with time dependent parameters, as well as the solution of the FPK equation, what of the two 

transforms is preferable? It is important to note that from the Itô equation, the nonlinear term 

( )g x  produces the drift term, and in the PDF space of ( )( )Xp x t , this corresponds to a linear 

differential equation of the form ( ) ( ) ( )( ), / , /X Xp x t t g x p x t x  = −  , which is linear with 

respect to ( ),Xp x t  , with ( )g x   acting as the variable coefficient. It follows that if the 

nonlinear term in Eq. (4-39) is of exponential law, it is preferable working in Laplace domain. 

Because the shift property remain valid. By contrast if ( )g x  follows a power law, then the 

shift property, namely ( )  ( ) ; ;X Xx p px x   = +   remain valid, and thus the 

solution of the FPK equation can be reconstruct in more easy way by using MT. 

4.6. Conclusion 

The Shifted Characteristic Function based on Laplace transform has been presented as a 

method for reconstructing the one-sided PDF of random variable using a limited number of 

a b a 

(a) (b) 
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complex quantities, that is ( )expE sX−    for 0x  , s i = + . The extension to the case 

of double-sided distribution of the type ( )( )( )exp signE i X X  − −
 

  has also been 

discussed, leading to a different formulation from those previously reported in the literature. 

The discretized form of both one-sided and double-sided inverse Laplace transform is 

performed along the imaginary axis to reconstructed the PDF. The SCF coincides with the 

Fourier transform for both one-sided and double-sided distribution when 0 = . It is shown 

that the SCF method, in its discretized form, leads to a representation of the PDF in a classical 

Fourier series. Applications of these concepts to solve deterministic fractional differential 

equations with variable coefficients, as well as the FPK equation, have also been presented. 

Lastly, a comparison with Mellin transform, as proposed in the past studies [82, 84], working 

with complex moments of the form 
1E X  −   ( i  = + ) has been revisited to address the 

singularity at zero in the reconstruction of PDFs using complex fractional moments. 

In conclusion, we can assert that working in complex domain for constructing PDFs or 

solving the FPK equation in cases involving exponential-type non-linearities in the form 

( )
1

exp
n

j j

j

c x
=

−   is efficient, which requests minimal computational effort and avoids the 

problems associated with those using integer-order moments. 
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Chapter 5. Generalized complex fractional moments for the 

probabilistic characteristic of random vectors 

5.1. Introduction 

Dynamic systems in stochastic environments can experience fundamental changes in their 

intrinsic characteristics due to external disturbances. The probability density function is 

typically the most widely used tool to describe these characteristics. In practice, constructing a 

PDF for stochastic systems generally involves either collecting sample data through 

experiments or simulating system behavior using abstract models. However, achieving an 

optimal balance between accuracy and computational efficiency when directly obtaining 

probabilistic characteristics through these methods remains a significant challenge. 

Moment statistics, as functions of sample data, can summarize overall information from 

samples without requiring knowledge of the underlying distribution parameters. The 

relationship between moments and probabilistic characteristics has been extensively researched. 

Moments have been used to reconstruct the probabilistic characteristics of random variables or 

processes, and fractional moments ,aE X a     have been developed based on traditional 

integer moments ,aE X a     In 2012, the complex fractional moment ,E X i     = +   

based on the Mellin transform was proposed. It established a direct equivalence with the PDF, 

and because its reconstruction process occurs along the imaginary axis, it can reconstruct 

probabilistic characteristics when higher-order moments of random variables, such as   -

stable random variables, do not exist. 

Since its introduction, the complex fractional moment method has been applied to 

reconstruct probabilistic characteristics across various scenarios, significantly enhancing 

computational efficiency. However, its use has been confined to one-dimensional positive real 

domains. In multi-degree-of-freedom dynamic systems, the stochastic averaging method must 

be employed to reduce dimensionality before applying the complex fractional moment 

approach. Analyzing the probabilistic evolution of multi-dimensional systems is crucial. While 

probabilistic density evolution methods and finite element methods can be used for such 

systems, the current complex fractional moment theory cannot address these challenges. Thus, 

expanding this theory to enable multi-dimensional probabilistic evolution analysis is of great 

importance. 

This chapter proposes a multi-dimensional complex fractional moment theory based on the 

multivariable Mellin transform, establishing an equivalence between multi-dimensional 

complex fractional moments, multi-dimensional PDFs, and multi-dimensional characteristic 

functions. It also enables the reconstruction of marginal probabilistic characteristics using high-

dimensional complex fractional moments. The research framework of this chapter is as follows: 
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Section 5.2 introduces the application background of complex fractional moments. Section 5.3 

expands the complex fractional moment theory, establishing the equivalence of multi-

dimensional complex fractional moments with multi-dimensional PDFs and multi-dimensional 

characteristic functions in the high-dimensional positive real domain, and extends this 

equivalence to the full real domain in Section 5.4. Section 5.5 proposes a method to solve 

marginal PDFs using high-dimensional complex fractional moments, followed by numerical 

validation of the above theory in Section 5.6. Section 5.7 provides a summary of this chapter. 

5.2. Mellin transform and complex fractional moment 

The Mellin integral transform (MT) of any real function ( )f x   defined on the range 

( )0,  is expressed as follows: 

 ( ) ( )  ( ) 1

0
1 ; d ;   ,fM f x f x x x i    


−− = = = +  (5-1) 

    where    represent the Mellin transform operator, ( )1fM  −  is the function of the 

complex parameter  , ,  . The existence of the MT is related to the trend at zero and 

infinity of ( )f x . In more details, the existence of the MT is p q−   − , where p  and q  

refer to the asymptotic behavior of ( )f x  at 0x =  and x = , respectively, namely: 

 ( ) ( ) ( ) ( )
0

lim ;lim ,p q

x x
f x x f x x

→ →
= =  (5-2) 

    where ( )   means the order of zero of the term in parenthesis. As an example, for 

( ) ( )21/ 1f x x= + , the corresponding domain of existence of the MT may be evaluated as: 

 ( ) ( ) ( ) ( )0 2 2

0
lim 1 ;lim ,
x x

f x O x f x x O x− −

→ →
= → = →  (5-3) 

thus, the existence domain in this case is 0 2  . The domain of existence of the MT is 

called Fundamental Strip (FS) of the Mellin transform. If q p−  − , the FS doesn’t exist and 

( )f x  is not Mellin transformable. Such an example ( ) , 0nf x x n=   or ( ) , 0xf x e =   

are not Mellin transformable.  

If the MT exists, then the inverse of MT exists and ( )f x  is given as: 

 ( ) ( )  ( )1 1
1 ; 1 d .

2

i

f f
i

f x M x M x
i





  



+ 
− −

− 
= − = −  (5-4) 

The integral in Eq. (5-4) may be evaluated by a discretization of the   axis into small 

steps of equal amplitude  . Since both the real and imaginary part of ( )1fM  −  readily 

turns to zero for   large enough, the discretized form of Eq. (5-4) may be written as: 
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( ) ( ) ( ) ( )
1

1 1 2Re 1 ,
2 2

k k

m m
i

f k f f k

k m k

x
f x M x M M x

b


 

  


−
− −

=− =

   
 − = − + −  

  
   (5-5) 

where /b  =   , /k ik b  = +  , ( ) ( )*1 1f k f kM M  −− = −   (where the *   means 

complex conjugate), ( )Re   means the real part, and m   is the cut-off value. In case that 

( )f x  is the Probability Density Function (PDF) defined in the positive domain, the MT of the 

PDF denoted as ( )p x   is for sure Mellin transformable (including the case of  −  stable 

Random variables for which 0 1   − ). The MT of ( )p x  can be expressed as follows: 

 ( ) ( )  ( ) 1 1

0
1 ; d ,p XM p x p x x x E X  


− − − = = =    (5-6) 

where  E  means the mean value of the random variable in parenthesis and has been defined 

as complex fractional moment (CFM), these CFMs are related to the MT of ( )p x  as well as 

the Riesz fractional integral of ( )p x  evaluated in 0 , 

 ( ) ( ) ( )
1 1

0 0
0

2 ; 0, 1,2,...,c X Xx
x

v p x x p d E X
      

 − −

=
=

     = − =         (5-7) 

where ( )  is the Riesz fractional integral operator, ( ) ( ) ( )cos / 2cv   =  , and ( )  is 

the Euler Gamma function. According to Eq.(5-5), we realize that with 1m+   finite 

information, namely, the CFM, the PDF ( )p x   of a random variables can also be entirely 

reconstructed by setting ( )f x  as ( )p x  in Eq. (5-5)and then ( ) 11fM E X  − − =   . 

 ( ) 11

1

1 1
Re ; 0.

2
k k

m

X

k

p x E X x E X x x
b b

   − −− −

=

 
  = +     

 
  (5-8) 

Extension to the case in which the PDF is symmetric ( ) ( )( )p x p x= −  is straightforward 

making the MT of ( ) ( )p x U x  and finding the CFM of this function ( ) 1

/2 / 2pM E X  − =   . 

Extension to the case of non-symmetric PDF can be found in the previous work [84, 94]. 

CFM method can be applied to solving FPK equation. Such an example expressed as follow: 

 
( ) ( ) ( ) ( ) ( )2 2

2

,,, 1
.

2

XXX
x p x tm x p x tp x t

t x x

       = − +
  

 (5-9) 

Substituting Eq.(5-6) into Eq. (5-9), the related CFM equation shown below: 
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 (5-10) 

Based on the initial conditions and boundary conditions of Eq.(5-9), Eq. (5-10) can be 

transformed into a set of ODEs, and the transient PDF of Eq. (5-8) can be reconstructed. At 

this stage, some comments are necessary. 

1) By knowing the CFM, the entire PDF may be reconstructed including the trend of the 

PDF at infinity; 

2) In Eq.(5-4), the integration is performed along to the imaginary axis while   remain 

constant. This is particularly advantageous because if the real part of  , namely  , 

is selected into the FS, 
1E X  −    exist; 

3) The usual Taylor expansion of the CF or the ln(CF) giving classical integer moments 

or cumulants, respectively, requires that moments or cumulants exist and this happens 

rarely, and in any case, produces unsatisfactory trend of the PDF at infinity. Moreover, 

for some distributions, like the PDF of  −  stable ( )0 2    random variables, 

moments and cumulants of high order do not exist, unless the case 2 =  that is the 

Gaussian distribution. 

5.3. Extension of CFM in the multi-dimensional positive space  

Mellin transform was introduced in 1896 [144], then the multi-dimensional Mellin 

transform (MMT) was defined in 1921 [145]. The condition of existence of the MMT was 

proofed by Antipova [146] in 2007. Let ( ) ( ) ;F F=M x −   denote the MMT of a 

multi-variable real function, denoted as ( )F x , which can be expressed as follows: 

 ( ) ( )  ( ) 1; d ,
nF F F
+

−= = M x x x x
 −  (5-11) 

where    is the multi-dimensional Mellin transform operator, ( )FM  −  is a complex 

scalar function of the complex vector   , where  1 2, ,..., ni   = +   =

 1 1 2 2, ,..., n ni i i     + + += , and 1 2 11 11

1 2= , ,..., n

nx x x
  −− −−  

 x


. The inverse of Eq. (5-11) can 

be expressed as: 

 ( ) ( ) 
( )

( )1 1
; d .

2
nF Fn i

F
i

− −

+
= = x M x M x 


  − −  (5-12) 



Chapter 5. Generalized complex fractional moments for the probabilistic characteristic of random vectors 

 79 

Eq. (5-11) and Eq. (5-12) holds when ( )F x   and ( )FM  −   satisfy the following 

transformable condition [146]. 

Theorem 1. If 

 ( ) ,UF Vx  (5-13) 

where UV  is a vector space. ( )F x  holomorphic in  : arg ,n n

kS x x k +=     1k  , 

and satisfying 

 ( ) ( ) , , ,a

kF C a x x S a U−

  x  (5-14) 

where nU    is a convex domain, and ( )C a   is an coefficient, n   is a bounded 

domain and 0 , then  

 ( )1 .F F− =  (5-15) 

Theorem 2. If 

 ( ) ,F UV M  −  (5-16) 

where UV    is a vector space, and n  . ( )FM  −   holomorphic in the tube domain 

nU i+ , and satisfies that  

 ( ) ( ) ( )
, 1, ,

kH

F i K e k i−
+   = +M


     −  (5-17) 

where ( )H   is a support function of  , then  

 ( )1 .F F

− =M M  (5-18) 

 Usually, Eq. (5-12) can also be expressed as： 

 ( ) ( ) 
( )

( )1 1
; d .

2
nF F Fn

F


− −= = x M M x M x   − −  (5-19) 

The discretized form of Eq. (5-19) can be expressed as： 

 

( )
( )

( ) ( )

( )
1

1

1

1 1

1

1 1
1 1

22

1
        1,..., 1 ,

2

m

kk n

n

n n

F Fn n

mm

F k k nn
k m k m

F
B

x x
B





 

− −

=− =−

−−

=− =−

= −  = −

= − −

 

 

k k

m m

k k

k m k m

x M x M x

M

   

 (5-20) 

where  1 1 1,.., ,n n ni ik ik   = +  = +  + k k    ,  1,.., nm m=m  ,  1,.., nk k=k  , 

1

/
n

n

i

i

B  
=

=  , and i im   is the cut-off value of i-th dimension.  
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 Moreover, the definition of multi-dimensional Riesz fractional integral can be expressed as 

follows [147]: 

 

( )( )

( )
( )1

1 2

1 1

1 1 1 1
0 0

1

, ,...,

1
, , d d .

2

n

R n

n n n nn
n

c j

j

I F x x x

x x f
 

     

 

  − −

=

= − − 




 (5-21) 

The multi-dimensional Riemann-Liouville(RL) fractional integral [83], which is denoted as

( )( )...I F  x


 is given in the form: 

 

( )( )

( )
( )1

1 2

11

1 1 1 1
0 0

1

, ,...,

1
, , d d .n

n

n n n nn

j

j

I F x x x

F x x
     



 

 
−−

=

=


 





 (5-22) 

According to Eqs. (5-21)-(5-22), MMT can be denoted as follows: 

 ( )( )( ) ( )
1

2 0 ,
n

n

c j R F

j

I F 
=

= M
  −  (5-23) 

 ( )( )( ) ( )
1

0 .
n

j F
j

I F  

=

 = M
  −  (5-24) 

According to the property of fractional integral, we introduce the Fourier transform to build 

the connection between the Fourier transformable function ( )F x   and ( )FM  −   in the 

sense of Fourier transform. Let ( ) nF x  be the multi-dimensional Fourier transformable 

function, and denote     the multi-dimensional Fourier transform (MFT) operator, 

( ) ( ) ;F = x   is a function respect to the vector of parameters  , then we have 

 ( ) ( )  ( ); d ,
n

iF F e− = = 
x

x x x
   (5-25) 

 ( ) ( ) 
( )

( )1 1
; d ,

2
n

i

n
F e



−=  = 
xx x     (5-26) 

where  1 2, ,..., n  


=   denotes n  -dimensional random vectors. Moreover, the MFT and 

the inverse MFT of Riesz fractional integral is given as [148, 149]： 

 ( )( )  ( ) ; ; ,RI F F
−

=x x
     (5-27) 

 ( )( ) ( )  1 ; ; .RI F F
−−=x x x
    (5-28) 

Also, the MFT and the inverse MFT of RL fractional integral 
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 ( )( )  ( ) ( ) ; ; ,I F i F
−

  =x x
     (5-29) 

 ( )( ) ( ) ( )  1 ; ; .I F i F
−−

  =x x x
    (5-30) 

Based on the abovementioned transform, considering the multi-variable function ( )F x  

in probability set, and representing ( )F x  as joint PDF, donated as ( )p x . According to the 

definition, the MMT of ( )p x , namely ( )pM  − , can also be expressed as 
1E −  X


, which 

is named as Generalized Complex Fractional Moment (GCFM). In this case, Eqs. (5-28) and 

(5-30) in terms of the PDF is the multi-dimensional Characteristic function terms ( )  : 

 ( )( ) ( ) 1 ; ,RI p
−−= x x
    (5-31) 

 ( )( ) ( ) ( ) 1 ; .I p i
−−

  = x x
    (5-32) 

According to Eqs.(5-23)-(5-24), we have 

 ( ) ( )  ( )( )( ) ( )1

01 1

2 ; 2 0 ,
n n

n n

c j c j R p

j j

I p   
−−

== =

 = = 
x

x M
    −  (5-33) 

 ( ) ( ) ( )  ( )( )( ) ( )1

1 10

; 0 ,
n n

j j p
j j

i I p 
−−

 

= ==

  =  = 
x

x M
    −  (5-34) 

where 

 ( ) ( )cos sgn sin .
2 2

ii i i
i i ii i

  
  

−−     
=     

    
 (5-35) 

Eqs. (5-33) and (5-34) provide the method to construct the ( )pM  −   by the 

characteristic function. According to Eq. (5-20), the MPDF can be reconstructed by the following 

expression: 

 ( )
( ) ( )

( )11 1
d d

2 2
n n pn n

p E
 

− − − = =   ，
X

x X x M x    −  (5-36) 

and the MPDF can be reconstructed by the following expression: 

 ( ) ( )11 1
.

2 2
pn n

p E
B B

− −−

=− =−

 = =  k k

m m

X

k m k m

x X x M x
   −  (5-37) 

Eq. (5-37) can also be expressed as: 

 ( )
( )

( )1 2 1 211 11
1 2 1 2 .

2

n n

n

k

k
n nn

p E X X X x x x






−− − − −=



 =       


X

x
    

 (5-38) 
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Where 
11 1 1 1

, ,...,
m m m

j j j j

j j j jX X X X
− − + 

− − − − =
 

   
 , 

1

, ,...,
m m m

j j j j

j j j jx x x x
− − + 

−  =
 

 − − −
 , and the symbol 

  represent the Kronecker product. 

5.4. Extension of CFM in the multi-dimensional real space 

In the previous section, the GCFM is defined based on MMT which defined on the positive 

domain in the multi-dimensional space, that means only the positive part of the function in 

multi-dimensional space can be reconstructed. Here, we introduce a method to reconstruct the 

function in all multi-dimensional real space. 

Considering the function ( )p x   in multi-dimensional space, and dividing ( )p x   as 

follows: 

 ( )

( )

( )

( )

( )

1 1

2 1 2

3 2 1 3

12

, ,..., 0,

, 0, .., 0,

, 0, , .., 0,

, ,..., 0,n

n

n

n

n

p x x

p x x x

p p x x x x

p x x




 


=  


 


X

x

x

x x

x

 (5-39) 

where ( ) , 1,2,...,2n

ip i =x   is a part of ( )p x   in i-th domain. Denoting ( )ip x   by 

( ),i P Np x x , where Px  is the set of x  over the positive real domain, and Nx  is the set of 

x  over the negative real domain, thus the integral of ( ),i P Np x x  in the sense of MMT is 

defined as: 

 ( ) ( ) 11
1, 1 , d d .NP

i
P N

p P N i P N P N P Np
+ −

−−
− − =  M x x x x x x

   (5-40) 

Assuming that ( ),i P N P Np + − x x , Eq.(5-40) can be expressed as: 

 

( ) ( ) ( ) ( )

( ) ( )

11

1 11

1, 1 , d d

                              1 , d d ,

NP

i
P N

N NP

P N

p P N i P N P N P N

i P N P N P N

p

p

+ −

+ +

−−

− −−

− − = − − −

= − −

 

 

M x x x x x x

x x x x x x



 

 

 (5-41) 

where 

( )  11 1 1, d d ; 1, 1NP

i
P N

i P N P N P N p i P N P Np p E
+ +

−− − − − = − − =    x x x x x x X , X
   

 (5-42) 

is the MMT of ( ),i P Np −x x , and satisfies: 

   ( ) ( )
1

; 1, 1 1 1, 1 .N

i ip i P N p P Np
−

− − = − − −M


     (5-43) 

Moreover, if ( )   is the characteristic function of Eq. (5-39), and it can be divided as 
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follows: 

 ( )

( )

( )

( )

( )

1 1

2 1 2

3 2 1 3

12

, ,..., 0;

, 0, .., 0;

, 0, , .., 0;

, ,..., 0.n

n

n

n

n

 

  

   

 

 

  


 =   


 






 



 (5-44) 

According to Eq. (5-34) 

 
( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) 
1

1

1

1, 1 0

                              ,

NP

i

P N

p P N n

n P N i

I I p

i i

 

 

+ −

− −−

− − =  

=   − 

M


 

 

  
 (5-45) 

and then, 

 ( )
( )

( ) ( )
11

, 1 1, 1 d .
2

N

ii P N p P Nn i
p

i

− −

+
− = − − −x x M x

 

 
    (5-46) 

Eq. (5-46) can also be expressed as: 

 ( )
( )

( ) ( ) ( )
11

, 1 1, 1 d ,
2

N NP

ii P N p P N Pn Ni
p

i

− −−

+
= − − − −x x M x x

 

 
    (5-47) 

which can be simplified as: 

 ( )
( )

( ) ( ) ( )
11

, 1 1, 1 d .
2

N NP

n ii P N p P N Pn N
p



− −−= − − − −x x M x x
     (5-48) 

The discrete expression of Eq. (5-48) is shown below: 

 ( )
( )

( ) ( ) ( )
1

, 1 1, 1 .
2

N NP

ii P N p P N Pn N
p



− −−

=−


= − − − −

k kk
m

k k k

k m

x x M x x
 

   (5-49) 

5.5. Constructing the marginal probability distribution by GCFM 

In section 5.3 and 5.4, the definition of GCFM and extend the GCFM to multi-dimensional 

real domain have been proposed. In this section, we will establish the method to construct the 

marginal distribution by GCFM. 

5.5.1 Symmetric distribution 

According to Eq.(5-36), the MPDF can be constructed by multi-dimensional GCFM, which 

is: 

 ( )
( )

( )
1

d ,
2

n pn
p



−= X
x M x  −  (5-50) 
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the marginal distribution function of Eq. (5-50) can be expressed as: 

 ( ) ( )
( )

( )
1

d d d ,
2

n
nmar nmar

mar nmar p nmarn
p p



−= =  X X
x x x M x x −  (5-51) 

where marx  is the set of marginal variable, and *nmar  is the set of nonmarginal variables. Eq. 

(5-51) can be simplified as: 

 

( )
( )

( )

( )
( )

1

1
d d

2

1
              d .

12

n
nmar

n

nmar

mar p nmarn

nmar
pn

nmar

p




−

−

=

 
 =
 −
 

 



X x M x x

x
M





 

 


−

−

 (5-52) 

5.5.2 Asymmetric distribution 

Since the domain of definition of asymmetrical distribution is divided into the positive real 

field and the negative real field, according to Eq.(5-46), the distribution can be expressed as 

follows: 

 ( )
( )

( ) ( )
11

, 1 1, 1 d ,
2

N

i
nmar nmar

i P N p P Nn i
p

i

− −

+
− = − − −x x M x

     (5-53) 

and the marginal distribution can be expressed as: 

( ) ( )

( )
( ) ( )

1

, , d

1
                        1 1, 1 d d ,

2

mar mar
nmar

N

i
nmar nmar nmar

i P N i P N nmar

p P N nmarn i

p p

i

− −

+

− = −

= − − −



 

x x x x x

M x x
   

 (5-54) 

Eq. (5-54) can be simplified as: 

 

( )
( )

( ) ( )

( )
( ) ( )

1 1

1 1

1 1
1 1, 1 d

12

1 1
              1 1, 1 d .

12

N

i
nmar nmar

nmar

N

i
nmar

nmar

i mar p P Nn i
nmar

p P Nn

nmar

p
i



− −

+

− −

 
 = − − −
 −
 

 
 = − − −
 −
 





x M x

M x

 

 

  


  


 (5-55) 

5.6. Numerical simulation 

In this part, we select the  -stable distribution as the example. The characteristic function 

of the  -stable random variables when 0 2   can be expressed as follows: 

 ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

, 1 sgn , tan d ,
2

2
, 1 sgn , ln , d ,

, 1.

, 1.

Sd

Sd

s i s L s i

s i s s L s i

e

e


















  
−  −  +   

  

 
−  −   +  

 

 


 = 
 

=

 (5-56) 
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The FS for symmetric  -stable RVs is 0 1   + , where ( )L  is finite measure, and dS  

is unit sphere of n . Currently, the  -stable random variable has the expression for its PDF 

only in 1/ 2 =   (Lévy distribution), 1 =   (Cauchy distribution), 2 =   (Gaussian 

distribution). Here, we consider the 2-dimensional distribution when 2 = , thus, Eq.(5-56) 

can be rewritten as follows: 

 ( )
( ) ( )2 22 2

1 1 2 2 1 1 2 2

1

2
1 2, ,

i

e
       

 
− + − +

 =  (5-57) 

and the PDF denoted as ( ),p x y  of Eq. (5-57)can be expressed as: 

 ( )
   ( )T-1

1 2 1 2

1
, ,

2
1

, .
2

x y x y

XYp x y e
   



− − −  − −

=


 (5-58) 

Some other cases are given in Appendix. E. 

 Considering Eq. (5-58), where 

 

2 2

11 1

2 2

2 2

0 1/ 0
, ,

0 0 1/

 

 

−
   

 =  =   
   

 (5-59) 

then we divide ( ),p x y  as follows: 

 ( )

( )

( )

( )

( )

1

2

3

4

, , 0, 0;

, , 0, 0;
,

, , 0, 0;

, , 0, 0.

XY

p x y x y

p x y x y
p x y

p x y x y

p x y x y

 


 
= 

 
  

 (5-60) 

According to Eq. (5-40): 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 1

1 2 1
0 0

1 1

1 2 2
0 0

1 2
1 1

1 2 3
0 0

1 1

1 2 4
0 0

1, 1 , d d , 0, 0;

1, 1 , d d , 0, 0;
1, 1

1, 1 , d d , 0, 0;

1, 1 , d d ,

p

p

p

p

p

p x y x y x y x y

p x y x y x y x y

p x y x y x y x y

p x y x y x y

 

 

 

 

 

 
 

 

 

++

−+

+−

−−

 
− −

 
− −

 
− −

 
− −

− − =  

− − = −  
− − =

− − = −  

− − = − −

 

 

 

 

M

M
M

M

M 0, 0.x y








  


 (5-61) 

Also, ( )1 21, 1p  − −M   can be constructed by the characteristic function ( )1 2,   , 

according to Eq.(5-34), namely: 

 ( )
( ) ( )

( )
( ) ( ) ( )1 21 2

1 2 1 2 1 2 1 22
1, 1 , d d ,

2
p

i i
  

       




  − −

− −

 
− − =    M  (5-62) 
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where 

 ( ) ( )cos sgn sin , 1,2.
2 2

ii i i
i i ii i i

  
  

−−     
=  =    

    
 (5-63) 

By inserting Eq.(5-57) into Eq. (5-62), then we have 

 

( )

( ) ( )

( )
( ) ( )

( ) ( )

1 2

2 2 2 2
1 1 2 2 1 1 2 21 2

1 2

1
1 2 2

1 1 2 2 1 22

1, 1

d d .
2

p

i

i i e
        

 

 
   



 

  + − +− −

− −

− −

 
=   

M

 (5-64) 

According to Eq. (5-34), ( ),p x y  can be reconstructed as: 

 

( )

( )
( )

( )
( ) ( )( )

( )
( ) ( ) ( )

( )
( ) ( )( ) ( )

1 2

1 1 2

2 21

1 2 1

1 2 1 22

1

1 2 1 22

1

1 2 1 22

2

1 22

,

1
1, 1 d d , 0, 0;

2

1
1 1, 1 d d , 0, 0;

2

1
1 1, 1 d d , 0, 0;

2

1
1 1, 1

2

XY

p

p

p

p

p x y

x y x y

x y x y

x y x y

x y

 

  

 

   

   


   


   


 


−−

+−

−+

++

 
− −

− −

  − − −

− −

  − −−

− −

− − − −

=

− −  

− − − −  

− − − −  

− − − − −

 

 

 

M

M

M

M
2

1 2d d , 0, 0.x y 
 

− −













 


 

 (5-65) 

Based on Eq. (5-58), assuming that 1 2, 0   , the PDF can be expressed as: 

 ( )

( ) ( )
2 2

1 2

2 2
1 2

1

2

1 2

1
, .

2

x y

XYp x y e

 

 

 

 − −
 − +
 
 =  (5-66) 

The CF of Eq. (5-66) is: 

 ( )
( ) ( )2 2 2 2

1 1 2 2 1 1 2 2

1

2
1 2, .

i

e
       

 
− + − +

 =  (5-67) 

According to Eq. (5-62), we can obtain: 

 ( ) ( ) ( )( )( )
1 2

1 2

1 2

2
3 22 2

1 2 1 2 1 2 1 1 2 3 2 42

1
1, 1 2 ,

p
S S S S

 
      


 

− − −
− −

− − =    M  (5-68) 

where 
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2
2 1 1 1 1

1 1 1 1 2

1

2

1 1 1 1
2 1 1 1 1 1 2

1

2

2 2 2 2
3 2 1 1 2

2

2
4 2 2

1 1 1
2 cos , , ,

2 2 2 2 2

3
sin 1 , , ,

2 2 2 2 2

1 1 1
2 cos , , ,

2 2 2 2 2

sin
2

S F

S F

S F

S

   




   
  



   




 
 

 − −   
=  −    

     

    
=  − − −    

     

 − −   
=  −    

     

 
=  − 

 

2

2 2 2
1 1 2

2

3
1 , , ,

2 2 2 2
F

 



  
− −  

   

 (5-69) 

where ( )1 1F  is Kummer confluent hypergeometric function. Considering first quadrant in 2-

dimentional space,  

 ( ) ( )

( ) ( )
2 2

1 2

2 2
1 2

1

2

1 2

1
, ,

2

x y

XYF p x y e

 

 

 

 − −
 − +
 
 = =x  (5-70) 

 ( ) ( )( ) ( ) ( ) ( )1 2 1 1 2 2
,ln ln ln ln

,
C a x a y C a C a

C e e
− + − + + +− = =

a x aa
a x  (5-71) 

where  1 2,a a=a , and  ,x y=x . Since 1 2 1 2, , ,     are constant, it is obviously that there 

exist 2a , and proper function ( )1 1C a , ( )2 2C a  satisfy: 

 

( )
( )

( )
( )

2

1

1 1 1 2

1 1

2

2

2 2 2 2

2 2

1
ln ln ,

2 2

1
ln ln .

2 2

x
a x C a

y
a y C a



 



 

−
−  −

−
−  −

 (5-72) 

Hence 

 ( ) ( ), ,XYp x y C − a
a x  (5-73) 

which means the normal distribution satisfy Theorem 1.  

Moreover, since ( )1 2 1 21, 1
p

   − −M  is finite at a tube domain except 0 and infinity, it is 

clear that we can found a function ( )K   of  , and ( )H   of   , as well as a real number 

1k   satisfy: 

 ( ) ( ) ( )
1 2 1 21, 1 ,  1,  ,

kH

p
K e k i  

 

−
− −   = +M


     (5-74) 

which means ( )1 2 1 21, 1
p

   − −M  satisfy Theorem 2. 

The more generalized Gaussian distribution can be expressed as follows: 
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 ( )
( )

2 2

1 1 2 2

2
1 1 2 2

1
2

2 1

2

1 2

1
, ,

2 1

x x y y

XYp x y e

   


   

  

       − − − −
 − − +      
 −        =

−
 (5-75) 

where   is the correlation coefficient, the numerical solution of 2D-GCFM is given at the 

Appendix D. 

5.6.1 Symmetric case ( 1 2 0 = = ) 

 In this case, 2S  and 4S  in Eq. (5-69) are 0, then Eq. (5-68) can be expressed as follows: 

 ( ) ( ) ( )
1 2

1 2

1 1

1 2 1 2 1 2
1 2 1 2

1
2 2 2

1 1
1, 1 cos cos .

2 2 2 2
2

p

 

 

     
   



− −

+ +

− −       
− − =           

       
M

 (5-76) 

In addition, the expression of MMT of ( ),p x y  by Eq. (5-11) and Eq.(5-66) is: 

 ( )
1 2

1 2
3

1 1 1 22 2
1 2 1 2

1
1, 1 2 ,

2 2
p

 
   

   


+ −
− −    

− − =     
   

M  (5-77) 

according to the formula  

 ( ) ( )
( )

1 ,
sin

z z
z




 −  =  (5-78) 

and  

 ( ) ( )1 21
2 2 ,

2

zz z z− 
  + =  

 
 (5-79) 

Eq. (5-76) and (5-77) can be translated each other. 

 In the symmetric case, ( ),p x y  can be constructed by:  

 ( )
( )

( ) 1 2

1 2 1 22

1
, 1, 1 d d ,

2
XY pp x y x y

 
   



  − −

− −
= − −  M  (5-80) 

and the discrete expression of Eq. (5-80) can be expressed as: 

 ( ) ( )
2 1 1 2

1 21 2

2 2 1 1

1 2 1 22

1
, 1, 1 .

4

k k
m m

k k

XY p

k m k m

p x y x y
 

   


− −

=− =−

 − −    M  (5-81) 
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Figure 5-1 (a) The original normal distribution; (b) The normal distribution reconstructed by 2D-GCFM. 

Where 1 1 = , 2 1 =  

 
Figure 5-2 The absolute error of original normal distribution and reconstructed normal distribution 

 
Figure 5-3 (a) The real part of 2D-GCFM. (b) The imaginary part of 2D-GCFM. 1 2 40m m= =  

 

In this example, we choose the standard deviation as 1 1 =  , 2 1 =  , the calculation 

parameters of GCFM method is selected as 1 1.5 =  , 2 1.5 =  , 1 0.4 =  , 2 0.4 =  , and 

 , 2,2x y − , 0.02x y =  = . The exact normal distribution is shown in Figure 5-1 (a). Figure 

(a) (b) 

(a) (b) 
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5-1(b) displays the reconstructed normal distribution when 1 2 40m m= = . Figure 5-2 exhibits 

the absolute error between Figure 5-1 (a) and Figure 5-1 (b), which illustrate the accuracy of 

GCFM method. 

It is worth noticing that there exists two lines in Figure 5-1 (b) when 0x =  and 0y = , 

which are generated for the reason that the singularity of Mellin transform when 0x = , and 

also the singularity in 0x =  of MMT. 

 
Figure 5-4 (a) The normal distribution reconstructed by 2D-GCFM. (b) The absolute error of original 

normal distribution and reconstructed normal distribution. (c) The real part of 2D-GCFM. (d) The 

imaginary part of 2D-GCFM. 1 2 15m m= =  

 
Figure 5-5 (a) The normal distribution reconstructed by 2D-GCFM. (b) The absolute error of original 

normal distribution and reconstructed normal distribution. (c) The real part of 2D-GCFM. (d) The 

imaginary part of 2D-GCFM. 1 40m = , 2 15m =  

 

Figure 5-4 (a) and Figure 5-5(a) display the Gauss distributions reconstructed by 2D-

GCFM with different cutoff value 
1 2 15m m= =   and 

1 240, 15m m= =  , respectively, where 

Figure 5-4(b-d) and Figure 5-5 (b-d) exhibit the absolute error, as well as the real and imaginary 

part of 2D-GCFM. According to the results, it is obviously that the accuracy of 2D-GCFM 

method increase with the cutoff value.  

Another example is shown in Figure 5-6 when 1 2 = , 
2 0.5 = , where Figure 5-6 (a) and 

(b) are the exact normal distribution and reconstructed normal distribution when 
1 2 40m m= = , 

Figure 5-6(c-e) are the absolute error as well as the real and imaginary part of 2D-GCFM, which 

also verified the accuracy of GCFM method. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 5-6 (a) The exact normal distribution. (b) The reconstructed normal distribution by 2D-GCFM. (c) 

The absolute error. (d) The real part of 2D-GCFM. (e) The imaginary part of 2D-GCFM. 1 2 40m m= = , 

1 2 = , 2 0.5 =  

5.6.2 Asymmetric case ( 1 20, 0   ) 

 In this part, we verify the accuracy of the generalized CFM in asymmetric case. According 

to Eqs. (5-65)-(5-69), the asymmetric distribution (5-66) can be reconstructed. 

 

(a) (b) 

(c) (d) (e) 

(a) 
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Figure 5-7 (a) The exact normal distribution; (b-d) The normal distribution reconstructed by 2D-GCFM, 

and (e-g) the absolute error. (Case 1 1 2 40m m= = ; Case 2 1 2 15m m= = ; Case 2 1 15m = , 2 40m = ). 

1 2 1.5 = = , 1 2 0.3  =  =  

 

Assuming that 1 0.5 =  , 2 1 =  , 1 1 =  , 2 2 =  , Figure 5-7 displays the original normal 

distribution and the normal distribution reconstructed by 2D-GCFM with different 1m   and 

2m . According to the results, the GCFM can also reconstructed the asymmetric distribution 

when 1m   and 2m   is large enough. Figure 5-8 to Figure 5-10 exhibit the real part and 

imaginary part of 2D-GCFM in the first quadrant to fourth quadrant with different 1m  and 

2m . Compared with Figure 5-8 to Figure 5-10, it can be seen from the results that the increase 

of the truncation value retains more information of the GCFM. 

 

(b) (c) (d) 

(e) (f) (g) 
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Figure 5-8 (a-d) the real part of 2D-GCFM in first quadrant to fourth quadrant; (e-h) the imaginary part of 

2D-GCFM in first quadrant to fourth quadrant. 1 40m = , 2 40m =  

 
Figure 5-9 (a-d) the real part of 2D-GCFM in first quadrant to fourth quadrant; (e-h) the imaginary part of 

2D-GCFM in first quadrant to fourth quadrant. 1 15m = , 2 15m =  

 
Figure 5-10 (a-d) the real part of 2D-GCFM in first quadrant to fourth quadrant; (e-h) the imaginary part of 

2D-GCFM in first quadrant to fourth quadrant. 1 15m = , 2 40m =  

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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The following conclusions can be drawn from the analysis: 

1) For multidimensional probability distributions, limited GCFM is sufficient for the 

reconstruction of the probability distribution, and this reconstruction is effective for both 

symmetric and non-symmetric distributions. 

2) The size of the truncation value and step size determines the amount of preserved 

information in the GCFM, and more GCFM information leads to a more precise 

reconstruction of the probability distribution. 

3) From the results, the probability distribution is reconstructed at 0x , where there are no 

values when 0x = , which is caused by the singularity of the Mellin transform at 0x = . 

5.6.3 Marginal probability distribution 

 Considering the asymmetric distribution in Eq. (5-66), for the ( ), , 1,...,4ip x y i =  , the 

PDF can be reconstructed by the following expression: 

 ( )
( )

( ) 1 2

1 2 1 22

1
, 1, 1 d d ,   0, 0.

2
ii pp x y x y x y    



 
− −

− −
= − −    M  (5-82) 

Integrating Eq. (5-82) by x , we can obtain the expression of ( )ip y  as follows: 

 ( )
( )

( ) 1 21

1 2 1 22

1

1 1
1, 1 d d , 0, 0.

12
ii pp y x y x y

    


 
− −

− −


 
= − −    − 

  M  (5-83) 

Utilizing Eq. (5-83), the marginal distribution can be obtained by 2D-GCFM. The discrete 

expression of Eq. (5-83)can be expressed as follows: 

 ( )
( )

( )
2 1

1 2
1 2 1 2

1

2 2 1 1

1

1 2 1 22

1

1 1
1, 1 ,

12

k k

i

m m
k k

i p k
k m k m

p y x y
    



− −

=− =− 

  
= − −      −  

  M  (5-84) 

where   usually represent the domain of integration. 

 
(a) (b) 
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Figure 5-11 The marginal distribution ( )Yp y in (a) first quadrant; (b) second quadrant; (c) third quadrant; 

(d) fourth quadrant 

 

Figure 5-11 exhibits the marginal distribution in four quadrant that obtained by Eq. (5-84), 

where the scatter is the results obtained by the original distribution function, and the line is 

obtained by 2D-GCFM. According to the results, the low marginal distribution can be obtained 

directly by using high-dimensional CFM, which means that the high dimensional CFM contains 

complete information in each lower dimension. 

5.6.4 GCFM method for stochastic dynamic system 

 In the previous study, the CFM method is utilized to reconstruct the transient PDF of 

stochastic dynamic system efficiently. In this part, the GCFM method is applied to obtained the 

transient joint PDF of 2-dimensional stochastic dynamic system. A sample second order 

stochastic dynamic system expressed as follows: 

 ( ) ( ) ( ),X t kX t t+ =  (5-85) 

Eq. (5-85) can be translated into the 2-dimensional differential equation form as follows: 

 
( ) ( )

( ) ( ) ( )

d d ,

d d d ,

X t Y t t

Y t kX t t W t

=

= − +
 (5-86) 

where ( )t  represents the Gaussian white noise, ( )W t  is wiener process. The FPK equation 

ruling the joint PDF ( ), ,XYp x y t  can be written as: 

 
( ) ( ) ( ) ( )2

2

2

, , , , , ,, , 1
.

2

XY XY XYXY
yp x y t xp x y t p x y tp x y t

k
t x y y


             = − + +

   
 (5-87) 

(a) (b) 
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Figure 5-12 The distribution of systems when (a) 10t = ; (b) 15t = ; (a) 20t = . 1k = , 0.1 =  

 

Figure 5-12 displays the distribution of system (5-86) when 10,15,20t = . Assuming that

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2, , , ,..., ,N NX t Y t X t Y t X t Y t 
   are realizations of the random valuable at 

time t , the 2D-GCFM of this case in any quadrant can be obtained from the following equation: 

 ( ) ( ) ( ) ( )
1 2 1 21 1 1 1

1

1
.

N

k k

k

E X t Y t X t Y t
N

   − − − −

=

  =
    (5-88) 

The transient marginal PDFs are shown in Figure 5-13, where Figure 5-13(a-c) are the 

results of ( ),p x t , Figure 5-13(d-f) are the results of ( ),p y t .The dashed line and real line 

represent the results obtained from Monte Carlo Simulation and GCFM method, respectively. 

Here, we select 1 2 1.5 = = , 1 2 80m m= = , 1 2 0.5  =  = . Comparing the results, GCFM 

method displays the high accuracy in the reconstruction of the transient PDF of stochastic 

dynamic system. The transient joint PDFs constructed by MCS and GCFM method when 

10,15,20t =  is shown in Figure 5-14(a-c) and Figure 5-14 (d-f).  

 

 

(a) (b) (c) 
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Figure 5-13 Transient marginal PDF of system. (a) ( ),10Xp x ; (b) ( ),15Xp x ; (c) ( ),20Xp x ; (d) 

( ),10Yp y ; (e) ( ),15Yp y ; (f) ( ),20Yp y  

 

Figure 5-14 Transient joint PDF of system constructed by MCS when (a) 10t = ; (b) 15t = ; (c) 20t = . 

GCFM when (d) 10t = ; (e) 15t = ; (f) 20t =  

 

 

 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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5.7. Conclusion 

This chapter introduces the concept of generalized complex fractional moments using the 

multi-dimensional Mellin integral transform, extending the theory to multi-dimensional 

scenarios. The equivalence between multi-dimensional probability density functions, multi-

dimensional characteristic functions, and generalized complex fractional moments are 

established. This equivalence is further extended to the multi-dimensional real domain through 

function partitioning. Additionally, a method to construct marginal probability density functions 

using high-dimensional complex fractional moments is proposed, which is validated through a 

two-dimensional Gaussian distribution. Results indicate that in its integral form, the generalized 

complex fractional moment is fully equivalent to multi-dimensional probability density 

functions, while in its discrete form, increasing the truncation value significantly enhances 

computational accuracy. However, due to the singularity of Mellin transform at 0x =  , 

singularities in reconstructing the probability distribution at 0x =   remain in multi-

dimensional cases. A simple two-dimensional stochastic dynamic system is also used to verify 

the applicability of generalized complex fractional moments in engineering. 
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Chapter 6. Maximum entropy principle handled by using complex 

fractional moments 

6.1. Introduction 

Probability distributions are essential tools for quantifying the characteristics of random 

variables or stochastic processes. In dynamic systems, the presence of external or internal 

random factors makes constructing transient PDFs highly important for analyzing system 

behavior under stochastic perturbations. The transient PDF offers valuable insights into how 

the system evolves over time in response to randomness, helping to understand its probabilistic 

state at any given moment. However, deriving these PDFs, especially during the transient phase, 

remains a challenging problem in stochastic dynamics. 

Traditional methods, such as Monte Carlo simulations, path integral methods [17, 134, 150, 

151], Wiener path integral methods [19, 20, 152], finite element methods [24, 67], and finite 

difference methods [153], can be employed to solve the transient PDF of stochastic dynamic 

systems. These approaches typically allow for numerical or semi-analytical solutions. However, 

these methods often involve significant computational costs, especially for complex systems, 

and may require considerable resources to achieve high accuracy. Other methods, such as, 

probability evolution equation methods [77, 154-156], neural network methods [27, 157], 

provides a new perspective for obtaining transient probability of the system. 

Since its inception, the CFM method has been proven to efficiently and accurately 

reconstruct probability density functions [84]. The theoretical framework has continually 

expanded [158] and been applied in various fields [91, 95, 96, 102, 106, 159-161]. For transient 

PDF reconstruction problems, the CFM method involves applying the Mellin transform to the 

FPK equation, and deriving the corresponding CFM equation. Traditionally, the CFM method 

reconstructs transient PDFs based on inverse Mellin transforms and sufficient CFM information. 

However, reconstructing PDFs with insufficient CFM data remains challenge. 

The Maximum Entropy Principle [158] is widely applied in fields such as information 

theory [159], statistical mechanics [160], and probability theory [161]. Its key concept is 

deriving the most unbiased probability distribution under known constraints. By incorporating 

these constraints into the entropy function and optimizing it using the Lagrange multiplier 

method, the MEP produces an optimal probability distribution. While MEP with traditional 

integer or fractional moments constraints has been established, however, applying it to PDF 

reconstruction under CFM constraints has yet to be explored. 

In this chapter, a new MEP method with CFM constraints is proposed, which can be applied 

for constructing the most unbiased probability distribution with few known CFM constraints. 

The MEP method is introduced in Section 6.2, and review the conception as well as the 

application of CFM in Section 6.3. In Section 6.4, the MEP with CFM constraints has been 
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established, which has been verified with numerical simulation, and compared with traditional 

CFM method, which has been applied for stochastic dynamic system for the reconstruction of 

transient PDFs in Section 6.5. 

6.2. Maximum entropy principle 

The Maximum Entropy Principle is a method used to infer the most unbiased probability 

distribution given limited information [162]. It is grounded in the concept of maximizing the 

Shannon entropy, subject to constraints provided by known data. 

According to the MEP, for a stochastic process, its associated transient probability density 

function is represented as ( ),Xp x t  is determined by the maximization of entropy functional. 

The entropy of this distribution can be expressed in the following form: 

 ( )( ) ( ) ( ), , ln , d .X X XH p x t p x t p x t x= −  (6-1) 

Eq. (6-1) quantifies the uncertainty or randomness of the probability distribution ( ),Xp x t  

over time t , which under some assigned constraints. The normalization condition of ( ),Xp x t  

is  

 ( ), d 1.Xp x t x =  (6-2) 

When maximizing the entropy function ( )( ),XH p x t , certain constraints must be satisfied. 

Typically, these constraints can be expressed in the form of the following integral equations: 

 ( ) ( ) ( ), d ,     1,2,...,k X kF x p x t x t k n= =  (6-3) 

where ( )kF x  represents the functions characterizing the stochastic process. These constraints 

ensure that the reconstructed probability density function reflects the known properties of the 

stochastic process. 

Noticing the constraints in Eq. (6-3) is time-varying, in this case, we consider the 

constraints of Eq. (6-1) at each fixed time t . Denoting ( ), 0,1,...,k t k n =  as the Lagrange 

multipliers, and considering the entropy functional Eq. (6-1) and constraints (6-3), we may 

construct the extended entropy functional given as follows: 

 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

0 1

0

, , , ,..., , ln , d

                                           , d .

X m X X

n

k k X k

k

H p x t p x t p x t x

t F x p x t x t

  

 
=

= −

 − −
 



 
 (6-4)  

Based on the concave properties of the entropy functional, we can use differential 

operations to find its extremum points. By performing the variation with respect to ( ),Xp x t , 

namely, ( )( )0 1, , , ,..., / 0X mH p x t p    = , we can obtain 
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 ( ) ( ) ( )
0

ln , 1 0,
n

X k k

k

p x t t F x
=

− − − =  (6-5) 

namely, 

 ( ) ( ) ( ) ( )
1

, exp .
n

X k k

k

p x t C t t F x
=

 
= − 

 
  (6-6) 

 By expressing  

 ( ) ( ) ( ) ( )1
, , ,X Xp x t C t p x t=  (6-7) 

where 

 
( ) ( ) ( ) ( )1

1

, exp ,
n

X k k

k

p x t t F x
=

 
= − 

 
  (6-8) 

then we may find, 

 ( ) ( ) ( )1

1

exp d ,
n

k k

k

t F x x C t −

=

 
− = 
 
  (6-9) 

and 

 ( ) ( ) ( ) ( ) ( )1 1, d ,k X kF x p x t x C t t−=  (6-10) 

where ( )C t  is the normalization coefficient given as ( ) ( )( )0exp 1C t t= − − .  

If the moments are available, then the function ( )kF x   can be expressed as kx  , and 

( ) ( ) ( )k

k kt m t E X t  = =   . Substituting Eq. (6-6) into Eq.(6-3), we have: 

 ( ) ( ) ( ) ( ) ( )1
, d , 1,2,..., ,k k

X kC t p x t x x m t E X t k n


−
 = = =   (6-11) 

The MEP may be applied under some limitations: 

1) The integer moments must be constrained up to a certain order n . It follows that for  −

stable random variables ( )0 2   in which the moments of higher order than 2 do not 

exist, as a consequence, the MEP may not be applied for  −stable distribution.  

2) By solving the set of nonlinear algebraic Eq. (6-11) in the unknown ( )k t , in some case, 

the MEP with classical constraints involving integer moment could be invalid. 
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6.3. The complex fractional moment 

In this section, the concept of CFM based on the Mellin transform is briefly introduced, an 

example is given to explain the existence condition. 

6.3.1 The concept of complex fractional moment 

Based on the Mellin transform, the complex fractional moments (CFMs) is defined in the 

positive domain as 
1 ,   E X i   −  = +   , i   represents the imaginary unit. Supposing 

( ),Xp x t   is defined in the range 0x  , then the Mellin transform of ( ),Xp x t  is defined as:  

 ( ) ( )  ( ) 1 1

0
1, , ; 1 , d ,X XM t p x t p x t x x E X  


− − − = − = =    (6-12) 

where    represents the Mellin transform operator. The Mellin transform of the PDF exist 

provided   belong to the so called Fundamental Strip (FS) of the Mellin transform. Usually, 

the FS, namely the existence of the Mellin transform is defined as p q−   − , where p  and 

q  depend on the order of ( ),Xp x t  at 0x =  and x = , namely, 

 ( ) ( ) ( ) ( )
0

lim ;    lim .p q

X X
x x

p x x p x x
→ →

= =  (6-13) 

Where ( )  means of the order of the term in parenthesis. The existence of the FS is 

guarantee from the fact that ( ) 0Xp x   and it is a finite quantity (for symmetric distribution 

and for every distribution defined in 0 x  ). Such an example for the stable symmetric 

Cauchy distribution, of which the PDF is: 

 ( )
( )2 2

,Xp x
x



 
=

+
 (6-14) 

with    represents the scale factor. The FS is 0p =  , 2q = −  , it follows that the FS is 

0 2  . This means that the moment more than second order of the Cauchy distribution does 

not exists.  

If    belongs to the FS, then ( ),Xp x t   can be reconstructed by using inverse Mellin 

transform, which can be expressed as follows: 

 ( ) ( ) 1 11
1 ; d .

2

i

X
i

p x M x E X x
i


 


 



+ 
− −

− 

−  = − =    (6-15) 

Eq. (6-15) can also be written as: 

 ( ) 11
d .

2
Xp x E X x  




− −

−
 =    (6-16) 
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The discretized form of Eq. (6-16) can be written as: 

( )

( ) ( ) ( ) ( )( )

1

1 11

1

2

2 Re cos ln Im sin ln
2

k k

k k

m

X

k m

m

k k

k

p x E X x

x
E X E X x E X x

b

 


 





 

− −

=−

−
− −−

=


 =  

 
    = + +      

 





 (6-17) 

Where /b  =  , ( )Re  and ( )Im  represent the real part and imaginary part of the term 

on parenthesis, respectively. 

6.3.2 The application of complex fractional moment 

The CFM method can be applied to obtain the probability density function (PDF) of the 

stochastic dynamic system. For a stochastic dynamic system, which is expressed as follow: 

 ( ) ( ) ( )( ) ( ) ( )
1

, , ,
n

i i

i

X t f X t X t g x x W t
=

+ =  (6-18) 

where ( )iW t   are uncorrelated zero-mean normal white noise, of which the correlation 

function is: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 2 1

1 2 1 2

R , ,

R , 0,

i i

i j

w w i i

w w i j

t t E W t W t q t t

t t E W t W t

= = −  

 = = 

 (6-19) 

and ( ) ( )( ),f X t X t  is a nonlinear function ( )X t . Applying the stochastic averaging method, 

the FPK equation ruling the evolution of the amplitude PDF is given as: 

 
( ) ( ) ( )

( ) ( )

( ) ( )
0

2 2

2

,1
, , ,

2

,0 ,

A

A A

A A

a p a t
p a t m a p a t

t x a

p a p a

      = − +    
 =

 (6-20) 

where ( )m a   and ( )2 a   represent the drift and diffusion term, respectively, and the 

boundary conditions are expressed as follows: 

 ( ) ( ) ( )
0

.lim , lim , lim0;     0;     0,A A A
a a a

p a t p a t p a t
a→ → →


→ → →


 (6-21) 

Multiplying the both sides of Eq. (6-20) by 1x − , and integrating in the range ( )0, , we 

can obtain:  
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( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

1 2

00

2

1

0

2 2

0

3 2

0

d 1,
, 1 , d

d

,1
                        

2

1
                        1 ,

2

1
                        1 2 , d

2

p

A A

A

A

A

M t
m a a p a t a p a t a

t

a p a t
a

a

a a p a t

a a p a t a

 












 

  

 
− −



−


−


−

−
 = − + − 

     +
  

 − − 

+ − −



.

 (6-22) 

Considering the boundary conditions, and vanishing the first, third, and fourth term of the 

right side of Eq. (6-22), we can obtain the complex fractional moments equation as follows: 

( )
( ) ( ) ( )( ) ( ) ( )2 3 2

0 0

d 1, 1
1 , d 1 2 , d .

d 2

p

A A

M t
a p a t a a a p a t a

t

 


   
 

− −
−

= − + − − 

 (6-23) 

With the normalized conditions, Eq. (6-23) can be solved directly.  

 At this stage, some comments may be drawn: 

1) With limited number of CFMs, the PDF of the random variables, or random process 

may be reconstructed, including the case of  −stable distribution. 

2) The CFM method can be applied for reconstructing the PDF by deriving the CFM 

equation using the FPK equation. 

3) By solving the ODEs governing the CFM, a set of 2 1m+  CFMs can be obtained at 

any time t . 

6.4. MEP handled by CFM 

Let us assume that the enlarged functional ( )( )0, , ,..., ,...,X m mH p x t   −
 is constructed 

by the unconstrained functional ( )( ),XH p x t , according to the Lagrange multiplier method 

with the constraints (known quantities) are the CFM instead of the integer moments, in this case: 

 

( )( )

( ) ( ) ( )

( ) 0

0

1 1

0 0

, , ,..., ,...,

, , ,..., ,...,

, ln , d , d

max ,

k k

X m m

X m m

m

X X k X

k m

p x t

H p x t

p x t p x t x p x t x x E X
 

  

  



−

−

 
− −

=−

  = − − −    

=

   (6-24) 

where ,...,m m −
 are complex Lagrange multiplier. 

By noting that ( ),Xp x t +  and reconstruct the complex term as following: 

 ( ) ( ) ( ) ( )( )1 1 1,     cos ln sin ln ,k k

X Xp k p k k kE X A iB x x x i x
     − − −  = + = +   (6-25) 

the enlarged function may be rewritten as 
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( )( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 0

0 1

0

1

0

1

0

, , ,..., ,...,

    , , , ...,

, ln , d

  , cos ln d

  , sin ln d

max

X

X

X m m

X m

X X

m

k X k p k

k m

m

k X k p k

k m

p x t

H p x t

p x t p x t x

p x t x x x A

i p x t x x x B





  

  

  

  

−




−

=−


−

=−

= −

 − −
  

 − −
  

=



 

 

 (6-26) 

By performing derivatives to ( ),Xp x t  , we get the approximate PDF of ( ),Xp x t   as 

follow, which is denoted as ( )ˆ ,Xp x t : 

 ( ) ( ) ( )1ˆ , exp cos ln sin ln ,
m

R I

X e k k k k

k m

p x t x x x    −

=−

 
 = − − −  

 
  (6-27) 

where e  is a normalized coefficient, R

k  and I

k  are the real part and imaginary part of k , 

which satisfy: 

 0;     ;     0.R R I I I

k k k k    − −= = − =  (6-28) 

Thus, Eq.(6-27) can also be rewritten as: 

 ( ) ( ) ( )1 1

0

1

ˆ , exp 2 cos ln sin ln .
m

R R I

X e k k k j

k

p x t x x x x      − −

=

 
 = − − − −  

 
  (6-29) 

With m  CFMs of ( )X t , the optimization value of 0 1 1, , ,..., , ,...,R R R I I

e m m         may 

be found by following constrained equations: 

 
( ) ( ) ( )

( ) ( ) ( )

( )

2 2

1

0

1

0

0
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 (6-30) 

It is worth noticing to observe that m  is the number of the multiplier that depend on the 

number of the constraints that we impose in the enlarged functional. 

In order to quantify the discrepancy of the ( )ˆ ,Xp x t  from ( ),Xp x t , we introduce the 2L  

norm as follow: 

 ( ) ( ) ( ) 
1

2 2

2
ˆ ˆ, , , d .L p p p x t p x t x


= −    (6-31) 
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and also the Kullback-Leibler (KL) measure of the discrepancy [163], denoted as: 

 ( ) ( )
( )

( )

ˆ ,
ˆ ˆ, , log d .

,

p x t
KL p p p x t x

p x t

 
=   

 
  (6-32) 

6.5. Numerical simulations 

In this section, we validate the accuracy of proposed method in last section with two kinds 

of distribution, and the discrepancy is quantified by using 
2L  norm and KL measure. 

6.5.1 Example 1 

Firstly, we discuss the feasibility of MEP method with CFM constraint in Gaussian 

distribution, of which the value is not zero at 0x = . The Gaussian distribution is expressed as 

follow: 

 ( )
( )

2

22
1

,
2

x

Xp x e







−
−

=  (6-33) 

and the CFM expression of Eq. (6-33) is written as following: 

( )

1
2 2

1 1 12 2
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 (6-34) 

According to the objective function and constraint equations expressed in Eq. (6-30), we 

can obtain the optimal value of 
k . Table 6-1 exhibits the optimal parameters in Eq. (6-29), 

Table 6-2 displays the discrepancy of MEP method and classical CFM with 2,4,6 CFM values. 

Figure 6-1 exhibits the reconstructed distribution with classical CFM method and MEP method. 

 

Table 6-1 Optimal parameters with different m  and discrepancy when 0 = , 1 =  

Parameter 2m =  4m =  6m =  

e  2.0884 2.1042 1.7536 

0  0.3894 0.1921 1.1195 

1  0.1271 - 3.8911i 0.1014 - 3.8831i 0.0152 - 3.0048i 

2  -0.6750 + 1.2470i 0.2384 + 1.4459i -0.0496 - 0.0150i 

3  -- -0.5365 - 0.4444i -1.7425 + 0.5340i 

4  -- 0.2308 + 0.2635i 1.4332 + 0.4230i 

5  -- -- -0.4557 - 0.3842i 

6  -- -- 0.0738 + 0.0852i 
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Table 6-2  2L  norm and KL discrepancy 0 = , 1 =  

 Divergence 2m =  4m =  6m =  

MEP 
( )2

ˆ ,L p p  0.0195 0.0091 0.0032 

( )ˆ ,KL p p  0.0187 0.0086 0.0024 

CFM 
( )2

ˆ ,L p p  1.8167 1.1378 0.2184 

( )ˆ ,KL p p  1.8551 0.8549 0.1898 

 

Figure 6-1 The exact PDF and the PDF reconstructed with (a) CFM method; (b) MEP method 

 

Table 6-3 displays the optimal parameters when 1.5 = , and Table 6-4 exhibits the related 

discrepancy of MEP and classical CFM method. Figure 6-2 show the reconstructed distribution 

using CFM method and MEP method when 2,4,6m = . 

 

Table 6-3 Optimal parameters with different m  and discrepancy when 0 = , 1.5 =  

Parameter 2m =  4m =  6m =  

e  2.5233 4.3466 2.0008 

0  -0.5194 -2.1599 0.0868 

1  0.0292 - 3.0640i 2.2019 -12.2869i 0.2665 - 2.1503i 

2  -0.2724 + 1.1067i -5.6055 + 8.0799i -0.4851 + 0.3483i 

3  -- 4.1561 - 1.8729i -0.3724 + 0.3543i 

4  -- -1.0852 - 0.0464i 0.3734 - 0.0013i 

5  -- -- -0.0266 - 0.0349i 

6  -- -- -0.0269 - 0.0206i 

 

 

 

 

a b 
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Table 6-4  2L  norm and KL discrepancy 0 = , 1.5 =  

 Divergence 2m =  4m =  6m =  

MEP 
( )2

ˆ ,L p p  0.0169 0.0111 0.0045 

( )ˆ ,KL p p  0.0204 0.0143 0.0025 

CFM 
( )2

ˆ ,L p p  0.2831 1.3762 0.731 

( )ˆ ,KL p p  1.4489 0.9866 0.463 

 

Figure 6-2 The exact PDF and the PDF reconstructed with (a) CFM method; (b) MEP method 

 

6.5.2 Example 2 

Due to the MEP method based on the exponential-type function, namely ( )exp , of which 

the value is not zero when 0x =  . Here, we discuss the feasibility of MEP method with 

exponential distribution, which expressed as follows: 

 ( ) ,x

Xp x xe −=  (6-35) 

of which the CFM is: 

 ( ) ( )11 1 ,M   − −− =  +  (6-36) 

where ( )  represents the Euler Gamma function. 

According to the objective function and constraint equations expressed in Eq.(6-30), we 

can obtain the optimal value of k . Table 6-5 and Table 6-6 displays the parameters and the 

divergence of MEP method and CFM method when 1 = , and Table 6-7 and Table 6-8 displays 

the parameters and the divergence of MEP method and CFM method when 1.5 = . Figure 6-

3 and Figure 6-4 display the exact and reconstructed PDF by using CFM method and MEP 

method. 

 

 

a b 
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Table 6-5 Optimal parameters with different m and discrepancy when 1 =  

Parameter 2m =  4m =  6m =  

e  4.683 2.746 3.89 

0  4.663 2.776 3.8236 

1  -4.826+2.283i -1.436+1.93i -3.245+2.97i 

2  0.65-1.21i -1.526-0.525i -0.484-1.878i 

3  -- 0.789-0.68i 0.315+0.358i 

4  -- -0.085+0.305i 0.093-0.293i 

5  -- -- -0.0054+0.282i 

6  -- -- -0.0345-0.09i 

 

Table 6-6  2L  norm and KL discrepancy 1 =  

 Divergence 2m =  4m =  6m =  

MEP 
( )2

ˆ ,L p p  0.0214 0.0073 0.0028 

( )ˆ ,KL p p  0.0434 0.0145 0.0057 

CFM 
( )2

ˆ ,L p p  0.2306 0.0826 0.0275 

( )ˆ ,KL p p  0.5732 0.159 0.05 

 

Figure 6-3 The exact PDF and the PDF reconstructed with (a) CFM method; (b) MEP method 

 

 

 

 

 

 

 

 

(a) (b) 
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Table 6-7 Optimal parameters with different m and discrepancy when 1.5 =  

Parameter 2m =  4m =  6m =  

e  5.1332 3.02 3.5375 

0  4.9614 2.920.3 3.5375 

1  -4.5067-3.2742i -1.0714-1.99i -0.27+0.038i 

2  0.1883+1.4088i -1.4977-0.35i 0.71+0.073i 

3  -- 0.1566+1.143i -0.61-0.091i 

4  -- 0.1995-0.3057i 0.38-0.494i 

5  -- -- -0.65-0.098i 

6  -- -- -2.46+1.8i 

 

Table 6-8  2L  norm and KL discrepancy 1.5 =  

 Divergence 2m =  4m =  6m =  

MEP 
( )2

ˆ ,L p p  0.0115 0.0073 0.0044 

( )ˆ ,KL p p  0.0193 0.0145 0.0063 

CFM 
( )2

ˆ ,L p p  0.1245 0.0478 0.0152 

( )ˆ ,KL p p  0.349 0.0964 0.0362 

 

 
Figure 6-4 The exact PDF and the PDF reconstructed with (a) CFM method; (b) MEP method 

 

According to the results, some comments can be drawn: 

1. The MEP with CFM constrains can also reconstruct the PDF by finding the optimal 

parameters; 

2. Compared with the reconstruction by CFM method directly, the MEP with CFM constrains 

method can reconstruct the PDF with less complex quantities and with more accuracy; 

3. With any certain complex quantities, the MEP with CFM constraints can reconstruct the 

(a) (b) 
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probability distribution, which means if we obtain the CFM by the CFM equations (Eq. 

(6-23)), the PDF can also be reconstructed, this provide a possible to construct the transient 

PDF of a stochastic dynamic systems. That will be discussed in the next section. 

6.6. Solution of the FPK equation by MEP with CFM constraints 

In the previous sections, we explored the MEP with CFM constraints, demonstrating that 

this approach can reconstruct the PDF with fewer complex parameters and higher accuracy. In 

this section, we will extend the application of MEP with CFM constraints to derive the transient 

PDF of stochastic dynamic systems, examining its effectiveness in capturing the evolving 

probabilistic behavior over time in such systems. 

Considering a system as follows [85]: 

 ( ) ( ) ( )2 2

1 2 1 2 ,X c c X X X e e X W t+ + + = +  (6-37) 

where 1c  and 2c  represents the coefficients of linear and nonlinear damping, ( )W t  is 

the Gaussian white noise of whose intensity of noise is 2D . Appling the stochastic averaging 

method, we can obtain the FPK equation governing the transient PDF, and introducing the 

Mellin transform, we can derive the ODEs governing the CFM as follows: 

 

( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )

2

1 2

2

2
22 1

2

d 1,
1 1 1 1,

d 2 8

                        1 1, 2 1 3, ,
8 8

X

X

X X

p s

s s s p s

s p s s p s

M t c e D
M t

t

c e D
M t M t


   



   


−  
= − − + − + − 
 

− − + + − −

 (6-38) 

here ,..., 1,0,1,...,s m m= − − . Eq. (6-38) can be solved by using the following normalization 

conditions: 

 ( ) ( ) ( )
1

1 , 1, .
2X X

m

p s p s ks

k m

M t M t c
b

   
=−

− +  = − −  (6-39) 

Based on Eq. (6-38) and (6-39), we can obtain the CFMs at any time t , and applying the 

MEP method mentioned in the previous section, the PDF can be reconstructed. The parameters 

selected in this section as follows: 

Table 6-9 Parameters 

Parameter Values Parameter Values 

1c  0.01 2c  0.01 

1e  1 2e  1 

D  0.01   1 

  2.1   0.5 

m  50   
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Figure 6-5 The transient PDF reconstructed by CFM method and MCS method when 5t = , 50m =  

 

Figure 6-6 Reconstruction of transient PDF by (a) CFM method, (b) MEP method when 5t =  

 

Figure 6-5 presents the transient PDF of system (6-37) obtained using the Monte Carlo 

Simulation, alongside the results from the CFM method with a truncation parameter of m = 50, 

0.5 = . Figure 6-6 illustrates the transient PDFs computed using the CFM and MEP methods 

for truncation parameters m = 4 and 6. The results indicate that while the traditional CFM 

method effectively reconstructs the transient PDF with a large truncation parameter, its 

accuracy diminishes with smaller values of m. In contrast, the MEP method constrained by 

CFM demonstrates superior performance in reconstructing the transient PDF under reduced 

truncation conditions. Table 6-10 displays the value of Lagrange multipliers 
i  when m = 4 

and 6. 

 

 

 

 

(a) (b) 
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Table 6-10 Optimal parameters with different m  

Parameter 4m =  6m =  

e  0.1827 0.204 

0  0.2245 0.2452 

1  0.1873-0.8204i 0.1418-1.6597i 

2  0.0639-1.2113i 0.1777-1.4225i 

3  0.5417-0.5258i 0.8517+0.0466i 

4  1.1006+0.848i 0.8449+0.7436i 

5  -- -0.3419+0.3377i 

6  -- 0.4371-0.5413i 

 

Figure 6-7 presents the computational results for noise intensity D = 0.1 at different 

truncation parameters m = 4 and m = 6, when t = 10. Figure 6-7(a) and Figure 6-7(b) show the 

transient PDF obtained using the CFM method and the MEP method, respectively. The results 

indicate that, under high noise intensity, the traditional CFM method exhibits significant errors 

with small truncation values. In contrast, the MEP method, constrained by fewer CFMs, proves 

more effective for reconstructing the system's transient PDF. Table 6-11 displays the value of 

Lagrange multipliers i  when m = 4 and 6. 

 
Figure 6-7 Reconstruction of transient PDF by (a) CFM method; (b) MEP method when 0.1D =  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Table 6-11 Optimal parameters with different m  

Parameter 4m =  6m =  

e  3.1909 2.5758 

0  -1.4162 -0.3136 

1  -0.31-1.8696i -0.41-0.1447i 

2  -1.9345-0.0048i -0.6883-0.2909i 

3  2.2818-1.0247i -0.1788-0.5131i 

4  -0.582+0.574i 0.2604-0.5815i 

5  -- 0.4957+0.5076i 

6  -- -0.2752+0.0013i 

 

6.6. Conclusion 

In this chapter, a novel Maximum Entropy Principle method constrained by CFMs is 

introduced. By incorporating CFM constraints, the PDF approximation is derived using 

complex Lagrange multipliers. The method decomposes the CFMs into their real and imaginary 

components, establishing constraints for the complex Lagrange multipliers and deriving an 

entropy constraint equation in complex form. Numerical examples show that this approach 

achieves higher accuracy than traditional CFM methods, even with limited moment information. 

Furthermore, the method is applied to transient PDFs in stochastic dynamic systems, 

demonstrating its effectiveness in scenarios with minimal moment data. 
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Chapter 7. Conclusions and outlooks 

7.1. Conclusions 

Nonlinear dynamic systems are essential mathematical models for describing activities 

based on mechanical principles. When combined with randomness, these systems reveal deeper 

insights into the physical world. However, due to the inherent unpredictable of stochastic 

dynamic systems, traditional trajectory-based methods are limited. In contrast, probability 

analysis based on statistical characteristics is advantageous. The Mellin integral transform maps 

probability density functions to complex fractional moments, establishing equivalence between 

these moments and probability characteristics within the framework of integral transforms and 

fractional calculus. This equivalence is efficient for reconstructing probability characteristics 

from discrete sequences, while avoiding periodic fluctuations caused by traditional transforms.  

This thesis combined probability theory and integral transform theory to develop and 

refine the theory of complex fractional moments. The theory is applied to the transient analysis 

of stochastic dynamic systems under different theoretical frameworks. The main contributions 

and conclusions are as follows: 

1. A method for conducting transient analysis of complex fractional moments in stochastic 

Hamiltonian systems is proposed. By using stochastic averaging of generalized displacement 

and momentum equations under Gaussian white noise, the FPK equation governing the 

probability density of the Hamiltonian function is derived. A polynomial approximation for 

implicit drift terms and applied the Mellin transform to derive associated non-homogeneous 

linear ODEs. Numerical simulations demonstrated the method's accuracy and efficiency. The 

results show that increasing the polynomial parameters reduces system divergence, while 

increases in external and internal noise, along with higher initial values, amplify divergence. 

2. The application of complex fractional moments to reconstruct the probability evolution 

function of stochastic dynamic systems with Caputo-type fractional derivatives under random 

excitation is explored. Normalized differential equations for probability evolution 

reconstruction are formulated, along with advanced methods for stochastic reliability analysis 

using complex fractional moments. The effects of parameters on probability evolution and 

reliability are examined by analyzing the probability density function, first passage time, and 

reliability functions. For nonlinear stochastic dynamic systems with internal and external 

Gaussian noise, our method, using a discrete parameter 120m = , achieved an average error 

below 0.01, satisfying precision requirements across different parameters. Increased noise 

intensity 1D  and 2D  heightened system divergence, while changes in the fractional order   

had minimal effects. The effects of inherent and disturbance parameters on system bifurcation 

evolution are also studied, noting that increased polynomial parameter   and external noise 

strength 1D   accelerated bifurcation, while increased fractional parameter    delayed the 
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final state. From a reliability perspective, changes in    and 1D   significantly affected the 

reliability function and first passage time. 

3. In the Laplace context, the concept of exponential configuration of complex fractional 

moments, or shifted characteristic functions is introduced, and a theoretical framework for 

probability reconstruction is established. Utilizing the orthogonality of complex exponential 

functions, shifted characteristic function switch equations is established. The double-sided 

Laplace transform is defined to extend these theories to the full real domain, and relevant 

methods for transient probability analysis are developed. Results demonstrate that, within the 

probability space, shifted characteristic functions and double-sided Laplace transforms are 

equivalent to probability density functions, avoiding singularity at the origin in power-type 

complex fractional moments. In discrete terms, a negative correlation between period and step 

size can lead to false signal issues, which can be mitigated by selecting an appropriate step size. 

The feasibility of this theory was validated through its application in reconstructing 

probabilities for differential equations and FPK equations. Comparative analysis revealed that 

shifted characteristic functions and complex fractional moments are respectively preferable for 

exponential and power-type drift term FPK equation probability reconstructions. 

4. The framework of complex fractional moments was extended to multidimensional 

spaces, establishing a data-driven method for probability evolution analysis of 

multidimensional stochastic dynamic systems. Through the introduction of multidimensional 

integral transforms and fractional calculus in probability space, generalized complex fractional 

moments are defined on the positive real domain, and their equivalence to multidimensional 

probability characteristics is established. This equivalence is further extended to 

multidimensional real spaces through spatial partitioning. Marginal integrals confirmed the 

equivalence between generalized complex fractional moments and marginal probability 

densities. The results show that in discrete states, generalized complex fractional moments in 

multidimensional spaces accurately construct symmetric, asymmetric, and marginal probability 

densities. Additionally, a method using generalized complex fractional moments for data-driven 

probability reconstruction of multidimensional stochastic dynamic systems is proposed. 

Numerical experiments demonstrated that this method approximates the evolution probability 

analysis of multidimensional stochastic dynamic systems in the time field using a limited 

number of generalized complex fractional moments. 

5. A novel MEP method based on CFM constraints is introduced. The approach derives 

approximate PDFs by incorporating complex Lagrange multipliers. By decomposing the CFMs 

into real and imaginary components, constraints for the multipliers are established, leading to a 

complex entropy equation. Numerical results show that this method surpasses traditional CFM 

methods in accuracy when CFMs are limited. Its application to transient PDFs in stochastic 

dynamic systems highlights its effectiveness with minimal moment data. 
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7.2. Outlooks 

 The theory of complex fractional moments and its application to the transient analysis of 

stochastic dynamic systems have demonstrated excellent performance and significant research 

potential. However, the study of complex fractional moments is still in its early stages, and the 

theoretical framework remains incomplete. This thesis extends the theory of complex fractional 

moments and investigates transient analysis problems of stochastic dynamic systems within this 

extended framework, offering a new perspective for probabilistic evolution analysis in 

stochastic dynamics. Nevertheless, several issues require further exploration: 

1. Algorithm design for complex fractional moments. The distribution of information in the 

real and imaginary parts of complex fractional moments is concentrated near the origin and 

exhibits fluctuating patterns, as shown in Figures 2-4. Currently, the fixed-step rectangle 

formula algorithm used for probability reconstruction with complex fractional moments can be 

inefficient. Larger steps near the origin lead to increased errors due to high information 

fluctuation, while smaller steps away from the origin waste computational resources. 

Developing variable-step or adaptive-step algorithms based on the characteristics of complex 

fractional moments is essential for improving computational efficiency, especially when 

reconstructing the evolution probability of stochastic dynamic systems in high-dimensional 

spaces. 

2. Expansion of the theoretical framework. Currently, the framework primarily focuses on 

transient response probability analysis. However, as a moment statistic, it bridges integral 

transform theory and fractional calculus, offering significant potential for constructing 

statistical data characteristics. Future research directions include applying complex fractional 

moments to contemporary issues such as data-driven artificial intelligence and so on. 

3. Expansion to high-dimensional transient analysis. This thesis introduces a generalized 

framework for complex fractional moments in high-dimensional spaces and proposes a data-

driven method for transient probability reconstruction. Future research should focus on 

reconstructing the evolution probability of multidimensional systems, developing real-axis 

switching equations for generalized complex fractional moments in high-dimensional scenarios 

and their normalization. 

4. Theoretical expansion and application of shifted characteristic functions. This thesis 

introduces the concept and theory of shifted characteristic functions and develops methods for 

solving FPK equations with exponential drift terms based on these functions. This provides a 

new perspective for the theory of complex fractional moments. The next step is to expand the 

application scenarios of shifted characteristic functions, refine the related theoretical framework, 

and apply it to physical problems. 
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Appendix 

Appendix. A 

1) Classical one-order differential equation 

Starting with the one-order differential equation: 

 
( ) ( ) ( )

( )

, 0;

0 0.

X t X t f t

X

  + = 


=

 (A-1) 

By making LT of this equation, we get 

 ( ) ( ) ( ), ,X X fs s s s s i  + = = −  (A-2) 

namely 

 ( ) ( )
1

.X fs s
s 

=
+

 (A-3) 

Putting  

 ( ) ( ) ( ) ( ) ( ) ( ),   ,f f x xf s A s iB s x s A s iB s= + = +  (A-4) 

the inverse LT of ( )f t  and ( )x t  are given as 

 ( ) ( ) ( ) ( )
1

2 cos sin ,
2

t m

f f k f k

k

e k t k t
f t A A s B s

b b b

  


=

     
= + +     

     
  (A-5) 

 ( ) ( ) ( ) ( )
1

2 cos sin ,
2

t m

x x k x k

k

e k t k t
x t A A s B s

b b b

  


=

     
= + +     

     
  (A-6) 

where /ks ik b = + . Substituting Eq. (A-4) into Eq. (A-2), we can obtain: 

( )
( )

( )
( ) ( ) ( )

( )
( )

( ) ( ) ( )

( )
2 22 2

; ; ;
f k k f k f k k f kx

X X k X k

k k

A s B s B s A sA
A A s B s

     


       

+ + + −
= = =

+ + + + +

(A-7) 

Such an example when ( ) ( )cosf t t=  to verify the accuracy. 
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Figure A-1 (a) The black dashed line is the exact ( )X t , and the red real line is the reconstruct ( )X t . (b) 

The real line is the ( )x kA s , and the dashed line is the imaginary part ( )x kB s . 1 =  

 

2) Fractional differential equation 

Now, let us consider the fractional differential equations with expressed as: 

 
( ) ( ) ( )

( )

,

0 0.

CD X t X t f t

X

  + =


=

 (A-8) 

By making the LT of both members of Eq. (A-8), we get 

 ( ) ( ) ( ) , ,X fs v s s s i  + = = −  (A-9) 

Namely: 

 ( ) ( )
1

, .X fs s s i
s v

 = = −
+

 (A-10) 

If 0 = , namely we work in terms of FT, we recall that 

 ( ) ( )cos sign sin .
2 2

i i
  

  
−    

=     
    

 (A-11) 

Thus we have 

a b 

(a) (b) 
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    − =
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    − =
 
 
 

2 2
.

sin
2

k kv
 

 
− −    
+ +     

    

 (A-12) 

The example is shown in Figure A-2 when ( ) ( )cosf t t= . 

 

Figure A-2 (a) The black dashed line is the exact ( )X t , and the red real line is the reconstruct ( )X t . (b) 

The real line is the ( )X kA s , and the dashed line is the imaginary part ( )X kB s . 0.2 = , 1 =  

3) Fractional differential equation of variable coefficient 

Now, let us consider the fractional differential equations with exponential time-dependent 

coefficient expressed as: 

 
( ) ( ) ( )

( )

,

0 0.

C tD X t ce X t f t

X

 − + =


=

 (A-13) 

By making the LT of both members of Eq. (A-13), and according to the exponential property, 

we get: 

 ( ) ( ) ( ),X X fs s c s s + + =  (A-14) 

Now, we set ( ) ( )s A s iB s

 = + , according to Eq. (4-11)-(4-14), then Eq. (A-14) can be 

transferred into: 

a b 

(a) (b) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1

0

1

1 1
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(A-15) 

Eq. (A-15) can also be written as the matrix form, which is 

 ( ) ( ) ( )
1

,
2

k kX X f ks c s s
b

+ =E D  (A-16) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),  ,  ,    ,  ,  ,k xX x k x k k f f k f kfs A s s s A s s 
 

   = =   A B A B

 (A-17) 

And E is a matrix with ( ) ( )2 1 2 1m m+  +  elements, where 
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1 1

( ) 1 1

;

; ;2 1,
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 (A-18) 

Thus we have 

 ( ) ( )
1

1
,

2
X fk ks c s

b

−

 
= + 
 

E D  (A-19) 

If 0 = , namely we work in terms of FT, then 

 ( ) ( ) ( )cos ,   sign sin .
2 2

k k k k kA s B s
 

 

 
  

− −   
= =   

   
 (A-20) 

Then Eq. (A-19) can be expressed as: 

 ( ) ( )
1

1
.

2
f kX ki c i

b
 

−

 
− = + − 

 
E D  (A-21) 

Such an example when ( ) ( )cosf t t=  is shown in Figure A-3. 
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Figure A-3 (a) The black dashed line is the exact ( )X t , and the red real line is the reconstruct ( )X t . (b) 

The real line is the ( )X kA s , and the dashed line is the imaginary part ( )X kB s . 0.2 = , 0.5c = , 1 =  
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Appendix. B 

Since the double-sided PDF can be reconstructed with the double-sided SCF with the fixed 

real part of s , namely,   belongs to the FS. According to discretized form of inverse Laplace 

transform, the following equation holds: 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

1

1

2 sin
2

2 sin ,c
2

cos

os

x m

X p p k p k
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namely 
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Now, multiplying Eq. (B-2) with cos
J

x
b

 
 
 

  and sin
J

x
b

 
 
 

  respectively, integrating in 

the range ( ),b b− , then we man have 
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where 
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 (B-4) 

The matrix form can be rewritten as 

 ( ) ( )
1

;   ,   0,
2

p ps s s i
b

   +  = = +  a D a  (B-5) 
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        +      
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D 2A 0 a a

0 0 2B

a

a A A

B B

 (B-6) 

where A  is the matrix with the element of 
Jka , 0Ja  is a vector with the element of 

0,Ja , B  

is the matrix with the element of 
Jkb . D  is identity matrix multiplied by 2b  when 0 = . 

Figure B-1 verified the accuracy of above equation with the asymmetric distribution 

( ) ( )exp
2

Xp x x


 = − − , where 0.5 =  and 2 = − . 

 



Appendix 

 141 

 
Figure B-1 The translated double-sided SCF with the initial = 0.1 , and = 0.3 , the translated 

= 0.4 . (a) the real part; (b) The imaginary part 
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Appendix. C  

Here, we propose the equation to translate the CFM along the real axis. Firstly, to avoid the 

singularity, we set ( ) ( ) ( )( )0 / 2X X Xp p x p x=  + −   for all the equation, the PDF can be 

reconstructed based on the double-sided CFM with fixed real part   when   belongs to the 

FS, namely: 
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(C-1) 

Here, we set ( )lny x= , thus the Eq. (C-1) can be rewritten as: 
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Multiplying the Eq. (C-2) with cos
J

y
b

 
 
 

 and sin
J

y
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 respectively, and integrate in 

the x  range ( ) ( ), ,b b b be e e e− −− − , namely the y  range ( ),b b− , then we man have: 
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where 
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In matrix form, Eq. (C-4) may be rewritten as: 
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where A  is the matrix with the element of 
Jka , 0Ja  is a vector with the element of 

0,Ja , 

B  is the matrix with the element of 
Jkb ,C  is the matrix with the element of 

Jkc . D  is 

an identity matrix multiplied by 2b  when 0 = . The example:  
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is applied to verify the accuracy of above equation with 1X = , 1X = . 
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Figure C-1 The translated double-sided SCF with the initial = 0.5 , and = 0.2 − , the translated 

= 0.7 . (a) the real part; (b) The imaginary part. 
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Appendix. D 

 Considering the 2-D Gaussian distribution as follow: 
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According to the definition of GCFM, we can obtain: 
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 (D-2) 

The discrete format of Eq. (D-2) is 
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 (D-3) 

Then, the PDF can be reconstructed by the following equation 
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 (D-4) 

The parameters are selected as 1 0.5 = , 2 1 = − , 1 1 = , 2 1.5 = , 0.5 = . 
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Figure D-1 (a) The exact normal distribution; (b) The reconstructed normal distribution by 2D-GCFM; (c) 

The absolute error between (a) and (b). 1 2 40m m= = , 1 2 1.5 = = , 1 2 0.4  =  =  

 
Figure D-2 (a-d) The real part of 2D-GCFM in first quadrant to fourth quadrant; (e-h) The imaginary part 

of 2D-GCFM in first quadrant to fourth quadrant 
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Appendix. E 

Here, we give two kinds of distribution and their GCFM. 

2-D exponential distribution 
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Figure E-1 (a) The exact exponential distribution. (b) The reconstructed exponential distribution by 2D-

GCFM. (c) The absolute error. (d) The real part of 2D-GCFM. (e) The imaginary part of 2D-GCFM. 

1 2 40m m= = , 1 2 0.5 = = , 1 2 0.4  =  = , 1 = =  

 

2-D standard Cauchy distribution 
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Figure E-2 (a) The exact Cauchy distribution. (b) The reconstructed Cauchy distribution by 2D-GCFM. (c) 

The absolute error. (d) The real part of 2D-GCFM. (e) The imaginary part of 2D-GCFM. 1 2 40m m= = , 

1 2 0.5 = = , 1 2 0.4  =  =  
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