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Abstract: The role of protein misfolding, deposition, and clearance has been the dominant topic

in the last decades of investigation in the field of neurodegeneration. The impairment of protein

synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as

novel potential targets for the comprehension of the molecular events leading to neuronal deficits.

Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes

required for proteostasis regulation—can contribute to triggering stress conditions and promoting the

formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually

occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA

metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s

disease (AD), although some defects in these same mechanisms can also be found in frontotemporal

dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we

highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that,

besides its well characterized function as a scaffold protein, it has an important role in translation

and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.

Keywords: neurodegeneration; RNA; proteostasis; translation; stress granules; RACK1

1. Introduction

Over the last century, an increased incidence of neurodegenerative diseases including
amyloidosis, tauopathies, α-synucleinopathies, and transactivation response DNA bind-
ing protein 43 (TDP-43) proteinopathies has been observed along with an increase in the
average lifespan [1]. Neurodegenerative disorders are a heterogeneous group of patholo-
gies characterized by a progressive structural and functional degeneration of the central
and/or peripheral nervous systems. These diseases are classified considering their clinical
presentations, such as extrapyramidal and pyramidal movement disorders and cognitive
or behavioral disorders. From a biochemical point of view, neurodegenerative diseases
are typically characterized by protein accumulations that lead to a progressive neuronal
dysfunction. As a consequence of proteotoxic stress, alterations in ubiquitin–proteasome
and autophagosome/lysosome systems, oxidative stress, and neuroinflammation in these
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protein aggregates contribute to neuronal death [1]. One of the markers of neurodegen-
erative diseases is represented by pathogenic protein inclusions with hydrophobic and
aggregation-prone features termed amyloid proteins (APs). These APs can be specific to
one disease, such as amyloid β (Aβ) in Alzheimer’s disease (AD), or found in various
neurodegenerative conditions, such as α-synuclein or phosphorylated TDP-43. The APs
are only partly cleared by autophagy and the ubiquitin–proteasome system (UPS). Despite
their different structures, APs are hypothesized to be generated by a common pathological
pathway of the misfolding process [2]. Proteins undergo misfolding from their native
states to form intermolecular β-sheet-rich structures, ranging from small oligomers to large
fibrillar aggregates that accumulate in the diseased brain [3]. Neurons are particularly
vulnerable to the toxic effects of mutant or misfolded proteins. Several pieces of evidence
suggested that protein misfolding, followed by oligomerization and accumulation of APs in
the brain, are the main triggers of pathological alterations responsible for the development
and progression of different neurodegenerative diseases. Aggregation of misfolding-prone
proteins is thought to have a preeminent role in neurodegenerative diseases research [4]. In
addition, the well-studied role of extracellular and intracellular proteins, the important role
of RNA metabolism, and the formation of RNA granules have also recently emerged in
neurodegeneration research [4].

The RNA granules are membrane-less organelles generated through liquid–liquid
phase separation (LLPS), a process consisting in the formation of liquid water droplets
in response to a high concentration of molecules interacting through weak intermolecu-
lar hydrogen bonds. The RNA granules include cytoplasmatic granules, namely stress
granules (SGs), processing bodies (P bodies), transport granules, storage granules, activity-
dependent granules, and myo-granules, and also nuclear bodies (nucleoli, Cajal bodies,
nuclear speckles, and paraspeckles). In neurodegenerative diseases and myopathies, SGs
are the most relevant RNA granules, although they have been also found to be implicated
in cancer, inflammatory disorders, and viral infections [4]. For a long time, SGs have been
considered as an adaptive response to a transient stress. However, it has been demonstrated
that chronic illness generates a persistent stress that leads to the maturation of SGs— i.e., the
multi-step process required for translation factors, mRNAs, RNA-binding proteins (RBPs)
and other proteins to coalesce into a primary nucleated SG (reviewed in [4])—in more
stable complexes that might lead to the formation of pathological SGs, usually occurring
during neurodegenerating events [4]. Defects in ribosome-related processes required for
proteostasis regulation, such as ribosome activity, ribosome stalling, and protein quality
control (PQC), can contribute to triggering stress condition, promoting SG formation that
could evolve in the formation of pathological granules.

The aim of this review is to discuss the interconnection between different aspects of
proteostasis deregulation and SG formation in response to the stress conditions that occur
in neurodegenerative diseases. The focus of this work is principally on AD, although some
defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and
amyotrophic lateral sclerosis (ALS), which are also discussed. Finally, we highlight the role
of the scaffold, ribosomal, translation- and SG-correlated protein receptor for activated C
kinase 1 (RACK1) in these pathologies.

2. Translation Impairment in Neurodegeneration

Protein synthesis is a strictly controlled molecular process because of its central role in
different key cellular events, including homeostasis maintenance and response to extra-
and intracellular cues. Increasing evidence suggests a dysfunction of the translation
machinery in different neurodegenerative disorders. These dysfunctions are characterized
by the accumulation of pathological protein aggregates, which could reflect defects in both
ribosome and ribosome-associated activities.
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2.1. Ribosome Dysfunction and Impaired Protein Synthesis

Several studies have reported that alterations or defects of protein synthesis may occur
in AD [5,6]. In this regard, direct evidence from both mild cognitive impairment (MCI)
and AD patients, particularly in brain areas involved in cognition, revealed a ribosomal
dysfunction characterized by decreased protein synthesis and RNA alterations [7], while
initiation factors levels were not altered in these same brain regions [8].

Emerging data suggest that translation elongation plays a role in AD onset and de-
fects in protein synthesis compromise neuronal functions, favoring AD development by
affecting the correct translation mechanism [9,10]. The microtubule-associated protein tau
abundantly associates with ribosomes in human brains of AD patients compared to healthy
brains, leading to a decreased translation. This aberrant association also impairs the synthe-
sis of pivotal synaptic proteins, contributing to synaptic dysfunction. These pathological
associations between tau and ribosomes in the AD brain results in a reduction in nascent
proteins, including those required for synaptic plasticity, central for memory and learning.
Therefore, this observation links the appearance of pathologic tau inclusions with cognitive
impairments featured by all tauopathies, including AD and FTD [11]. In mouse models of
FTD-tau—tauopathy caused by aberrant changes of tau—a mass spectrometric analysis
revealed mutant tau-induced ribosome alterations and a decrease in specific ribosomal
proteins (RPs), leading to a reduction in protein synthesis and ribosome biogenesis [12]. Al-
together, these observations suggest that impaired ribosome functions may arise even after
correct ribosome assembly and maturation, hampering protein synthesis and increasing
neuron vulnerability [13]. In addition, oxidized ribosomes were shown to directly induce
a decrease in protein synthesis [11,14]. In this regard, increased ribosomal RNA (rRNA)
oxidation has been observed in early AD [7,15] and high levels of oxidized rRNA were
found in 40S and 60S ribosomal subunits of MCI patients and in mature 80S ribosomes of
AD patients. These same analyses showed decreased levels of ribosome precursors in MCI
patients and reduced levels of mature ribosomes in AD patients [15]. Most oxidation-related
RNA damage occurs in brain areas prominently exposed to AD pathology and, in early AD,
this is concomitant with the onset of cognitive decline [16]. Therefore, RNA oxidation also
seems to take part in the dysregulation of the translation apparatus in this pathology [17].
Moreover, according to the MODOMICS database, other RNA modifications on coding and
non-coding RNAs have been identified, although only a few have been linked to neurologi-
cal disease [18,19]. These include pseudouridine, adenosine methylation at position 1 (m1A,
also known as N1-methyladenosine), 5-methyl cytosine (m5C), and N6-methyladenosine
(m6A). In this regard, m6A modifications have been shown to play a role in different pro-
cesses including learning memory, neurogenesis, and axon regeneration. The dysregulation
of m6A pathways has been implicated in the onset of neurological diseases including AD,
where m6A modifications at the 3′-UTR of mRNAs alters the translation of transcripts
linked to age-related disease phenotypes [20]. In accordance, recent evidence showed a
progressive m6A increase concomitantly with AD severity in human brains. Mechanistic
studies demonstrate that oligomeric tau (oTau) is connected to m6A-modified transcripts
via heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), which functions as a
linker. Indeed, both m6A and m6A-oTau-HNRNPA2B1 complex levels are highly increased
in brains of AD patients and in the P301S tau mice model, indicating that this complex
favors the integrated stress response towards oTau [21]. The reversible m1A is known
to target both rRNAs and tRNAs. This modification, which has been correlated to the
increased tRNA structural stability and its correct folding, is decreased in brain tissues
from an AD mouse model, where this reduced m1A methylation could impact translation
efficiency. Therefore, the observed dysregulation of the m1A modification could contribute
to AD aetiology by affecting protein synthesis [22]. Finally, a reduced polyribosome activity
has also been linked to an increased RNA transfer (tRNA) oxidation—which alters their
own stability and function—and changes in individual tRNA species, that in turn may also
act as a compensatory mechanism to cope with intrinsic and extrinsic stressors, including
oxidative stress [7]. In this regard, a mass spectrometry analysis on the cerebellum of
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AD patients identified a reduction in specific tRNA synthetases [23]. In addition to dys-
functional ribosomes and translation impairments as early events in AD pathogenesis [7],
these finding suggest that decreased levels of tRNA synthetases may lead to a decreased
global protein synthesis, hampering pivotal mechanisms required for learning and memory
setting in AD.

2.2. Ribosome Stalling and Ribosome-Associated Quality Control

A pivotal step of mRNA translation is elongation, in which ribosomes scan the mRNA
sequence to gradually form the nascent polypeptide chain. This process plays a crucial
role in different aspects of protein synthesis, including differential expression, secretion,
covalent modification, and co-translational folding [24,25]. Ribosome stalling, a local accu-
mulation of ribosomes at specific mRNA codon positions, is involved in several physiologic
processes, including mRNA degradation [26], modification of protein conformations [27],
and regulation of protein expression [28], but also in pathological conditions [29].

Pivotal components of the ribosome surveillance machinery are collectively called
ribosome-associated quality control (RQC). When translational errors induced by stalling take
place, the nascent peptidyl-tRNA chains—which are retained by the 60S subunit—recruit, the
RQC machinery for stalled ribosome resolution. The RQC complexes scan the arrested protein
synthesis machinery to recycle stalled ribosomes by inducing the dissociation of 40S and 60S
ribosomal subunits, and degrade abnormal mRNAs and polypeptides [30]. Mechanistically,
listerin E3 ubiquitin protein ligase 1 (LTN1) targets the polypeptide chain produced during
ribosome stalling for its proteolytic cleavage, while the ankyrin repeat and zinc finger peptidyl
tRNA hydrolase 1 (ANKZF1) hydrolyses the tRNA from the ubiquitylated nascent chain
before its degradation [30–32] (Figure 1). Nuclear export mediator factor (NEMF) modifies
the nascent polypeptide chains produced by nonstop mRNAs—major erroneous mRNAs
in mammals—with a C-terminal tail mainly composed of alanine (CAT-tail) to assist their
ubiquitination and promote their degradation [33]. In addition, the functionally redun-
dant E3 ubiquitin ligases cullin-RING E3 ubiquitin ligase 2 with its adaptor KLHDC10
(collectively indicated as CRL2KLHDC10) and ring finger and CHY zinc finger domain
containing 1 (RCHY1) target C-terminal degrons and are involved in a NEMF-mediated,
LTN1-independent degradation of RQC substrates to signal proteolysis and resolve stalled
ribosomes’ protein products [34] (Figure 1).

Failure of RQC is correlated with the persistence of unresolved stalled ribosomes and
the sequestration of chaperone proteins, which interfere with the PQC system ultimately
leading to and promoting protein aggregation [35]. This essential role of RQC in the pro-
teostasis regulation has been linked with the proteotoxic effect of incomplete polypeptides
produced by stalled ribosomes. Failure to degrade these aberrant nascent chains has been
observed to be involved in mouse models of neurodegeneration [30,35,36]. Alterations in
recycling stalled ribosomes in neurons have been linked to neurodegeneration, but the
specific molecular mechanisms and signaling pathways triggered in response to ribosome
stalling have yet to be completely elucidated. Recent evidence indicated that an inefficient
RQC of ribosome stalling could be linked to the manifestations of AD hallmarks [37]. In AD
mouse models and AD patients’ samples, during APP C-terminal fragment (APP.C99) co-
translational translocation at the endoplasmic reticulum (ER) membrane, ribosomes stalled
and activated the RQC machinery to resolve paused translation and ribosome collision. In
case of inadequate RQC, aggregation-prone CAT-tailed APP.C99 induced autophagy and
endolysosomal impairments, favoring the aggregation of Aβ peptides. These observations,
together with the presence of RQC components at the Aβ plaque core, suggest a role of de-
fective RQC of ribosome collision and stalled translation in AD pathogenesis [37]. Although
RQC is a newly discovered mechanism, mutations in RQC components, such as LTN1 and
NEMF have been shown to cause neurodegeneration [29,36] and a progressive develop-
ment of motor neuron degeneration in ALS mice models [32]. In addition to impairment of
central components of the elongation machinery, dysfunctional tRNAs have been observed
to induce ribosome stalling, resulting in neurodegeneration. Alterations of tRNA levels due
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to genetic mutations can affect translation by impairing the elongation process. A single
nucleotide mutation of n-Tr20—a brain-enriched arginine tRNA isoacceptor—in C57BL/6J
mice models resulted in a severe impairment in tRNA processing and a reduction in its
mature levels. These alterations led to a brain-specific increased ribosome occupancy at
arginine AGA codons and abnormal ribosome stalling [29]. In addition, a n-Tr20 mutation
associated with a mutation in GTP-binding protein 2 (GTPBP2)—a direct binding partner
of pelota, a ribosome recycling protein—has been correlated with a significantly increased
ribosome stalling at AGA codons, ataxia, and widespread neurodegeneration in the cerebel-
lum, cortex, hippocampus, and retina areas [29]. Due to its homology to no-go/non-stop
mRNA decay protein HSP70 subfamily B suppressor 1-like (HBS1L) and its interaction with
pelota, GTPBP2 may play a pivotal role in rescuing and recycling stalled ribosomes. Here,
GTPBP2 and pelota cooperate in in the resolution and recycling of paused ribosomes and
the degradation of mRNA and nascent protein (Figure 1). While GTPBP2 can compensate
n-Tr20 mutation-induced elongation defects, its absence exacerbates ribosome stalling, lead-
ing to neuronal death and neurodegeneration [38]. In addition, the GTPBP2 homologue
GTPBP1 is involved in the same pathway. Its brain-specific loss during tRNA deficiency led
to codon-specific ribosome pausing with consequent neurodegeneration [39]. Mutations
in n-Tr20, GTPBP2, and GTPBP1, prior to neurodegeneration onset, were correlated with
the following: (1) the activation of general control non-derepressible 2 kinase (GCN2, also
known as eukaryotic translation initiation factor 2-alpha kinase 4, or EIF2AK4), resulting
in increased eIF2α phosphorylation; (2) the upregulation of genes regulated by activating
transcription factor 4 (ATF4), a pivotal transcription factor involved in the integrated stress
response (ISR) pathway; (3) the decrease in mTORC1 signaling, ultimately leading to an
increased stalled ribosome-correlated neuronal death [38,39]. This suggests the existence of
a possible feedback loop between translation initiation, elongation defects, and ribosome
stalling and of a pivotal crosstalk between RQC and PQC systems through the activation of
surveillance pathways.

Increasing evidence suggests a potential involvement of ribosome stalling also in
the development of other neurodegenerative diseases, such as FTD and ALS. Indeed,
elongating polyribosomes have been shown to stall on GGGGCC (G4C2) repeat expansion
in the C9orf72 gene, known to cause FTD and ALS (C9-ALS/FTD), leading to the production
of neurodegeneration-driving dipeptide repeat proteins through repeat-associated non-
AUG (RAN) translation and to translation inhibition [40]. In this regard, the RQC rate-
limiting factor zinc finger protein 598, E3 ubiquitin ligase (ZNF598), has been shown
to have a neuroprotective function in C9-ALS/FTD, since it co-translationally regulates
the expression of C9orf72-derived protein to promote its degradation via the ubiquitin–
proteasome pathway and to suppress proapoptotic caspase-3 activation, while ALS-linked
mutant ZNF598R69C showed a loss of this function [41] (Figure 2A). In addition, the
cytoplasmic residency of the RBP fused in sarcoma (FUS, also known as translocated
in sarcoma, TLS) is prevalent in ALS and FTD and could contribute to the translational
stalling of polyribosomes in an RNA-binding dependent manner [42]. Upon different stress
conditions, mTORC2 signal transduction is compromised, leading to a reduced translation
via FUS recruitment. The FUS negatively regulates translation through its association with
polyribosomes and RNA in response to mTORC2 inhibition, and its cytoplasmic retention
increases its proximity to polyribosomes for stalling to occur. This localization to stalled
polyribosomes exerts a toxic repression of mRNA translation, resulting in a decrease in
global protein synthesis [42] (Figure 2B).
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Figure 1. The activation of the RQC machinery results in stalled ribosome resolution and degra-

dation of aberrant nascent chains. After scanning the arrested ribosomes, (1) the RQC complex

induces the dissociation of the small and large ribosomal subunit, followed by (2) the hydrolysis of

the tRNA from the nascent chain, the recycling of the translation machinery and, finally, (3) the degra-

dation through the 28S proteasome of the aberrant nascent chains produced by stalled ribosomes. All

these steps are achieved via a fine-tuned regulation of all the molecular players involved, and also

thanks to the redundant action of specific proteins, which assures a complete and correct control over

the possible errors of the translation process (see text for details).
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Figure 2. RQC defects in FTD and ALS and their link with ribosome stalling. (A) The E3 ubiquitin

ligase ZNF598 co-translationally regulates the expression of the peptide chain derived from the G4C2

repeat expansion in C9orf72 gene, by directing the aberrant peptides to the proteasome system and

suppressing the caspase-3-mediated apoptotic pathway. However, the ZNF598R69C mutant observed

in pathologic conditions showed a loss of these functions, resulting in translation inhibition. (B) In

an ALS context, pathology-correlated mutants R521G and P525L of FUS have a higher cytoplasmic

residency and can highly associate with translating ribosomes [42]. Upon mTORC2 inhibition,

enhanced FUS association with polyribosomes results in the inhibition of global translation (see text

for details).

Taken together, these data suggest that defects in recycling stalled ribosomes in the
neuron may participate in the development of neurodegeneration, although further in-
vestigations are necessary to unravel the precise mechanisms by which ribosome stalling
leads to neuronal death. In this regard, recent advancements in the analysis of ribosomal
footprints in endogenous mRNA transcripts may prompt important improvements for a
better understanding of elongation dynamics and for identifying endogenous sources of
ribosome pausing and stalling.

2.3. Protein Quality Control and Proteostasis Regulation

The maintenance of a functional and stable proteome through a tight regulation of
protein folding homeostasis is vital for cell survival, and the cell has different quality control
strategies to monitor and maintain the proteome integrity. Following translation, newly
synthesized nascent polypeptides are constantly at risk of misfolding and aggregation.
The PQC is an essential cellular mechanism involving a network of molecular chaperones
and protein degradation pathways that ensures protein homeostasis by degrading mis-
folded proteins and aggregates in a timely fashion. Newly folded proteins transit through
the ER–Golgi apparatus for their eventual post-translational modification and secretion.
Chaperones facilitate folding of proteins or refolding misfolded proteins, while incorrectly
folded proteins are recognized by ER-associated degradation (ERAD), then targeted through
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different mechanisms, including the ubiquitin (Ub)-proteasome system (UPS) [43,44], the
autophagy-lysosome system [45,46] and chaperone-mediated autophagy (CMA) [47].

Due to its protein clearance activity, UPS plays a pivotal role in protein homeostasis
during neurodegeneration by preventing protein misfolding and aggregation [8], and it
regulates other several biological events, including transcription, DNA repair, cell cycle,
and apoptosis [48]. In this context, molecular chaperones have a key role in proteostasis,
as suggested by their protective role in the pathogenesis of neurodegenerative disorders
in mouse models [49]. In this regard, they have been shown to inhibit the assembly of
aggregation-prone proteins, such as Aβ and tau, and favor their UPS- or autophagy-
mediated degradation [50]. In neurons, PQC and maintenance of proteostasis are demand-
ing activities due to neuronal cellular structure and post-mitotic cellular state, which does
not allow for the dilution of toxic substances through cell division. As a matter of fact,
neurons are highly sensitive to misfolded proteins and their aggregates, and this suscepti-
bility increases with their aging, as suggested by the correlation between PQC failure and
neurodegenerative diseases [51,52]. Neurodegenerative pathologies, including AD, are
characterized by misfolding and, consequently, abnormal aggregation of disease-causing
or disease-developing proteins, such as Aβ and hyperphosphorylated tau. Production
and accumulation of these protein aggregates—Aβ plaques in the extracellular milieu and
tau neurofibrillary tangles in neurons—lead to an abnormal activation of cytoprotective
mechanisms, including the unfolded protein response (UPR). The UPR is a complex mecha-
nism associated with the ER and activated by three different molecular pathways involving
inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α), protein kinase
R (PKR)-like endoplasmic reticulum kinase (PERK, also known as eukaryotic translation
initiation factor 2-alpha kinase 3, EIF2AK3), and activating transcription factor 6 (ATF6).
These signaling pathways lead to the transcriptional activation of UPR genes—including
degradation proteins, redox enzymes, and several chaperones—and to eIF2α phosphory-
lation to suppress cap-dependent translation, ultimately resulting in SG formation. It is
known that eIF2α can be phosphorylated by other kinases that collectively form the ISR,
including PERK, PKR (also known as protein kinase RNA-activated, interferon-induced
double stranded RNA-activated protein kinase or eukaryotic translation initiation factor
2-alpha kinase 2, EIF2AK2), GCN2, and heme-regulated eIF2α kinase (HRI, also known
as eukaryotic translation initiation factor 1, EIF2AK1). The role of all four ISR kinases has
been investigated in a neurodegeneration context, including AD. Their activation leads
to a reduction in general translation and an increase in the expression of stress-related
mRNAs, including β-secretase (BACE1) and ATF4. This accelerates the establishment of
AD hallmarks, including tau phosphorylation, Aβ formation, and the induction of pro-
apoptotic and autophagy pathways (reviewed in [53]). Furthermore, ISR kinases have been
suggested to play important roles in AD development and progression for the following
reasons: (1) PERK prolonged overactivation results in decreased protein synthesis, memory
impairment, and neuronal loss, as well as in pathological tau phosphorylation and Aβ

production [53]; (2) PKR is highly expressed and phosphorylated in AD brains, localized
within and around neuritic and Aβ senile plaques and correlated with Aβ production
and neurotoxicity-mediating neuroinflammation [54]; (3) GCN2 reduces global protein
synthesis and upregulates stress-related mRNAs (e.g., ATF4 and BACE1), thus, accelerating
Aβ production, tau phosphorylation, and neuronal apoptosis [53]; (4) HRI regulates BACE1
translation in glutamatergic hippocampal synapses, contributing to synaptogenesis and
memory consolidation [53]. Therefore, these findings suggest an underlying dysregulation
of the UPR and ISR mechanisms in neurodegenerative pathologies (Figure 3).
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Figure 3. The unfolded protein response (UPR) and the integrated stress response (ISR). The accu-

mulation of misfolded proteins in the ER leads to ER stress, which triggers intracellular stress sensors

(UPR and/or ISR sensors) that can activate stress response pathways to maintain ER homeostasis.

However, an excessive unresolved or chronic ER stress can trigger apoptosis responses leading to a

different cell fate. The UPR sensors (PERK, IRE1α and ATF6) reside in the ER membrane, while ISR

sensors (i.e., PKR, GCN2 and HRI) are cytoplasmic kinases that respond to different stressors than

those of the UPR. The UPR and ISR pathways converge at the PERK sensor which, after its dimeriza-

tion, halts global translation by phosphorylating eIF2α on Ser51. The IRE1α features a cytoplasmic

kinase domain and RNase domain; upon dimerization and auto-phosphorylation, IRE1α induces its

kinase and endoribonuclease activities, leading to unconventional splicing of X-box-binding protein-1

(XBP1) mRNA [55]. In this regard, RACK1 (receptor for activated C kinase 1) has been reported

to activate IRE1α-XBP1 signaling pathway and induce neuroprotection in rat models [56], and the

IRE1α-RACK1 axis has been shown to orchestrate cytoprotective responses after ER stress [57]. The

ATF6 has a cytoplasmic domain which, upon ER stress, is processed in the Golgi apparatus, and

an ATF6 fragment is released in the cytoplasm. After its activation, the UPR pathway induces

central transcription factors ATF6, XBP1, and ATF4 that are redirected to the nucleus to mediate the

expression of UPR downstream targets [55].
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Indeed, although interrupting protein synthesis through these protective mecha-
nisms can reduce cellular stress due to protein misfolding and aggregation, a persistent
eIF2α-mediated arrest of global protein translation favors pathological SG formation, thus,
negatively affecting neurons and interfering with the maintenance of their homeostasis
and other neuronal functions. Defective ribosomal products (DRiPs) appear to be the most
prominent species of misfolding proteins that accumulate inside SGs, and this correlate
with the functionality of the PQC machinery and its players, which recognize damaged
proteins and DRiPs and target them to the proteasome or autophagy, thus, maintaining the
liquid-like properties of SGs, a process referred to as granulostasis, central for physiological
SG behavior [58–60]. Impairments in PQC and SGs are major contributors in ALS/FTD
pathogenesis, since mechanisms of protein folding and clearance are often dysfunctional in
these pathologies [61]. Although mutations in different genes coding for proteins involved
in UPS (that degrades soluble proteins with a short half-life) and autophagy (that degrades
long-lived, misfolded, and aggregated proteins, as well as damaged organelles) [62] have
been identified, mechanisms triggering aberrant SGs have also been shown not only in
ALS/FTD, but also in AD [4]. One mechanism is represented by the alteration of cell
signaling after mTORC1 sequestration, and defects in SG disassembly have deleterious
consequences for cell viability by impairing protein synthesis and metabolic pathways,
while sensitizing cells to apoptotic stimuli. When chaperone-mediated granulostasis fails
to dissolve aberrant SGs, AN1-type zinc finger protein (ZFAND), the autophagy receptor
SQSTM1/p62 and valosin-containing protein (VCP) can cooperate to degrade SGs via
proteasome and autophagy, respectively. However, ALS/FTD mutations, such as in VCP,
result in the accumulation of damaged proteins that, in turn, may indirectly favor their
co-aggregation with SGs. Another mechanism through which SGs affect cell health is
through sequestration of RBPs, that continuously shuttle between the nucleus and the
cytoplasm to assist RNA transport and processing. Once in the cytoplasm, these RBPs
show increased aggregation propensity, and this may enhance their sequestration inside
SGs, promoting their conversion into an aberrant state. In ALS/FTD, TDP-43 and FUS
mislocalization to the cytoplasm and their association to SGs represent a hallmark of these
pathologies [63]. In addition, recent evidence reports that through a mechanism medi-
ated by the RBP protein TIA1 and pathological SGs, oligomeric tau propagates toxic tau
pathology, suggesting a broad role for SGs in the mechanisms of tau-mediated neurode-
generation [64,65]. Moreover, oTau pathology co-localizes with HNRNPA2B1 [21] and
with other RPBs including PABP, HNRNPA0, eIF3η, and EWSR1 that are involved in tau-
mediated neurodegeneration [4]. Indeed, during stress, an increased interaction between
tau and mRNA is detectable in the somatodendritic arbour. The interaction of tau with
SGs stimulates the formation of insoluble tau aggregates and has important consequences
for the pathophysiology of tauopathies. These findings indicate that the physiology and
pathophysiology of tau provide the biological link between RBPs and both SGs and the
translational stress response [4].

Altogether, these considerations indicate that defects in UPS, autophagy, and vesic-
ular transport contribute to ALS/FTD and AD pathogenesis, which is associated with
the aggregation of misfolded proteins and the RBPs. In this regard, mutations and dys-
regulation of different RBP recruited into SGs can be either the primary cause or major
contributors of neurodegenerative diseases [63]. Indeed, both genetic and experimental
data reported a strong association between SG-recruited RBP protein aggregation and
age-related pathologies.

3. Overview on Stress Granules: Function, Composition, Assembly, and Their Role in
Neurodegeneration

Stress granules represent a conserved cellular strategy to minimize stress consequences
and promote cell survival [66], since they are found in different organisms including yeast,
plants, protozoa, Drosophila melanogaster, and mammalian cells [66,67]. The SGs are
membrane-less transient structures that assemble in the cytoplasm in response to various
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stress stimuli, which include heat shock, nutrient deprivation, hypoxia, virus infection,
oxidative stress, and UV radiation [68]. They are electron dense complexes that may display
different diameter sizes, and their composition depends on cell type and source of stress.

Depending to the stress source, the following two types of stress can be identified:
type 1, which is caused by stressors that are transiently applied, such as hypoxia, virus
infection, arsenite, metabolic stress, oxidative stress, and heat shock, and type 2, which
is caused by genotoxic drugs, nutrient starvation, and X-rays, namely stressors that last
longer [69,70]. Differences in type and duration of the stress source decide the composi-
tion of SGs, depending on the inclusion or exclusion of different translational machinery
components. In fact, while type 1 stressors can induce the formation of acute SGs, type 2
stressors promote chronic SGs aggregation. Both complexes are composed of the classic
SG components, but chronic SGs lack several acute SGs-associated components, including
RPS6 (ribosomal protein S6), 18S rRNA, and RACK1 [70,71].

The SGs are composed of miRNAs, polyA-RNA, 40S ribosomal subunits, translation
initiation factors (eIF), RBPs, and signaling molecules [66,67,72–76]. In this regard, it
has been reported that stress also causes translocation of many RBPs from nucleus to
cytoplasm [66]. Under stress conditions, SGs quickly assemble and sequester proteins and
non-essential transcripts, whose translation is transiently stopped [77], in order to exert a
cytoprotective effect by shifting translation towards protective proteins and arresting global
protein synthesis. This response is carried out to preserve energy, which is eventually used to
promote shelter mechanisms, such as synthesis of DNA-repairing proteins and chaperones,
against stress damage [78]. The cytoskeleton, and in particular microtubules, has a key role
in both SG formation and clearance [79]. In fact, microtubule associated proteins (MAPs)
are not only required for messenger ribonucleoprotein particles (mRNPs) transportation to
SGs, but they also promote the fusion of smaller SGs into bigger ones [66,71].

The formation of SGs begins when global translation is shut down and initiation
complexes separate from translating ribosomes. Meanwhile, granule nucleating proteins
associate in the cytoplasm to form initial granules [80]. This aggregation is supported
by proteins with prion-like domains (PLDs) and intrinsically disordered domains (IDDs),
which are characterized by low-complexity sequences. These domains enable protein
binding through electrostatic interactions and support liquid–liquid phase separations
(LLPS), favoring SG assembly [66]. During SG formation, their size increases thanks to RBP
aggregation, led by their low-complex sequences within PLDs and IDDs [81]. A variety of
proteins, such as G3BP1 (Ras GTPase-activating protein-binding protein 1), TIA1, fragile X
mental retardation protein (FMRP), TIA1-related protein (TIAR1), and tristetraprolin (TTP),
share several properties necessary for primary SG aggregation. These proteins can initiate
SGs assembly through binding RNA and untranslated mRNA [66,81,82], and they recruit
other proteins through PDLs and IDDs, which serve as scaffold platforms to establish
the interactions. Secondary aggregation, which involves SG nucleators, is exerted by a
variety of hetero-oligomeric complexes that promote SG formation and growth [78]. This
mechanism is stimulated by PABP1, which binds and connects different SG components,
which include stalled translation initiation complexes and SG core proteins. In the final step
of SG production, core SG proteins recruit other factors, such as ATP-dependent protein
remodeling complexes [78] and signaling molecules [66,79], leading to the formation of
mature SGs.

The formation of SGs can be promoted either by an eIF2α-dependent or an eIF2α-
independent pathway. In the eIF2α-dependent pathway, Ser51 phosphorylation on eIF2α
prevents GDP/GTP exchange in the GTP-eIF2α-tRNAMet complex, which mediates the
binding between initiator tRNA, the 40S ribosome subunit, and eIF2α. This phosphoryla-
tion, which is mediated by different kinases, notably PKR, HRI, PERK, and GCN2, sees each
kinase involved in response to a different stressor, and prevents the generation of the 43S
pre-initiation complex and inhibits cap-dependent translation. In the eIF2α-independent
pathway, SGs are formed due to mTOR inhibition or interference with eIF4F. This complex,
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formed by eIF4A, eIF4E, and eIF4G, together with eIF2-α, represents a crucial point for the
control of translation initiation [4].

Given the transient nature of SGs, they disassemble and global translation is restored
when the stress source is removed [4]. The disassembly of SGs is mediated by two different
mechanisms, namely autophagy and chaperone-mediated disaggregation [81]. Granu-
lophagy, the autophagy-mediated mechanism that removes SGs [83], relies on VCP, an
ATPase required for the disaggregation of SG proteins. In this process, vesicles incorporate
SGs, which are eventually removed. As for the chaperone-mediated disaggregation mecha-
nism, most studies indicate the HSP70 family as the main molecular players involved in the
process [66,79,84,85]. Here, SGs play a role in controlling and deciding cell fate, since they
can promote different pathways involved in regulating translation and cell survival [66,71].
In fact, they can interact with a variety of proteins, each leading to a different response.

Defects in SG accumulation and molecular composition have been observed in a va-
riety of diseases, including neurodegenerative disorders [4]. These include AD, ALS, and
FTD [86,87]. Mutations in SG proteins FUS, EWS, TDP-43, and tau, and the absence of
granulophagy, appear to correlate with these neurodegenerative disorders [59,61,66,68,86,87].

Altogether, the considerations presented so far strongly indicate that an aberrant pro-
teostasis regulation due to a dysfunction of ribosomes, UPR, RQC, or PQC can lead to the
formation of SGs in neurodegeneration [4]. In this context, the receptor for activated C kinase
1 (RACK1) emerges as a possible bridge between translational impairment and SGs, thanks to
its ribosome-related functions and its role in the neurodegenerative diseases here considered.

4. Receptor for Activated C Kinase 1

Among all ribosomal proteins found up- or down-regulated in different pathologic
conditions, including AD [13], RACK1 emerges as an interesting player due to its pivotal
roles in both physiological and pathological conditions and in different cellular settings,
including the immune system [88–92], several cancer types [93–98], and in the neuronal
context [99–104]. Traditionally, RACK1 has been mainly considered as a scaffold protein,
since it can interact with its binding partners in different locations within the cell, and it
is also involved in transporting these proteins to other cellular districts. Indeed, RACK1
interacts constitutively or transiently with various proteins and complexes, and it is required
for important cellular pathways, including proliferation, apoptosis, and transcription [105].
In addition to its characterized function of binding and stabilizing several activated protein
kinase C (PKC) isoforms to enable their substrates’ phosphorylation [89,105], a ribosomal-
associated RACK1 function is now emerging.

4.1. RACK1 Role in Translation and in Neuronal Biology

Besides its well-known and studied function as a scaffold protein and signaling hub,
RACK1 has an important role in translation. In this context, RACK1 interacts with C-
terminal Ser235 in eukaryotic initiation factor 6 (eIF6) [105], which is localized on the large
60S ribosomal subunit, and prevents translation initiation by sterically inhibiting 80S ribo-
some formation through its binding with the 60S subunit. Then, PKCβII-mediated Ser235
phosphorylation allows eIF6 and 60S subunit dissociation, promoting mature ribosome
formation. It has been demonstrated that eIF6-PKCβII binding on 60S occurs as a result of
their interaction to a nearby 40S subunit via RACK1 [106]. However, it is unclear whether
this phosphorylation simultaneously involves the association between PKCβII and eIF6
on 40S-bound RACK1 [107–109]. Furthermore, RACK1 also plays a physiological role in
coordinating the translational response upon the activation of the PKC–Raf–extracellular
signal-regulated kinase 1/2 (ERK1/2) signaling pathway, providing a scaffolding function
for PKCβII. In fact, the RACK1-PKCβII complex phosphorylates eIF4G1 at Ser1093 and
eIF3a at Ser1364, leading to the stimulation of global protein synthesis [110,111]. The
RACK1 binding to ribosome is fundamental for the full translation of capped mRNAs
and eIF4E recruitment [112]. However, negative charge in the RACK1 loop increases
swiveling of the 40S head domain, similar to several internal ribosome entry sites (IRESs),
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enabling human ribosomes to support eIF4A-independent translation [113]. The RACK1
function is also linked to the modulation of translation elongation and monitoring transla-
tion quality [110]. Indeed, RACK1 binding to the 40S subunit stabilizes both the activity
and conformation of the 80S ribosome by monitoring the properties of nascent peptides,
and the RACK1-40S complex might be required for RQC [110,114]. In this regard, the
regulatory ubiquitylation of specific ribosomal proteins (Rps20, Rps10, and Rps3) required
for ribosome stall resolution is catalyzed by ZNF598, which together with RACK1 is needed
for the initiation of ribosome stall resolution in mammals [115].

At neuronal level, a decrease in RACK1 expression has been reported in the frontal
cortex of AD patients, indicating a PKCβII anchoring deficit, which correlates with cogni-
tive impairment and memory decline [99,100]. In the rat hippocampus, RACK1/PKCβII
association has been reported to be involved in metabotropic glutamate receptor 1/5
(mGluR1/5)-triggered control of protein synthesis. It is also understood that PKCβII is
activated via post-synaptic mGluR1/5 stimulation, increasing the levels of RACK1/PKCβII
complexes bound to mRNP complex-associated polyA-mRNAs, modifying their phos-
phorylation pattern. Changes in mRNP’s phosphorylation have functional consequences
for translation and may lead to the interruption of mRNP transport, demasking trans-
lational arrested mRNAs [116]. This results in changes in the translation efficiency of a
subset of post-synaptic mRNAs, increasing mRNAs’ local concentration and leading to
activity-dependent synthesis of specific proteins [117]. Altogether, these observations, in
addition to RACK1 somatodendritic localization, indicate that synaptic activity may affect
mRNP composition in dendrites and that post-synaptic mGLuR-coupled RACK1/PKCβII
association allows for changes in translation efficiency spatially restricted to activated
synapses, thus affecting only mRNAs close to them [117].

Altogether, the literature indicates that RACK1 activity may result in several effects on
translation and in gene expression, since it can recruit proteins that regulate the translation
of specific mRNAs through different molecular mechanisms [105]. In this regard, although
RACK1 acts primarily as a ribosomal protein [105,118], it exerts also extra-ribosomal
functions [94], playing a role in axon growth and guidance [119–121], local translation and
point contacts in growth cones, and plays a potential role in neuroprotection [101,122].

4.2. Role of RACK1 in SGs

The presence of RACK1 in SGs changes their composition, which changes cellular fates;
while acute, RACK1-containing SGs promote cell survival, and RACK1 is not sequestered
in chronic SGs and remains, instead, in the cytoplasm, leading to the activation of stress-
activated MAPK (SAPK) pathways and, ultimately, to apoptosis and cell death [69]. The
SAPK cascade, triggered during chronic stress, involves several MAPK kinases, the growth
arrest and DNA damage-inducible (GADD45) family of proteins, and RACK1. Among
the kinases, MAP three kinase 1 (MTK1), MKK3, MKK6, MKK4, p38, and JNK have been
observed. Instead, among the GADD45 family of proteins—whose expression increases
under stress conditions and are implicated in growth arrest, DNA repair, cell survival,
senescence, and apoptosis—GADD45α, GADD45β, and GADD45γ have been reported to
take part in SAPK pathways [69]. After exposure to type 2 stressors, GADD45 proteins
are expressed and bind to the GADD45-binding domain of MTK1, firstly causing the
dissociation of the MTK1 C-terminal catalytic domain (KD) from the N-terminal auto-
inhibitory domain (AID) and, secondly, exposing the coiled-coil dimerization domain (DD)
in MTK1. After these structural changes, two partially activated KDs are brought together.
Subsequently, MTK1 promotes the autophosphorylation of its DD, which results in a full
activation of MTK1. Activated MTK1 phosphorylates and activates MKK3, MKK4, and
MKK6, which in turn trigger p38 and JNK activation, leading to cell death [69,123]. The
role of RACK1 in this pathway consists of binding MTK1 and facilitating its activation
upon exposure to type 2 stressors. In the MTK1 structure, the RACK1 binding domain
partially overlaps with the AID and GADD45-binding domain, suggesting that RACK1
may be specifically required for MTK1 regulation [124,125]. Indeed, RACK1 can bind two



Cells 2022, 11, 2590 14 of 24

or more kinases together, promoting MTK1 dimerization and, in the absence of stress,
RACK1 keeps dimerized MTK1 in an inactive state until GADD45 binding takes place,
suggesting that the formation of the RACK1-MTK1 inactive complex enhances MTK1
activation by GADD45 [69] (Figure 4). This mechanism could be responsible of several
pathological conditions, such as stroke, myocardial infarction, inflammation, cancer, and
neurodegenerative disease, strongly suggesting that RACK1 plays a central role in the
crosstalk between cell survival cascades and SAPK pathways [69,126,127].

Figure 4. Role of RACK1 in acute and chronic SGs. Together with TIA1 (in violet), PABP (in yellow),

and other SG-related RBPs (in dark blue), RACK1 (in green) has been recognised as a ribosomal

protein recruited in SG formation. While included within acute SGs produced after type 1 stress

promoting cell survival, RACK1 is excluded in chronic SGs after type 2 stress and remains in the

cytoplasm, where it can activate the SAPK cascade, leading to JNK and p38 MAPK activation, which

results in cell death (see text for details).

4.3. SGs and RACK1 in Neurodegeneration

At the cellular level, neurodegeneration features neurons attempting to meet cell
death, and it is often characterized by pathological inclusions, including Lewy’s bodies,
Aβ plaques, NFTs, and SGs [128]. Although their formation supports the development
of neurodegenerative disorders, it is still unclear if these inclusions are composed of SG
proteins or if SGs proteins are themselves recruited to pre-formed inclusions. It has been
proposed that pathological SGs are caused as a consequence of the misregulation of the
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SGs’ response or failure of SGs’ disassembly. In this context, it has been observed that
neurodegeneration could be supported by the interaction between RACK1 and various
pathological proteins within SGs [73,129,130].

In AD, RACK1 has been shown to have neuroprotective features [131] because of its
role in promoting nonamyloidogenic processing by amyloid precursor protein (APP) via
PKC activation [132]. This suggests the existence of a loop between the functions of APP
metabolic products and PKC role, and that the dysregulated APP metabolism of several
conditions, including AD, could have consequences on the potential protective functions
of the non-amyloidogenic secreted APPα [99]. Indeed, RACK1 levels have been found to
be decreased in post-mortem AD patients’ samples [99,101,133,134]—although discordant
data were also reported [135]—suggesting a potential involvement of RACK1 in altered
PKC activation associated with dementia. The depletion of RACK1 in the hippocampal
neurons of mouse models has been shown to cause beclin-1 upregulation, resulting in
induction of autophagy and impairment of learning and memory [136]. Moreover, an Aβ-
induced loss of membrane-bound RACK1 in cortical neurons resulted in an impairment of
muscarinic regulation of PKC and GABAergic transmission [137], which correlates with the
previously observed Aβ-induced impairment in the regulation of GABAergic inhibition in
prefrontal cortex—important for cognitive processes—regulated by muscarinic receptors
through a PKC-dependent mechanism [138,139]. It is still uncertain if RACK1 plays a SG-
related role in AD. Furthermore, the pro-inflammatory phenotype can lead to the formation
of SGs [140–143] that have been found in AD patients, where their failed disassembly and
persistence may play a role in the aetiology of this neurodegenerative disease [143].

Almost all ALS cases and over half of all cases of FTD are characterized by the cytoplas-
mic accumulation of SGs containing ubiquitin-positive and Ser409/Ser410 phosphorylated
TDP-43 [4,144], an RBP involved in different processes that span from the regulation of
RNA metabolism, transport, and translation of specific mRNAs [145–152] to SG forma-
tion [151]. The TDP-43 binds to the 40S subunit and increases eIF4E-binding protein
1 (4E-BP1) recruitment, a translational repressor protein that reduces the phosphorylation
of eIF4E, preventing its binding to eIF4F and inhibiting translation [152]. In ALS/FTD
patients, the development of TDP-43 inclusions appears to be caused by the failure of SG
disassembly. Persistent SGs cause alteration of proteostasis, RNA homeostasis, and protein
synthesis [153,154], finally leading to the deregulation of neuronal pathways. In response
to stress, TDP-43 is translocated in cytosol and recruited within SGs. As stress persists,
RNA-disassociated TDP-43 forms insoluble aggregates that tend to accumulate around
SGs [4,144]. In ALS patients, RACK1 partially localizes within SGs, and TDP-43 acts a trans-
lational repressor for overall translation; its binding to polyribosomes via RACK1 could
promote the formation of cytoplasmic inclusions under ALS-inducing conditions [152].

5. Conclusions

Alzheimer’s disease is the most prevalent neurodegeneration among the elderly. The
main markers of this neurodegenerative disorder include amyloid plaques, neurofibrillary
tangles, and dystrophic neurites. Based on these histological features and on a significant
body of experimental evidence, most of the therapeutic approaches have been focused
on counteracting protein misfolding and accumulation. New discoveries, however, are
changing this perspective, leading the field to explore new altered pathways [155].

Impaired protein synthesis is a molecular event that occurs in neurodegeneration
and that has been shown to have a link with the aggregation of unfolded proteins [156].
This deficit can in turn result in defective synapse transmission and organelle transporta-
tion [157]. Among the molecules that aggregate in complex insoluble inclusions, tau and
Aβ have been the most studied. The physiological role of tau in regulating the structure and
function of microtubules is clearly important for both the physiology and pathophysiology
of neurons, but post-translational modifications of tau, including phosphorylation and
caspase-dependent cleavage, are also critically important in the disease process [158,159].
Interestingly, it has been shown that ribosomes can associate to the tau protein and that,
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similarly to tau aggregation, the impairment of translation and ribosome dysfunction may
represent one of first steps in AD progression [12]. Pharmacological studies in mouse
models of prion and tauopathy disorders further reinforced this concept, as deficits ob-
served in these models benefitted by pharmacological treatment aimed at restoring protein
synthesis [160,161].

Beside the well-studied role of extracellular and intracellular proteins, the important
role of RNA metabolism and the formation of RNA granules have also emerged in neurode-
generation. Together with the aforementioned link between tau aggregation and protein
synthesis disruption, RNA oxidation has been reported to play a role in neurodegeneration.
The analysis of oxidized RNA species detected in the brains of Alzheimer’s disease and amy-
otrophic lateral sclerosis patients revealed significant damage of mRNA and rRNA [162],
which suggests a potentially beneficial antioxidant approach, both pharmacological and
nutraceutical, to ameliorate these conditions [163–166].

As a consequence of such conditions, protein synthesis seemed to be substantially af-
fected. Concurrent with protein synthesis and RNA metabolism alterations, a link between
the assembly of RNA granules and ribosomal impairment has also been established in
neurodegeneration [4]. Impairments in different mechanisms required for proteostasis reg-
ulation (e.g., RQC and PQC) have been associated with the neurodegenerative pathologies
here considered, and it has been noted that these same dysfunctions could serve as triggers
for SG formation. Therefore, RACK1 emerges as an interesting player not only because it is
involved in the aforementioned mechanisms previously discussed and in translation, but
also because it has been found as part of SGs. In this context, since ribosomal RACK1 levels
are not altered in the brains of healthy aged mice [167], while its expression is decreased
in AD [99,100], a pathological related reduction in RACK1 levels can contribute to the
development of translation impairments. These, in turn, can lead to a chronic ER stress that,
through the activation of UPR sensors, contributes to the enhanced eIF2α phosphorylation
leading to pathological chronic SG formation.

The absence of RACK1 in chronic SGs together with its global pathology-associated
reduction may comprise the activation of cell survival pathways (Figure 5). Deficits in
RACK1 have been previously linked to memory impairment [99,100]. Therefore, we
suggest that RACK1 might play a role in SG-regulated RNA metabolism/protein synthesis
in neurons, and that such functions might play a part in many neurodegenerative diseases.
In addition, we can speculate that RACK1 stabilization may be considered a potential
therapeutic target in future studies aiming to reduce the progression of AD or other
neurodegenerations.
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Figure 5. Proposed model of RACK1 ribosome- and translation-related roles in healthy aging and

neurodegeneration, and its impact on SG-correlated functions. Here, RACK1 levels are reduced in

AD patients compared to age-matched healthy controls [99,100] while its ribosome residency and

stoichiometry are not altered during healthy aging [167]. Therefore, while RACK1 can contribute

to the maintenance of proteostasis with its ribosomal and extra-ribosomal functions discussed here,

its reduced levels in a pathological context can contribute to worsening the underlying proteostasis

dysregulation observed in different neurodegenerative diseases.
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