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Abstract
The EU ETS represents the cornerstone of the EU climate policy framework. While 
most of the studies focus on the determinants of carbon price, this work will provide 
further insights into the influence of European Emission Allowance (EUA) prices on 
carbon dioxide trends and variables of the economic-financial-climate-environmental 
system considering a large set of time series. Results highlighted how CO2 appears to 
be more influenced by commodity prices, climate variables, and past industrial per-
formances. Furthermore, a shock in carbon prices could potentially exert significant 
turbulence on the carbon dioxide series, fading in intensity as time goes by. Overall, 
there appears to be a net positive effect on the influence of carbon prices on the sys-
tem. However, robustness checks identified how the impact of carbon price on CO2 
and other variables of the model is still weak. This work sheds light on the EU ETS’s 
influence on a set of multidimensional variables. Still, overlapping national policies 
appear to interfere with the EU ETS effectiveness in the EU.

Keywords  EU ETS · Emission trading · Hierarchical VAR · Impulse-Response

JEL Classification  Q52 · Q58 · C54

1  Introduction

An appropriate account of the social costs of carbon is still an open issue and a per-
ceived hurdle to achieving a societal transition toward sustainability (Pearce, 2003). 
In the 34 IPCC scenarios, carbon price estimates range from US$37 to US$67 per 
tonne of CO2 in 2020, whereas in 2050, it would be US$127-US$305 (IPCC, 2014; 
Tvinnereim & Mehling, 2018). However, if carbon pricing could generate revenue 
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flows and reduce the overall tax burden, more flexible pricing mechanisms could 
likely imply fewer adverse effects on competitiveness (OECD, 2016). While improve-
ments in the so-called carbon price gap signal a better use of market-based instruments 
reducing CO2 emissions, there are concerns that the current rate of change could meet 
the ambitious targets of the Paris Agreements (OECD, 2018). On the other hand, the 
Commission estimated €260 billion to comply with the EU Green Deal objectives by 
2030. The European Union launched the European Emission Trading Scheme (EU 
ETS) in 2005. The mechanism has been functioning for over a decade, providing a 
price primarily to CO2 emissions for specific categories of enterprises within the Euro-
pean territory. As such, the EU ETS has attracted the interest of policymakers and the 
academic world (Convery, 2008; Ji et al., 2019). Several streams of research (Cheval-
lier, 2011a; Convery, 2008; Ji et al., 2019) have tried to disentangle the drawbacks, 
strengths, and determinants of the European Union Allowance (EUA) price.

Some contributions have endeavored to assess the effect of the EU ETS’ carbon 
price behavior on GHG emission generation (for a review, see Sect.  2). Grosjean 
et al. (2016) proved that exogenous shocks undermining price stability might come 
from different sources (e.g., economic recession, overlapping policies, and a large 
influx of Certified Emission Reduction/Emission Reduction Units). Furthermore, 
while adjustment mechanisms, such as the Market Stability Reserve (MSR), have 
been implemented, further investigations of their effects favoring GHG abatement 
would deliver a more extensive understanding of the functioning of those mecha-
nisms (Azarova & Mier, 2021). In its rough structure, the MSR ensures a specific 
range of EUA price variation via automatically injecting or retrieving permits when-
ever the quantity in the market reaches certain (lower or upper) thresholds. Indeed, 
as the process is triggered automatically once the quantity in the market reaches 
bounds, the system will be subject to a shock that affects prices and other connected 
variables. On the other hand, other mechanisms (i.e., price roof/floor) act directly on 
prices (Andor et al., 2016).

In this context, this present work will test the effects of possible exogenous shocks of 
carbon prices on carbon emissions. The analysis will be expanded to test the response 
of economic, financial, energy, and climate dimensions. Those are relevant aspects that 
influence and are influenced by carbon emissions and carbon prices. This work will 
be carried out by adopting a vector autoregressive (VAR) framework encompassing an 
extensive array of time series data ranging from economic indicators (e.g., industrial 
production) to energy metrics (such as natural gas, coal, crude oil, and electricity), and 
extending to financial and climate data (including temperatures, rainfall patterns, and 
wind speed). In a much broader perspective, the paper will analyze the current state 
of the interplay among carbon price mechanisms and other relevant dimensions (e.g., 
industry, energy, finance) by assessing their response to a shock on EUA prices consid-
ering the broader system (e.g., climate, environmental dimension) (Schusser & Jaraitė, 
2018). This paper employs the Hierarchical Vector Autoregressive (HVAR) model that 
has been proven to better address analyses with a growing number of variables with 
respect to other VAR models (Nicholson et al., 2020). Indeed, the paper can be included 
in the research endeavors to frame machine learning techniques within economic analy-
sis and policy evaluation. In some cases, when dealing with high-frequency or high-
dimensional data, machine-learning techniques appear to fare better with respect to 
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standard econometrics (Athey, 2017; Athey & Imbens, 2017; Varian, 2014). Results 
highlighted how EUA prices still play a relatively weak role in influencing the other 
variables of the system. This might be related to national policies that overlap with the 
EU ETS. However, with this kind of analysis, it is not possible to consider the mediated 
effect of carbon price on emission through other variables. The work feeds the litera-
ture on the effectiveness of carbon prices on carbon emissions from a non-linear per-
spective. While most studies focus on one or a few factors of the relationship between 
the carbon price and the economic-environmental system, this work considers a set of 
multiple factors (e.g., economy, finance, energy, climate). Furthermore, most studies on 
the effectiveness of carbon price in influencing CO2 have been carried out at the micro 
level. This work provides further insights into analyzing the relationship for the EU as a 
whole. To policymakers, this work might provide valuable insights into the current role 
of carbon prices in the socio-environmental system accounting for the different nature 
of the variables. For a previous version of this work see (Quatrosi, 2023). The work 
proceeds with Section 2, which reviews the literature on emission trading, focusing on 
studies on the effectiveness of carbon prices. Section 3 describes the data and method-
ology. Section 4 presents the results of the Impulse-Response Function (IRF) and Fore-
cast Error Variance Decomposition (FEVD). Sections 5 and 6 will provide comments 
and discussions on the results with conclusions and implications for policymakers.

2 � Literature review

Most of the literature on emission trading has focused on finding the determinants of 
carbon price as being influenced by weather (temperature, extreme weather events), 
other commodity prices (i.e., oil, gas), other carbon markets, industrial productiv-
ity, financial markets1 (e.g., commodities) (Alberola et al., 2008; Oberndorfer, 2009; 
Creti et al., 2012; Aatola et al., 2013; Koch et al., 2014; Ji et al., 2019; Soliman & 
Nasir, 2019; Zhu et  al., 2018). Aside from the influence of those variables, other 
sources can be tracked down to possible conflicting policy aims between the EU 
ETS and national policies (e.g., waterbed effect) (Bruninx & Ovaere, 2022; Lecuyer 
& Quirion, 2013; Perino et al., 2019; Shahnazari et al., 2017).

Another stream of literature investigated the influence of carbon prices on dif-
ferent variables. Some studies at the country level highlighted how the EU ETS 
has been effective in abating emissions, mainly in the early stages of the Scheme 
(Anderson & Di Maria, 2011; Ellerman & Feilhauer, 2008). In Germany and the 
UK, setting a carbon price has been proven to be more effective in abating emis-
sions with respect to subsidies to renewable energy sources (Gugler et al., 2021). 
A recent contribution highlighted how an increase in carbon price would lead to 
increased costs for electricity, production, and, in turn, prices in Spain (Arcos-
Vargas et al., 2023). Carbon and energy markets are interconnected (Andrzejewski 

1  EUAs are considered particular category of financial instruments under MiFID II Regulation 
(Directive 2014/65/UE du Parlement européen et du Conseil du 15  mai 2014 concernant les marchés 
d’instruments financiers et modifiant la directive 2002/92/CE et la directive 2011/61/UE Texte présentant 
de l’intérêt pour l’EEE, 2014) pursuant to point (11) of Section C of Annex I of that directive. Deriva-
tives of emission allowances are listed under point (4) of Section C of the said Annex.
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et al., 2019; Ma et al., 2021). However, the cost pass-through of CO2 prices into 
electricity prices could compromise the connection between the carbon and com-
modity markets (Freitas & Silva, 2015). Carbon price and weather (e.g., tempera-
ture, rainfall) are proven to be correlated, especially at a high frequency (Feng 
et al., 2011). Carbon price responds to abrupt changes in temperature caused by 
climate change (Batten et al., 2021). There is no concrete study on the relation-
ship between wind rainfall and carbon prices (Chevallier, 2011b). However, it 
can be inferred that more favorable conditions for renewable energy might reduce 
emissions and thus reduce carbon prices.

At the micro level, studies have investigated the influence of carbon prices on 
firms’ performances. A consistent amount of studies on firms subject to the EU ETS 
showed how, despite effectively reducing emissions, being included in the scheme 
did not affect their economic performances (Ellerman & Buchner, 2008; McGuin-
ness & Ellerman, 2008; Martin et  al., 2016 Dechezleprêtre et  al., 2018; Marin 
et al., 2018; Löschel et al., 2019; Locatelli et al., 2022). A study on Chinese enter-
prises found that emission trading can increase corporate total factor productivity 
(Cheng & Meng, 2023). Other studies on firms highlighted how emission trading 
could affect firms’ propensity to innovate (Teixidó et  al., 2019). The literature on 
the relationship between carbon price and stock returns identifies a carbon premium 
for those enterprises that emit. Firms that emit face a higher carbon risk as they 
will pay a higher price for carbon allowance; therefore, investors require a higher 
return on the stock (Oestreich & Tsiakas, 2015). However, an inverse relationship 
has been proved between carbon prices and stock returns for companies that have to 
buy emissions allowances (Millischer et al., 2023).

The review highlighted how studies on the effectiveness of carbon prices had 
analysed the influence of the EU ETS on one or a few dimensions. They proved the 
effectiveness of carbon prices in reducing emissions without endangering economic 
performance. However, despite the effective decreasing trend in CO2 over the last 
decade, it is pretty hard to trace the direct effect of the EU ETS considering the mul-
tiple factors involved (Brink & Vollebergh, 2020). Considering the inverse relation-
ship between carbon and financial markets, a high carbon price will lead to a drop in 
financial indexes. The higher the percentage of firms that buy allowances, the higher 
the possible effect. Commodity, electricity, and carbon prices are correlated; thus, 
an increase in EUA prices should lead to an increase in energy prices. However, if 
the price of some fuel increases, the energy mix will switch to a much cheaper fuel. 
Thus, an increase in carbon price should lead to an overall increase in fuel prices but 
with mixed magnitude related to the possibility of fuel switching. The same should 
be valid for the electricity market save pass-through costs. There is a relationship 
between temperature changes and carbon prices. However, the literature lacks spe-
cific studies on rainfall and wind speed. However, it can be inferred that favorable 
weather conditions for renewable energy sources should, in principle, reduce emis-
sions and thus increase carbon prices.

In this framework, this work can be included in the stream of literature that tries 
to assess the effectiveness of carbon prices. Unlike other studies, this work analyses 
the influence of carbon prices on a large set of variables, ranging from economic, 
financial, energy, and climate dimensions. Furthermore, most of the works in the 
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literature test the effectiveness of carbon prices on emissions at the micro level. This 
work tries to provide a macro perspective analysing the effect of a shock on carbon 
prices on emissions for the EU as a whole.

3 � Data and methodology

3.1 � Data

To tackle the different scales and units of measures of the variables, the series will 
be standardized to refine the subsequent analyses better (James et al., 2013). Table 1 
summarizes the main statistics for the series. Monthly data will be considered for the 
analysis for a decade (2008–2019). Data on monthly EUA stock prices are taken from 
ICAP,2 SendeCO2,and Jiménez-Rodríguez (2019). Aggregated monthly CO2 trends 
have been estimated from data on energy consumption (e.g., Gross Inland Deliver-
ies) for the 31 Countries and eight fuels (four primary and four secondary) from the 
Eurostat database following the methodology in Eggleston et  al. (2006)3 (so-called 
Reference Approach). To proxy for industrial production, the Global Index of Real 
Economic Activities4 (e.g., Kilian Index) as conceived in Kilian (2009) and adjusted 
following Kilian (2019); Kilian and Zhou (2018), will be employed as a better meas-
ure of economic activity with respect to conventional indexes (e.g., real GDP, indus-
trial production). The index is based on percentage changes in voyage shipping of 
industrial commodities (various bulk dry cargoes consisting of grain, oilseeds, coal, 

Table 1   Summary statistics of the series

Statistic Min Pctl(25) Median Pctl(75) Max Median St. Dev

Kilian Index -163.170 -61.682 -32.285 12.445 188.060 -32.285 68.268
Brent 30.700 56.458 76.060 108.208 132.720 76.060 26.946
CO2 242.407 275.695 296.484 319.891 358.932 296.484 28.099
EUA 3.538 5.887 8.093 14.613 26.881 8.093 6.003
Max Temperature 7.244 13.483 20.681 26.845 30.958 20.681 7.072
Tot Rainfall 0.053 0.086 0.102 0.113 0.145 0.102 0.018
Min Temperature -13.793 -3.662 1.067 7.840 11.989 1.067 6.779
Wind Speed 10mt 2.940 3.330 3.643 3.956 4.616 3.643 0.401
Dutch TTF 3.910 6.692 8.795 11.262 15.930 8.795 2.834
North Pool Electricity 9.550 28.587 33.925 43.680 81.650 33.925 12.194
STOXX50E 1,976.230 2,665.525 3,025.670 3,362.532 3,825.020 3,025.670 433.066
Rotterdam Coal 

Futures
44.300 73.113 83.850 95.025 218.000 83.850 28.452

2  https://​icapc​arbon​action.​com/​en/
3  The dataset is available upon request.
4  The index is available in the Kilian’s personal webpage and updated monthly by the Federal Reserve 
Bank of Dallas, see https://​www.​dalla​sfed.​org/​resea​rch/​igrea

https://icapcarbonaction.com/en/
https://www.dallasfed.org/research/igrea
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iron ore, fertilizer, and scrap metal). Those shipping are differentiated according to 
size and route and adjusted for US CPI inflation. The variation of this index is pro-
portional to the variation in the volume of shipping of industrial commodities. To 
include the financial market side, the EURO STOXX50 index provides a composite 
measure of value for the biggest Eurozone enterprises in the stock market. The index 
is designed by STOXX and retrieved from Yahoo Finance.5 For commodity prices, 
natural gas and oil come from the World Bank Commodity Price Data repository for 
the Netherlands Title Transfer Facility6 (Dutch TTF) and Brent, respectively. Electric-
ity prices are those of the Nord Pool Power Market (Nord Pool Electricity) encom-
passing Northern and Baltic regions. Data on the average price of the Rotterdam Coal 
Futures from the ICE market will be considered to proxy coal prices at the EU level. 
The climate and weather variables considered in the model are the monthly averages 
of temperatures (i.e., Min, Max Temperature), rainfall (Tot Rainfall), and wind speed 
measured at 10 m from the surface (Wind Speed 10 mt). Those data are retrieved from 
the IEA Weather Energy Tracker, held by the International Energy Agency (IEA) and 
the Mediterranean Centre for Climate Change (CMCC). As the IEA database contains 
country-level data, the series employed has been computed by averaging the values of 
the 31 Countries under the ETS for this analysis.

Tests on stationarity will be commented on later (Table 2), and the preliminary 
analysis will proceed with the correlation matrix of the series. As it is possible to 
appreciate (Table  3), there are quite a few high correlations between temperature 
and wind speed. CO2 shows a significant but negative correlation with the tempera-
ture set and a positive with industrial production and commodities (e.g., natural gas 
price, oil, electricity) for the variables of interest. A relatively weak but positive cor-
relation exists with EUA prices, and a negative correlation exists with the STOXX 
index. On the other hand, EUA prices positively correlate with the Kilian Index and 
Nord Pool electricity prices.

3.2 � Methodology

The first step of the methodological strategy will be to analyze what might be the influ-
ence of carbon prices on those variables. To assess the response of a shock of the car-
bon price to emission trends and the economic, financial, energy, and climate variables, 
Impulse-Response Functions (IRF) will be modeled. IRFs are helpful to investigate inter-
actions in a vector autoregressive (VAR) framework. However, within VAR models, it 
might be often challenging to assess which shocks are relevant (Lütkepohl, 2008). To 
overcome this issue, vector autoregressive models would usually be orthogonalized (i.e., 
Structural Vector Autoregressive models). In the case of this analysis, as carbon price is 
also influenced by variables such as emissions and commodity prices, the shock cannot 
be orthogonalized. To account for this, the computation of the IRF follows a generalized 
approach (Pesaran & Shin, 1998) to relax some further limitations, not considering the 

5  For this work it has been decided to use closing prices.
6  from April 2015, Netherlands Title Transfer Facility (TTF); April 2010 to March 2015, average import 
border price and a spot price component, including UK; during June 2000—March 2010 prices exclude 
UK.
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order of the variables. IRF maps out the type of influence (positive or negative) a shock of 
carbon prices might exert on the other variables. As the next step, the Forecast Error Vari-
ance Decomposition (FEVD) of the model’s single variables will be analyzed to assess 
how much of the variance of a particular variable might be explained by the variance of 
carbon prices. Ideally, the higher the contribution of other variables, the more integrated 
the system is and the more robust the results and trends of the IRF (Lütkepohl, 2005). 
Thus, in this analysis, the higher the contribution of carbon price in the variance of the 
other variables, the more robust the results from the IRF are. In line with the previous 
analysis, the computation of FEVD follows the approach of Pesaran and Shin (1998).

3.2.1 � HVAR

As for the vector autoregressive model, the methodological strategy considers the 
high dimensional context of the analysis. For this reason, the Hierarchical Vector 
Autoregressive Model (HVAR) will be employed to address this high-dimensional 
context. This methodology was first introduced by W. B. Nicholson et al. (2020) as 
a more suitable solution for forecasting exercises in high dimensional contexts con-
cerning other approaches to reduce the dimensionality of time series (e.g., correla-
tion analysis, factor models, Bayesian models, scalar component models, independ-
ent component analysis, dynamic orthogonal component analysis). Starting from the 
matrix representation of a VAR(p)k model where {yt ∈ Rk}

T

t=1
 denote a k-dimensional 

vector time series of length T7:

where Φ controls the dynamic dependent of the ith component of yt on the jth com-
ponent of yt−1 . In the classical low-dimensional framework in which T > kp one may 
use the least square procedure to minimize the VAR model as such:

where ‖A‖2 denotes the Frobenius norm of the matrix A, that is the Euclidean norm 
of vec(A) . Estimating the parameters of Eq. 2 would be difficult unless T is sufficiently 
large.8 The traditional estimation cannot estimate VAR in high dimensions as the num-
ber of variables increases, and the parameter spaces grow quadratically, leading to a 
loss of degrees of freedom (Bagheri & Ebrahimi, 2020). One way to treat moderate to 
small T is to make structural assumptions on the parameter space. Some authors con-
ceived lasso-based VAR under the assumption that the matrix of the coefficient in a 
high dimensional context is sparse (Song & Bickel, 2011). HVAR pertains to this fam-
ily of models as it encodes lag order selection into a convex regularization that simul-
taneously addresses dimensionality and lag order selection. However, unlike Bayesian 
models and lasso-based models, it provides interpretable insights into the contribution 
of each time series to the forecasting exercise. While aiming at interpretability, HVAR 

(1)Y = v1⊺ + ΦZ + U

(2)‖Y − 𝜈1⊺ > −ΦZ‖2
2

7  For the notation see Appendix 1.
8  Indeed, when T > kp but kp∕T ≈ 1 , estimation by least squares becomes imprecise.
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introduces maximization in lag order selection dealing with increasing maximal order. 
In other models, forecasting performances tend to degrade as lag order increases. Fur-
thermore, for large (even medium) k, the matrix of the coefficients is considered sparse. 
The same is valid for the data-generating process (DGP) (Davis et al., 2012). Song and 
Bickel (2011) have decided to implement convex penalty mechanisms (e.g., Lasso and 
Group Lasso). In this framework, HLag builds on hierarchical group lasso modeling, 
providing a structure to the sparse matrix with different degrees of flexibility (i.e., Com-
ponentwise, Own-Other, Elementwise). Each row of the equation of the VAR might 
truncate at a given lag order (e.g., Componentwise) or allow the lag order of the single 
series to truncate at a different order with respect to the other series (i.e., Own-other). 
The lag structure might also allow each series component to have its own lag order (e.g., 
Elementwise). While other approaches (i.e., information criteria) provide a universal lag 
order, Hlag allows lag to vary across marginal models. For the sake of this work, the Ele-
mentwise HLag structure has been chosen as the more flexible and better performing in 
multiple scenarios, also concerning other lasso-based methods, as seen in W. B. Nichol-
son et al. (2020). Following the notation in Eq. 1, being L a kxk matrix of elementwise 
coefficient lags

as the smallest maximal lag structure such that Φij
(�) = 0 , � = 0,… , p for the model 

considered. For other structures, Elementwise HLag allows all the elements within 
L to have no stipulated relationships. HVAR performances have been tested for 
macroeconomic and financial forecasting W. B. Nicholson et al. (2020). Aside from 
mere forecasting, Bagheri and Ebrahimi (2020) employ this methodology to inves-
tigate the interconnectedness of financial stock indexes. To the best of the author’s 

(3)Lij = max
{
� ∶ �ij

(�) ≠ 0
}

Fig. 1   Sparsity matrix of elementwise HVAR

Fig. 2   Impulse-response function CO2 emissions
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knowledge, this will be the first attempt to employ Hierarchical Vector Autoregres-
sive models for variable-to-variable analysis (i.e., impulse response) in environmen-
tal macroeconomics.

4 � Results

Despite some exceptions, all the tests run (e.g., Augmented Dickey-Fuller, KPSS, Box-
Ljiung) show the series present non-stationarity either in trends or in drift (Table 2). 
Therefore, the series will be analyzed in their first differences in the following steps.

Since there is no consistent way to choose the maximum lag order that applies to 
HVAR estimation, W. Nicholson et al. (2017) suggest that the parameter p will be set 
according to the frequency of the time series considered (e.g., 12 for monthly series). 
Once the coefficient is estimated, cross-validation will be performed by dividing the 

Fig. 3   Impulse-response economic, financial, commodities price
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dataset into three parts: T/3 and 2 T/3, respectively. Figure 1 shows the sparsity matrix of 
the coefficients as the result of the model specification with 12 maximum lags. Further-
more, the matrix shows that the model does not consider any ex-ante relationship between 
data (e.g., Elementwise). From here, it is possible to appreciate how the coefficients of 
the diagonals tend to weigh more on estimation than off-diagonal. In other words, the 
coefficients of the lagged variables tend to influence the estimation more than the single 
marginal equations.

As for the optimization procedure, the chart in Figure 5 in Appendix 2 shows a 
parabolic shape for the penalization term � . Figures 2 and 3 show the response of 
the first differences in carbon dioxide emission, the Kilian Index, commodity prices, 
and the STOXX50 and relevant system variables to a shock on EUA. Figures 2 and 
3 show the specification of the model considering temperatures (min, max), wind 
speed at 10 mt, and total rainfall. Focusing on the response of carbon dioxide emis-
sions, it is possible to appreciate how the shock generates a cyclical trend for future 
emissions, which progressively converge to 0 after t = 20.

As for the variables considered in the model, Fig. 3 models IRF for commodity 
prices, production, and financial indexes; EUA appears to exert a decrease after an 
increase for the Kilian Index and specific commodity prices (e.g., Brent, Natural 
Gas) that converge to 0 after t = 10. As for the STOXX50 index and Nord Pool elec-
tricity, a carbon price shock appears to exert an intense response, at least shortly.

Decomposition (FEVD) is depicted in Fig.  4, respectively, to 1, 5, 10, and 20 
steps ahead (in Appendix 3, Table  4 summarizes the results of the FEVD). As 
shown in Fig. 4, most of the variance of the single variables is explained by their 
own variance. For the variable of interest (e.g., CO2), other influences mostly come 
from the climate/weather variables and commodity prices. Kilian Index and Natural 
Gas and Coal prices explain the carbon dioxide variance between 10%-15% of the 
carbon dioxide variance. As for the influence of EUA price, despite being relatively 
low (6%-7%), the value slightly increases over time. The most significant influence 
of EUA price ranges between 4%-5% for (max) temperature, natural gas price, and 
Kilian Index. On the other hand, much of the external variance of carbon price is 
related to commodity prices and temperatures (min, max).

5 � Discussion

For the hypothesis of this work, the influence of carbon price over carbon emissions and 
economic, financial, and climate variables is relatively weak. In the case of CO2, other fac-
tors directly influence emissions. As for the other economic, financial, and energy vari-
ables, it might be related to the fact that the carbon market seems to be a net receiver of 
shocks when related to other relevant markets such as commodities and electricity (Tan 
et al., 2020). From Fig. 3, it is possible to see that a shock increases and then decreases 
carbon prices before t = 5. In t = 5, there is another spike, and the response converges 
to 0 afterward. The results of the IRF show a cyclical response of CO2 to a shock. The 
response, though, is more persistent with respect to the other variables. This can be related 
to the response of the other variables to the shock of EUA prices. The effect of the shock 
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on the economic and financial variables is transmitted in turn to the CO2. As for the other 
variables, the results of the IRF in Fig. 3 show a positive response before t = 5, followed by 
a negative. The series converges to 0 after t = 10. The response of the Killian Index might 
be related to the behavior of fuel prices. Before t = 5, the fuel price increase is transmitted 
to the industrial production that falls after t = 5. For the commodity market, the response 
aligns with the hypothesis that increased carbon prices generate higher fuel prices (Ma 
et al., 2021). The price of fuels increases due to the increase in carbon price. The subse-
quent negative response might be related to fuel switching. After a period of price increase, 
buyers may use the cheapest fuel, thus decreasing prices. The STOXX50 index appears to 
have a positive relationship with EUA prices in the short term. This aligns with previous 
studies on the relationship between carbon prices and STOXXX market returns (Mischiller 
et al., 2023). There is a subsequent negative response of the index probably related to the 
higher carbon cost of those enterprises that have to buy emission allowances.

However, according to the FEVD, EUA prices explain only 3% of the variance in 
carbon emissions. As for the influence on other variables, carbon price explains 5% 
of the variation of the Kilian Index and from 3 to 4% of fuel prices. External factors 
explaining CO2 variation are industrial production (10%), natural gas (13%), and coal 
prices (12%). Industrial production and commodity prices directly influence the lev-
els of CO2: higher industrial production increases emissions from the industrial sector. 
On the other hand, lower prices increase the consumption of fossil fuels in the energy 
mix and, in turn, atmospheric emissions (Declercq et al., 2011; Dong et al., 2019; Zeng 
et al., 2021). Figure 4 shows no relationship between the carbon market and the finan-
cial market. As mentioned, this could be related to the type of enterprises considered in 
the index and whether they buy/sell allowances. The STOXX50 index includes firms 
in different sectors: finance, power sectors, textile, food and beverage, bank, and auto-
motive. Some, but not all, of them are included in the scheme. This could explain the 
almost non-existent influence of carbon price on the index. Climate variables appear 
to be not directly influenced by carbon prices. Maximum temperatures influence the 
carbon price in line with other findings in the literature where absolute deviation from 
the average temperatures is significant in explaining carbon prices (Batten et al., 2021; 
Feng et  al., 2011). As for the relationship between wind characteristics (e.g., speed, 
direction) and carbon price, the results highlighted that there might be some connec-
tion. The variance of wind speed explains around 3% of the EUA variance. However, 
providing further insight into this relationship with this methodology is impossible. 
Wind characteristics and carbon prices might be connected through renewable sources. 

Fig. 4   Forecast error variance decomposition
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Thus, considering some proxy of renewable energy sources (e.g., wind power) in the 
model should lead to more marked results. Besides the results of this analysis, one other 
reason might be related to the presence of national policies that may overlap with the 
EU ETS. Most of the sectors within the EU ETS are heavily regulated at the national 
level. The national policy may interfere with the connection between the carbon price 
and emissions. Furthermore, as shown by the IRFs, carbon price affects other variables 
(e.g., industrial production, energy) that, in turn, affect CO2. However, delving more 
into this kind of analysis goes beyond the scope of this work.

6 � Conclusions

This work tries to provide ulterior insights on the effect of the emission trading scheme 
at the EU level, considering the broader system (environmental, economic, financial). 
The EU ETS represents the cornerstone of the EU climate policy. However, since its 
introduction in early 2005, carbon prices have not reached a (high) sufficient level. The 
main strands of the literature have focused on the determinants of carbon prices. Stud-
ies on the effectiveness of carbon prices have been mainly conducted at micro level, 
investigating the effect ETS on emission and the economic performances of firms. In 
this framework, this work aims to investigate the effectiveness of carbon price through 
testing the response of environmental, economic, financial, energy and climate vari-
ables to a shock of EUA prices for the EU. Unlike other studies, this work includes 
many variables of different nature to cover the multiple dimensions of the relationship 
between carbon price and the economic-environmental system. It employs time series 
econometrics coupled with lasso-based regularization to provide new insights into the 
effectiveness and integration of the EU ETS within the socio-economic-environmental 
system. This provides interpretable estimates that have been used to model IR functions 
and FEVD analysis. The IR functions highlighted how a shock in carbon price will 
generate a cyclical response to CO2. This cyclical response appears to be persistent over 
time. This persistent cycle might be the effect of the other variables responding to the 
carbon price shock. This proves a mediated effect of carbon prices on CO2, which is not 
possible to capture with this kind of analysis fully. According to the IR estimation, the 
other variables also show a cyclical response. However, this response is less persistent 
and rapidly converges to zero after a few years.

After experiencing an increase, industrial production decreases due to the increase in 
fuel prices. Commodities respond to an increase in fuel prices through fuel switching. 
If, in the short term, a shock in carbon prices is associated with a higher value of the 
STOXX50 index, the higher carbon cost for some of the enterprises in the index gener-
ates a decrease afterward. However, from the FEVD, it was possible to assess that the 
effective influence of carbon prices on those variables is still weak. There appear to be 
other factors that exert a stronger influence on carbon dioxide than EUA prices (e.g., 
temperatures, industrial performances, natural gas, coal). Results align with the prelimi-
nary analyses (e.g., correlation matrix) and the literature pointing out the influence of 
carbon prices on industrial performances, commodities, and (maximum) temperatures. 
These findings provide ulterior insights to policymakers for better considering possi-
ble sources of carbon price shocks (e.g., overlapping policies) and tailoring existing 
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adjustment mechanisms (e.g., Market Stability Reserve) for the stability of the Euro-
pean Emission Trading Scheme. However, even when considering multiple factors, the 
influence of carbon prices on the EU appears weak. Further limitations might be related 
to the interpretability of the results, especially when considering more variables in the 
algorithm. Future work might consider Phase IV of the ETS, where the Market Stabil-
ity Reserve is fully implemented. Research should also look at the behavior of prices 
during the COVID-19 pandemic, where higher prices were associated with a lower vol-
ume of transactions. Despite the well-established influence on commodity markets, the 
almost non-existent influence of carbon prices on finance strictu sensu could be deemed 
an ulterior hurdle to channeling funds toward sustainable investments. Thus, a more 
active dialogue between national and EU policymakers should lead to a comprehensive 
policy mix, avoiding overlapping aims. Even though the EUA has been included as a 
financial instrument by the recent EU financial directive (MiFID2), financial players 
do not consider carbon allowances enough. From this perspective, the vast process of 
reform affecting the financial sector (e.g., Taxonomy) should be designed considering 
the comprehensive array of policies from multiple aspects.

Appendix 1

Appendix 2   

(4)Y = v1⊺ + ΦZ + U

Y =
[
y1 … yT

]
(k x T); Z =

[
z1 … zT

]
(kp x 1);

z =
[
y⊺t−1 … y⊺t−p

]
(kp x T); U =

[
u1 … uT

]
(k x T);

1 = [1… 1]⊺(T x 1);Φ =
[
Φ(1) …Φ(p)

]
(k x kp)

Fig. 5   Lamba plot
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