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Abstract

In this paper, we extend the reaction-diffusion-chemotaxis model of Multiple Sclerosis proposed in [Lombardo et al. (2017),
Journal of Mathematical Biology, 75, 373–417] by incorporating the modulatory influence of cytokines on the activation rate of
macrophages. Our primary focus is on the mathematical analysis of instabilities responsible for the formation of demyelinating
lesions. We conduct a weakly nonlinear analysis near the homogeneous equilibrium to characterize the chemotaxis-driven Turing
instability and construct stationary patterns that emerge from this instability. The asymptotic solutions of our model system are
derived using biologically relevant parameter values and qualitatively reproduce the concentric demyelinating rings, confluent
plaques and preactive lesions observed in Balò sclerosis and type III Multiple Sclerosis. Furthermore, we explore the initiation and
progression of demyelinated plaques through extensive numerical simulations on two-dimensional domains. Our findings reveal
that the alternative scenario proposed here results in a less aggressive pathology characterized by reduced inflammation levels and
significantly slower disease progression. Moreover, we establish the existence of a unique global solution to our proposed system
when the activation rate exhibits linear growth with increasing cytokine levels. This study provides crucial insights into the role
of cytokines in the pathogenesis of Multiple Sclerosis, shedding light on the disease’s dynamics and offering potential avenues for
therapeutic interventions.
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1. Introduction

In this introductory Section, first, we shall discuss the pri-
mary mechanisms that underlie the etiopathogenesis of various
types of Multiple Sclerosis (MS), according to general consen-
sus. Specifically, we shall focus on the distinct roles played
by the innate and adaptive immunity in different types of MS.
In the second Subsection, we shall provide an overview of the
main attempts of giving a mathematical description of MS:
probably due to the disorder’s complexity and heterogeneity,
initial contributions were formulated only in recent years, lead-
ing to a relatively underdeveloped body of literature on the sub-
ject. In the third Subsection, we shall present the main results
of this paper. They involve modeling and analyzing the impact
of cytokines on the activation of the inflammatory cascade lead-
ing to demyelination, and the proof of the well-posedness of the
model. In the last Subsection, we shall present the plan of the
paper.
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1.1. MS pathology: a brief overview
Multiple Sclerosis is one of the most common autoimmune

disabling and degenerative disorders of the Central Nervous
System (CNS) that affects over 2.8 million people worldwide.
MS patients often experience relapsing-remitting phases on a
background of a progressive disease course, until progression
becomes dominant [1, 2, 3]. The disease is characterized by a
loss of myelin, a fatty substance that is produced by oligoden-
drocytes and that, surrounding the nerve fibers of CNS, favours
the propagation of the electric signal along the nerve axon.
Destruction of myelin sheaths is usually organized in pseudo-
circular areas, called plaques or lesions [1, 2, 3].

An important line of research in MS is focused on under-
standing the complex mechanisms underlying the pathology,
particularly those related to etiology and its correlation with the
observed clinical and immunological heterogeneity, both at the
population and individual level. It is generally accepted that MS
is caused by a dysfunction of the immune system, that mistakes
healthy neural cells for diseased or damaged ones [1, 3, 4, 5].
Recent studies indicate that immune cells of both the innate and
adaptive immune system are involved in the onset and develop-
ment of MS [2, 3].

Among the cells of the innate immune system, microglia and
macrophages play a prominent role in the pathogenesis of MS
[2]. Microglia, small-size white blood cells present in the CNS,
manage the entire defense system in the brain, as other larger

Preprint submitted to International Journal of Non-Linear Mechanics



immune cells are unable to cross the blood-brain barrier (BBB)
under physiologic conditions. Microglia periodically sweep the
brain tissue looking for pathogens, foreign cells, or damaged
neurons. In the presence of foreign or damaged cells, they turn
into an active state, i.e. they increase their size and phagocy-
tize harmful cells [6, 7, 8, 9]. In the phagocytic state, microglia
look like other macrophages (from the Greek makròs phagein,
i.e. big eater), which are immune cells (or white blood cells)
specialized to digest pathogens and foreign substances [9, 10].
In healthy organisms, macrophages are not present in the CNS;
they can be found in the perivascular space while being too
large to cross the BBB. However, in MS brains, the BBB has in-
creased permeability and even large cells such as macrophages
are able to cross the barrier and infiltrate the CNS [6, 7, 8, 9].
In fact, infiltrating macrophages and microglia are the dominant
immune cells in plaques and thought to be mainly responsible
for neuroinflammation and myelin degradation of MS patients
[4, 6, 9, 11, 12]. On the other hand, macrophages also play
many beneficial roles including removing neurotoxins and pro-
moting repair. According to their functional roles, macrophages
are roughly divided into two subtypes: pro-inflammatory (or
M1) and anti-inflammatory (or M2) macrophages [5, 6, 7, 13].
Both M1 and M2 macrophages release cytokines, small pro-
teins that mediate and regulate immune responses, inflamma-
tory reactions and chemotaxis, and lead to the proliferation of
antibody cells [11, 14, 15].

Because MS lesions exhibit profound heterogeneity with re-
spect to their immunopathologic patterns, several classifica-
tion systems based on plaque activity and histologic features
have been introduced. Based on biopsy and autopsy spec-
imen, a classification of early active lesions known as the
Lucchinetti/Lassmann/Brück system (LLB classification) has
recently been proposed [16, 17, 18, 19], which divides the ac-
tively demyelinating lesions into four distinct subtypes. Type
I and type II lesions are the most common. They are char-
acterized by high levels of macrophage and lymphocyte infil-
tration, complement activation, and massive phagocytosis of
myelin by macrophages. Type-I and type-II plaques closely
resemble the lesions seen in T-cell mediated experimental au-
toimmune encephalomyelitis, a murine model of brain inflam-
mation. Type III lesions resemble hypoxia-like lesions and are
characterized by extensive oligodendrocyte apoptosis in regions
of myelin preservation, high activation of microglia and macro-
phages, no signs of complement activation and low levels of
lymphocyte infiltration [16, 20, 21]. Similar immunopatho-
logical features are also reported in Baló sclerosis, a rare ag-
gressive variant of MS whose plaques display concentric alter-
nating rims of demyelinated and myelinated tissue [22]. Fi-
nally, type IV lesions are very rare and, most likely, caused
by oligodendrocyte dysfunction. Immunohistological classifi-
cation suggests that different mechanisms may cause different
subtypes of MS lesions. Specifically, type I and type II MS
would be autoimmune-mediated disorders, whereas type III le-
sions emerge from microglia activation through innate immu-
nity mechanisms. Lesions would be the result of an initial oli-
dendrocyte injury, caused by oxygen and nitrogen radicals re-
leased by activated microglia, ultimately followed by T-cells

infiltration and demyelination, leading to the formation of the
classical plaque [18, 19, 21]. It is still debated whether different
lesion types are specific to each MS patient [16] or if they cor-
respond to different temporal stages of the disease [18, 20, 21].

1.2. Mathematical modeling of MS

In recent decades, mathematical modeling of diseases has
been widely used to study and explore the mechanisms respon-
sible for the development of severe pathologies such as cancer,
diabetes, respiratory syndromes, inflammation [23, 24, 25] and,
only to a lesser extent, autoimmune diseases [26]. With few
exceptions, existing continuum deterministic models of MS are
formulated in terms of ordinary differential equations (ODEs),
in which the species distribution is assumed uniform in space,
and one takes into account only its time dependence. Such
models can reproduce the oscillatory behavior of immune cells
corresponding to the relapsing-remitting phase of MS and, in
some cases, also the underlying progressive stage (see, for ex-
ample, [27, 28, 29] and [26] for a review). Khonsary and Calvez
[30, 31] introduced the description of lesion formation that con-
siders species’ spatial distribution. The authors formulated a
model based on partial differential equations (PDEs) to repro-
duce the concentric demyelinating rings observed in type III
MS/Balò sclerosis. Following the immunopathological findings
on type III MS/Balò sclerosis, they assumed that activation of
innate immunity by an unknown pathogen was responsible for
initiating the inflammatory cascade, leading to the destruction
of oligodendrocytes. Their system describes the spatiotemporal
dynamics of immune cells, chemical mediators, and damaged
oligodendrocytes. Moving from [30, 31], in [32, 33, 34, 35],
the authors took into account the macrophage production of cy-
tokines and, through theoretical and numerical bifurcation anal-
ysis, were able to reproduce several pathological scenarios ob-
served in type III MS/Balò sclerosis. Recently, in [36], they
have considered an Allee-type growth term to reproduce macro-
phage activation and studied the effect on the illness progres-
sion. Moise and Friedman [12] have proposed a comprehensive
spatial model. The authors also analyzed the impact of spe-
cific drugs for MS treatment and compared their findings with
clinical data. The model encompasses multiple species’ inter-
actions to replicate MS’s intricate biological pathways with re-
markable detail. However, the mathematical complexity makes
the system unsuitable for analytical analysis, and the results
heavily rely on numerical simulations: This does not allow for
an understanding of the fundamental mechanisms leading to
the different illness scenarios, nor to elucidate which are the
key parameters guiding the progression and transition of the
pathology. Finally, through an Ordinary Differential Equation-
Partial Differential Equation (ODE-PDE) system, the interplay
between the adaptive and immune responses in the development
of MS is elucidated, [37].

1.3. Aims of the paper

This paper aims to derive a model that incorporates the in-
fluence of cytokines on macrophage activation. In [33], the ki-
netic term reproducing proliferation of activated macrophages
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is a logistic functional form, whose constant activation rate de-
scribes the effect of un unknown antigen directly acting on resi-
dent immune cells. This mechanism reproduces the findings of
many immunopathological studies (see [38, 16, 20, 21]), which
report activation of macrophages in the absence of cytokine-
driven regulatory effects. Experimental models, such as the
induction of type III lesions through lipopolysaccharide injec-
tion into rats’ spinal cords, confirm direct macrophage activa-
tion without cytokine involvement, leading to focal areas of mi-
croglial activation and oligodendrocyte apoptosis [21]. Despite
various hypotheses proposed to elucidate the triggering factors
of the immune response, such as CNS antigens in MS or the Ep-
stein–Barr virus, no study has definitively identified the antigen
or provided a universally accepted explanation for the activa-
tion mechanism to date [39]. In fact, some studies suggest that
inflammatory cells, exhibiting a cytokine-producing phenotype,
are already present in the early stages of lesions, potentially ini-
tiating a pathogenic cascade of events leading to demyelination
and oligodendrocyte damage [21, 40, 41]. Considering that the
medical literature predominantly recognizes cytokines as the
primary chemical mediators driving inflammatory activation in
MS [42], these findings lead to hypothesize the involvement of
cytokines in the activation process. Moreover, mathematical
descriptions of MS and inflammation-driven diseases typically
consider cytokine participation in the proliferation of activated
macrophages [12, 23, 25]. The primary goal of this paper is
to test the hypothesis regarding cytokine-mediated activation of
the immunopathological response in MS. Therefore, we mod-
ify the activation rate in the macrophage equation of the model
in [33], by choosing a logistic functional form with a cytokine-
dependent growth rate that displays Holling-type saturation at
high cytokine concentrations. The modified form of the kinetics
describes a more general scenario of [33], which is recovered
in the limit of vanishingly small values of the newly introduced
half-saturation parameter of the growth rate. Moreover, since
some of the currently used immunomodulatory drugs for the
treatment of MS inhibit cytokine production and T-cells pro-
liferation, by varying the value of the cytokine half-saturation
constant, we could mimic the effect of medical treatment on
disease dynamics and investigate its impact on the lesions.

We focus on the study of the Turing-type instabilities of the
nontrivial homogeneous steady state, leading to the settlement
of stationary patterns of inflammation and demyelination. At
the onset of the instability, we carry out the linear and weakly
nonlinear analysis which yield quantitative estimates of the
most relevant pattern properties, such as bifurcation threshold,
wavelength, amplitude and form. We analyze how the emer-
gent pattern changes by varying the parameters within experi-
mentally estimated ranges, especially focusing on the effects of
varying the cytokine half-saturation constant. We find that the
involvement of cytokines in the proliferation of macrophages
results in a less aggressive form of the disease and in a slower
progression of the inflammation compared to the case of direct
activation of the innate immune system.

In the final part of the paper we examine the well-posedness
of the proposed model. The mathematical properties of
chemotactic-diffusion-reaction systems, initially introduced by

Keller and Segel, have been extensively studied [43, 44, 45,
46, 47]. It is also well-known that aggregation of cells may
lead to blow-up phenomena [48]. Well-posedness of the con-
sidered model depends on the form of the chemotactic term and
on the presence of reproduction and saturation kinetic terms.
If volume-filling effects of the chemotaxis term are consid-
ered, global existence and uniqueness of the solutions to the
Cauchy problem can be proved [49]. Moreover, the inclusion
of logistic-type kinetics and/or growth limitations on the sensi-
tivity function prevents blow-up of the solutions [50, 51].

The well-posedness of the system proposed in [33] has been
studied in [52, 53, 54], where the authors prove the existence
and uniform-in-time boundedness of strong solutions. If porous
media-type nonlinear diffusion terms are included, the exis-
tence of global weak solutions is shown in [55]. Indeed, the
results obtained in [52, 54] hold also for the model presented
in the present paper. Therefore, here we consider the mathe-
matically interesting case when the mechanism of production
of activate macrophages has no saturation effects as the den-
sity of the cytokine increases. This scenario is recovered from
the kinetics presented here in the limit of large values of both
the half-saturation constant and the constant growth rate. In
absence of cytokine-induced growth-limiting effects, we prove
the existence of a unique strong solution that exists globally in
time.

1.4. Plan of the paper

The paper is organized as follows: in Section 2 we present the
model. In Section 3 we perform a Turing stability analysis at
the onset of the stationary bifurcation and derive the explicit ex-
pressions of the critical value of the chemotactic coefficient and
the critical wavenumber of the pattern. In Section 4 we discuss
the parameter values adopted in the analysis, either taken from
experimental literature or estimated. In Section 5 we perform a
weakly nonlinear analysis on 1D spatial domains and obtain the
amplitude equation that captures the systems dynamics close to
criticality. We also derive the Ginzburg-Landau equation that
describes the wave-like invasion of the pattern through the do-
main. Section 6 provides a detailed numerical investigation of
dynamics supported by the proposed model on 2D spatial do-
mains. In Section 7 we prove global in time well-posedness of
the model, when the reaction kinetics of the activated macro-
phages has no saturation effects. In Section 8 we finally draw
some conclusions and discuss open problems.

2. Mathematical model for MS lesions formation

The mathematical model we propose aims to reproduce the
formation of MS lesions by the interaction of three species: im-
mune cells, namely activated M1 macrophages or activated mi-
croglia, cytokines, and oligodendrocytes. Let m̃(T, X), c̃(T, X)
and d̃(T, X) be the densities of macrophage, cytokine and oligo-
dendrocyte species, respectively, where (T, X) ∈ R+ × Ω, with
Ω ⊂ Rn, n = 1, 2 is a bounded domain on which we impose
no-flux boundary conditions. Our model is a generalization of
the model proposed in [33], which describes the initial stages of
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the disease leading to type-III lesions, characterized by macro-
phage activation by innate immunity, high levels of oligoden-
drocyte apoptosis and minimal or absent lymphocyte infiltra-
tion [16, 20, 21, 18]. Here we generalize the model proposed
in [33] to include the involvement of the cytokines in the acti-
vation of immune cells. We therefore introduce the following
system of PDEs:



∂m̃
∂T
= D∆Xm̃ − ∇X · (Ψ(m̃)∇Xc̃) + λ

c̃
kc̃ + c̃

m̃(m − m̃),

∂c̃
∂T
=

1
ν

(ε∆Xc̃ + µd̃ + bm̃ − αc̃),

∂d̃
∂T
= κ F(m̃) m̃ (d − d̃),

(2.1)
with Ψ(m̃) = ψ m̃

m+m̃ and F(m̃) = m̃
m+m̃ . Since microglia and

macrophages express similar molecular markers and are often
experimentally indistinguishable [8], we shall represent them
as a single species. Spatial movement of macrophages is de-
scribed by diffusion and chemotaxis: the diffusion term D∆Xm̃
accounts for random movement of cells, where ∆X = ∇X · ∇X,
∇X = ∂/∂X and D is the constant diffusion rate. Follow-
ing [33], we describe the chemotactic movement of the cells
by a density-dependent chemotactic sensitivity function Ψ(m̃),
which displays saturation of chemotaxis due to overcrowding
effects, where ψ is the maximum chemotactic rate and m is the
characteristic density of resident (non activated) cells.

The kinetic term describes the production rate of activated
macrophages/microglia m̃ and is the novelty of the present
model with respect to [33]. The model presented in [33] de-
scribes the onset of plaque formation in type III and Baló
sclerosis which, according to many studies, is characterized
by direct activation of the innate immune response (macro-
phages/microglia) by an unknown pathogen, in absence of
cytokine-driven regulatory effects [38, 16, 20, 21]. Without go-
ing into the details of the activation process, in [33] the macro-
phage production term is therefore modeled by a logistic func-
tion of m̃, namely λm̃(m − m̃), to reproduce production of the
activated cells at a constant growth rate λ, and saturation at the
average density of resident non-activated macrophages m. The
same functional form has been used in similar models of MS
[30, 31] and in ODE models of acute inflammation [23]. In
the model, the effect of the unknown pathogen responsible for
initiation of MS is reproduced by choosing an initial condition
consisting of a localized bump of activated macrophages, in ab-
sence of signaling molecules and damaged oligodendrocytes.
However, other data suggest that pro-inflammatory cytokines
are responsible for the inflammatory cascade, ultimately lead-
ing to demyelination [40, 42, 41]. Hence, in this paper we
want to generalize the model in [33] to include the role played
by the pro-inflammatory cytokines to the activation of macro-
phage/microglia. To describe activation of macrophages me-
diated by cytokines we choose a logistic-type functional form
with a cytokine-dependent growth rate λ(c) = λ c̃

kc̃+c̃ , where kc̃ is
the cytokine half-saturation constant. A similar term was used
in [12]. Although different cytokine species stimulate the pro-
liferation of activated macrophages and promote chemotaxis,

we do not distinguish between different mediators and indicate
by c̃(T,X) any type of pro-inflammatory signaling cytokines.

Note that the current model can be achieved the one in [33]
by setting kc̃ = 0. Furthermore, since for any kc̃ > 0 the rate
of macrophage activation in (2.1) is slower than that obtained
for kc̃ = 0, the variation of the newly introduced parameter kc̃

could significantly affect the time of plaque formation.
The spatio-temporal evolution of c̃ is the same as in [33]:

the cytokines diffuse in space with diffusivity coefficient ϵ; they
are released by damaged oligodendrocytes and activated macro-
phages with linear kinetics, whose coefficients are µ and b, re-
spectively and they linearly decay at a constant rate α. Finally,
the parameter ν measures the characteristic time scale of the
cytokine dynamics (see [33]).

The oligodendrocyte equation is as in [30, 31, 33]: the de-
stroyed oligodendrocytes are immotile, so no spatial term is in-
cluded. d indicates the initial characteristic density of healthy
oligodendrocytes in the brain: intact oligodendrocytes are de-
stroyed by interaction with activated macrophages through a
mass action law with a coefficient that is a nonlinear saturating
function of macrophage density and whose strength is measured
by the parameter κ.

We now introduce the following non-dimensional variables
and parameters:

m =
m̃
m
, d =

d̃

d
, c =

α

bm
c̃, t = λmT, x =

√
λm
D

X,

χ =
ψb
αD

, τ =
νλm
α

, ϵ =
ελm
αD

, β =
b

b
, r =

κ

λ
,

δ =
µd

mb
, ξ =

αkc̃

bm
(2.2)

where all the nondimensional variables and parameters are as in
[33], except ξ: this is the new parameter that rules the effect of
cytokines on the macrophage activation rate. Then, the system
(2.1) assumes the following non-dimensional form:



∂m
∂t
= ∆m − ∇ · (χ(m)∇c) +

c
ξ + c

m(1 − m) , (x, t) ∈ ΩT

∂c
∂t
=

1
τ

(ϵ∆c + δd − c + βm) , (x, t) ∈ ΩT

∂d
∂t
= rF(m) m (1 − d) , (x, t) ∈ ΩT

(2.3)
with χ(m) = χ m

1+m , F(m) = m
1+m , ΩT = (0,T ) × Ω, where Ω is

a bounded domain in Rn (n ∈ N, n ≥ 1) with smooth boundary
∂Ω on which no-flux (homogenous von Neumann) boundary
conditions are imposed. Moreover, we shall impose the follow-
ing conditions on the parameters:

χ > 0, τ > 0, ϵ > 0, β ≥ 0, r > 0, δ ≥ 0, ξ ≥ 0.
(2.4)

We are interested in investigating the effects of the new term
c/(ξ+c) on the formation of aggregates and compare the results
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with those obtained in the case ξ = 0, which yields the model
in [33].

3. Turing instability analysis

In this Section, we conduct a linear stability analysis of sys-
tem (2.3) to explore the formation of small-amplitude station-
ary structures emerging from a Turing instability of the non-
trivial homogeneous equilibrium. System (2.3) admits two spa-
tially uniform steady states, namely the disease-free equilib-
rium P0 = (0, 0, 0) and the point P∗ = (m∗, c∗, d∗) = (1, β+δ, 1).
As in [33], the equilibrium P0 is unstable while P∗ is a stable
attractive node with respect to spatially uniform perturbations
for all values of the parameters satisfying (2.4). The linearized
dynamics of (2.3) in the neighborhood of the steady state P∗

reads:

ẇ = J′w + D′∆w, (3.1a)

where:

w =

 m − m∗

c − c∗

d − d∗

 , J′ =


−θ 0 0
β
τ
− 1
τ

δ
τ

0 0 − r
2

 , (3.1b)

θ =
β + δ

ξ + β + δ
, D′ =

 1 −
χ
2 0

0 ϵ
τ

0
0 0 0

 . (3.1c)

We note that, under the assumptions (2.4), the parameter θ can
be written as:

θ =
c∗

ξ + c∗
, so that 0 ≤ θ < 1 and θ|ξ=0 = 1,

(3.2)
where c∗ = β + δ is the constant equilibrium value of the cy-
tokines. We observe that for ξ = 0 one recovers the model
presented in [33], which therefore corresponds to θ = 1. For
this reason, hereafter we shall indicate all the quantities eval-
uated for the model given in [33] with the subscript (1). We
also remark that the only difference with the linearized kinetics
of the model proposed in [33] is in the coefficient J′(1,1) of the
matrix J′, where the linearized kinetics of [33] is obtained from
(3.1a)- (3.1c) by setting θ = 1.

We now look for solutions of Eq.(3.1a) of the form w ∝
eσt+ik·x, where σ is the linear growth rate of the Fourier mode
of the perturbation with wavenumber k. Since we are imposing
no-flux boundary conditions on the spatial domain Ω = [0, ℓ],
the wavenumbers admitted by the boundary conditions must be
of the form |k| = nπ/ℓ, with n ∈ Z. Substituting in (3.1a), we
get a cubic equation for the eigenvalues, which easily gives one
eigenvalue equal to −r/2. We then obtain the following disper-
sion relation, which gives the eigenvalue σ as a function of the
wavenumber k = |k| :

σ2 + g(k2)σ + h(k2) = 0, (3.3a)

where:

g(k2) = k2tr(D) − tr(J), (3.3b)

h(k2) = det(D)k4 + qk2 + det(J), (3.3c)

q =
2 (1 + θϵ) − χβ

2τ
, (3.3d)

and

J =
(
−θ 0
β
τ
− 1
τ

)
, D =

(
1 −

χ
2

0 ϵ
τ

)
. (3.3e)

As already observed for J′, J differs from the Jacobian matrix
in [33] in the coefficient J(1,1).

For Turing instability to occur, the steady state must be stable
in the absence of spatial effects (i.e. Re{σ(k2 = 0)} < 0) and
it must be linearly unstable with respect to spatial disturbances,
namely it must exist k , 0 : Re{σ(k2)} > 0. It can be easily
seen from (3.3d)-(3.3e) that g(k2) > 0 ∀k. Therefore, the only
possibility for eq.(3.3a) to have a positive root is that h(k2) < 0
for some nonzero k [56]. Since h(k2) is a concave-up parabola,
a nonzero k exists such that h(k2) < 0 only if its minimum is
negative. The minimum of h is attained at

k2 = −
q

2 det{D}
≡ k2

c . (3.4)

where kc denotes the critical wavenumber, corresponding to the
most unstable mode. The expression (3.4) requires q < 0,
which is satisfied by imposing the following necessary condi-
tion:

χ > χ :=
2 (1 + θϵ)

β
. (3.5)

Marginal stability is obtained for h(k2
c ) = 0, so that the bifurca-

tion value χc can be found by requiring:

min
k

(h(k2)) = 0, (3.6)

Eq.(3.6) can be solved substituting (3.4) in the expression of
h(k2) given by (3.3d). The bifurcation value is finally given by:

χc =
2
β

(
1 +
√
θϵ

)2
. (3.7)

Using the expression of χc in (3.4), we obtain the corresponding
critical wavenumber:

k2
c =

√
θ

ϵ
. (3.8)

For the Turing instability to occur, it has to be mink(h(k2)) < 0,
which leads to χ > χc. Observing that χc ≥ χ, so that (3.5) is
satisfied if χ > χc, we have therefore proved the following

Theorem 3.1 (Turing instability). Let the reaction-diffusion
system (2.3) be given. Then, under the hypotheses (2.4) on the
parameters, there exists χc, given by (3.7), such that at χ = χc

the uniform steady state solution (m∗, c∗, d∗) = (1, β + δ, 1) un-
dergoes a Turing bifurcation.
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(a) (b) (c)

Figure 1: (a) Plot of the growth rate σ(k2) as a function of k2 for different values of the bifurcation parameter χ. For χ > χc there exists a range [k2
1 , k

2
2] for which

σ(k2) > 0. At χ = χc, σ(k2
c ) = 0 while σ(k2) < 0 elsewhere. For χ < χc, σ(k2) < 0 ∀k > 0. (b) Plot of the critical valueχc as a function of ξ. The different curves

are obtained for evenly spaced values of ϵ in the interval [0.5, 1.5]. The other parameters are chosen equal to 1. (c) Plot of k2
c as function of ξ. The different curves

are obtained for evenly spaced values of ϵ in the interval [0.5, 1.5]. The other parameters are chosen equal to 1.

Remark 3.2. Theorem 3.1 guarantees that there exists a
unique value χc such that:

i. for χ = χc

• σ(kc) = 0, i.e. the growth rate σ(kc) of the critical
wavenumber kc is zero;

• σ(k) < 0, ∀k , kc, i.e. the growth rate of all the
wavvembers except kc is negative;

ii. for χ > χc there exists a band of wavenumbers k ∈ (k1, k2)
such that:

• σ(k) > 0 for k ∈ (k1, k2), σ(k) < 0 for k < k1 ∪ k > k2
and σ(k1) = σ(k2) = 0; i.e. only the wavenum-
bers belonging to the interval (k1, k2), have positive
growth rate;

• on the spatial domain Ω = [0, ℓ], system (2.3) ad-
mits a spatially non-homogeneous stationary solu-
tion only if there exist k ∈ (k1, k2) such that k = nπ/ℓ,
with n ∈ Z; i.e. the pattern will develop if, within the
interval (k1, k2), there exists at least one wavenumber
admitted by the no-flux boundary conditions.

Figure 1(a) shows some graphs of the growth rate σ(k2) for
different values of the chemotaxis strength χ, which plays the
role of the bifurcation parameter. Comparing these results with
those obtained in [33], we observe that χc ≤ χc(1) , which means
that the model presented here, compared to the model in [33],
admits a lower threshold of the chemotactic coefficient to have
the Turing instability. Therefore, the contribution of cytokines
to the macrophage proliferation rate allows for the onset of
aggregates of inflammation at lower levels of aggressiveness
compared with the direct activation of the innate immunity de-
scribed by [33]. Morevover, we find kc ≤ kc(1) , namely the criti-
cal wavenumber prescribed by the present model is lower com-
pared to the one found in [33]. This means that, in presence of

a cytokine-mediated activation of macrophages, the character-
istic size of the plaques and their spacing is larger. We finally
note that the explicit expressions of χc and kc depend, through
the parameter θ, on the equilibrium value c∗ = β + δ of the
cytokines, which, in the present model, directly influences the
critical threshold of the chemotactic parameter and the critical
wavenumber of the emerging pattern.

In Figs.1(b)-1(c) we display the graphs of χc and k2
c versus

ξ for various values of ϵ. As discussed above, the plots show
that both χc and k2

c are monotonously decreasing functions of ξ.
Additionally, increasing the value of ϵ, which is proportional to
the species’ diffusivity ratio, has a stabilizing effect on the ho-
mogeneous equilibrium. This is evident from the fact that, for
any fixed value of ξ, the critical value of χ is larger as ϵ grows.
Correspondingly, once the pattern has formed, its characteristic
size is larger if one increases the diffusivities ratio, as indicated
by the fact that, for any fixed ξ, k2

c is smaller as ϵ grows.

4. Parameter Values

The numerical values or the ranges for the parameters intro-
duced in the system (2.1) are determined or estimated in [33],
derived from previous experimental estimates and recent stud-
ies [57, 30]. We need only to determine the numerical value
of the cytokine half-saturation constant, kc̃, that has been intro-
duced here.

The functional dependence we propose in (2.1) for the
macrophage production rate is based on the model presented
in [12] for the activation of the pro-inflammatory M1 immune
cells: it is of logistic type with a cytokine-dependent growth
rate λ(c) = λ c̃

kc̃+c̃ , where kc̃ is the cytokine half-saturation con-
stant. In [12] activation of the macrophages M1 is favoured
by the presence of cytokines I17, I23, S (see eq. (2.9) in [12]).
Therefore, to estimate the range of physiologically meaningful
numerical values for kc̃, we focus on the steady state densities
of I17, I23, S cytokines (see Table 3 of [12]). We note that I23
cytokines are moderately effective, as they assume at the steady
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state an intermediate value of the density among the three dif-
ferent types of cytokines considered. Therefore, we refer to I23
to estimate kc̃. Differently from the procedure followed in [12],
where some assumptions are made, we take the value of the
concentration of activated I23 (i.e. in plaques) as given in [11],
namely 250 pg/ml.

I0
23 = 250

pg
ml
= 0.25

pg
mm3 (4.1)

Following [12], the value of the half-saturation coefficient kI23

is derived assuming the Michaelis-Menten formula, namely
I0
23/(kI23 + I0

23) = 5/6. It therefore follows that:

kI23 =
I0
23

5
(4.2)

The value of kI23 on 3D spatial domains is then given by kc̃3D =

kI23 = I0
23/5 = 0.05 pg/mm3. On 2D domains we have kc̃2D =

(kc̃3D )2/3 = 0.136 pg/mm2.
In Table 1 we summarize the physiologically meaningful val-

ues for the entire set of parameters along with the corresponding
units and descriptions.

From the above scaling, we derive the admissible values for
the dimensionless parameter ξ as given in (2.2) and use them in
the numerical simulations.

ξmin =
kc̃ ·

α
νmin

b
ν
· m

=
0.136 · 10−3

1.96 · 10−5 · 3.5 · 102 = 0.0198 (4.3a)

ξmax =
kc̃ ·

α
νmax

b
ν
· m

=
0.136 · 3 · 10−2

1.96 · 10−5 · 3.5 · 102 = 0.5948 (4.3b)

So that ξ2D ∈ [0.02, 0.6].
On 1D spatial domains one has: kc̃1D = (kc̃3D )1/3 =

0.368pg/mm, and m1D = (m2D)1/2 = 18.7 cells/mm, so that
ξ1D ∈ [1, 30].

Table 2 shows the range of values for the entire set of dimen-
sionless parameters that will be used for the simulations on 2D
spatial domains.

5. Pattern formation on 1D domain

In this Section we construct spatially non-constant solutions
of (2.3) arising from the Turing instability. To this end, through
the multiple scales method, we derive the amplitude equations
for the spatially periodic solutions to the system (2.3) on the
1D spatial domain Ω = [0, ℓ]. Specifically, in Subsection 5.1,
we derive the Stuart-Landau equation that governs the estab-
lishment of small-amplitude stationary patterns. In Subsection
5.2, we obtain the Ginzburg-Landau equation, which describes
the wave-like propagation of the pattern through the domain.

5.1. Weakly nonlinear analysis

Adopting the formalism of [64, 65, 66, 67], we perform a
weakly nonlinear analysis close to the uniform steady state P∗ =
(m∗, c∗, d∗) = (1, β + δ, 1).

We set a small control parameter η2 = (χ − χc)/χc, which
gives the dimensionless distance of χ from the bifurcation value
χc. Upon translation of the equilibrium P∗ to the origin, the
system (2.3) can be written as:

∂w
∂t
= Lχw +Nw, (5.1)

where w is defined in (3.1b), the linear operator Lχ = J′ +
D′(χ)∂xx with J′ and D′ defined in (3.1b), andN is a nonlinear
operator containing higher order powers in w. Close to equilib-
rium we expand w and the bifurcation parameter χ as follows:

w = ηw1 + η
2w2 + η

3w3 + O(η4),
χ = χc + η

2χ2 + O(η4),

and look for solutions having a multiple scale dependence on
time t:

wi = wi(T2,T4, ...),

where
T2 = η

2t, T4 = η
4t, ....

so that the time derivative operator has the following expansion:

∂

∂t
= η2 ∂

∂T2
+ η4 ∂

∂T4
+ O(η5).

We introduce the following notation: wi = (wmi ,wci ,wdi )
T (i =

1, 2 . . . ), and:

Ξ(m) =
m

1 + m
, Φ(m, d) =

m2

1 + m
(1 − d).

By substitution of the above expansions into (5.1) and collect-
ing the terms at each order in η, we obtain the following sys-
tems:

O(η) : Lχc w1 = 0, (5.2a)

O(η2) : Lχc w2 = F, (5.2b)

O(η3) : Lχc w3 = G, (5.2c)

with Lχc = J′ + D′(χc)∂xx and the expressions for F and G are
the following:

F =


θw2

m1
+

ξθ2

(β+δ)2 wm1 wc1

0
−r∂mdΦ(m∗, d∗)wm1 wd1

 + χc

Ξ
′(m∗)∂x

(
wm1∂xwc1

)
0
0

 ,

G =
∂w1

∂T2

+


2θwm1 wm2 +

ξθ2

(β+δ)2 (wm1 wc2 + wm2 wc1 + w2
m1

wc1 ) − ξθ3

(β+δ)3 w2
c1

wm1

0
−r

[
∂mdΦ(m∗, d∗)

(
wm1 wd2 + wm2 wd1

)
+ 1

2∂mmdΦ(m∗, d∗)w2
m1

wd1

]


+χc

Ξ
′(m∗)∂x

(
wm1∂xwc2 + wm2∂xwc1

)
+
Ξ
′′

(m∗)
2 ∂x

(
w2

m1
∂xwc1

)
0
0


+R(χ2)∂xxw1,
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Table 1: Dimension carrying parameter values of the model
Parameter Description Value Source

m̄ average macrophages density 350 cells mm−2 [58]
d̄ average oligodendrocyte density 400 cells mm−2 [59]
λ macrophages activation rate ∼ 3 · 10−6 mm2 cells−1 min−1 Estimated
D macrophages random motility 6.6 · 10−5 mm2 min−1 [60]
ψ chemoattraction 0.0023 − 0.298 mm2 min−1 cells pg−1 Derived from [60]
ε/ν cytokine diffusion 9 · 10−4 mm2 min−1 [61]
b/ν cytokine production rate 5.7 · 10−6 − 1.96 · 10−5 pg min−1 cells−1 [62, 63]
µ/ν cytokine production rate per oligodendrocyte 10−6 − 10−5 pg min−1 cells−1 Estimated
α/ν cytokine decay rate 0.001 − 0.03 min−1 [63]
κ damaging intensity 3.96 · 10−6 mm2 cells−1 min−1 [30]
kc̃ cytokines half-saturation coefficient 0.136pg−1mm−2 [11, 12]

Table 2: Non dimensional parameter values used in the numerical simulations

Parameter Description Value

χ chemoattraction 4 − 55
τ time scale of cytokine dynamics 0.001 − 1
ϵ cytokine diffusion 0.5 − 1.5
β cytokine production rate 0.2 − 1
δ cytokine production rate per oligodendrocyte 0 − 1
r damaging intensity 0.01 − 6
ξ cytokine half-saturation coefficient 0.2 − 0.6

(a) (b) (c) (d)

Figure 2: Turing region: The black bold line corresponds to L(ϵ, β) = 0. The region in light grey corresponds to the supercritical case L > 0, whereas the dark grey
region corresponds to the subcritical case L < 0. The parameters are fixed as follows: τ = 1, δ = 1, r = 1, η2 = 0.1, with (a) ξ = 0, (b) ξ = 1, (c) ξ = 5 and (d)
ξ = 13. For increasing values of ξ the region corresponding to the subcritical case L < 0 becomes smaller.

where:

R(χ2) =

0 χ2Ξ(m∗) 0
0 0 0
0 0 0

 .
From equation (5.2a), by imposing Neumann boundary condi-
tions, one gets a solution of the form:

w1 = ρA(T2, . . . ) cos (kcx), ρ ∈ Ker(J′ − k2
c D′(χc)),

(5.3)
where A(T2, . . . ) is the time-dependent amplitude of the pat-
tern, kc given by (3.4) must satisfy kc = nπ/ℓ, n ∈ Z, and ρ is
normalized as follows:

ρ = (ρ1, 1, 0) =


1+ϵk2

c
β

1
0

 . (5.4)

By the Fredholm Alternative theorem, the solvability condition
for the Eq. (5.2b) is given by ⟨F,ψ⟩ = 0, with ψ ∈ Ker(L∗),
where we have denoted by L∗ the adjoint of Lχc and by ⟨·, ·⟩
the scalar product in L2(0, ℓ). As before, by imposing Neumann
boundary conditions, one gets a solution of the form:

ψ = ρ′ cos (kcx), where Ker(L∗) ∋ ρ′ =


β

τ(k2
c+θ)
1
2δ
rτ

 . (5.5)

At order η2 the solvability condition is automatically satisfied
and the solution w2 to the second-order system (5.2b) is given
by:

w2 = A2[w20 + w22 cos (2kcx)], (5.6)
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where the vectors w2i = (wm2i ,wc2i ,wd2i )
T for i = 0, 2 are the

solutions of the following linear system:


J′w20 =

θρ1
2

(
ρ1 +

ξθ

(β+δ)2 , 0, 0
)T
,(

J′ − 4k2
c D′(χc)

)
w22 =

(
θρ1
2

(
ρ1 +

ξθ

(β+δ)2

)
− ρ1χck2

cΞ
′(m∗), 0, 0

)T
.

(5.7)
Substituting w1 and w2 into (5.2c), one gets the following ex-
pression for G:

G =
(
∂A
∂T2

ρ + AG(1)
10 + A3G(3)

10

)
cos(kcx) +G∗,

where G∗ can be written as G∗ = A3[G∗(3)
31 cos (3kcx) +

G∗(3)
13 cos3 (kcx)]. In the above expression G∗(3)

31 satisfies the
Fredholm solvability condition, while G( j)

10 for j = 1, 3 and
G∗(3)

13 , whose explicit expression is not reported here, depend
on the system parameters. Therefore, imposing the solvability
condition at the third order, we get the following Stuart-Landau
equation for the amplitude A(T2):

∂A
∂T2
= σA − LA3, (5.8a)

where:

σ =
⟨G(1)

1 , ρ′⟩

⟨ρ, ρ′⟩
, L =

⟨G(3)
1 , ρ′⟩

⟨ρ, ρ′⟩
, (5.8b)

and

G(1)
1 = −G(1)

10 =

χ2k2
cΞ(m∗)
0
0

 , (5.8c)

G(3)
1 = G(3)

10 +
3
4

G∗(3)
13 =

Σ00
 . (5.8d)

where Σ = 2θρ1

(
wm20 +

wm22
2

)
+

ξθ2

(β+δ)2

[
ρ1

(
wc20 +

wc22
2

)
+ wm20 +

wm22
2 +

3
4ρ

2
1

]
− 3

4
ξθ3

(β+δ)3 −

χck2
c

[
Ξ′(m∗)

(
wm20 −

wm22
2 + ρ1

wc22
2

)
+ 1

8ρ
2
1Ξ
′′(m∗)

]
.

One can verify that the growth rate σ is always positive for
all values of the parameters for which one has the Turing insta-
bility. Then, the dynamics of the Stuart-Landau equation (5.8a)
can be divided into two qualitatively different cases depending
upon the sign of the Landau coefficient L: for L > 0 one has
the supercritical case, that corresponds to the onset of small-
amplitude patterns; for L < 0 one gets the subcritical case that,
close to crititicality, yields the settlement of finite amplitude
structures. In Fig. 2(a)-(c) we present the curve across which
L(ϵ, β) changes its sign for different values of ξ and fixed values
of the remaining parameters. The curve L(ϵ, β) = 0 divides the
Turing space into two distinct regions: the region where the pat-
tern forms supercritically (displayed in light grey) and the sub-
critical region (displayed in dark grey). We note that the bifur-
cation is subcritical in a portion of the parameter space whose

width is maximum for ξ = 0 and that becomes progressively
smaller for growing values of ξ. This analysis reveals that the
involvement of cytokines in macrophage activation (ξ > 0 and
large) corresponds, in a large portion of the parameter space,
to the onset of a mild disease, displaying small levels of in-
flammation even when the chemotactic effect is strong (i.e., the
bifurcation parameter is above the Turing threshold).

Conversely, small values of the parameter ξ correspond in
a large parameter region to the onset of an aggressive disease
that, for high values of χ (namely, χ > χc), leads to formation
of demyelinated bands (or ring-shaped plaques on 2D domains)
characterized by high levels of inflammation.

5.2. Traveling wavefront equations

In this Subection we study the propagation of patterned MS
through the spatial domain as a wave (see also [32]). If the
domain size is large compared to the characteristic wavelength
of the pattern, a large number of modes can be excited, even
for values of the bifurcation parameter very close to the criti-
cal threshold. The result of the interaction among the excited
modes is a slow modulation in space of the pattern amplitude.
In order to describe this phenomenon quantitatively, one must
therefore consider that the solution has both a slow and a fast
spatial dependence. One can easily argue that the characteristic
length scale of the spatial modulation is O(η−1). The weakly
nonlinear analysis of Section 5.1 needs to be modified to take
into account the dependence of the amplitude A on the slow
variable X = ηx. Separating the fast x-dependence and the slow
X-dependence and following the same procedure as in Section
5.1, at the leading order in η we recover the homogeneous lin-
ear problem Lχc

x w1 = 0, where Lχc
x denotes the operator Lχc ,

defined in Sect.5.1 and where we have also emphasised the de-
pendence on the fast spatial variable x. The solution of the first-
order equation is:

w1 = ρ A(X,T2, . . . ) cos (kcx), (5.9)

where ρ is given by (5.4).
At the second order in ηwe obtain, as in (5.2b), the following

linear non-homogeneous problem: Lχc
x w2 = F. The analitical

expression of F is not reported here; however, as in (5.2b), F
satisfies the Fredholm solvability condition. The solution w2 of
the second-order non-homogeneous system can be recovered
as:

w2 = A2w20 + A2w22 cos (2kcx) +
∂A
∂X

w21 sin (kcx),

where the vectors w2i = (wm2i ,wc2i ,wd2i )
T for i = 0, 2 are the

solutions of the linear systems given by (5.7), and w21 is the
solution of the following linear system:(

J′ − k2
c D′(χc)

)
w21 = 2kcD′(χc)ρ.

Substituting the expressions of w1 and w2 in the linear prob-
lem obtained at the third order, one gets Lχc

x w3 = G, where G
is expressed as follows:
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(a) (b) (c)

Figure 3: The red line represents the envelope mEnv of the macrophages solution given by (5.12) as prescribed by the GLE, whose initial condition is depicted in
red in Fig.3(a) and where A(X,T2) is expressed by (5.11). The black line represents the macrophage numerical solution of the system (2.3) with initial condition
(m0, c0, d0)T = (m∗, c∗, d∗)T + ηA(X, 0) ρ cos (kc x) reported in black in Fig.3(a). In Figs.3(b)-3(c) the two spatial profiles of mEnv and of the macrophage numerical
solution of the full system (2.3) are displayed at two different times. The parameter values are: β = 1, δ = 1, r = 1, τ = 1, ϵ = 0.5, χ = 3.8071, ξ = 5. For this set of
parameters we obtained χc = 3.7976, and η = 0.05.

G =
(
∂A
∂T2

ρ + AG(1)
10 + A3G(3)

10 +
∂2A
∂X2 G(0)XX

10

)
cos (kcx)

+ A
∂A
∂X

G(1)X
02 sin (2kcx) +G∗,

with G∗ = A3[G∗(3)
13 cos3 (kcx) + G∗(3)

31 cos (3kcx)], and where
G(1)X

02 and G∗(3)
31 satisfy the Fredholm solvability condition. Im-

posing the solvability condition at the third order, one there-
fore gets the following Ginzburg-Landau Equation (GLE) for
the amplitude A(X,T2):

∂A
∂T2
= ν

∂2A
∂X2 + σA − LA3 (5.10a)

where:

ν =
⟨G(0)XX

1 , ρ′⟩

⟨ρ, ρ′⟩
, (5.10b)

with

G(0)XX
1 = −G(0)XX

10 = 2kcD′(χc)w21 + D′(χc)ρ, (5.10c)

and σ and L are given by (5.8b)-(5.8d).
Choosing the system parameters in such a way that the Lan-

dau coefficient L is greater than zero, we can obtain the explicit
expression for the solution of the GL equation (5.10a), namely:

A(X,T2) =
1
2

√
σ

L

(
1 − tanh

(√
σ

ν

z − z0

2
√

2

))
,

where z = X − uT2, with u = 3
√
σν

2
, (5.11)

where u is the wave speed, namely the speed of the envelope of
the travelling pattern.

In what follows, we shall show some numerical simulations
for which we have selected the parameters such a way that
χ > χc and L > 0. Precisely, in Fig.3 we show two curves
representing the macrophage species: the envelope of the so-
lution spatial profile as predicted by the GL equation (5.10a)
(shown by the red line), namely:

(mEnv, cEnv, dEnv)T = (m∗, c∗, d∗)T + η A(X,T2) ρ, (5.12)

where A(X,T2) is given by (5.11); and the numerical solution
of the system (2.3) (shown by the black line) at different times
and for a fixed value of ξ. The initial condition of the solution
to (2.3) is a perturbation of the equilibrium P∗ localized at the
left end side of the spatial domain, precisely (m0, c0, d0)T =

(m∗, c∗, d∗)T +ηA(X, 0)ρ cos (kcx), where kc is the first integer or
semi-integer allowed by the Neumann boundary conditions that
becomes unstable when χ passes the critical value χc (see also
[68]). The simulations show that the solution (mEnv, cEnv, dEnv)T

predicted by the GL equation is in good agreement with the
amplitude of the numerical solution of the system (2.3) as the
wavefront progressively propagates through the domain.

In Fig.4 we show the envelope of the macrophage solution
as predicted by the GL equation and expressed by (5.12), and
the numerical solution of the system (2.3) at a fixed time and
for different values of ξ. We remark that the critical value
of the bifurcation parameter χc depends on ξ (see Eq.(3.7));
therefore, as ξ is varied while χ is held fixed, the parameter
η =

√
(χ − χc)/χc also varies, returning for η a monotonically

increasing function of ξ. Since for the weakly nonlinear analy-
sis to be valid, we must restrict ourselves to small values of η,
this forces us to consider variations of ξ only in a small range.
In Fig.4 we have fixed χ = 5.8430; with the chosen parameter
set, for ξ = 0 one gets η = 0.05, while for ξ = 0.15 one obtains
η = 0.1807. Therefore, although with a fixed χ, the three plots
in Figs.4(a)-4(c) are obtained for different values of the distance
of χ from the respective bifurcation threshold.

From Fig. 4 we observe that, besides the differences in the
pattern wavenumber and in the amplitude displayed for differ-
ent values of ξ, the speed of traveling wavefront invasion seems
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(a) (b) (c)

Figure 4: Traveling wavefront invasion for different values of ξ at the same fixed time T2. The red line represents the envelope mEnv of the macrophages solution
prescribed by the GLE as given by (5.12), with the initial condition A(X,T2 = 0). The black line represents the macrophage numerical solution of the system (2.3)
with initial condition (m0, c0, d0)T = (m∗, c∗, d∗)T + ηA(X, 0)ρ cos (kc x). The parameter ξ is chosen as: (a) ξ = 0, (b) ξ = 0.1, (c) ξ = 0.15. All the other parameter
values are: β = 1, δ = 1, r = 1, τ = 1, ϵ = 0.5, χ = 5.8430.

(a) (b)

Figure 5: Plot of the dimension-carrying traveling wavefront invasion speed as
a function of the parameter ξ, for fixed values of β = 1, r = 1, τ = 1, ϵ = 0.5
and computing η =

√
(χ − χc)χc for each value of ξ (see text). (a) The different

curves are obtained for different values of δ while the value of χ is fixed as
χ = 5.8430. (b) The different curves are obtained for different values of χ
while the value of δ is fixed as δ = 1.

to change for increasing values of ξ. Therefore, in what follows
we want to investigate how the wavefront velocity depends on
ξ. To this aim, upon substituting the expressions of σ and ν,
given by (5.8b) and (5.10b), respectively, into the expression of
u in (5.11), we derive the explicit dependence of u on ξ (and on
the other system parameters). The obtained u is of the form:

u(ξ) =
3
√
ϵ(β + δ)√

ϵ(ξ + β + δ) + τ
√
β + δ

, (5.13)

resulting in a monotonously decreasing function of ξ, when all
the other parameters are held fixed. However, to recover from
the expression (5.13) the dimensional velocity, (i.e. the one ex-
pressed in dimensional units), we have to multiply by a factor
that involves the control parameter η =

√
(χ − χc)/χc, which,

as we have already noticed, grows with increasing ξ. A typical
plot of the resulting traveling wavefront speed expressed in di-
mensional units as function of ξ is shown in Fig. 5. We notice
that the speed initially grows for increasing ξ while, after a cer-
tain threshold, it diminishes as ξ is increased. This behavior can
be explained if one considers two different effects that depend
on varying ξ: the first is the distance of the bifurcation parame-
ter χ from the critical threshold and the second is the activation

term in the macrophage equation of system (2.3). When ξ is
small, the macrophage activation term is close to its maximum
value, since c/(ξ+ c) ≈ 1. In this case, keeping a constant value
for χ and increasing ξ increases the relative distance between χ
and χc, which in turn leads to an increasing relative chemotac-
tic strength for the macrophages and to a faster domain invasion
for the traveling wavefront. On the other hand, for large values
of ξ the activation term for macrophages remains small, due to
the high value of the half-saturation costant of the cytokines. In
this case, as ξ is increased the effect of an augmented relative
chemotactic strength is overtaken by a lowered activation rate
of macrophages, resulting in a slightly decreasing function of ξ
for the wavefront invasion speed.

To better illustrate the dependence of the dimensional travel-
ing speed on the parameter ξ, in Fig.6 we have performed some
numerical experiments adopting the following procedure: (1)
we have fixed all the parameters, but ξ and χ; (2) for ξ = 0, we
have computed the corresponding value of χc and we have per-
formed the simulation fixing χ = (1 + η2)χc, with η = 0.05: (3)
for each considered value of ξ, we have computed the updated
value of χc and chosen the value of χ = (1+η2)χc by maitaining
the same value of η = 0.05 as in step (2). This procedure allows
us to investigate the dependence of the dimensional velocity on
ξ maintaining fixed the distance from the bifurcation threshold
χc as ξ is varied. The corresponding simulations are reported in
Fig.6. We note that, as ξ is increased maintaining the distance
of the control parameter from the onset fixed, the wavelength
shows only a slight increase with respect to the case ξ = 0,
while the pattern amplitude decreases. This last behavior is op-
posite to what observed in Fig.5 (where the value of χwas fixed
for different values of ξ, so changing the relative distance from
the bifurcation), and is determined by the reduced activation
rate of macrophages as ξ increases. In Fig.7 we show the graph
of the dimensional wave velocity computed maintaining η fixed,
i.e. using the same procedure as in Fig.6. As expected, since
in this case the relative distance from the bifurcation threshold
does not vary as ξ increases, the only mechanism affecting the
wave speed is the inferior activation rate of macrophages, which
makes the velocity smaller as ξ is increased.
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(a) (b) (c)

Figure 6: Comparison of the profiles of the macrophage traveling wave at the same time T2 for different values of ξ and keeping η fixed as ξ varies (see text). In
each figure the red line represents the exact solution of the GLE (5.10a), expressed by (5.11), with the initial condition A(X,T2 = 0), while the black line represents
the numerical solution of the system (2.3) with initial condition (m0, c0, d0)T = (m∗, c∗, d∗)T + ηA(X, 0)ρ cos (kc x). The parameters are chosen as in Fig.3 with η
fixed as η = 0.05, except for ξ, that is chosen as follows: (a) ξ = 0, for which one has χ = 3.5830; (b) ξ = 5, for which one has χ = 3.8071; (c) ξ = 10, for which
one has χ = 3.3297.

(a) (b)

Figure 7: Plot of the dimension-carrying traveling wavefront invasion speed
as a function of the parameter ξ, for fixed values of the other parameters as
r = 1, τ = 1, ϵ = 0.5, η = 0.05, keeping η fixed as ξ varies and computing
χ = (1 + η2)χc for each value of ξ (see text). (a) The different curves are
obtained for different values of δ. (b) The different curves are obtained for
different values of β.

6. Numerical results on 2D spatial domains

In this Section we present the results of the numerical exper-
iments performed on the system (2.3) on 2D spatial domains.
Our aim is to examine the impact on the plaque formation pro-
cess of the term c/(ξ+c) included the kinetic part of the macro-
phages equation. We primarily explore how changing ξ and the
initial conditions affect the plaque formation process, which is
characterized by the emergence of localized zones of apoptotic
oligodendrocytes When ξ = 0, the system has been previously
analyzed in [33], which included an extensive sensitivity anal-
ysis of the other system parameters under different initial con-
ditions and scenarios. Most of the conclusions regarding the
effect of parameter variations for ξ = 0 remain applicable for
ξ > 0. We refer the interested reader to [33] for further analysis
details. All numerical simulations are performed through the
spectral solver described in [33].

6.1. Radially symmetric plaques
To examine how ξ > 0 affects the system, we shall consider

an initial configuration comprising of a 0.5 magnitude cytokine
cluster, a low concentration (10−3) of uniformly distributed

macrophages around the cytokine area, and no oligodendro-
cytes present. This initial condition creates round-shaped struc-
tures in the damaged oligodendrocytes. When χ > χc satisfies
the condition for Turing instability, it produces concentric ring
shapes similar to the well-known Baló’s sclerosis lesions, as
demonstrated in [33]. We fix some of the parameters in the
following way: β = 1 (high cytokine production by macro-
phages), ϵ = 0.5 (low cytokine diffusivity), δ = 1 (moderate-
high value of the cytokine production by damaged oligodendro-
cytes), r = 1 (moderate-low aggressiveness) and τ = 1. The pa-
rameter ξ is varied in the range [0.01, 0.6]. According to (3.7),
for the parameters considered, the critical value χc for the emer-
gence of Turing instability ranges in the interval [5.249, 5.872]
(lower value χc corresponds to higher ξ and viceversa)

In our analysis, we utilize specific metrics to quantify the
measurement of the radially symmetric plaque. The primary
metric, Psize, quantifies the area of demyelination resulting from
the accumulation of macrophages. Following the method uti-
lized in [16] for Alzheimer’s plaques, we define Psize at a spe-
cific time as the radius of the region where the decrease in de-
stroyed oligodendrocytes has decayed by a maximum factor e
relative to its maximum. As emphasized in [33], tracking the
evolution of Psize provides insight into plaque formation dynam-
ics. A decreasing Psize in time suggests that the demyelination
process is intensifying, with destroyed oligodendrocytes con-
centrating in a specific region where d is strongly increasing. A
sudden rise in the size of Psize signifies either the enlargement of
a uniform lesion or the formation of secondary rings, depend-
ing on the value of χ. It is important to note that even prior to
complete demyelination, where d is very small, Psize can still be
of the order of centimetres. In fact, Psize represents the radius
where myelin loss occurs, regardless of its severity (e.g., when
dead oligodendrocytes d ≈ 1). For a more specific measure
of a highly demyelinated area, we introduce the quantity P′size,
which denotes the radius of the region where d > dthresh. Here,
dthresh is a threshold beyond which demyelination can be con-
sidered clinically significant. Here, we have set dthresh = 1/2,
i.e. half of the maximum value of dead oligodendrocytes per-
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mitted. P′size will stay at 0 until this threshold is met, after which
it will progressively increase with plaque size. The maximum
value MP of the concentration of destroyed oligodendrocytes is
the third variable we consider. This value, which ranges be-
tween 0 and 1 for our system, is significant because at MP = 1,
oligodendrocytes are completely destroyed. Therefore, it can
be employed to predict the duration required to attain full de-
myelination. The final variable we will investigate is the time
mt necessary for MP to reach a value of 1 (complete demyeli-
nation)

We first consider the case χ = 4, which is below the thresh-
old χc for all the ξ values considered. The simulation outcomes
reveal that increasing ξ causes a slowdown in the entire de-
myelination process. The results for ξ = 0.05, 0.1, 0.4, 0.6 are
depicted in Figures 8(a)-8(d), which display the profiles of de-
stroyed oligodendrocytes at time T = 140 days. Figures 9(a)-
9(d) illustrate the time evolution of quantities Mp, mt, and Psize.
From Figures 8(a)-8(d), it is clear that a radially symmetric ho-
mogeneous plaque forms in all scenarios. The size and time
of plaque formation are significantly affected by the value of
ξ. Notably, when ξ = 0.01, the plaque forms earlier and has
a substantial spatial extent at the time shown. As ξ increases,
the plaques become smaller, or in the case of ξ = 0.4, 0.6, not
fully developed. This delay in the formation of plaque as the ξ
values increase is further emphasized by the temporal progres-
sion of MP,mt, Psize, P′size exhibited in Figures 9(a)-9(d). The
peak value of MP is observed to increase later as ξ increases,
and complete demyelination takes a longer time, almost linearly
proportional to ξ. Despite the higher ξ values, the plaque can
still attain significant size, as depicted in Figures 9(c)-9(d), al-
though this process takes a longer time period. One can deduce
from Figure 9(c) that there is an intense demyelination phase
characterized by a reduction in Psize which indicates a quick
concentration of damaged oligodendrocytes in a small region.
This is followed by a sudden expansion that marks the growth of
the demyelinated area. In Figure 9(d), we observe that demyeli-
nation becomes significant approximately at the same time as
P′size > 0, and subsequently increases as a further indication of
the plaque size increase.

The second scenario pertains to the case χ = 18, which is
above the critical threshold χc for all considered ξ values. This
indicates that the condition to support Turing instability is sat-
isfied, and the formation of concentric ring patterns is expected.
For χ > χc, the case with the smallest ξ displays a more pro-
nounced expansion of the plaque in comparison to the cases
with higher ξ values, which is manifested by the development of
multiple rings. The results are depicted in Figures 10(a)-10(d),
where the profiles of destroyed oligodendrocytes are shown for
various ξ values at T = 120 days. The concentric plaque has de-
veloped and extended only in the instances where ξ = 0.05, 0.1,
whereas demyelination is only weak for ξ = 0.4, 0.6, at maxi-
mum d values of around 10−4. However, plaques with concen-
tric rings form at later times, as shown in Figures 11(a)-11(b)
at times T = 300, 472 days for ξ = 0.4, 0.6 respectively. In Fig-
ures 12(a)-12(c) the time evolution of Mp,mt, Psize, P′size is dis-
played. It can be concluded that, similarly to the case χ = 4: (i)
as ξ increases, full demyelination occurs over a more prolonged

period, resulting in the increase of both Mp and mt, as illustrated
in Figures 12(a)-12(b); (ii) the onset of the intense demyeli-
nation phase is characterized by a reduction in Psize suddenly
followed by a rapid growth, and the by the activation of P′size,
which happens earlier as ξ decreases. In contrast to the case
with χ = 4, the plaque subsequently expands, accompanied by
the formation of concentric rings. The jumps that appear in the
sizes of Psize and P′size indicate the formation of new rings.

6.2. Pre-active lesions

In this Subsection we present the occurrence of pre-active
lesions, which are clusters of activated microglia found in
normal-appearing white matter in absence of full demyelina-
tion. Pre-active lesions are considered the initial indicators of
early reversible disorder and precede classical inflammatory le-
sions characterized by myelin degradation, following a well-
accepted scenario of lesion development. Lesions can last for
days to months and may resolve spontaneously, but they can
also become chronic and exacerbate the disease. The major-
ity of Multiple Sclerosis patients typically display the same
pattern found in numerous experimental findings [69, 70]. In
[33], pre-active lesions were reproduced in specific parameter
ranges, namely for very low values of the aggressiveness pa-
rameter r, usually of the order of 10−2, and were observed a few
days after development. Here, we want to show that cytokine-
mediated macrophage production can slow down the develop-
ment of these types of lesions, resulting in activated microglia
clusters accompanied by mild demyelination that persists for
several weeks. The initial condition for this scenario is com-
prised of randomly distributed cytokine concentrations over a
circular region (Figure 13(a)). Small macrophage concentra-
tions m are also randomly distributed over the same region
(Figure 13(b)) and no oligodendrocytes have been damaged
(d = 0). The spatial distributions of m and d at different times
are depicted in Figures 14(a)-14(d) for the following parame-
ters: χ = 10, ξ = 0.6, r = 0.001, β = 1, δ = 0, ϵ = 0.5. Clusters
of activated macrophages, with m > 1, and sparsely populated
aggregates of damaged oligodendrocytes, with d ⪅ 0.15, can
be observed at 35 − 70 days.

6.3. Confluent plaques

This Section presents simulations on the coalescence of
plaques that result in the formation of non-concentric lesions.
The initial conditions for these simulations consists of three cy-
tokine bumps with a magnitude of 0.5 and small macrophage
concentrations (m) of magnitude 10−3, uniformly distributed
across an irregular patch bordering the cytokine bumps. Ad-
ditionally, there are no dead oligodendrocytes. The purpose
of this configuration is to model the progression of a single
plaque that originates from distinct multifocal damage zones,
mimicking the frequently observed pattern in Magnetic Reso-
nance Imaging scans of patients with Multiple Sclerosis. This
is indicative of the existence of joined subpial cortical lesions,
which is typical of Baló’s lesions. The parameters for the sim-
ulations are set as follows: β = 1, ϵ = 0.5, δ = 1, r = 1,
τ = 1, and ξ = 0.2. We investigate both situations above and
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(a) ξ = 0.05 (b) ξ = 0.1 (c) ξ = 0.4 (d) ξ = 0.6

Figure 8: Profile of destroyed oligodendrocytes d at time T = 140 days for χ = 4 < χc and various ξ.The Initial condition is a bump for cytokine c, uniformly
distributed small macrophages m concentrations over a small patch, and zero for the dead oligodendrocytes. Unit length is cm. For large ξ the plaque formation
process is slowed down compared to the case of smaller ξ.
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Figure 9: (a) Time evolution of the maximum value Mp of the destroyed oligodendrocytes distribution for ξ = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to
right/black to light blue)(b) Times mt at which Mp = 1 for the first time (full demyelination) for different values of ξ (c) Time evolution of Psize (in cm) for
ξ = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to right/black to light blue) (d) Time evolution of P′size (in cm) for ξ = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to
right/black to light blue). All the figures are for χ = 4 < χc. Initial condition is a bump for cytokine c of magnitude 0.5, uniformly distributed small macrophages m
concentrations of magnitude 10−3 over a small patch, and zero for the dead oligodendrocytes. Time unit is 1 day.

(a) ξ = 0.05 (b) ξ = 0.1 (c) ξ = 0.4 (d) ξ = 0.6

Figure 10: Profile of destroyed oligodendrocytes at time T = 120 days for χ = 18 < χc and various ξ. The Initial condition is a bump for cytokine c, uniformly
distributed small macrophages m concentrations over a small patch, and zero for the dead oligodendrocytes. Unit length is cm. For ξ = 0.05, 0.2 concentric rings
representing the typical Balo’s sclerosis lesions are formed and largely extended. For ξ = 0.4, 0.6 lesions develop at later times (see Figures 11(a)-11(b)).

below the critical χc, with a focus on the χ = 4 and χ = 18
cases. The lesions formed are depicted in Figures 15(a)-15(b)
and 16(a)-16(b). The profiles of destroyed oligodendrocytes d
are presented at the same time for the two scenarios ξ = 4 and
ξ = 18. As expected, in the first scenario, a uniform plaque
emerges once the damaged areas initially defined by the three
cytokine bumps have conjoined. On the other hand, in the sec-
ond scenario, an irregular pattern is observed, characterized by
fragmented demyelinated rings. These lesions have a similar

appearance to those identified in MRI scans, as demonstrated
in [71, 72]. Without showing further simulations, we empha-
size that the time of complete demyelination and subsequent
expansion of the lesion are significantly influenced by the ξ pa-
rameter also for this setting. In fact, as explained in Section
6.1, the duration of these times can be altered by adjusting ξ,
resulting in lesion growth ranging from a few days to several
months.
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(a) ξ = 0.4 (b) ξ = 0.6

Figure 11: Profile of destroyed oligodendrocytes d for χ = 18 > χc for ξ =
0.4, 0.6 . In all cases profiles are shown just after the formation of the third
concentric ring. Initial condition is a bump for cytokine c of magnitude 0.5, a
uniform concentration of small macrophages m with a magnitude of 10−3 over
the region with excited cytokines, and zero dead oligodendrocytes. Times are
T = 300, 472 days for ξ = 0.4, 0.6 respectively. Unit length is cm.

7. Global well posedness

In this Section we shall study the well-posedness of the fol-
lowing system:

∂m
∂t
= ∆m − ∇ · (χ(m)∇c) + c m(1 − m) , (t, x) ∈ ΩT

∂c
∂t
=

1
τ

(ϵ∆c + δd − c + βm) , (t, x) ∈ ΩT

∂d
∂t
= rF(m) m (1 − d) , (t, x) ∈ ΩT

(7.1)
with χ(m) = χ m

1+m , F(m) = m
1+m , ΩT = (0,T ) × Ω, where Ω is

a bounded domain in Rn (n ∈ N, n ≥ 1) with smooth boundary
∂Ω. We denote by n = n(s) the outward normal to ∂Ω at a
point s of the boundary, and impose the following Neumann
boundary condition on ∂Ω:n · ∇m = 0 ,

n · ∇c = 0 .
(7.2)

Finally, we impose the following non-negative initial condi-
tions: 

m(t = 0, x) = min(x) , x ∈ Ω
c(t = 0, x) = cin(x) , x ∈ Ω
d(t = 0, x) = din(x) . x ∈ Ω

(7.3)

Moreover, we recall the following conditions on the system pa-
rameters:

χ > 0 , τ > 0 , ϵ > 0 , β ≥ 0 , r > 0 , δ ≥ 0 . (7.4)

The system (7.1) differs from the system (2.3) in the kinetic
term of the macrophage equation. In (7.1), differently from
(2.3), the production mechanism of the activated macrophages
has no saturation effect. The functional form of (7.1) corre-
sponds to the limit of infinite saturation constant k after the
rescaling λ→ kλ, k̃c → k k̃c of (2.3).

Clearly, for the analysis of the existence and uniqueness of
the solution, the system (7.1) is more challenging than the sys-
tem (2.3). Regularity results for system (2.3) could be imme-
diately recovered from the results obtained in [52, 53, 54]. On

the other hand, the fact that the system (7.1) presents a linear
growth in c for the macrophage production term requires some
modifications of the arguments in [52, 53, 54]. In the rest of
this Section, we shall follow [54].

We begin by introducing some classical mathematical nota-
tions, see [73, 74]. We shall use the Lp(Ω) function spaces with
p ≥ 1 and denote by ∥ · ∥Lp(Ω) the norm. For the space L∞(Ω),
we shall use the ess-sup norm, denoted by ∥ · ∥L∞(Ω).

For any t0, with 0 ≤ t0 < T , we denote byΩt0,T B (t0,T )×Ω.
For simplicity, when t0 = 0, we denote by ΩT the set Ω0,T .
The spaces Lp(Ωt0,T ), with 1 ≤ p ≤ ∞, are the spaces
Lp((t0,T ), Lp(Ω)) equipped with the classical space-time norm
which is denoted by ∥ · ∥Lp(Ωt0 ,T ).

When t0 = 0, we write Lp(ΩT ) and L∞(ΩT ), and the norms
are denoted by ∥ · ∥Lp(ΩT ) and ∥ · ∥L∞(ΩT ).

As usual, Wr,p(Ω) are the Sobolev spaces of Lp functions
with differential index r, where 1 ≤ p ≤ ∞ and r > 0.

We shall consider also the space W1,2
p (Ωt0,T ) defined as:

W1,2
p (Ωt0,T ) =

{
v : ∂r

t∂
s
xv ∈ Lp(Ωt0,T ),

2r + s ≤ 2, r, s ∈ N ∪ {0}} ,

with norm:

∥v∥W1,2
p (Ωt0 ,T ) B

∑
2r+s≤2

∥∂r
t∂

s
xv∥Lp(Ωt0 ,T ).

By Ck(Ω) we denote the Banach space of continuous functions
in Ω, such that their derivatives up to order k are continuous in
Ω.

The space C0 (ΩT ) is the space of continuous function in ΩT .
Finally, we introduce the function space C0,1 B

C0,1
(
[0,T ] ×Ω

)
, that is the space of functions continuous, to-

gether with their space gradient, in [0,T ] × Ω. The space C0,1

is a Banach space with norm:

∥u∥C0,1 = sup
t∈[0,T ]

∥u(t, ·)∥L∞(Ω) + sup
t∈[0,T ]

∥∇u(t, ·)∥L∞(Ω) .

The main result of this Section is the following Theorem:

Theorem 7.1. Let Ω be a smooth (C2+α, for some α > 0)
bounded connected open subset of Rn, with n ∈ N and n ≥ 1,
and suppose that (7.4) are satisfied. For p̃ > n + 2, let the non-
negative initial conditions min and cin belong to W (2−2/ p̃), p̃(Ω),
while din belongs to L∞(Ω). Then the system (7.1) with bound-
ary and initial conditions (7.2) and (7.3) admits a unique global
strong solution which is non-negative in each component and
bounded in time. More precisely, we have that:

∂tm , ∂tc , ∂td , ∆m , ∆c , ∇ · (χ(m)∇c) ∈ L p̃ (ΩT ) , (7.5)

and
m , c ∈ C0,1 , d ∈ L∞(ΩT ) , (7.6)

for all T > 0.
Finally, if the initial data are smooth, i.e., min, cin and din ∈

C2(Ω) and satisfy the compatibility conditions ∇min · n = ∇cin ·

n = 0 on ∂Ω, then the solution to system (7.1) is classical, i.e.,
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Figure 12: (a) Time evolution of the maximum value Mp of the destroyed oligodendrocytes distribution (b) Times mt at which Mp = 1 for the first time (full
demyelination) and times dt at which Mp has its maximum in time, for different values of various ξ (c) Time evolution of Psize (in cm). (d) Time evolution of P′size
(in cm) for ξ = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to right/black to light blue) All the figures are for χ = 18 > χc. Initial condition is a bump for cytokine c of
magnitude 0.5, a uniform concentration of small macrophages m with a magnitude of 10−3 over the region with excited cytokines, and zero dead oligodendrocytes.
Time unit is 1 day.

(a) c,T = 0 (b) m,T = 0

Figure 13: Initial condition for the pre-active lesion simulation. A noised cy-
tokine bumps over a rounded patch (panel a), noised distributed small macro-
phage concentrations m (panel b), and zero dead oligodendrocytes. Unit length
is cm.

∂tm , ∂tc , ∂td , ∆m , ∆c , ∇ · (χ(m)∇c) ∈ C0 (ΩT ) ∀T > 0 .
(7.7)

The proof of Theorem 7.1 is divided into two parts: in Sub-
section 7.1, we shall prove the existence of a global solution;
in Subsection 7.2, we shall prove the uniqueness. The proof of
Theorem 7.1 closely follows the procedure adopted in [54].

We recall the following embedding Lemma, see [54, 74, 75],
which will be useful in the sequel.

Lemma 7.2. Assume that 1 < p < ∞ and fix T > 0 and t0 ∈
[0,T ). Then there exits a constant C which depends on T − t0,
Ω, p and n, such that for all u ∈ W1,2

p (Ωt0,T ) we have:

•

∥u∥Lq(Ωt0 ,T ) ≤ C∥u∥W1,2
p (Ωt0 ,T ) ,

where


q = (n+2)p

n+2−2p if p < n+2
2 ;

q = ∞ if p > n+2
2 ;

q is finite and arbitrary if p = n+2
2 .

(7.8)

(a) m,T = 35 (b) m,T = 35

(c) d,T = 35 (d) d,T = 35

Figure 14: Spatial distribution of activate macrophages m (panels a and c) and
destroyed oligodendrocytes d (panels b and d) at times T = 35 days and T =
70 days, respectively, for χ = 10, ξ = 0.1, r = 0.001, β = 1, δ = 0, ϵ =
0.5. Initial condition is depicted in Figures 13(a)-13(b). Unit length is cm.
Although there are many clusters of high-density activated macrophages (m >
1), demyelination is still moderate-weak (d ⪅ 0.1)

•

∥∇u∥Lq(Ωt0 ,T ) ≤ C∥u∥W1,2
p (Ωt0 ,T ) ,

where


q = (n+2)p

n+2−p if p < n + 2 ;
q = ∞ if p > n + 2 ;
q is finite and arbitrary if p = n + 2 .

(7.9)

• W1,2
p (Ωt0,T ) is compactly embedded in C0,1, if p > n + 2.
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(a) d,T = 200 (b) d,T = 260

Figure 15: Profile of destroyed oligodendrocytes d at times T = 200 and T =
260 days for parameters χ = 4 < χc. The Initial condition is made by three
cytokine bumps, uniformly distributed small macrophage concentrations m, and
zero dead oligodendrocytes. Unit length is cm. A uniform large plaques forms
after the confluence of the damaged areas initially defined by the three cytokine
bumps.

(a) d,T = 200 (b) d,T = 260

Figure 16: Profile of destroyed oligodendrocytes d at times T = 200 and T =
260 days for parameters χ = 18 > χc. The Initial condition is made by three
cytokine bumps, uniformly distributed small macrophage concentrations m, and
zero dead oligodendrocytes. Unit length is cm. A patterned large plaques forms
after the confluence of the damaged areas initially defined by the three cytokine
bumps.

7.1. Global existence

In this Subsection, first, using the Leray-Schauder fixed point
theorem [73], we shall prove the existence of global non nega-
tive solutions to system (7.1). Second, we shall prove that such
solutions are bounded in the L∞-norm.

7.1.1. Construction of the map S :
We construct the map S

S : C0,1 ×C0,1 × [0, 1] −→ C0,1 ×C0,1 , (7.10)

as follows:

• for a given m ∈ C0,1, solve the following ODE: ∂d
∂t = r F(m+) m+ (1 − d) (t, x) ∈ ΩT ,

d(t = 0, x) = din(x) x ∈ Ω ,
(7.11)

where m+ = max(0,m);

• next, solve the following heat equation with source term
and Neumann boundary condition:
∂c∗
∂t =

1
τ

[
ϵ∆c∗ − c∗ + (δd + βm+)

]
(t, x) ∈ ΩT ,

n · ∇c∗ = 0 (t, s) ∈ (0,T ) × ∂Ω ,
c∗(t = 0, x) = cin(x) x ∈ Ω ;

(7.12)

• finally, solve the following heat equation with source term
and Neumann boundary condition:
∂m∗
∂t = ∆m∗ + m+(1 − m+)c∗ − ∇ · (χ(m+)∇c∗) (t, x) ∈ ΩT ,

n · ∇m∗ = 0 (t, s) ∈ (0,T ) × ∂Ω ,
m∗(x, 0) = min(x) x ∈ Ω ,

(7.13)
The map S is defined as

S (m, c, λ) = (λm∗, λ c∗). (7.14)

Remark 7.3. From (7.11) and din ≥ 0, immediately follows
that

0 ≤ d(t, x) ≤ max(1, ∥din∥L∞(Ω)) = H0 . (7.15)

To apply the Leray-Schauder theorem, we define the following
set Φ:

Φ =
{
(m, c) ∈ C0,1 ×C0,1 : S (m, c, λ) = (m, c), 0 < λ ≤ 1

}
.

(7.16)
Observe that if (m, c) ∈ Φ, then m = λm∗ and c = λc∗ where m∗

and c∗ solve (7.13) and (7.12).

Lemma 7.4. If (m, c) are in Φ, then m and c are non negative.

Proof: We first observe that if (m, c) ∈ Φ, then m and c satisfy
the following two systems of equations:


∂c
∂t =

1
τ

[
ϵ∆c − c + λ (δd + βm+)

]
(t, x) ∈ ΩT ,

n · ∇c = 0 (t, s) ∈ (0,T ) × ∂Ω ,
c(t = 0, x) = λ cin(x) x ∈ Ω ;

(7.17a)


∂m
∂t = ∆m + m+(1 − m+)c − ∇ · (χ(m+)∇c) (t, x) ∈ ΩT ,

n · ∇m = 0 (t, s) ∈ (0,T ) × ∂Ω ,
m(t = 0, x) = λmin(x) x ∈ Ω .

(7.17b)

Equation (7.17a) and cin ≥ 0 and d ≥ 0, imply that c ≥ 0.
To prove that m ≥ 0, we multiply the first equation in (7.17b)

by m2
−, where m− = max(0,−m), and integrate in space and

time. After integration by parts, we obtain:

−
1
3

∫
Ω

m3
−dx = 2

∫ t

0

∫
Ω

m−|∇m−|2dxdt

+

∫ t

0

∫
Ω

m2
− m+(1−m+)cdxdt−2χ

∫ t

0

∫
Ω

m−m+
1 + m+

∇m− ·∇cdxdt

= 2
∫ t

0

∫
Ω

m−|∇m−|2dxdt ≥ 0 ,
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and consequently m− = 0 for each t ∈ [0,T ], which concludes
the proof. 2

As a consequence of Lemma 7.4 and of the definition of Φ, we
have that, if (m, c) ∈ Φ, then (m, c, d) satisfies the following
system for (t, x) ∈ ΩT :

∂m
∂t = ∆m + m(1 − m) c − ∇ · (χ(m)∇c) ,
∂c
∂t =

1
τ

[
ϵ∆c − c + λ (δd + βm)

]
,

∂d
∂t = rF(m)m (1 − d) ,

(7.18a)

with Neumann BC and the following initial condition for x ∈ Ω:
m(x, t = 0) = λmin(x) ,
c(x, t = 0) = λcin(x) ,
d(x, t = 0) = din(x) .

(7.18b)

7.1.2. Compactness and continuity of S :
To apply the Leray-Schauder fixed point theorem, we need to

prove that the map S is compact and continuous in C0,1 ×C0,1.
We shall divide the proof in two Lemmas: in Lemma 7.5 we

shall prove that S sends bounded sets of C0,1 ×C0,1 × [0, 1] into
precompact sets of C0,1 × C0,1; then, in Lemma 7.6, we shall
prove that S is continuous.

Lemma 7.5. Under the hypotheses of Theorem 7.1, the map S
maps bounded sets of C0,1 × C0,1 × [0, 1] into precompact sets
of C0,1 ×C0,1.

Proof: From the definition of the map S given by (7.10)-
(7.13), from the maximal regularity results of the heat equation
with Neumann boundary conditions [54, 74], and from (7.15),
we have that:

∥c∗∥W1,2
p (Ω×(0,T )) ≤ Cp ,

∥m∗∥W1,2
p (Ω×(0,T ))) ≤ Cp ,

where the constant Cp depends on ∥m∥C0,1 ,
Ω, T, ∥min∥L∞(Ω), ∥cin∥L∞(Ω), and ∥din∥L∞(Ω). Since p > n + 2,
then W2,1

p (ΩT ) is compactly embedded in C0,1 and the Lemma
is proved. 2

Lemma 7.6. Under the hypotheses of Theorem 7.1. the map S
is continuous.

Proof: Consider m1,m2 ∈ C0,1 and c1, c2 ∈ C0,1. Denote
by d1 and d2 the solutions of (7.11) obtained for m1 and m2,
respectively. We have:

∥d1 − d2∥L∞(ΩT ) ≤ CT ∥m1+ − m2+∥L∞(ΩT ) ≤ CT ∥m1 − m2∥C0,1 ,
(7.19)

where CT is a constant which depends on T , r and ∥din∥L∞(Ω).
Moreover, considering the equation satisfied by c∗1 − c∗2, us-
ing the maximal regularity results together with (7.19), and the
compactly embedding property of W1,2

p for p > n+2, we obtain
that:

∥c∗1 − c∗2∥C0,1 ≤ CT ∥m1 − m2∥C0,1 , (7.20)

where again we denote by CT a constant which depends on T ,
β, δ, ε, τ, r, Ω, n and ∥din∥L∞(Ω). We now consider the following
equation for m∗1 − m∗2:

∂(m∗1 − m∗2)
∂t

= ∆(m∗1−m∗2)+m1+(1−m1+)c∗1−m2+(1−m2+)c∗2+

− ∇ ·
(
χ(m1+)∇c∗1 − χ(m1+)∇c∗1

)
with (t, x) ∈ ΩT ,

with boundary condition:

∇(m∗1 − m∗1) · n = 0 , (s, t) ∈ (0,T ) × ∂Ω ,

and initial condition:

m∗1(x, 0) − m∗2(x, 0) = 0 , x ∈ Ω .

We have the following estimates:

|m1+(1 − m1+)c∗1 − m2+(1 − m2+)c∗2| ≤
≤ |m1+(1 − m1+)(c∗1 − c∗2)| + |(m1+(1 − m1+) − m2+(1 − m2+))c∗2|

≤
1
4
|c∗1 − c∗2| + |m1 − m2||c∗2|(1 + 2 max(m1+,m2+)) ,

and

|∇ ·
(
χ(m1+)∇c∗1 − χ(m2+)∇c∗2

)
| ≤

≤ |χ(m1+)| |∆(c∗1 − c∗2)| + |∇χ(m1+)| |∇c∗1 − ∇c∗2|+

+ |χ(m1+) − χ(m2+)| |∆c∗2| + |∇(χ(m1+) − χ(m1+))| |∇c∗2|

≤ χ |∆(c∗1 − c∗2)| + χ |∇m1+| |∇c∗1 − ∇c∗2|+

+ χ|m1+ − m2+| |∆c∗2| + χ|∇(m1+ − m2+)| |∇c∗2| .

Repeating the same arguments used for c∗1 − c∗2, we have:

∥m∗1 − m∗2∥C0,1 ≤ CT ∥m1 − m2∥C0,1 , (7.21)

where CT is a constant which depends on T , β, δ, ε, τ, r, Ω, n,
χ and ∥din∥L∞(Ω). From (7.20) and (7.21), we have that the map
S is continuous from C0,1 ×C0,1 × [0, 1] to C0,1 ×C0,1. 2

7.1.3. Boundedness of Φ:
We want to prove that Φ is bounded in C0,1 ×C0,1. The proof

of this is given in lemma 7.11. Before to enunciate the lemma
and give the proof, we need four lemmas on regularity of m and
c, when (m, c) is in Φ.

Lemma 7.7. Let (m, c) ∈ Φ. Under the hypotheses of Theorem
7.1, there exists a constant H1 that depends on T , Ω, n, β, δ, τ,
∥min∥L1(Ω), ∥cin∥L1(Ω), ∥din∥L∞(Ω) but not on λ, such that

sup
t∈[0,T ]

(
∥m(t, ·)∥L1(Ω) + ∥c(t, ·)∥L1(Ω)

)
≤ H1 . (7.22)

Proof:
Integrating the equations for m and c in (7.18a) and summing,

we obtain:

d
dt

∫
Ω

(m+ c) dx ≤
∫
Ω

(m−m2)c dx −
1
τ

∫
Ω

c dx +
β

τ

∫
Ω

m dx

+
δ

τ
|Ω| ∥d∥L∞(Ω)

≤

(
1
4
−

1
τ

) ∫
Ω

c dx +
β

τ

∫
Ω

m dx +
δ

τ
|Ω| ∥d∥L∞(Ω)

≤ max
(
β

τ
,

1
4
−

1
τ

) ∫
Ω

(m + c) dx +
δ

τ
|Ω|H0 ,
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where we have used the inequality m(1−m) ≤ 1/4 and we have
denoted by |Ω| the measure of the domain Ω. Consequently, by
using Gronwall’s lemma [76], we obtain (7.22) with

H1 =

(
∥min∥L1(Ω) + ∥cin∥L1(Ω) +

δ

τ
|Ω|T H0

)
e
(
max

(
β
τ ,

1
4−

1
τ

)
T
)
.

2

Lemma 7.8. Let (m, c) ∈ Φ. Under the hypotheses of Theorem
7.1, there exists a constant H2 that depends on T , Ω, n, β, δ, τ,
ϵ, ∥min∥L2(Ω), ∥cin∥L2(Ω), ∥din∥L∞(Ω) but not on λ, such that:

∥m∥L2(ΩT ) ≤ H2 . (7.23)

Proof: Consider the equation for m in (7.18a) and integrate in
space:

d
dt

∫
Ω

mdx =
∫
Ω

(m − m2)c dx

≤

∫
Ω

(1 − m)c dx = ∥c∥L1(Ω) − ∥mc∥L1(Ω) .

From the above bound and using (7.22), it follows that:

∥m c∥L1(ΩT ) ≤ C∗ , (7.24)

where C∗ is a constant which depends on T , Ω, n, β, δ, τ and
∥min∥L1(Ω), ∥cin∥L1(Ω) and ∥din∥L∞(Ω), but not on λ. Consider now
the equation for c in (7.18a), multiply times c and integrate in
space to obtain:

1
2

d
dt

∫
Ω

c2dx +
ϵ

τ

∫
Ω

|∇c|2dx +
∫
Ω

c2dx

≤
δ

τ
H0∥c∥L1(Ω) +

β

τ
∥m c∥L1(Ω) .

Consequently, using (7.22) and (7.24), there exists a constant
C∗∗ such that:

sup
t∈[0,T ]

∥c∥L2(Ω) + ∥∇c∥2L2(ΩT ) ≤ C∗∗ , (7.25)

where C∗∗ depends on T ,Ω, n, β, δ, ϵ, τ and ∥min∥L1(Ω), ∥cin∥L1(Ω)
and ∥din∥L∞(Ω) but not on λ. We now multiply times m the equa-
tion for m in (7.18a) and integrate in space to obtain:

1
2

d
dt
∥m∥2L2(Ω) ≤ −∥∇m∥2L2(Ω) + ∥m

2(1 − m) c∥L1(Ω)

+ ∥χ(m)∇c · ∇m∥L1(Ω)

≤ −∥∇m∥2L2(Ω) +
1
4
∥m c∥L1(Ω)

+
1
2
∥χ(m)∇c∥2L2(Ω) +

1
2
∥∇m∥2L2(Ω)

≤ −
1
2
∥∇m∥2L2(Ω) +

1
4
∥m c∥L1(Ω) +

1
2
χ2∥∇c∥2L2(Ω) .

In the above estimate, using (7.24) and (7.25) and applying
Gronwall’s lemma we obtain (7.23). 2

Lemma 7.9. Let (m, c) ∈ Φ. Under the hypotheses of Theorem
7.1, there exists a constant H3 that depends on Ω, T , n, ϵ, τ , β,
δ, ∥min∥L2(Ω), ∥cin∥W1,2(Ω), ∥din∥L∞(Ω) but not on λ, such that:

∥c∥W2,1
2 (ΩT ) ≤ H3 . (7.26)

∥∇c∥L2+4/n(ΩT ) ≤ C H3 . (7.27)

Proof: To obtain (7.26), consider the equation for c in (7.18a)
and use the maximal regularity result together with (7.15) and
(7.23). Estimate (7.27) is a consequence of (7.26) and the em-
bedding Lemma 7.2 (see Lemma 2.3 in [54]). 2

Lemma 7.10. Let (m, c) ∈ Φ. Under the hypotheses of Theo-
rem 7.1 and for 1 ≤ p < ∞, there exists a constant H∗p that
depends on p, Ω, T , n, ϵ, τ, β, δ, ∥min∥W2−2/p̄,p̄(Ω), ∥cin∥W2−2/p̄, p̄(Ω),
and ∥din∥L∞(Ω), but not on λ, such that

∥m∥Lp(ΩT ) + ∥c∥Lp(ΩT ) ≤ H∗p . (7.28)

Proof: For the proof we adapt to our case the proof of
Lemma 2.4 in [54]. We prove (7.28) for p large enough, in par-
ticular for p = p

′

/(p
′

− 1), where p
′

is such that 1 < p
′

< n+2
2 .

Consequently, we have that 1 + 2
n < p < ∞.

Let be θ ∈ Lp
′

(ΩT ), with θ ≥ 0 and ∥θ∥Lp′ (ΩT ) ≤ 1. We denote
with ϕ and ψ the unique solutions of the following forward heat
equations:

∂
∂tϕ + ∆ϕ = −θ (t, x) ∈ ΩT ,

∇ϕ · n = 0 (t, s) ∈ (0,T ) × ∂Ω ,
ϕ(T, x) = 0 x ∈ Ω ,

(7.29)


∂
∂tψ +

ϵ
τ
∆ψ = −θ (t, x) ∈ ΩT ,

∇ψ · n = 0 (t, s) ∈ (0,T ) × ∂Ω ,
ψ(T, x) = 0 x ∈ Ω .

(7.30)

We have that ϕ and ψ are nonnegative and, from the maximal
regularity for the heat semigroup [54, 74] and Lemma 7.2, we
also have that:

∥∂tϕ∥Lp′ (ΩT ) + ∥ϕ∥Lq1 (ΩT ) + ∥∇ϕ∥Lq2 (ΩT ) ≤ Cp′ , (7.31)

and

∥∂tψ∥Lp′ (ΩT ) + ∥ψ∥Lq1 (ΩT ) + ∥∇ψ∥Lq2 (ΩT ) ≤ Cp′ , (7.32)

where q1 = (n+2)p
′

/(n+2−2p
′

) and q2 = (n+2)p
′

/(n+2− p
′

)
and Cp′ is a positive constant which depends on Ω, T , n and p

′

.
Multiply θ by m and integrate in space and time. Using equation
(7.29), integrating by parts and using (7.18a), we obtain:∫ T

0

∫
Ω

mθ dx dt ≤
∫
Ω

min ϕ(0, x) dx +
1
4

∫ T

0

∫
Ω

c ϕdx dt

+

∫ T

0

∫
Ω

χ(m)∇ϕ · ∇c dx dt . (7.33)
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Analogously, multiply θ by c and integrate in space and time.
Using equation (7.30), integrating by parts and using (7.18a),
we obtain:

∫ T

0

∫
Ω

cθ dx dt ≤
∫
Ω

cin ψ(0, x) dx +
δ

τ

∫ T

0

∫
Ω

ψ d dx dt

+
β

τ

∫ T

0

∫
Ω

mψdx dt . (7.34)

We estimate each terms in the above inequalities.
We begin with the first term in (7.33). Using Holdër inequal-

ities and (7.31), we have (see [54]):∫
Ω

minϕ(0, x)dx ≤ ∥min∥Lp(Ω)∥ϕ(0, x)∥Lp′ (Ω)

≤ ∥min∥Lp(Ω) T 1/p
∥∥∥∥∥ ∂∂t

ϕ

∥∥∥∥∥
Lp′ (ΩT )

≤ ∥min∥Lp(Ω) T 1/p Cp′ . (7.35)

Repeating the same arguments for the first term in (7.34), we
have ∫

Ω

cinψ(0, x)dx ≤ ∥cin∥Lp(Ω) T 1/p Cp′ . (7.36)

For the second term in (7.34), using (7.15) and (7.31), we have∫ T

0

∫
Ω

ψ d dx dt ≤ H0∥ψ∥L1(ΩT ) ≤ H0C∗∥ψ∥Lq1 (ΩT ) ≤ H0C∗Cp′ .

(7.37)
In the rest of this proof, with C∗ we shall denote a constant that
depends on p, Ω, T and n.

We estimate now the second term in (7.33).
As in [54], we consider first the case when n = 1, 2. In this

case q1 > 2 and using (7.26), (7.31) and Lemma 7.2, we obtain:∫ T

0

∫
Ω

cϕ dx dt ≤ ∥c∥L2(ΩT )∥ϕ∥L2(ΩT ) ≤ C∗ H3 Cp′ . (7.38)

When n ≥ 3, repeating the same arguments in [54], we define
σ = 1 − 4/(n + 2), which implies that 0 < σ < 1. Using Holdër
inequalities and using (7.26), (7.31) and Lemma 7.2, we have:∫ T

0

∫
Ω

c ϕ dx dt ≤ C∗Cp′H
1−σ
3 ∥c∥σLp(ΩT ) . (7.39)

Analogously we have that∫ T

0

∫
Ω

mψ dx dt ≤ C∗ H2 Cp′ + C∗Cp′H
1−σ
2 ∥m∥σLp(ΩT ) .

(7.40)

Finally, we estimate the last term in (7.33). We choose b ∈
(0, 1] that satisfies the following condition:

0 < b <
4

n + 2
. (7.41)

Notice that one has

χ(m) = χ
m

1 + m
≤ χmb . (7.42)

From (7.41), there exists an s, with s ∈ (0, 1), such that

b − s <
2

n + 2
, b − s <

4
n + 2

− 1 . (7.43)

Using (7.42), Holdër inequalities and using (7.23), (7.27) and
(7.43), we obtain:

∫ T

0

∫
Ω

|χ(m)||∇ϕ||∇c| dx dt ≤ χC∗Cp′H
(b−s)
2 CH3∥m∥sLp(ΩT ) .

(7.44)

Collecting all the above estimates (7.35), (7.38), (7.39) and
(7.44), and (7.36), (7.37) and (7.40), and summing we have:∫ T

0

∫
Ω

(m + c) θ dxdt ≤

≤ C1 +C2 ∥m + c∥σLp(ΩT ) +C3 ∥m + c∥sLp(ΩT ) .

The above inequality holds for every θ ≥ 0 with ∥θ∥Lp′ (ΩT ) ≤

1, then, by the definition of the norm Lp(ΩT ) using duality we
have that

∥m + c∥Lp(ΩT ) ≤ C1 +C2 ∥m + c∥σLp(ΩT ) +C3 ∥m + c∥sLp(ΩT ) ,

with σ and s ∈ (0, 1). Using Young’s inequality, we obtain
(7.28), and the constant H∗p depends obviously on p, Ω, T , n, ϵ,
τ, β, δ, ∥min∥W2−2/p̄, p̄(Ω), ∥cin∥W2−2/p̄, p̄(Ω) and ∥din∥L∞(Ω), but not on
λ. 2

We are now ready to prove that the set Φ is bounded.

Lemma 7.11. Under the hypotheses of Theorem 7.1, the set Φ
is bounded in C0,1 ×C0,1. In particular, if (m, c) are in Φ then

∥m∥C0,1 + ∥c∥C0,1 ≤ DT , (7.45)

where DT is a constant which depends on Ω, T , n, ϵ, τ, β, δ and
∥min∥W2−2/p̄, p̄(Ω), ∥cin∥W2−2/p̄, p̄(Ω), ∥din∥L∞(Ω), but not on λ.

Proof: As p > n+ 2, then W1,2
p (ΩT ) is compactly embedded

in C0,1. Applying the maximal regularity results to the equation
for c in (7.18a) we have that

∥c∥C0,1 ≤ C∥c∥W1,2
p (ΩT )

≤ CT

(
δ∥d∥Lp(ΩT ) + β∥m∥Lp(ΩT ) + ∥cin∥W p,2−2/p(Ω)

)
≤ BT , (7.46)

where CT depends on Ω,T, n, p and BT depends on
Ω,T, n, p, ϵ, τ, β, δ and ∥min∥L∞(Ω), ∥cin∥L∞(Ω) and ∥din∥L∞(Ω), but
not on λ (see Lemma 7.10 and (7.15)).

Repeating for the m-equation in (7.18a) the same argument,
we have:

∥m∥C0,1 ≤ C∥m∥W1,2
p (ΩT )

≤ CT

(
∥m(1 − m) c − χ(m)∆c∥Lp(ΩT ) + ∥min∥W p,2−2/p(Ω)

)
≤ B∗T .

(7.47)

Consequently, (7.45) is proved using (7.47) and (7.46). 2
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7.1.4. Existence of the solution:

We conclude this subsection by proving the existence of a
global solution. This is stated by the following Proposition
whose proof is a consequence of Lemmas 7.4, 7.5, 7.6, and
7.11:

Proposition 7.12. Under the hypotheses of Theorem 7.1, for
any T > 0, the system (7.1) with Neumann boundary condi-
tions (7.2) and initial data (7.3) admits, in [0,T ], a strong non
negative solution (m, c, d). Moreover there exists a constant
C, which depends on Ω, T , n, ϵ, τ, β, δ and ∥min∥W2−2/p̄, p̄(Ω),
∥cin∥W2−2/p̄, p̄(Ω), ∥din∥L∞(Ω), such that:

∥m∥C0,1 + ∥c∥C0,1 + ∥d∥L∞(ΩT ) ≤ C . (7.48)

Proof: Using the Leray-Schauder fixed point theorem, we
have that S admits a fixed point.

Then, for any T > 0, one can obtain in [0,T ] a solution of the
original system (7.1). The inequality (7.48) follows from (7.15)
and (7.45).

Moreover, as all terms appearing in the system (7.1) are de-
fined a.e. as L1(ΩT ) functions, then the solution is strong. 2

7.2. Uniqueness

In this subsection we shall prove that the solution of system
(7.1) with boundary conditions (7.2) and initial conditions (7.3)
is unique. Namely, we shall prove the following

Proposition 7.13. Under the hypotheses of Theorem 7.1 and
for each T > 0, the solution to system (7.1) with Neumann
boundary conditions (7.2) and initial data (7.3) constructed in
Proposition 7.12 is unique.

Proof: Let (m1, c1, d1) and (m2, c2, d2) be two solutions of sys-
tem (7.1), with boundary and initial conditions given in (7.2)
and (7.3). Taking their differences, we have:

d
dt

∫
Ω

|d1 − d2|
2dx ≤

r(1 + H0 + ∥m2∥L∞(ΩT ))
(∫
Ω

|m1 − m2|
2dx +

∫
Ω

|d1 − d2|
2dx

)
,

(7.49a)

d
dt

∫
Ω

|c1 − c2|
2dx +

2ϵ
τ

∫
Ω

|∇(c1 − c2)|2dx ≤

β

τ

∫
Ω

|m1 − m2|
2dx +

δ

τ

∫
Ω

|d1 − d2|
2dx

+
β + δ

τ

∫
Ω

|c1 − c2|
2dx , (7.49b)

d
dt

∫
Ω

|m1 − m2|
2dx + 2

∫
Ω

|∇(m1 − m2)|2dx

+ 2
∫
Ω

c1(m1 + m2)(m1 − m2)2dx =

≤ 2∥c1∥L∞(ΩT )

∫
Ω

|m1 − m2|
2dx

+∥m2∥L∞(ΩT )(1+∥m2∥L∞(ΩT ))
(∫
Ω

|c1 − c2|
2dx +

∫
Ω

|m1 − m2|
2dx

)
+

∫
Ω

χ2|∇(c1 − c2)|2dx +
∫
Ω

|∇(m1 − m2)|2dx

+ χ2∥∇c1∥L∞(ΩT )

∫
Ω

|m1 − m2|
2dx

+

∫
Ω

|∇(m1 − m2)|2dx . (7.49c)

From (7.49c) we get:

d
dt

∫
Ω

|m1 − m2|
2dx ≤

∥m2∥L∞(ΩT )(1 + ∥m2∥L∞(ΩT ))
∫
Ω

|c1 − c2|
2dx

+ χ2
∫
Ω

|∇(c1 − c2)|2dx

+
(
2∥c1∥L∞(ΩT ) + ∥m2∥L∞(ΩT )(1 + ∥m2∥L∞(ΩT )) + χ2∥∇c1∥L∞(ΩT )

)
×

∫
Ω

|m1 − m2|
2dx

≤ A
∫
Ω

|c1 − c2|
2dx + χ2

∫
Ω

|∇(c1 − c2)|2dx

+ B
∫
Ω

|m1 − m2|
2dx . (7.49d)

with A = ∥m2∥L∞(ΩT )(1 + ∥m2∥L∞(ΩT )) and B = 2∥c1∥L∞(ΩT ) +

∥m2∥L∞(ΩT )(1+ ∥m2∥L∞(ΩT ))+ χ2∥∇c1∥L∞(ΩT ). Using the previous
estimates (7.49a)-(7.49b)-(7.49d) and applying the Gronwall’s
lemma to:

∫
Ω

|m1 − m2|
2 dx +

τχ2

2ϵ

∫
Ω

|c1 − c2|
2 dx +

∫
Ω

|d1 − d2|
2 dx,

we obtain:∫
Ω

|m1 − m2|
2dx +

τχ2

2ϵ

∫
Ω

|c1 − c2|
2dx +

∫
Ω

|d1 − d2|
2dx ≤

≤ eΞt
(∫
Ω

|m1in − m2in|
2dx +

τχ2

2ϵ

∫
Ω

|c1in − c2in|
2dx

+

∫
Ω

|d1in − d2in|
2dx

)
,

where

Ξ = max
(
r(1 + H0 + ∥m2∥L∞(ΩT )) + B +

βχ2

2ϵ
;
β + δ

τ
+

2Aϵ
τχ2 ;

r(1 + H0 + ∥m2∥L∞(ΩT )) +
δχ2

2ϵ

)
,

so that the uniqueness of the solution is proved. 2

Proposition 7.12 and Proposition 7.13 give Theorem 7.1.
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8. Conclusions

Despite the profound impact of MS on individuals and so-
ciety, mathematical research focused on MS has been under-
whelming to date. Nevertheless, mathematical modeling of MS
has yielded numerous insights into its pathophysiology, pro-
gression, therapeutic strategies, and potential treatment strate-
gies [26].

In this paper we study a reaction-diffusion-chemotaxis model
of MS that extends the system proposed in [33] by including the
triggering effect of cytokines in the activation rate of macro-
phages. Since cytokines are released by activated T-cells in the
early stages of plaque formation [40, 21, 41], the proposed sys-
tem can be regarded an initial attempt to account for the in-
volvement of the adaptive immune system while maintaining
a mathematically simple description. Notably, the combined
effect of innate and adaptive immune responses on the devel-
opment of MS is recently described in [37], where the authors
combine the ODE-based description of peripheral triggering by
T-cells with the PDE-based description of the innate response
in the brain parenchyma (largely inspired by [33]). In this work,
we introduce the effects of T-cell produced cytokines on macro-
phage activation while still maintaining the simplified descrip-
tion of [33] and retaining three interacting species. This choice
facilitates a mathematical investigation of the instabilities re-
sponsible for lesion formation. Through a weakly nonlinear
analysis near the homogeneous equilibrium, we characterize
the chemotaxis-driven Turing instability and construct the cor-
responding stationary patterns. These asymptotic solutions of
the model system are obtained for biologically measured val-
ues of the system parameters and qualitatively reproduce the
concentric demyelinating rings observed in Balò sclerosis and
in type III MS. The onset and progression of the plaques is also
investigated through extensive numerical simulations on 2D do-
mains. The comparison with the results obtained in [33], where
direct activation of macrophages with no involvement of cy-
tokines was assumed, reveals a less aggressive pathology. This
form of the disease displays lower levels of inflammation and
evolves on significantly slower timescales. Moreover, we prove
the existence of a unique global solution to the proposed system
when the activation rate grows linearly with increasing cytokine
levels. This result, which was not included in the previously
published well-posedness theorems on [33], we believe, is of
per se interest.

Several aspects have not been considered in this paper and
could be the subject of further investigation. One line of re-
search worth exploring involves considering the dependence of
the diffusion coefficient on cell density. It is well-documented
that variations in cellular density at the lesion site can lead to
differences in diffusivity [77]. While this effect has been de-
scribed in a recent study [55], its potential consequences on
lesion development and progression have yet to be addressed.

Furthermore, the rigorous construction of axisymmetric sta-
tionary patterns on 2D domains is of significant interest [35].

The nonlinear stability of the proposed model using a suit-
able Lyapunov functional is also worth investigating [78, 79].

A hyperbolic extension of the parabolic system introduced

here would enable the exploration of inertial effects and the
modeling of transient dynamics between the homogeneous
steady state and the asymptotic stationary pattern [80].

Finally, the examination of the mechanisms leading to the
emergence of localized plaques unquestionably deserves atten-
tion. The localization of the pattern could occur under specific
parameter regimes, where the homoclinic snaking scenario is
realized, or as a consequence of the spatial heterogeneity of the
cerebral tissue [81]. Both of these scenarios will be the focus
of subsequent work.
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[80] G. Grifó, G. Consolo, C. Curró, G. Valenti, Rhombic and hexagonal pat-
tern formation in 2d hyperbolic reaction–transport systems in the context

of dryland ecology, Physica D: Nonlinear Phenomena 449 (2023).
[81] E. Gaffney, A. Krause, P. Maini, C. Wang, Spatial heterogeneity localizes

Turing patterns in reaction-cross-diffusion systems, Discrete and Contin-
uous Dynamical Systems - Series B 28 (2023) 6092–6125.

24


