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Abstract

Steiner triple systems (STSs) are a basic topic in combinatorics. In an STS
the elements can be collected in threes in such a way that any pair of elements
is contained in a unique triple. The two smallest nontrivial STSs, with 7 and
9 elements, arise in the context of finite geometry and nonsingular cubic curves,
and have well-known pictorial representations. On the contrary, an STS with
13 elements does not have an intrinsic geometric nature, nor a natural pictorial
illustration. In this paper we present a visual representation of the two non-
isomorphic Steiner triple systems of order 13 by means of a regular hexagram. The
thirteen points of each system are the vertices of the twelve equilateral triangles
inscribed in the hexagram. In the case of the non-cyclic system, our representation
allows one to visualize in a simple, elegant and highly symmetric way the twenty-
six triples, the six automorphisms and their orbits, the eight quadrilaterals, the
ten mitres, the thirteen grids, the four 3-colouring patterns, the block-colouring
and some distinguished ovals. Our construction is based on a very simple idea
(seeing the blocks as much as possible as equilateral triangles), which can be further
extended to get new representations of the STSs of order 7 and 9, and of one of
the STSs of order 15.
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1 Introduction

Steiner triple systems are one of the oldest and most studied classes of combinatorial ob-
jects, sinking their roots in the pioneering studies at the dawn of abstract algebra, finite
geometry, projective geometry, and topology [8]. They date back to Plücker’s study of
algebraic curves in 1835, and to the publication in 1850 of Kirkman’s fifteen schoolgirl
problem [23], one of the most far-reaching and popular problems in combinatorics. Since
then, they have gained more and more popularity among design-theoretists, universal-
algebraists, geometers, statisticians, computer scientists, map-colourers, recreational
mathematicians, and others.

Definition 1. (see [2], [6], [8]) A Steiner triple system of order v (STS(v), for brevity) is
a pair (V,B), where V is a finite set with v elements, called points, and B is a collection
of 3-element subsets of V, called blocks, or triples (formerly triads), or lines, with the

1



property that any two distinct points in V belong to precisely one triple in B. An
isomorphism from an STS (V1,B1) to another STS (V2,B2) is a one-to-one map π from
V1 onto V2 that preserves triples (that is, {x, y, z} ∈ B1 if and only if {π(x), π(y), π(z)} ∈
B2). An automorphism of an STS (V,B) is an isomorphism of the STS with itself. An
STS(v) is cyclic if it has an automorphism with a single orbit of length v.

A necessary and sufficient condition for the existence of at least one STS(v) is that
v ≡ 1 or 3 (mod 6) (equivalently, v is odd and v(v−1) is a multiple of 6) [22]. Such values
of v are called admissible. An STS(v) contains precisely 1

3

(
v
2

)
blocks, and, moreover, it

may be regarded as a triangle decomposition of the complete graph Kv: if the points of
the STS are identified with the v vertices of Kv, then every triple of the STS corresponds
to a triangle of edges of the graph, and the block-set of the STS can be seen as a
partition of the edges of Kv into triangles. However, the resulting picture may not
be particularly revealing nor aesthetically appealing. When representing an STS as a
planar or spatial object, the main goal is, on the one hand, to merge the two structures
so that the symmetries of the “geometric” object reflect some (or all) symmetries and
automorphisms of the STS, and, on the other hand, to capture and convey some of the
abstract beauty of the STS [32]. Also, representing a block design graphically can make
some of its properties obvious that would otherwise require tedious reasoning [25].

In spite of its purely combinatorial definition, a Steiner triple system can be thought
of as a finite geometry of points and lines, where each line contains three points and,
as with planar geometry, there exists a unique line through any two distinct points. In
the spirit of this premise, some of the terminology concerning Steiner triple systems is
formulated with a geometric language. This is the reason why, in particular, a block of
the system is often called a line (see Definition 1), although an STS, in general, does not
necessarily arise in the context of finite geometry or algebraic geometry. By the same
token, the notions of oval and (complete) quadrilateral in classical projective planes led
to the following definitions.

Definition 2. (see [42, 12]) An oval in an STS(v) is a set of r = v−1
2 points, no three

of which are collinear (that is, belonging to the same triple). A line is called secant,
tangent or exterior (or passant) if it intersects the oval in 2, 1, or 0 points, respectively.
A point off the oval is called an interior point (respectively, an exterior point) if it lies
on no tangent line (respectively, on at least one tangent line).

Definition 3. (see, e.g., [8, p. 147]) A quadrilateral (or Pasch configuration, or frag-
ment) in a Steiner triple system is a configuration consisting of four lines, no three of
which through one point, and of the six intersection points, one for each pair of lines.
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Figure 1: A quadrilateral (Pasch configuration).

More generally, a configuration C in a Steiner triple system (V,B) is a subset of the
block-set B (see, for instance, [8, Chapter 13], [19], and [10]). The points of C are the
elements of the union of all the blocks in C. There are configurations that must occur
in every nontrivial STS, while others may be avoided altogether. Configurations are an
important invariant for the classification of Steiner triple systems, since the number of
occurrences of a given configuration must be the same for any two isomorphic STSs. In
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this respect, besides the quadrilateral, another significant configuration is the so-called
mitre (see Definition 4, where we also recall the definition of the grid configuration).

Definition 4. (see, e.g., [8, pp. 211, 245], [5, Figure 1]) A mitre in a Steiner triple
system (sometimes called D1-configuration) is a configuration of seven points and five
lines, three of which through one point (called the center of the mitre), the other two
lines forming a partition of the remaining six points. A grid (sometimes called E5-
configuration) is a configuration of nine points and six lines, which can be partitioned
into two sets of three mutually parallel lines.
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Figure 2: A mitre (left and center) and a grid (right).

A configuration is full if every point belongs to at least two lines. The quadrilateral
is the only full configuration with four lines, and the mitre is the only full configuration
with five lines. In an STS(v), the number of occurrences of any configuration with at
most five lines depends only on v and on the numbers of quadrilaterals and mitres [10].
The grid and the so-called prism (or double triangle, or E4-configuration) are the only
full configurations with six lines and with the property that every point belongs to an
even number of lines.

For any admissible v other than 7 and 13, there exists at least one STS(v) containing
no quadrilaterals [20], and for any admissible v other than 9, there exists at least one
STS(v) containing no mitres [40], whereas it is much harder to find STSs containing no
quadrilaterals and no mitres. In this regard, there exists only one Steiner triple system
of order 7 ≤ v ≤ 19 that contains no quadrilaterals and no mitres, although there exist
11, 084, 874, 829 non-isomorphic STS(19)s (the only exception has order v = 19 and is
denoted by A4) [5]. Finding STSs without grids is even harder, since each STS of order
9 ≤ v ≤ 19 contains some grids. As far as we know, the existence of an STS(v), v ≥ 9,
with no grids is still an open problem.

Some STSs present a somehow intrinsic geometric structure, as they arise within
the frame of finite geometry. Besides the trivial STS(3), this is the case for the two
smallest STS(v)s, that is, for v = 7 and v = 9 (which are unique up to isomorphism),
and for the projective STS of order 15 (see the following Example 7). The system of
order 9 appears also in the context of plane algebraic curves, since every nonsingular
cubic has nine points of inflection, and every pair of inflection points defines a three-
point line. These three STS(v)s have always been considered the quintessential Steiner
triple systems, and have been thouroughly investigated also in terms of their visual
representations, as we recall in the following examples. The case v = 13, instead, has
been somehow neglected as the ugly duckling of the small STSs, and we shall try to
make it blossom into a swan.

Example 5. (The STS of order 7) The standard model of the (unique) STS(7) is the
system of points and lines of the projective plane of order 2 (commonly called Fano
plane), with seven points and seven lines. The STS(7) contains seven quadrilaterals
(each obtained by removing one point and the three lines through the point), no mitres
and no grids. The Fano plane is one of the most famous combinatorial structures, and
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is, by far, the most popular combinatorial design and the most common finite geometry,
actually representing the very emblem of the whole theory. Its standard picture, which
has become even more familiar than the Fano plane itself, appears on the front cover of
one of the most commonly used textbooks in this area [6], and is the logo of the British
Combinatorial Committee. The standard picture of the Fano plane is given on the left
in Figure 3, where an alternative model is given on the right.

Figure 3: The Fano plane. Standard model (left) and simplicial model (right).

The model on the left shows that in the Fano plane there are seven points, represented
by the seven dots, and seven three-point lines, represented by the three sides, the three
altitudes, and the circle. In the model on the right the seven points of the STS are
the seven simplicial elements of a triangle (2-simplex), that is, the three vertices, the
three edges, and the whole triangle. In this model a triple appears either as two vertices
and the edge between them, or as a vertex, the opposite edge, and the face (the whole
triangle), or as the three edges of the triangle [14]. Another nice picture is given in [33,
§1.4]. For all three models, the six symmetries of the regular triangle that underlies
the diagram correspond to just as many automorphisms of the Fano plane. One more
triangle-based picture will be introduced in the present paper.

In [34, Figure 4] one finds another remarkable planar and highly symmetric model of
the Fano plane, which highlights an automorphism of order 7 and depicts the homoge-
neous nature of the geometry, in that none of the points or of the lines is distinguished
among the others. The same can be said about the picture on the right in [21, Figure
3], where, however, each element of the Fano plane is represented by two distinct points.
The homogeneous nature of the system can also be depicted by embedding the complete
graph K7 in a torus (see Figure 1 in [18], where the embedding visualizes at the same
time two orthogonal Fano planes).

Figure 3 in [34] (see also Example 3 in [32]) shows a spatial model of the Fano plane,
where the seven points are the centers of the six edges of a tetrahedron plus the center
of the tetrahedron, and the lines are defined in such a way that the 24 symmetries of the
tetrahedron translate into automorphisms of the Fano plane, and correspond precisely
to the point stabilizer of the center point in the full automorphism group. Finally,
Figure 7 in [25] represents the seven points of the Fano plane as the six vertices and the
center point of a octahedron, showing the action of the alternating group A4 (see also
Figure 1 in [31]).

Example 6. (The STS of order 9) Although not as ubiquitous as the traditional picture
of the Fano plane, there exists also a standard picture of the (unique) Steiner triple
system of order 9, which can be found in many books, articles and conference posters
on incidence geometry, finite geometries, block designs and recreational mathematics
(see Figure 4). The lines of the system are the twelve lines of the affine plane of order
3, that is, the twelve affine lines of the two-dimensional vector space F3× F3 over the
ternary field F3 = {0, 1, 2}, where each element (x, y) of the vector space is represented
by the corresponding point in a cartesian plane (see, e.g., [39, Figure 5]).
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Figure 4: The standard picture of the Steiner triple system of order 9.

Equivalently, the twelve lines of the affine plane of order 3 can be seen as the rows,
the columns, the forward diagonals, and the back diagonals of a 3×3 matrix (see Figure
5).

u u u
e e e
* * *

*
e u
u
u*
e
e

*

u e
e
u*
u
e

*

*@
@
@
@
@@

@
@@

@
@
@@@

@@

ue
e
e*
u
u

*

*

�
�
�
�
��

�
��

�
��

��

��

Figure 5: The four parallel classes of the affine plane of order 3.

Four further highly symmetric pictures are described in [33], among which a nice
generator-only model on the regular octagon, which allows one to visualize an auto-
morphism of order 8. An alternative, triangle-based, picture will be introduced in the
present paper, as an extension of the main geometric idea of the article.

The STS(9) contains 36 mitres (four for each point), 6 grids (one for each of the(
4
2

)
pairs of parallel classes of lines), and no quadrilaterals. Each mitre is obtained by

choosing its center x and one of the four lines through x, say {x, y, z}, and by removing
from the STS(9) the points y, z and the seven lines through either y or z.

Example 7. (The projective STS of order 15) Just as the 2-simplex gives a model
for the STS with 7 = 23 − 1 elements, the fifteen simplicial elements of a tetrahedron
(3-simplex) can be combined to give a model for one of the eighty non-isomorphic STSs
with 15 = 24 − 1 elements, precisely the geometry of points and lines of the three-
dimensional projective space PG(3, 2) over the field with two elements [14]. Other
symmetric planar or spatial models of PG(3, 2), which reflect automorphisms of order
3, 4, or 7, are given in [33] and [31]. More generally, a planar or spatial model for each
of the seven non-isomorphic solutions of Kirkman’s fifteen schoolgirl problem is given
in [31].

The projective STS(15) contains 105 quadrilaterals, 280 grids and no mitres.

Unlike the STSs of order 7, 9, and 15 in the previous examples, a Steiner triple
system of order 13 does not arise as a set of points and lines in a projective or affine
geometry, nor can be embedded in a finite Desarguesian projective plane [26, §2.1], hence
it does not have an “intrinsic” geometric nature, nor a “natural” visual representation.
The goal of this paper is to present a simple and pleasing picture for each of the two
non-isomorphic STS(13)s; in particular, for one of the two systems, the symmetries of
the picture and the automorphisms of the STS merge perfectly. Our representation,
moreover, allows one to visualize in a highly symmetric way some of the relevant sub-
configurations of the system.
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2 The two Steiner triple systems of order 13

According to Cole [9], the first arrangements of an STS(13) were given by Kirkman
[24, D., p. 39] (1853), followed by those by Reiss [35] (1859), Netto [29] (1892), and
de Vries [38] (1894). In 1897 Zulauf [44] reduced the known systems to two, those by
Kirkman, Reiss, and de Vries being equivalent and with a non-transitive automorphism
group of order 6, and that of Netto having a transitive automorphism group of order
39 (Netto actually gave a direct construction of an STS(v) for any prime order v).
Finally, De Pasquale [11] (1899) and Brunel [4] (1901) showed that there exist, up
to isomorphism, only two Steiner triple systems of order 13 (cf., e.g., [26, §2]). An
alternative proof was given by Cole [9] (1913) by means of the notion of “interlacing”,
which, in modern terms, corresponds to that of Pasch configuration (four blocks {x, a, b},
{x, c, d}, {y, a, c}, {y, b, d}, are seen as an interlacing of x and y).

It is worth mentioning that algebraic representations of the STS(13)s were recently
given in [30] and in [13, Proposition 4]. In the former case, an incidence structure
isomorphic to a Steiner triple system of order 13 is constructed by defining a set B of
twenty-six vectors in the 13-dimensional vector space V over the finite field F5, with the
property that there exist precisely thirteen 6-subsets of B whose elements sum up to zero
in V, whereas in the latter case the STS(13)s are described as sections of A(13)/A(12)
in the alternating group A(13).

In any STS(13) there are thirteen points and twenty-six blocks, and each point
belongs to precisely six blocks. One of the two systems has an automorphism of order
13, hence it is usually referred to as the cyclic STS(13) (see [27, system No. 1], [6, Table
II.1.27, n. 2] and [8, Table 5.7, n. 2])), whereas the other system has a fixed point under
all automorphisms and is often called the non-cyclic STS(13) (see [27, system No. 2],
[6, Table II.1.27, n. 1] and [8, Table 5.7, n. 1])). The two systems contain, respectively,
thirteen and eight quadrilaterals (see, e.g., [1, p. 41], [27], and [43]). The non-cyclic
STS(13) contains ten mitres, the cyclic system contains no mitres, and both systems
contain 13 grids.

In the cyclic case, the point-set of the STS(13) can be identified with the cyclic
group Z/13Z, and the triples are the twenty-six 3-sets that are cyclically generated
(mod 13) by the base blocks {1, 3, 9}, {2, 5, 6} under the transformation x 7→ x + 1
(see, e.g., [8, Theorem 2.11]; in modern terms, the two base blocks form a (13, 3, 1)-
cyclic difference family). In this case, the group of automorphisms of the STS is the
(transitive) Frobenius group of all affine transformations of the form x 7→ ax + b, with
x, b ∈ Z/13Z and a ∈ {1, 3, 9}, which is, up to isomorphism, the unique non-abelian
group of order 39. The group is generated by the transformations x 7→ x + 1 and
x 7→ 3x. The thirteen quadrilaterals contained in the system are cyclically generated
(mod 13) by the four blocks {1, 3, 9}, {1, 7, 12}, {2, 3, 12}, {2, 7, 9}, whereas the thirteen
grids are cyclically generated (mod 13) by the six blocks {1, 3, 9}, {4, 6, 12}, {5, 7, 13},
{1, 4, 5}, {3, 6, 7}, {9, 12, 13}.

As to the non-cyclic STS(13), the blocks are the same as above, with the only ex-
ception of the four blocks {2, 4, 10}, {2, 5, 6}, {4, 6, 12}, {5, 10, 12}, which form a Pasch
configuration and are replaced by the Pasch configuration {2, 4, 6}, {2, 5, 10}, {4, 10, 12},
{5, 6, 12}. Equivalently, each block in the second quadrilateral is obtained as a comple-
ment {2, 4, 5, 6, 10, 12} \ {x, y, z}, where {x, y, z} is a block in the first quadrilateral.
This operation is called a Pasch switch (see, e.g., [5, p. 7]). Given a Pasch configuration
in a Steiner triple system, the corresponding Pasch switch always transforms the STS
into another STS, which differs from the previous one by only four blocks.

The automorphism group of the non-cyclic STS(13) is isomorphic to the symmetric
group S3, the unique non-abelian group of order 6 (see, e.g., [8]). Note that x 7→ 3x is
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again an (order-3) automorphism of the system (if the point-set is Z/13Z and the blocks
are defined as above). Moreover, the orbits under the automorphism group have length
1, 3, 3, 6 (in particular, there exists a fixed point). The eight quadrilaterals contained
in the system, together with the ten mitres and the thirteen grids, will be described
“geometrically” in the following part of the paper.

In the case of the cyclic STS(13), the “natural” picture to draw is a regular 13-gon,
whose vertices represent the points of the STS, together with two triangles representing
two base blocks, which, by rotation, generate all the 26 blocks of the system (see, for
instance, [33, p. 24] and [37, Figure 7.7]). Such a picture not only describes the blocks
of the system, but also visually illustrates an automorphism of order 13 (the 2π/13
rotation). Such a picture, however, is not suitable to illustrate the automorphisms of
order 3. A picture of the non-cyclic STS(13) is given again in [33, p. 24], by modifying
only four blocks of the illustration for the cyclic system, and leaving the remaining
twenty-two blocks unchanged. The resulting picture, however, only describes the blocks
of the STS, without being related in any way to the automorphisms of the system (which
no longer has an automorphism of order 13).

A highly symmetric picture of the non-cyclic STS(13) is given in [3, Figure 3] (see
also Figure 6 below), where one can visualize an automorphism of order 3, the fixed
point, the orbit of length 6 and the two orbits of length 3. This picture, however, is
somehow not fully satisfactory, as it makes use of double points (each of the points
labelled as 7, 8, 9 appears twice).

Figure 6: A picture of the non-cyclic STS(13) with double points.

We will now present a new picture of the non-cyclic STS(13), which enjoys the same
properties as Figure 3 in [3], and mirrors the blocks, the sub-configurations and the
symmetries of the system, but does not make use of double points. The basic idea of
our geometric construction is to take as a starting block of an STS(13) the set of the
three vertices A,B,C of an equilateral triangle (see Figure 7). If one now considers
a new point D, then, being ABC a block, the triangle with vertices B,C,D cannot
in turn represent a block, by definition of Steiner triple system. But if one considers
two new points E and F, then the two triangles with vertices B,D,E and C,D, F can
represent two new blocks of the system (see Figure 7, where the dotted triangles are
those associated with blocks of the system).
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Figure 7: The first three blocks of the STS(13).

By iterating the same kind of argument, one finally gets twelve equilateral triangles,
which form a regular hexagram and whose thirteen vertices A,B, . . . ,M can be taken as
the points of an STS(13). This produces also the first six blocks of the STS (see Figure
8, where again the dotted triangles are those associated with blocks of the system).
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Figure 8: The hexagram and the first six blocks of the STS(13).

Another set of six blocks is obtained by rotating the base block AGK around the
central point D by multiples of 60 degrees. Next, six further blocks are obtained by
rotating the base blocks ADM and AEF around D by multiples of 120 degrees. Finally,
AIL is also taken as a block, which amounts to a total number of nineteen blocks, as
follows.

ABC BDE CDF DJK EIJ FKL
AGK AHJ BLM CIM EHL FGI
ADM DGL DHI
AEF BIK CJL
AIL

(1)

These nineteen blocks will be the “core” of the twenty-two common blocks of the
two non-isomorphic Steiner triple systems of order 13. The main geometric property of
this set of blocks is that it is invariant under the six symmetries of the hexagram that
are induced by the symmetries of the equilateral triangle with vertices A, I, L, that is,
the identity, the two rotations around D by 120 degrees, and the three axial symmetries
with respect to the line segments AM, GL, and HI.

We now complete the nineteen blocks in (1) to the twenty-six blocks of a Steiner
triple system of order 13. One of the seven blocks that are missing in the list (1) is the
block through the points G and H. From the analysis of the blocks in (1) that contain
either G or H it follows that there are only three possibilities: GHM, BGH, and CGH.

Case 1. The block through G and H is GHM. This choice is the only one that is
consistent with the invariance under the vertical axial symmetry. Moreover, the choice
of the block GHM uniquely determines the remaining six blocks, which are precisely
BFH, BGJ, FJM, CEG, CHK, and EKM. Note that these six blocks are precisely those
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that are generated by the first one, BFH, under the six symmetries of the hexagram
described above.

Case 2. The block through G and H is not GHM. Then, up to a vertical axial
symmetry with respect to the line segment AM , one may assume that CGH is a block.
Note that, unlike for the previous system, this determines the first symmetry breaking
in the picture (on the other hand, the vertical axial symmetry is an order-2 permutation
of the vertices, hence it cannot belong to the automorphism group of the system, which
happens to have order 39). Also, the choice of the block CGH uniquely determines the
remaining six blocks, which are precisely BFH, BGJ, FJM, CEK, EGM, and HKM, the
first three of which also appear in the previous system.

Our geometric construction ultimately produces two Steiner triple systems of order
13, whose blocks are collected in the two following tables.

ABC BDE CDF DJK EIJ FKL AGK AHJ BLM CIM EHL
FGI ADM DGL DHI AEF BIK CJL AIL BFH BGJ FJM
GHM CEG CHK EKM

Table 1: The STS(13) n. 1 (non-cyclic).

ABC BDE CDF DJK EIJ FKL AGK AHJ BLM CIM EHL
FGI ADM DGL DHI AEF BIK CJL AIL BFH BGJ FJM
CGH CEK EGM HKM

Table 2: The STS(13) n. 2 (cyclic).

Note that the twenty-two blocks in the first two rows of the two tables are precisely
the common blocks of the two systems, whereas the remaining sets of four blocks are
both Pasch configurations and are obtained from one another by switching the points
E and H (or, equivalently, by means of a Pasch switch).

If one sets A=0, B=3, C=4, D=5, E=1, F=2, G=7 (respectively, G=8), H=9, I=c,
J=a, K=8 (respectively, K=7), L=b, M=6, then system n. 1 in Table 1 (respectively,
system n. 2 in Table 2) becomes precisely the STS(13) denoted by n. 1 (respectively,
n. 2) in [6, Table II.1.27] and [8, Table 5.7].

System n. 1 in Table 1 is the non-cyclic STS(13). Its automorphism group consists
of the identity and of the permutations

(ALI)(GHM)(ECK)(BFJ)(D)

(AIL)(GMH)(EKC)(BJF)(D)

(EF)(BC)(GH)(JK)(IL)(D)(A)(M)

(AL)(EJ)(CF)(BK)(GM)(D)(H)(I)

(AI)(BE)(FK)(CJ)(HM)(D)(G)(L)

(cf. [27] and [43]), which are precisely the six symmetries of the hexagram in Figure 8
that are induced by the symmetries of the equilateral triangle with vertices A, I, L that
we described earlier. The orbits of the thirteen points under the automorphism group
are {D}, {A, I, L}, {G, H, M}, and {B, C, F, K, J, E}, which are precisely the center point,
the two sets of vertices of the two main equilateral triangles, and the vertices of the inner
hexagon, respectively. In Figure 9 we describe only the base blocks (representing each
triple by three marks of the same kind), whose orbits under the automorphisms above
determine all the twenty-six blocks of the system.
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Figure 9: The base blocks of the non-cyclic STS(13).

Moreover, the (non-cyclic) system n. 1 contains precisely eight quadrilaterals, which
can be easily visualized in the hexagram. The first one consists of the blocks ABC,
BDE, CDF, and AEF, which correspond, respectively, to the three dotted triangles in
Figure 7 and to the triangle AEF in the same figure. Two more quadrilaterals are
obtained by applying to the previous one the two order-3 automorphisms of the system
(that is, the two 120-degree rotations around the center of the hexagram). Another
quadrilateral consists of the blocks ABC, AIL, BLM, and CIM (see the four triples in
Figure 10), and is invariant under the axial symmetry with respect to the vertical line
segment AM. Again, two more quadrilaterals are generated by the previous one under
the two 120-degree rotations around the center of the hexagram.
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Figure 10: A quadrilateral in the non-cyclic STS(13) with vertical symmetry.

Finally, the four blocks GHM, CEG, CHK, and EKM, which are the only blocks
not belonging to system n. 2 in Table 2, form a quadrilateral (see the four triples in
Figure 11), which is invariant under the two 120-degree rotations, and which generates a
further quadrilateral under the axial symmetry with respect to the vertical line segment
AM.
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Figure 11: A rotation-invariant quadrilateral in the non-cyclic STS(13).

System n. 2 in Table 2 is the cyclic STS(13). Its automorphism group has order 39
and is generated by the order-13 permutation

ϕ = (A K I D G B H L J F E C M) (2)

and by the order-3 permutation ψ = (ALI)(GHM)(ECK)(BFJ)(D), which is precisely
the clockwise 120-degree rotation around the center of the hexagram (and which is also
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an automorphism of system n. 1). The automorphism group acts on the 26 blocks of
the system with two orbits of length 13, which are generated under ϕ by the only two
blocks that are invariant under ψ (AIL and CEK). The four blocks CEK, CGH, EGM,
and HKM, which are the only blocks not belonging to system n. 1 in Table 1, form a
quadrilateral (see the four triples in Figure 12), which is invariant under the rotation ψ
and which cyclically generates, under the permutation ϕ, all the thirteen quadrilaterals
contained in the system.
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Figure 12: The base (and rotation-invariant) quadrilateral in the cyclic STS(13).

As we mentioned before, the cyclic STS(13) contains no mitres (see Definition 4),
whereas the non-cyclic system contains 10 mitres, which, moreover, can be partitioned
into four orbits of length 1, 3, 3, 3, under the action of the automorphism group. The
fixed mitre is {ADM, DHI, DGL, AIL, GHM}, and is (necessarily) centered at the cen-
ter D of the hexagram, D being the only fixed point under the automorphism group.
The other three base mitres, one for each orbit, are {ADM, AGK, AHJ, DJK, GHM},
{ABC, AGK, AHJ, BGJ, CHK}, and {ADM, EKM, FJM, AEF, DJK}, which are cen-
tered at A, A, and M, respectively. Note that all the centers of the base mitres are on
the vertical line ADM, and that each base mitre is invariant under the vertical axial
symmetry. The four base mitres are represented in the same order as above in Figure
13, where we adopt the convention that the center of the mitre is always labelled as Ω,
the two parallel (that is, disjoint) lines are marked with dotted line segments, and each
of the three lines ΩXY through Ω is represented by labelling X and Y with two marks
of the same kind. Note how the first mitre in Figure 13 looks precisely like the abstract
model of mitre in the middle of Figure 2.
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Figure 13: The four base mitres in the non-cyclic STS(13).

We also noted that both STS(13)s contain exactly thirteen grids (see Definition 4).
This may appear somehow surprising at first thought, since for each system the family
of grids is invariant under the automorphism group, which has order 39 for the cyclic
system and order 6 for the non-cyclic sistem. The 26 blocks of the cyclic system, as
we mentioned earlier, form two orbits of length 13 under the automorphism group, and
each grid has three parallel lines in one orbit and three parallel lines in the other orbit,
so that the 13 grids are cyclically generated by a single base grid under the action of
the order-13 automorphism ϕ defined above in (2). Since our hexagram model is not
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suitable to visualize such an automorphism, the grids of the cyclic system do not show
a particularly symmetric feature.

In the non-cyclic system there exist, instead, four base grids, whose orbits under the
automorphism group S3 have orders 1, 3, 3, 6. The first three base grids are symmetric
with respect to the vertical axial symmetry, whereas the base grid in the last orbit is
necessarily not symmetric (else the length of its orbit would be at most 3). In Figures 14
and 15 one can visualize the four base grids, each of which is represented by two distinct
hexagrams, one for each parallel class of lines, where, as usual, each line is represented
by three marks of the same kind.
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Figure 14: The base grids of order 1 (left) and 6 (right) in the non-cyclic STS(13).
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Figure 15: The two base grids of order 3 in the non-cyclic STS(13).

Remark 8. If S = (V,B) is any of the two STS(13)s, the family G of the thirteen grids
of S shows a quite interesting property. As it can be checked by inspection, any two grids
have exactly one block B ∈ B in common, whereas each point P ∈ V appears in precisely
nine grids, and each of the twenty-six blocks in B appears in precisely three grids. This
shows that G can be seen as the point-set of a Steiner triple system S = (G,B) of order
13, whose blocks consist of the triples B = {G1(B), G2(B), G3(B)}, as B ranges in B,
where G1(B), G2(B), G3(B) are the only three grids containing B. For instance, for the
non-cyclic system, the base grid of order 1 in Figure 14, together with the two base
grids of order 3 in Figure 15, are the only three grids containing the block ABC ∈ B,
hence they form a block in B, which we denote by ABC. Also, as we noted before, S
and S have the same automorphism group, hence they are in either case two isomorphic
Steiner triple systems of order 13.

Now one can iterate the same construction, and consider the STS(13) S, whose
point-set consists of “grids of grids”. It can be checked that in each of the thirteen
grids of grids the nine “points” are the nine grids in G with a point P in common, for
some P ∈ V, and the six “lines” are precisely the six blocks PXY in B, as PXY ranges
over the six triples in B containing P. For each P ∈ V, we denote by GGP the grid of
grids associated with P. In Table 3 we show the grid of grids GGD associated with the
central point D of the hexagram. Finally, the mapping P → GGP defines a “natural”

isomorphism between S and S. We leave it as an exercise to the reader to verify the
details of the isomorphism.
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D J K
A B C
M G H

D J K
H L E
I C M

D J K
G F I
L M B

D B E
A K G
M I C

D B E
H J A
I G F

D B E
G H M
L F K

D F C
A H J
M B L

D F C
H M G
I J E

D F C
G A K
L E H

Table 3: The “grid of grids” GGD in the non-cyclic STS(13).

A fundamental concept in the theory of block designs (and in graph theory) is the
notion of colouring (see, for instance, [7, 15, 16, 36], and Chapters 18 and 19 in [8]). In
general, a “colouring” of a block design is the assignment of a colour to each point of
the design, together with a rule that specifies how many colours can appear in a block.
In the special case of Steiner triple systems, the most widespread rule in the literature
requires that no block can be monochromatic. A somehow complementary alternative is
the rule that all blocks be monochromatic, as long as two intersecting blocks never have
the same colour (in analogy with the more famous map-colouring problem); equivalently,
two distinct blocks of the same colour are necessarily disjoint. In either case, one looks
for the smallest number of colours for which the rule is respected.

Definition 9. (see, for instance, [8, §18.1]) Let S = (V,B) be a Steiner triple system. A
(weak) colouring of S is a mapping Φ : V → C (the set of colours), such that |Φ(B)| > 1
for all B ∈ B. For each c ∈ C, the set Φ−1({c}) = {x ∈ V : Φ(x) = c} is a colour class.
The (weak) chromatic number of S, χ(S), is the smallest value of k for which S admits
a (weak) colouring with k colours, and S is said to be χ-chromatic. A colouring pattern
of S is a χ-tuple (c1, c2, . . . , cχ), with c1 ≥ c2 ≥ . . . ≥ cχ, where c1, c2, . . . , cχ are the
cardinalities of the colour classes of a (weak) colouring of S with χ colours.

Definition 10. (see, for instance, [8, §19.4]) Let S = (V,B) be a Steiner triple system.
A colouring of triples or block-colouring of S is a mapping Ψ : B → C (the set of
colours), such that if Ψ(B) = Ψ(B′), for B,B′ ∈ B, B 6= B′, then B ∩B′ = ∅. For each
c ∈ C, the set Ψ−1({c}) = {B ∈ B : Ψ(B) = c} is a colour class. The chromatic index
of S is the smallest k for which S admits a block-colouring with k colours.

All Steiner triple systems of orders 7, 9, 13 and 15 are 3-chromatic [27]. The possible
colouring patterns of the two STS(13)s are (6, 5, 2), (6, 4, 3), (5, 5, 3), (5, 4, 4), and all are
attainable for both systems [15] . In Figure 16 we represent four 3-colourings of the non-
cyclic STS(13), one for each colouring pattern, in the same order as above. The leftmost
picture and the rightmost picture represent also 3-colourings of the cyclic STS(13). It
is possible to find mappings Φ that are 3-colourings of both systems also for the two
remaining patterns [15], but their visual representations on the hexagram would not be
particularly symmetric.
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Figure 16: Four 3-colouring patterns in the non-cyclic STS(13).
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It is also well-known that the chromatic index of any of the two Steiner triple systems
of order 13 is equal to 8 [27]. In Figures 17 and 18 we represent a block-colouring with
eight colours of the non-cyclic STS(13). We visualize each colour class on a separate
hexagram, by representing only the (mutually disjoint) blocks that are associated with
that colour. For instance, the mostleft picture in Figure 17 indicates that the blocks
ABC, EIJ, FKL, and GHM are given the same colour. Note how, as usual, some of the
pictures are invariant under rotation and/or axial symmetry, whereas other pictures can
be obtained from one another by means of a 120-degree rotation. Also, the two blocks
marked in violet are the only ones that are invariant under the 120-degree rotations.
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Figure 17: Block-colouring in the non-cyclic STS(13): colour classes I-IV.
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Figure 18: Block-colouring in the non-cyclic STS(13): colour classes V-VIII.

Similarly, in Figures 19 and 20 we represent a block-colouring with eight colours of
the cyclic STS(13). Although the two systems differ by only four blocks, all eight colour
classes of the block-colouring of the non-cyclic system must necessarily be modified
in order to get a block-colouring of the cyclic system. Again, some of the pictures are
invariant under rotation and/or axial symmetry, whereas other pictures can be obtained
from one another by means of a 120-degree rotation. Also, the two blocks marked in
violet are the only ones that are invariant under the 120-degree rotations.
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Figure 19: Block-colouring in the cyclic STS(13): colour classes I-IV.
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Figure 20: Block-colouring in the cyclic STS(13): colour classes V-VIII.

An oval in an STS(13) is a 6-set of points that does not contain any line (see Defini-
tion 2). Ovals in the two non-isomorphic STS(13)s are thoroughly investigated in [41]
(where an alternative oval-based geometric construction is given). A simple counting
argument shows that there exist only two types of ovals. In the first kind (called Ovale
1 in [41]) there exists a unique interior point and six exterior points, each of which lies
in two secant, two tangent and two exterior lines. In the second kind (called Ovale 2 in
[41]), there exist precisely two interior points, one exterior point lying in four tangent
lines, one secant line and one exterior line, and four exterior points each lying in two
secant, two tangent and two exterior lines. In either case, by Definitions 1 and 2, each
point of the oval lies necessarily on five secant lines and on a unique tangent line (which
leads to a total number of five exterior lines).

The “nicest” and most symmetric oval to visualize in the (non-cyclic) system n. 1
is {B, C, F, K, J, E}, that is, the set of vertices of the inner hexagon in the hexagram
(picture on the left in Figure 21). Moreover, in this case, the nature of the seven points
off the oval is consistent with what visually appears in the picture, since the center point
of the hexagram, “inside” the oval (marked with a little circle in the picture on the left),
is precisely the unique interior point, whereas the six remaining points (the outer points
of the “star”) are all exterior points. This is, however, just a fortunate case and not a
general rule. Indeed, in the picture on the right in Figure 21, the two points that appear
“inside” the oval (J and K in Figure 8) are actually exterior points, whereas the unique
interior point happens to be the top point of the hexagram (marked with a little circle
in the picture), which is actually the farthest point from the oval.
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Figure 21: Two ovals of the first type in the non-cyclic STS(13).

In Figure 22 we show two ovals of the second type in the non-cyclic STS(13). In
either case, the two interior points are marked with two little circles, whereas the point
marked with an asterisk is the unique exterior point lying in four tangent lines, one
secant line and one exterior line.
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Figure 22: Two ovals of the second type in the non-cyclic STS(13).

Finally, in Figure 23 we describe two ovals in the (cyclic) system n. 2 (of the first
type on the left, of the second type on the right). Again, each interior point is marked
with a little circle, whereas the point marked with an asterisk is the unique exterior
point lying in four tangent lines, one secant line and one exterior line.

�
�
�
�
��

�
�
��

�
�
�
�
��T

T
T
T
TT

T
T
TT

T
T
T
T
TT

tt tt tet �
�
�
�
��

�
�
��

�
�
�
�
��T

T
T
T
TT

T
T
TT

T
T
T
T
TT

t e
e t
t t t t

*
Figure 23: Two ovals (first and second type) in the cyclic STS(13).

The oval on the right in Figure 23 is remarkable in that it is symmetric with respect
to the vertical axis through the center point, although the STS itself is not. Also, the
five exterior lines are precisely the four blocks of the quadrilateral on the right in Figure
7, plus the block of the three points on the vertical axis.

3 Triangle-based models of STSs of order 7, 9, 15

We conclude this paper by presenting new pictures of the Fano plane (STS(7)), of the
affine plane of order 3 (STS(9)), and of one of the eighty non-isomorphic STS(15)s.
Interestingly enough, perhaps even surprisingly, the two former pictures both readily
arise as derived pictures of the previous models for the Steiner triple systems of order
13 in a simple and “natural” way, and with the same initial geometric idea.

Let us consider the six points A, B, C, D, E, F in Figure 7, and let us take the blocks
in Table 1 above (or, indifferently, in Table 2) that can be formed with these points.
This gives us the blocks ABC, BDE, CDF, AEF, which already appeared in the list (1),
and which define a quadrilateral in both systems. The first three blocks are precisely
the three dotted blocks in the picture on the right in Figure 7, whereas the forth block
represents the vertices of the triangle AEF in the same picture. One can extend these
four blocks uniquely to the block-set of a Fano plane by taking a seventh point, say, X,
and three more blocks ADX, BFX, CEX. If we represent the point X as the center of
the triangle AEF in Figure 7, then the resulting picture is given in Figure 24, where we
describe only the three base blocks that generate all the blocks of the system under the
two 120-degree rotations around the center point. Note that if in this picture we perform
a Pasch switch with respect to the quadrilateral obtained by removing the center point
and the three blocks through it, and we finally add again the three blocks through the
center point, then we get precisely the classical representation of the Fano plane (on the
left in Figure 3).
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Figure 24: The base blocks of the Fano plane.

Similarly, in order to get a picture of the affine plane of order 3, let us consider
the nine points A, B, C, E, F, I, J, K, L in Figure 8 (that is, the only points of the
hexagram on the sides of the triangle AIL), and let us take the blocks in Table 1 above
(or, indifferently, in Table 2) that can be formed with these points. This gives us the
seven blocks ABC, AEF, AIL, BIK, CJL, EIJ, FKL, which already appeared in the list
(1). One can extend these seven blocks uniquely to the block-set of a Steiner triple
system of order 9 by adding the five blocks AJK, BEL, CFI, BFJ, CEK. The resulting
picture is given in Figure 25, where we partition the twelve blocks in the four parallel
classes of the affine plane of order 3. The six symmetries of the regular triangle that
underlies the diagram correspond to just as many automorphisms of the Steiner triple
system.
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Figure 25: The four parallel classes of the affine plane of order 3.

Finally, we extend again the main geometric idea of this paper to get a triangle-based
visual representation of one of the eighty non isomorphic Steiner triple systems of order
15. We start from the hexagram in Figure 8, we remove the points G, H, M and the
three line segments connecting them, and we add seven more equilateral triangles below
the base IL. The fifteen points of the STS are precisely the vertices of the sixteen small
equilateral triangles in Figure 26 (note that the labelling of some of the vertices has
been changed).
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Figure 26: The points of the STS(15) #6.

The Steiner triple system is defined in a quite “natural” way as follows. The first
ten blocks are obtained by taking as a block the set of the three vertices of any of the
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ten dotted triangles in Figure 26. The next ten blocks are the sets of vertices of all the
equilateral triangles properly containing some dotted triangle, that is, the six medium-
small triangles of the same size as ADF, the three medium-large triangles of the same size
as AGJ, and the large triangle AKO. This choice of the first twenty blocks determines
the remaining fifteen blocks uniquely. More precisely, the next nine blocks are generated
by the base blocks AEM and AHN under the six symmetries of the equilateral triangle
AKO, that is, the identity, the two rotations around the center point by 120 degrees,
and the three axial symmetries with respect to the line segments AM, DO, and FK.
The six final blocks are generated by the vertex-set DJL of the base isosceles triangle
DJL under the same six symmetries of the underlying equilateral triangle AKO. By
construction, such six symmetries are all automorphisms of the Steiner triple system.

It can be checked by inspection that the STS contains precisely three Fano planes.
The first one consists of the blocks AEM, AHN, AIL, ELN, EHI, HLM, IMN, whereas
the other two are generated by the first one under the two 120-degree rotations around
the center of the triangle. Note that the base Fano plane is invariant under the axial
symmetry with respect to the line segment AM. Also, it can be found by exhaustion that,
in addition to the 7× 3 quadrilaterals contained in the three Fano planes, there exist 16
quadrilaterals not contained in any Fano plane, for a total number of 37 quadrilaterals.
It follows from [6, Table 1.29, p. 32] that the STS is necessarily (isomorphic to) the
STS(15) #6. Alternatively, if one sets A=4, B=10, C=15, D=11, E=1, F=14, G=9,
H=2, I=3, J=13, K=12, L=7, M=5, N=6, O=8, then the STS defined above becomes
precisely the STS(15) listed as No. 6 in [27].

Following [27], the full automorphism group of the system is the order-24 group
generated by either of the two 120-degree rotations around the center of the triangle
and by the order-4 permutation (B J G C)(D K O F)(A M)(H I)(E)(L)(N). Note that
our triangular model is particularly suitable to visualize the two rotations, but not the
order-4 automorphism.

Finally, it is worth noting that ADF, AKO, DKM, FMO is a quadrilateral of the
system with the property that the STS(15) obtained by means of the corresponding
Pasch switch is precisely the resolvable STS(15) #7, hence the above model, with the
four new blocks AFO, ADK, KMO, DFM, allows one to visualize the solutions 7a and
7b of the fifteen schoolgirl problem (see the discussion in [31, §3, Example 3]).
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