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In this paper the authors introduce a nonlinear
model of fractional-order hereditariness used to
capture experimental data obtained on human
tendons of the knee. Creep and relaxation data on
fibrous tissues have been obtained and fitted with
logarithmic relations that correspond to power-laws
with nonlinear dependence of the coefficients. The
use of a proper nonlinear transform allows one to
use Boltzmann superposition in the transformed
variables yielding a fractional-order model for the
nonlinear material hereditariness. The fundamental
relations among the nonlinear creep and relaxation
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functions have been established, and the results from the equivalence relations have been
contrasted with measures obtained from the experimental data. Numerical experiments
introducing polynomial and harmonic stress and strain histories have been reported to assess
the provided equivalence relations.

This article is part of the theme issue ‘Advanced materials modelling via fractional calculus:
challenges and perspectives’.

1. Introduction
Material hereditariness has been a challenging topic in the field of engineering and physical
sciences since the very first observations on the long-term behaviour of polymers, rubbers and
concrete at the end of the nineteenth century. Indeed experimental campaigns conducted under
long-standing loads (creep tests) and long-standing displacements (relaxation tests) show that,
besides an initial elastic displacement (strain in creep) or load (stress in relaxation), a time
evolution of the initially measured strain/stress is clearly observed.

Mathematical modelling of materials time-dependence in terms of creep and relaxation has
been intensively investigated since the beginning of the twentieth century [1–4].

In such studies, the use of the Boltzmann superposition assumption yields constitutive
equations involving convolution integrals among a kernel function that is material dependent and
the material state variables [5,6]. The observation involving effect superposition corresponds to a
linear behaviour of the material such that linear hereditariness of engineering materials such as
wood, glass and bitumen has been extensively studied to account for long-standing loads [1,7]. In
this regard, the use of power-law kernels to describe experimental material functions led several
authors to introduce the fractional-order differintegral operators to capture material behaviour in
linear conditions [8].

Fractional-order constitutive equations have also been extended to three-axial conditions [9]
and rheological equivalence has also been introduced [10–13]. The wide success of fractional-
order calculus to deal with linear hereditariness is, however, not justified in the wider field
of nonlinear material hereditariness. Indeed, it has been well known since the very first long-
standing experiments on rubbers and polymers [1,2] that carbon-based materials undergo large
strains and a significative nonlinear behaviour is observed from experimental tests [14,15]. This
latter observation has also been more evident in presence of fibrous biological tissues where no
linear conditions may be observed even for a small level of stress/strain [16–20].

In the framework of nonlinear material hereditariness, fundamental contributions trace
back to studies from the middle of the last century that are based on the principle of
fading memory [21] that allows, after some manipulations, the constitutive equations to be
expressed as a sum of multiple integrals involving several material functions [22]. Such
an approach was simplified in the mid 1990s transforming multiple integrals into multiple
convolution integrals with material functions independent of the material state variables [23].
Neglecting multiple integrals with respect to the single integral term leads to the widely
used quasi-linear viscoelasticity (QLV) [16,24]. A comprehensive review of linear and nonlinear
material hereditariness was reported in some studies at the beginning of the present century
[25–27].

QLV has not, however, been used in the context of fractional-order calculus to take full
advantage of fractional-order formalism. Indeed, the formulation of QLV is usually presented in
terms of material relaxation that is not readily obtained from experimental data for the inertia
of loading equipment. Creep functions are, instead, more easily obtained but no closed-form
relations among creep and relaxations for the QLV have been reported so far in scientific literature
to the best of the authors knowledge. Moreover, no mechanical justification for the use of QLV
models has ever been introduced, providing a severe limitation in the use of the quasi-linear
formulations in biomechanics and material engineering.
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In this paper, the authors aim to introduce the use of fractional-order calculus to capture
the experimental behaviour of biological fibrous tissues of the human knee in the presence of
material nonlinear behaviour. A complete physical and mathematical framework for the relations
among creep and relaxation functions in the presence of material nonlinearities, contrasted
with experimental data from a large experimental campaign have been provided by means of
fractional-operators formalism.

The paper is organized as follows. In §2, some preliminary remarks about linear hereditariness
and fractional-order calculus is introduced. In §3, the main results of an extensive experimental
campaign conducted on fibrous biological tissues of the human knee in terms of creep and
relaxation tests. In §4, the proposed formulation for the nonlinear constitutive equations based on
the results of the experimental campaign is introduced and discussed in the context of fractional
calculus.

2. Remarks on fractional-order linear hereditariness
Material hereditariness is experienced each time a long-standing controlled load (controlled
displacement) experimental test shows time evolution of the measured displacements (measured
load). In this section, we assume a one-dimensional load–displacement relation and we switch to
engineering measure of stress, namely σ (t), and of strain, namely ε(t), without loss of generality.
Under these circumstances, the constitutive behaviour involves material function for strain
evolution, namely φc(σ , t), that provides the strain evolution under constant stress as well as
a different material function yielding the stress decay under constant strain, namely φr(ε, t). In
passing, we observe that the material functions φc and φr depend, in general, on the applied
stress and strain, respectively.

In the framework of linear hereditariness, the creep function satisfies the linearity conditions,
namely

φc (λσ , t) = λφc (σ , t) ∀ λ ∈ R; φc (σ1 + σ2, t) = φc (σ1, t) + φc (σ2, t ). (2.1)

A similar consideration holds true for the relaxation function that satisfies the linearity conditions
in (3.1) as

φr (λε, t) = λφr (ε, t) ∀ λ ∈ R; φr (ε1 + ε2, t) = φr (ε1, t) + φr (ε2, t) . (2.2)

The linearity assumptions for the creep and relaxation functions allow one to introduce material
hereditariness for unitary value of applied stress and strain, namely σ = 1, ε = 1, resulting in
stress- and strain-independent material hereditary functions as φc(σ , t) = σ J(t), and φr(ε, t) = εG(t),
that is creep and relaxation are linear functions of σ and ε, respectively. The function J(t) and G)t)
are creep and relaxation functions of linear viscoelasticity. Time-varying functions [G(t)] = F/L2

and [J(t)] = L2/F are well-known relaxation and creep functions, respectively.
In the following, linearity conditions will be extensively used to introduce the linear

mathematical description of material hereditariness as well as to provide a rheological description
of the experimental linear behaviour observed for several conventional materials.

(a) Mathematical modelling of linear hereditariness
Knowledge of the material functions J(t) and G(t), creep and relaxation functions, respectively,
allows for the use of the Boltzmann superposition principle [3], yielding the stress and the strain
at a generic time instant t due to an arbitrary stress σ (τ ) or strain ε(τ ) history as

ε (t) =
∫ t

0
J (t − τ) σ̇ (τ ) dτ (2.3a)

and

σ (t) =
∫ t

0
G (t − τ) ε̇ (τ ) dτ . (2.3b)

The equalities in equation (2.3a,b) are well-known integral constitutive relations in one-
dimensional linear hereditariness and it is well known, after some straightforward manipulations,
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that creep and relaxation functions must satisfy the fundamental equation of linear hereditariness
Ĝ(s)Ĵ(s) = 1/s2, with [s] = 1/T the Laplace parameter and [•̂] denoting Laplace transform.

The specific functional class of creep and relaxation functions reported in equation (2.3a,b) may
be guessed from experimental data collected in the course of experimental campaigns and they
are very often expressed as single or linear combinations of exponential functions by means of
the Prony representation theorem [28] as

J (t) =
M∑

l=1

JI

(
1 − exp

(
− t

τ
(c)
l

))
(2.4a)

and

G (t) =
N∑

l=1

GI exp

(
− t

τ
(r)
I

)
, (2.4b)

where the coefficients of the expansions have physical measures [GI] = F/L2 and [JI] = L2/F and
the material characteristic times in creep and relaxation, namely, τ

(c)
I and τ

(r)
I , are additional

material parameters that may be estimated by best fitting procedures together with the expansion
coefficients. The integer numbers in the expansions, namely M and N, are, respectively, the order
of the Prony series used for creep and relaxation, respectively.

The expressions for creep and relaxation functions reported in equation (2.4) cannot, however,
satisfy the fundamental relation of linear hereditariness, and, henceforth, they must be used
separately in stress- and strain-based constitutive relations reported in equation (2.3). Some
attempts to introduce analogous formulations jointly in creep and relaxation led to unphysical
negative values of the material relaxation times in the Prony expansion [28].

The lack of mathematical consistency in the use of Prony series for creep and relaxation,
respectively, in conjunction with the Nutting experiments obtained by best fitting on experimental
data performed on rubbers, concrete and ceramics. It has pushed several authors to select the
creep and relaxation function in the class of power laws as

J (t) = Jβ
Γ (β)

tβ = 1
GβΓ (β)

tβ = 1
G0Γ (β)

(
t
τ0

)β

(2.5a)

and

G (t) = Gβ

Γ (1 − β)
t−β = G0

Γ (1 − β)

(
t
τ0

)−β

, (2.5b)

where the anomalous terms [Gβ ] = FTβ/L2 ≥ 0, [Jβ ] = L2/FTβ ≥ 0 are material-dependent
coefficients, the exponent 0 ≤ β ≤ 1 is a material-dependent decaying order and Γ (•) is the Euler–
Gamma function. The physical dimensions of the material coefficients allows the creep and
relaxation functions to be represented introducing a two-term factorization Gβ = G0τ

β

0 with τ0
a material-dependent characteristic time and G0 the conventional elastic modulus of the material
observed in a monotone tensile test.

Straightforward manipulations show that equation (2.5) satisfies the fundamental relations of
linear hereditariness and substitution into equation (2.2), the stress–strain constitutive equations
of linear hereditariness read

σ (t) = G0 (τ0)
β

Γ (1 − β)

∫ t

0
(t − τ)−β ε̇ (τ ) dτ = G0 (τ0)

β
(

Dβ

0 ε
)

(t) (2.6a)

and

ε (t) = 1
G0 (τ0)

β Γ (β)

∫ t

0
(t − τ)β−1 σ (τ) dτ = 1

G0 (τ0)
β

(
Iβ0 σ

)
(t) . (2.6b)

Notations introduced in the last equality at the right-hand side of equation (2.6), namely
(Dβ

0 f )(t) and (Iβ0 f )(t), denote, respectively, the Caputo fractional derivative and the Riemann–
Liouville fractional integral of order β of the generic function f (t), respectively. Details about
fractional-order operators are out of the scope of the paper, and the reader may refer to more
complete readings about the topic as in [5,29].
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E1 h1

h1 h2 h3

d1(t)

d2(t)

d3(t)

dM(t)

d(t)

s(t) = 1

e(t) = 1

h2

h3

hj
hM

E2

E3

E1
(E1 + …EN)

M = N = 1

 trĠ(t) + G(t) = h1ė(t) = h1d(t)

 G(0) = E1

Ê    t ˆG(t) = E1 exp  – –– 
Ë   tr ¯ 

 È            Ê    t ˆ ˘J(t) = Í1 – exp  – ––   Í
   Î           Ë   tc ¯ ˚

              t J(0) =  ––
   E1

       s(t)      H(t)
tc j(t) + J(t) = –––– = ––––

             E1            E1  

E2 E3
EN

EM

(a) (b)

(a) (b)

Figure 1. (a) Rheological model for exponential relaxation; (b) rheological model for exponential creep. (Online version in
colour.)

In the following, for simplicity’s sake, we refer to non-dimensional stress s(t) = σ (t)/G0
yielding the constitutive equations for fractional-order nonlinear hereditariness as

s (t) = (τ0)
β
(

Dβ

0 ε
)

(t) (2.7a)

and

ε (t) = (τ0)
−β
(

Iβ0 s
)

(t) . (2.7b)

Fractional-order operators used in the constitutive relations in equation (2.6) have been
shown to be very useful to describe the mechanical behaviour of several engineering
materials such as concrete [10,30], composites, polymers and rubbers [31–33] under some
restrictions.

Fractional-order calculus has also been applied in other fields of applied mechanics, such as
heat transfer modelling [34], diffusive flow [35,36], wave propagation [37], non-local elasticity
[38,39]. For a comprehensive review, readers may refer to [10]. Some stability mechanics problems
involving non-conventional description of material external restraints have also been represented
by means of fractional calculus [40].

(b) The rheological models of linear material hereditariness
The functional stress–strain relations reported in equation (2.6) possess an equivalent differential
formulation in terms of elastic (Hookean) and viscous (Newtonian) elements.

In more detail, the differential formulation, named rheological representation of the Prony
series expansion of the creep function J(t), in equation (2.4a) is provided in figure 1a. Similarly,
the mechanical arrangement springs and dashpots reported in figure 1b corresponds to the
rheological representation of the relaxation function G(t) reported in equation (2.4b). In passing,
we observe that as far as N = M = 1, the well-known Maxwell elements representing relaxation
and Kelvin–Voigt element for creep are obtained. Direct comparisons of figure 1a,b show that
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b = 0

b = 1

0 < b < 1

Gb = G0

Gb = G0t b
0

Gb = G0t 0 = h0

Figure 2. Springpot representation. (Online version in colour.)

k1
c1

c2

c3

z

Dz

s = U(t) u(t)

k2

k3

Figure 3. Mechanical model of springpot. (Online version in colour.)

the mechanics beyond the creep and relaxation functions described by Prony series expansion
is quite different, as shown by the series and parallel arrangements of springs and dashpots
that correspond to the prescribed analytical expression in equation (3.3). Such a consideration
is a direct consequence of the lack of mathematical consistency of creep and relaxation functions
expressed in terms of Prony series expansions.

A different scenario appears as we consider the rheological model corresponding to power-
law functional classes that has been dubbed springpot [41] and it is modelled as a two-parameter
element, namely the characteristic time τ0 and the order of power-law β as depicted in figure 2. It
has been recently proved [10–12] that the springpot element may be represented as a functionally
graded sequence of springs and dashpots with different arrangement (figure 1b). The order of
decay of the sequence is related to the order β of the power-law of the springpot. In more detail,

values of 0 ≤ β ≤ 1
2

are obtained with decaying values of the elastic and viscosity moduli, namely

with α ≥ 0, and they correspond to elastoviscous (EV) materials. Instead the coefficients of springs

and dashpots increase with α ≤ 0, then values of
1
2

≤ β ≤ 1 are obtained corresponding to the so-

called viscoelastic (VE) materials. In figure 3, the representation of the mechanical model for the
springpot is depicted in discretized form. It is an infinite column of spring and dashpot modelled
as c(zj) = c0z−α

j /Γ (1 − α) and k(zj) = k0z−α
j /Γ (1 − α). Where [k0] = FLα+1 and [c0] = FTLα+1, α ∈

[−1, 1] , zj = (j − 1)
z and α = 2β − 1. As 
z → 0 the discretized form of the springpot reverts
into its continuous form ruled by a differential equation

∂

∂z

[
ka (z)

∂u
∂z

]
= c (z)

∂u
∂t

, (2.8)

and by simple manipulations the creep function exactly given as in equation (2.5a) provides
c0/k0 = 1/G0Γ (β), where G0 = Γ (2β)k022β .
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Table 1. Average values for hamstring and patellar tendons obtained from best fitting of experimental campaigns for creep
test.

creep

hamstring patellar

σ βc τc αc σ βc τc αc

2.61 0.1266 3.976 1.255 2.21 0.0917 4.938 0.635
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.65 0.0832 11.405 1.811 4.55 0.0902 2.742 0.717
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.61 0.0744 8.701 1.649 5.37 0.0885 4.000 0.789
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.98 0.0735 4.052 1.591 6.88 0.011 5.799 0.672
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.26 0.067 11.29 1.568 7.57 0.058 5.22 0.729
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Experimental campaign on tendons hereditariness: nonlinear
relaxation and creep

In this section, the results of an experimental campaign conducted on tendons of human knee
is outlined. The experimental campaign involved 30 samples of human patellar and hamstring
tendons, subjected to simple uniaxial tensile. Details about the used protocol as well as about the
findings are provided in the next subsections.

(a) Material and methods
The experimental campaign involved two kinds of human tissue, namely patellar (P) and
hamstring (H) tendons. Human tissues were obtained from a tissue bank (Lifelegacy Foundation,
AZ, USA) with the requirement that each ensemble of P and H were obtained from the same
human knee to avoid donor variability. Biological specimens were stored at 80◦C and thawed in
a 37◦C water bath for 15 min prior to testing [42], then prepared for the test and finally each
specimen was cut approximately at the same length before clamping for the uniaxial test. A
commercial electromechanic system (Electroforce, Bose 3330) was used to test both tendon groups.
We have used a specific protocol for the repeatability of the experimental campaign. Initially, the
samples were preconditioned by cycling between 20 and 100 N, for 20 cycles at 0.25 Hz, to remove
any crimping in the tendon fibrils [43]; after preconditioning, we performed a relaxation test with
prescribed values of the strain level in the range 1–5% [43]. We conducted the relaxation tests
applying a linear ramp of displacement with speed 250 mm s−1 and after the hold was fixed for
100 s after achieving the preselected value of strain; at the end of the relaxation test the sample
was rested for 15 min in order to achieve the same length of the initial specimen measured at the
end of the first phase. In the last phase, the creep test was obtained by applying the same initial
stress reached at the end of the relaxation test with a linear load ramp of 315 N s−1 and holding
the load 100 s. During the test, the sample was continuously moistened with saline solution.

(b) Data analysis
The experimental data in terms of the axial engineering strain ε(σ , t) have been averaged for
each level of applied stress. The averaged creep functions, namely 〈ε(P) > (σi, t)〉 and 〈ε(H)(σi, t)〉,
are reported in figure 1. A more detailed representation of the averaged creep functions may
be observed in a log[〈ε〉] − log[t] plot reported in figures 1 and 2 for the patellar and hamstring
tendons, respectively.
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Data analysis reported in tables 1 and 2 for the log–log plots reveals that a good candidate to
fit averaged values of creep functions μ

(P)
ε (σ̄i, t) and μ

(H)
ε (σ̄i, t) is the linear model with equation

log
[
〈ε(j) (σ , t)〉

]
= βj log

⎛
⎝ t

Γ
(
1 − βj

)
τ
(j)
c

⎞
⎠

1
βj

+ αj log
(

σj

G0

)
, (3.1)

where j = P, H denotes the specific tissue considered, τ
(j)
c and σ̄j are, respectively, a characteristic

time and the non-dimensional stress σ̄j = σj/E, where E is the tangent elastic modulus obtained at
the origin of a monotone test.

Straightforward manipulation of equation (3.1) yields the relation for the average of the strain
omitting j-dependence

〈ε (σ , t)〉 =
(

σ

G0

)α
(

t

Γ (1 − βc)
1
β τc

)β

= ‖s‖αc sign (σ )

Γ (1 − βc)

(
t
τc

)βc

, (3.2)

with 0 ≤ βc ≤ 1, 0 ≤ αc ≤ 1 two material parameters, [τc] = [T] is an additional material constant
representing the characteristic time of the material observed in a creep test and sign(•) is the
signum function.

It may be observed that values of αc, βc and τc are represented in figures 6 and 7 for the
considered tissues. Inspection of equation (3.2) reveals that the creep function coalesces with the
original formulation of Nutting obtained by experimental data conducted for rubbers, concrete,
steel, but not for biological tissues as in fact 〈ε(σ , t)〉 for an assigned value of σ is a creep function,
that is 〈ε(σ , t)〉 = φc(s, t) = sαc = J(t) for s > 0. Solid lines in figures 4 and 5 represent fits of the data
with equation (3.1) and excellent agreement among curves and data may be observed as expected
for power-law representation of ligament and tendon hereditariness [4]. The Nutting Law given
in the form |s|αc sgn(σ )J(t) has been obtained by considering a creep test. The equation, since
equation (3.2) is nonlinear, may be obtained from the corresponding relation for the relaxation
test as happens in the linear case. In order to archive this result, we proceed with the relation test
on the specimen for patellar and hamstring tendons. Previous considerations about the averaged
values of the creep test results may be reported for the relaxation averaged data in figures 10
and 11 and for the log–log plots reported in figures 8 and 9 for the patellar and hamstring
tendons, respectively. Solid lines in figures 8 and 9 represent linear fitting with equations (omitting
j-dependence)

log
[ 〈σ (ε, t)〉

G0

]
= log [〈s (t)〉] = −βr log

[
Γ (βr)

1
βr t

τr

]
+ αr log [ε] , (3.3)

which corresponds after straightforward manipulations to the stress average relaxation
expressed as

〈s (t)〉 = εαr

Γ (βr)

(
t
τr

)−βr

= ‖ε‖αr sign (ε)

Γ (βr)

(
t
τr

)−βr

, (3.4)

with αr, βr relaxation material parameters and [τr] = [T] the characteristic time of the tissue
obtained in a relaxation test (figures 10 and 11).

Observation of equations (3.2) and (3.4) shows that both creep and relaxation functions of
the fibrous tissue are nonlinear functions of the stress and the strain respectively. Under the
assumption that α = γ = 1, a linear dependence is experienced so that creep and relaxation may
be expressed as

〈ε (t)〉 = s
Γ (1 − βc)

(
t
τc

)βc

= sJ (t) (3.5a)

and

〈s (t)〉 = ε

Γ (βr)

(
t
τr

)−βr

= εG (t) , (3.5b)

with J(t) and G(t) the well-known creep and relaxation functions of linear hereditariness as τr =
τc = τ0 and βr = βc = β.
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Figure 4. Log–log plots averaged creep functions hamstring ligaments.
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Figure 5. Log–log plots averaged creep functions patellar tendons.
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Figure 6. Averaged creep functions hamstring ligaments.

(c) Relations among creep and relaxation parameters
The nonlinear dependence of the strain and the stress observed in the experimental campaign
was extensively investigated in several papers on ligament and tendon hereditariness [14,17,42].
However, despite the large efforts in the description of material parameters observed in relaxation
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Figure 7. Averaged creep functions patellar tendons.

2.01.81.61.4
log (t)

1.2

1%

5%
4%
3%
2%

1.0

lo
g 

(·
s H

Ò)

2.3

2.2

2.1

2.0

1.9

1.8

1.7

Figure 8. Log–log plots averaged relaxation functions hamstring ligaments.
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Figure 9. Log–log plots averaged relaxation functions patellar tendons.

tests no relations among αc, βc, τc for creep tests and αr, βr, τr for relaxation could be observed as
reported by several authors. This latter comment is discussed in detail in this section, obtaining
the fundamental conditions that must be fulfilled for fractional-order modelling of nonlinear
hereditariness of tendons of the knee.
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Figure 10. Averaged relaxation functions hamstring ligaments.
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Figure 11. Averaged relaxation functions patellar tendons.

Table 2. Average values for hamstring and patellar tendons obtained from experimental campaigns for relaxation test.

relaxation

hamstring patellar

ε βr τr αr ε βr τr α

1% 0.1589 5.191 0.796 1% 0.1444 5.39 1.574
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2% 0.1507 5.211 0.552 2% 0.1258 5.2311 1.394
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3% 0.1227 4.686 0.606 3% 0.1122 4.971 1.268
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4% 0.117 4.503 0.628 4% 0.1060 4.601 1.489
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5% 0.1051 4.532 0.637 5% 0.098 4.98 1.69
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With this aim, let us evaluate the strain ε(t) at time instant t = τc yielding a one-to-one relation
among the applied, non-dimensional, stress s and the measured strain ε(τc), omitting arguments

s = ε1/αc (Γ (βc + 1))1/αc , (3.6)
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that after substitution in equation (3.6) yields the equality

ε1/αc (Γ (βc + 1))1/αc = εαr

Γ (βr)

(
τc

τr

)−βr

, (3.7)

which may be cast as

ε

(
1
αc

−αr

)
Γ (βr) Γ (1 + βc)

1/αc =
(

τc

τc

)−βr

, (3.8)

which holds true for any value of the strain ε as αr = 1/αc so that a relation among the material
characteristic times observed in creep and relaxation may be established as

τr = τcΓ (βc + 1)1/(αcβr)Γ (βr)
1/βr , (3.9)

which, in conjunction with the relation αr = 1
αc

allows the characteristic time of the relaxation to

be estimated upon measure of the characteristic time observed in creep once a relation among the
decay βr and the order βc has been established.

This latter condition may be obtained as we search the estimates of creep parameters with
direct measures of the relaxation parameters, namely αr, βr, τr. Under this condition, the relation
among the characteristic time in creep estimate τc and the characteristic time observed in
relaxation reads

τc = τr

⎡
⎢⎣Γ (βr)

1
αrβc Γ (βc + 1)

1
βc

⎤
⎥⎦

−1

, (3.10)

yielding

τr = τc

⎡
⎢⎣Γ (βr)

1
αrβc Γ (βc + 1)

1
βc

⎤
⎥⎦ . (3.11)

Direct comparison of equation (3.11) with equation (3.9) yields the relation among the orders

βc = αcβr (3.12a)

and
βr = αrβc. (3.12b)

Equations (3.12) allow for a relation among the decaying order of the relaxation, given the creep
parameters as

βr = βc

αc
, (3.13)

which corresponds, in conjunction with αr = 1/αc, to equation (3.12b) namely βr = αrβc.
Relaxation order βr of the stress s(t) yields assuming αc ≤ 1 the order of the relaxation βr ≥ βc

according to the well-established paradigms that relaxation run faster than creep, as reported by
several authors [4].

In tables 1 and 2, values of the parameters obtained by best fitting of the experimental data in
§3 for creep and relaxation tests have been contrasted with the results of the proposed equations
used to relate creep and relaxation parameters. The columns of the tables report the estimates of
creep parameters for measured values of the relaxation parameters at different levels of applied
stress assuming G0 = 1MPa, respectively, for hamstring (table 3) and patellar tendons (table 4).
The table reports the percentage absolute value of the mean error ei, with i = β, α, τ , among
estimated and measured parameters and direct inspections shows that errors are less than 5%.

The observation of the experimental data reported in table 2 as well as of the relations among
creep and relaxation coefficients, shows that the order of the power-law [•]−βr and [•]βc depends,
nonlinearly, on the level of the initial strain ε (relaxation) or the initially assigned stress σ (creep).

In such circumstances, the multiplicative decomposition of the material functions J(σ , t) and
G(ε, t) does not hold. However, statistical analysis on the experimental data shows that assuming

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 M

ar
ch

 2
02

3 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190294

................................................................

Table 3. Average values for hamstring tendons obtained from parameters relationships.

hamstring tendons

σ βc = βrαr eβ αc = 1/αr eα τc eτ
2.61 0.1251 0.0118 1.247 0.006 5.1 0.033

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.65 0.0833 0.0012 1.831 0.0109 3.8 0.386
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.61 0.0738 0.008 1.641 0.005 4.141 0.0352
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.98 0.0722 0.018 1.477 0.072 5.75 0.008
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.26 0.065 0.0299 1.555 0.009 5.391 0.033
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Average values for patellar tendons obtained from parameters relationships.

patellar tendons

σ βc = βrαr eβ αc = 1/αr eα τc eτ
2.21 0.1397 0.033 0.614 0.033 4.01 0.008

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.55 0.1235 0.018 0.71 0.024 11.34 0.006
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.37 0.109 0.029 0.765 0.03 8.9 0.0023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.88 0.012 0.09 0.673 0.002 4.07 0.004
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.57 0.089 0.091 0.732 0.004 11.11 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the average value of the order βc → β̄c and βr → β̄r for creep and relaxation may be assumed in an
engineering context whereas the scattering of material-time data, namely τc and τr, with respect to
a mean value among the different level of strains has been modelled as random fluctuations [44].

4. The fractional-order nonlinear hereditariness
Data analysis reported in the previous section shows that the mechanics of the fibrous tissues of
the knee tendons must be modelled, in the course of creep and relaxation tests, with material
functions φc(σ , t) and φr(ε, t) that do not fulfill the linearity condition namely φc(ασ (τ )) �=
αφc(σ (τ )) as well as the condition φr(αε(τ )) �= αφr(ε(τ )). Under these circumstances, the Boltzmann
superposition principle can not be used, leading one to conclude that material behaviour can not
be captured with single integral models as in the case of QLV. From an engineering perspective,
however, the material behaviour may be simplified as we consider the averaged values of the
time-variation order of creep and relaxations β̄c and β̄r, respectively. Under such circumstances,
data analysis supplied in §3 shows that material functions for constant stress, namely φc(σ , t), and
for uniform strain, namely, φr(ε, t), functions may be expressed in a generalized, separable form
as

φc (σ , t) = Je (σ ) J (t) = p
Γ
(
1 − β̄c

) ( t
τ0

)β̄c

(4.1a)

and

φr (ε, t) = Ge (ε) G (t) = q
Γ
(
β̄r
) ( t

τ0

)−β̄r

, (4.1b)

where p = |s|αc sign(s) and q = |ε|αr sign(ε) and the time-dependence expressed by the functions G(t)
and J(t) may be estimated from experimental data so that it may be represented with a power-law
of time with averaged order β̄c and β̄r, respectively, for creep and relaxation as observed in the
data analysis section. Close observation of equation (4.1a,b) reveals that the separable form of the
material function is assumed as the basis of QLV [16] where the nonlinear auxiliary state variables
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are expressed in terms of the Helmoltz free energy Ψ (ε) assumed to represent the elastic behaviour
in monotone tensile tests as p = Ge(ε) = (1/G0)dΨ (ε)/dε and q = Je(σ ) = G0(dΨ (−1)(σ )/dσ ).

The use of the auxiliary variables allows the Boltzmann superposition principle to be
introduced yielding

s (t) = (τr)
β̄r

Γ
(
β̄r
) ∫ t

0
(t − τ)−β̄r q̇ (τ ) dτ = (τr)

β̄r
(

Dβ̄r
0 q
)

(t) (4.2a)

and

ε (t) = (τc)
−β̄c

Γ
(
1 − β̄c

) ∫ t

0
(t − τ)β̄c−1 ṗ (τ ) dτ = (τc)

−β̄c
(

Iβ̄c
0 p
)

(t) , (4.2b)

which may be cast in inverse form using the formalism of fractional calculus yielding, with the
knowledge of the relaxation function parameters:

s (t) = (τr)
β̄r
(

Dβ̄r
0+
[
ε (t)αr

])
(t) (4.3a)

and

ε (t) =
[

1

τ
β̄r
r

(
Iβ̄r
0+ s
)

(t)

]1/αr

, (4.3b)

or involving the knowledge of the creep functions

ε (t) = (τc)
−β̄c

(
Iβ̄c
0+
[
s (t)αc

])
(t) (4.4a)

and

s (t) =
[
(τc)

β̄c
(

Dβ̄c
0+ε

)
(t)
]1/αc

. (4.4b)

Observation of equation (4.2a,b) shows three main features.

(i) The constitutive equations for the non-dimensional stress involves a nonlinear transform
of the strain ε(t) → q(t) a relaxation time τr and the time-decay order β̄r.

(ii) The constitutive equation for the strain evolution involves the nonlinear transform of the
stress s(t) → p(t), a creep characteristic time τc and an evolution order β̄c, with β̄c �= β̄r.

(iii) No relations among the parameters used for the stress evolution and the parameters
used for strain evolution have been established so far, yielding one to conclude that
no advantages in the use of fractional calculus formalism exists to deal with nonlinear
material hereditariness.

Summing up, previous considerations yield the conclusion that the use of single-integral
model of nonlinear hereditariness does not allow for a fractional-order description of the material
hereditariness, also in presence of the nonlinear transforms of the state variables. Indeed, it
is widely accepted that the use of fractional-order calculus proves to be very efficient as the
fundamental relation of linear models is satisfied and, in order to respect this latter condition,
β̄c and β̄r must satisfy the condition β̄c = β̄r = β. If this latter condition is not satisfied and/or
equivalence relations are not provided, then no advantages in the use of fractional-order calculus
is relevant for the mathematical modelling of nonlinear hereditariness.

In the previous section, the relation among creep and relaxation parameters has been
established for the first time to the best of the authors’ knowledge, and it will be used for the
numerical assessment of the proposed formulation in the next section.

5. Numerical validation
The use of single-integral model of nonlinear hereditariness in the context of fractional-order
calculus has not been exploited, mainly for the lack of equivalence among creep and relaxation
parameters. Analytical and experimental arguments in the previous section showed that, as far as
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Figure 12. Numerical results between s(t) assigned and numerical results.

the creep parameters (αc, βc, τc) have been measured by experimental tests, the corresponding
relaxation parameters (αr, βr, τr) may be estimated by means of the relations reported in
equation (4.11a,b, 4.12) and vice versa.

In this section, we aim to show that the proposed equivalence relations hold true also in
the presence of non-constant stress or strain histories and that the constitutive equations in
equation (4.4a,b) are completely general.

In more detail, in this section, we consider a specific form of the strain history ε(t) so that the
non-dimensional stress s(t) is obtained by means of equation (4.4b). The stress history s(t) is then
used as the stress applied to evaluate the strain function by means of the creep material function
returning, exactly, the initially assigned strain function ε(t).

Similar arguments hold true as we assign a specific stress history, namely s(t), and we evaluate
the strain ε(t) by means of equation (4.4a). In such a case, the initially assigned expression for the
stress s(t) is obtained by equation (4.4a) as we introduce the equivalences among relaxation and
creep parameters in equations (4.11a,b).

(a) Linear class of stress and strain histories
In this section, we can show the numerical results for a polynomial class of stress and strain. In
this application, a function s(t) of type has been assigned

s(t) = 5t, (5.1)

we have studied the problem by applying equation (4.2b) and equation (4.4b), and we have
considered three different values of αc, in particular αc = 1 to show the particular case of linear
behaviour, βc = βr = β = 0.45, and αc = 1, 1.4, 1.7 and other parameters are fixed, τc = 4.5; The
solutions were obtained by developed a numerical code implementing Grunwald–Letnikov’s
differintegral, we considered 2000 steps with a time step of 0.1. Figure 12a,b shows the numerical
results, respectively, of equation (4.4b) and equation (4.2b). Figure 12a shows the perfect match
between assigned function of stress history and numerical results of equation (4.4b) and figure 12b
highlights the effect of nonlinearity in the ε(t) function, which increases for increasing values αc.

(b) Harmonic-type stress and strain histories
In this application, a function s(t) of type has been assigned

s(t) = siSin(ωjt) with i, j = 0, 1, 2, (5.2)

where s0 = 10, s1 = 15, s2 = 20. In the first application, we have considered to show the effect of
amplitude on the nonlinearity of the function s(t) equation (4.4b), so we fixed the value of ω, in
particular ω0 = 1, and also we established values for βc = 0.045, τc = 7.5 and αc = 0.77. A numerical
code has been developed for solving equations (4.4a,b); in particular, we used the solution of
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Figure 13. (a) Numerical results between s(t) assigned ad s(t) obtained for three different amplitude; (b) Numerical results
between s(t) assigned ad s(t) obtained for three different frequency levels.
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Figure 14. Numerical results of strain for assigned amplitude s0 = 10 and frequencyω1 and three different value ofαc .

fractional integral and fractional derivative by Grunwald–Letnikov’s diferintegral, we considered
5000 steps with a time step of 0.01. Figure 13a shows that numerical application of equation (4.4b)
perfectly overlaps the assigned functions of s(t).

The effect of nonlinearity in the ε(t) function for three different values of si is shown in
figure 14. In the following, we have fixed the values of amplitude and have changed ωj; the three
parameters chosen are ω0 = 1, ω1 = 2, ω2 = 4. The function s(t) is calculated considering βc = 0.045,
τc = 7.5 and αc = 0.77. Figure 13b shows the evaluation of

s(t) = s1Sin(ωjt), (5.3)

while figure 13b shows the perfect overlap between assigned stress history and the stress
functions from equation (4.4b) for each value of ω.

To further highlight the effect of nonlinearity in the case of nonlinear viscoelastic behaviour,
the value of the function to ε(t) in equation (4.2b) was also calculated for three different values of
αc, in particular αc = 1, to show the particular case of linear behaviour, βc = βr, and αc = 1.4 and
αc = 1.7. For each analysis, we have considered a fixed value of amplitude and ω. In the following,
figures 14–16 show the results of equation (4.2b). Equation (3.2b) was calculated by implementing
Grunwald–Letnikov’s diferintegral for calculation of the fractional integral, in which 5000 steps
were carried out with a time step of 0.01.

In the numerical tests carried out, the effect of the nonlinearity on the strain function both
by keeping the amplitude constant and by keeping the frequency constant, the amplitude of the
function is increased in both cases as the parameter increases, αc.
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Figure 15. Numerical results of strain for assigned amplitude s0 = 10 and frequencyω2 and three different value ofαc .
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Figure 16. Numerical results of strain for assigned amplitude s0 = 10 and frequencyω3 and three different value ofαc .

6. Conclusion
In this paper, the authors pointed out the main features of a wide experimental campaign devoted
to investigate the mechanical behaviour of knee tendons subjected to long-standing loads. The
results of the experimental campaign show that creep and relaxation behaviour of the tendons
may be well captured by power laws in the ranges of strain (1–5%) and stress (0–16 Mpa)
considered.

The order of the power law proved to be different between creep and relaxation proving that
some form of nonlinearity is involved in the micro mechanics of the tissue so that no linear theory
of fractional hereditariness may be used to capture the mechanics of tendons. Moreover, it has
been observed that the material parameters are significative dependent on the applied stress in
creep tests as well as on the applied strain during relaxation.

These features, already observed in other mechanical tests in the last 20 years, have never been
conducted in combination on human tendons, yielding one to conclude that the finding relaxation
runs faster than creep is valid also on human knee patellar and hamstring tendons.

Based on this observation, the paper was devoted to the introduction of an analytical model
to describe creep and relaxation showing that some closed-form expression relating creep and
relaxation parameters could be established.

Direct comparison among results of such expressions and the measured values showed
excellent matches with slight coefficient of variations and, in order to show that such relations
hold whatever kind of test is considered, a numerical validation has been introduced with other
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than constant value of the applied strain (stress), namely linear and harmonically varying strain
(stress).

The obtained results showed excellent match among the initial and the recovered values of the
applied stress (strain) leading one to conclude that the proposed relations may be a benchmark
to provide clinical support to the surgeons that apply pre-stress to the tendons before surgical
replacement to reconstruct anterior cruciate ligaments functionality.
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