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Abstract

The main aim of this special issue is to report the recent advances and new trends
in memristors and nonequilibrium stochastic multistable systems, both theoret-
ically and experimentally, within an interdisciplinary context. In particular,
memristors are multistable systems whose switching dynamics is a stochastic
process, which can be controlled by internal and external noise sources, un-
veiling their costructive role. Furthermore, the application of memristors as
memory elements in neuromorphic systems with noise-assisted persistence of
memory states, chaotic dynamics, metastable chaos and chaos synchronization,
new stochastic nonlinear models, noise-induced phenomena such as stochastic
resonance, noise enhanced stability and phase transitions phenomena in mem-
ristors will be illustrated in the contributions of this special issue.
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1. Introduction

Memristors are multistable systems whose switching dynamics occurs un-
der the action of noise or a deterministic signal [1]. To use the memristors as
memory elements in resistive random access memory (RRAM) and neuromor-
phic systems, it is necessary to significantly extend the understanding of the
resistive state switching process taking into account multistability, the role of
internal and external noise sources and mectastable states in the transient non-
linear dynamics of such nonequilibrium systems. More generally, the presence
of internal and external noise sources gives rise to interesting counterintuitive
phenomena both in classical and quantum physical systems and in different
models of interdisciplinary physics [2]-[13]. The internal structure of memris-
tors and their dynamical behavior are a typical example of complex multistable
systems, characterized by complex dynamic behavior, for which the theoretical
techniques of nonequilibrium statistical mechanics must be applied. Moreover,
the nonlinear relaxation process in multistable systems is crucial for understand-
ing the switching mechanism in memristive nanomaterials. This special issue is
devoted to considering extended versions of papers presented at the conference
“New Trends in Nonequilibrium Stochastic Multistable Systems and Memris-
tors (NES2019)”, held in the Ettore Majorana Centre in Erice (Trapani, Sicily,
Italy) from 18 to 21 October 2019, as well as external submissions. We have
selected the best contributions, after providing a careful examination of the
submissions, a desk-rejection of the papers outside the scope of the Focus Issue,
and a meticulous peer-review with the help of Referees.

The aim of the meeting NES2019 was to bring together scientists interested
in the challenging problems connected with the dynamics of nonequilibrium mul-
tistable systems and memristor devices from both theoretical and experimental
points of view, within an interdisciplinary context. The NES2019 international
event has been a discussion forum to promote new ideas in this fertile research
field, and in particular to identify new trends and key technology arcas such

as memristors nanomaterials and technologies, development of memristors as



building blocks for quantum and neuromorphic computing, new stochastic non-
linear models, phase transitions phenomena in filamentary switching in resistive

random-access memory, control of memory lifetime and memcomputing.

2. Neuromorphic systems and chaotic memristive neural networks

The NES2019 international event brought together scientists, theorists and
experimentalists interested in the challenging problems associated with the
switching dynamics of memristor devices and its technological applications. In
this respect, neuromorphic (bio-inspired) computing based on memristive de-
vices may offer dramatic performance improvements in solving computationally
hard problems. Indeed, memristive devices, although the diffusion, stability, and
switching mechanisms are not yet fully understood, remain excellent promising
candidates for neuromorphic computing [14]. Among the many interesting con-
tributions to this special issue in the research area of neuromorphic systems [15]-
[32], we mention the paper [33], where the constructive role of an external noise
signal, in the form of a low-rate Poisson sequence of pulses supplied to all inputs
of a single-layer spiking neural network consisting of simple integrate-and-fire
neurons and memristive synaptic weights, has been investigated. In particular
this positive role of an external signal consists in maintaining for a long time
or even recovering a memory trace of the image without its direct rewriting. In
fact, the synaptic weights can be to a certain extent unreliable, due to such char-
acteristics as the limited retention time of the resistive state or the variation of
switching voltages. Nevertheless, the noise in the form of the low-rate pattern-
free train of pulses can have a constructive role in the dynamical maintenance
or even fine-tuning of a memory trace stored in a memristive single-layer spiking
neuromorphic networks. Such a noise-assisted persistence of memory, on one
hand, could be a prototypical mechanism in a biological nervous system and,
on the other hand, brings one step closer to the possibility of building reliable
spiking neural networks composed of unreliable analog elements [33].

Furthermore, concerning contributions on chaotic memristive neural net-



works, metastable chaos, chaos synchronization, memristor hyperchaotic sys-
tem [34]-[46], we cite the paper dealing with metastable and intermittent chaos
[47]. In this article, a computational model of a memristive artificial neuron tak-
ing into consideration inertia of metallic nanoparticles within the dielectric layer
of the core-memristor is proposed. In particular, the underdamped mechanical
motion of an Ag-cluster in a gap between two arms of a conducting bridge driven
by both an electric field and a temperature gradient inside a single well poten-
tial has been considered. This model, which could successful emulate living
biological neurons by neuromorphic devices, displays rich nonlinear dynamics.
In fact, dynamical regimes appear in the system with variation of inertness of
the Ag-nanoparticles and transitions between them. For high inertia, interesting

metastable and intermittent chaos can appear in the system.

3. Resistive switching dynamics, role of noise sources and stochastic

memristor models

Recently fabricated diffusive memristors have attracted a significant interest
as one of the best candidates to mimic neuron activities and to implement novel
computing paradigms. Such devices are capable of exhibiting a very rich dynam-
ics consisting of a combination of chaotic and stochastic phenomena necessary
for efficient neuromorphic computational systems. However, understanding of
stochastic resistive switching dynamics, reset transition, dynamics of multilevel
structures, phase transition phenomena and role of external and thermal noise
sources in memristors is still an open problem, as we can see in the following
contributions of the special issue [48]-[64]. The resistive switching (RS) effect,
from a high resistance state to a low resistance state, is a bistable (or multi-
stable) switching of resistance of a thin nanometric dielectric film sandwiched
between two conductive electrodes subjected to an external voltage. The wide
application of memristors is limited by insufficient stability, high variability of
the resistive switching parameters during the operation, lack of understanding of

drift-diffusion processes and their degradation. One of the fundamental origins



of the instability of the memristor’s parameters is the essentially stochastic na-
ture of the RS process. New approaches to improve switching properties in vari-
ous nonlinear multistable stochastic systems using a beneficial role of noise have
recently been thoroughly investigated, as shown in the contributions [65, 67] to
this special issue. Indeed, Gaussian (thermal) and non-Gaussian noise sources
play a relevant role in multistable systems, as shown in the contributions [68]-
[72]. Furtermore stochastic models of diffusion equations and in particular for
memristor systems have been proposed in this issue [67, 66]. An archetypal
model is that of an overdamped Brownian motion in multistable potential pro-
files [6, 67]. The beneficial or constructive role of noise usually manifests itself
in a nonmonotonic dependence of the switching parameters (such as switching
time, relaxation time, mean amplitude of average switching amplitude, output
signal-to-noise ratio, etc.) on the noise intensity or temperature [73, 74, 75]. In
other words, in nonlinear systems, the effect of noise can induce new, more or-
dered regimes that lead to regular structures, an increasing degree of coherence,
and cause new phase transitions. Noise-induced phenomena showing the con-
structive role of noise in the RS process, typical of nonlinear stochastic systems,
have been experimentally observed in memristors. These are the stochastic res-
onance (SR) [73], the stochastic resonant activation and the noise enhanced
stability (NES) [74, 75]. It is worthwhile to note that the first experimental ev-
idence of SR and NES in memristor systems has been reported in three papers
of this special issue [73, 74, 75]. In particular, It was found that the memristor
relaxation time depends on the temperature in a non-monotonous way with a
maximum observed at the temperature close to 55 °C. This nonmonotonic be-
havior is a signature of the noise-enhanced stability phenomenon observed in
all physical (classical and quantum), biological, chemical and ecological systems
with metastable states. The stability of a metastable state can be enhanced
by the noise and its average lifetime is a measure of this stability. This noise-
enhanced metastability is a consequence of the interplay between the random
fluctuations and nonlinearity of the complex system investigated, and it has

been observed experimentally in the presence of internal (thermal) [74] and ex-



ternal [75] noise sources. These findings pave the way for a deeper understanding
of the switching mechanism in memristor systems and at the same time for a

wide range of applications where noise is used as a control parameter.
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