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Abstract
Climate change significantly impacts marine ecosystems worldwide, leading to alter-
ations in the composition and structure of marine communities. In this study, we aim 
to explore the effects of temperature on demersal fish communities in the Central 
Mediterranean Sea, using data collected from a standardized monitoring program 
over 23 years. Computationally efficient Bayesian inference is performed using 
the integrated nested Laplace approximation and the stochastic partial differential 
equation approach to model the spatial and temporal dynamics of the fish commu-
nities. We focused on the mean temperature of the catch (MTC) as an indicator of 
the response of fish communities to changes in temperature. Our results showed 
that MTC decreased significantly with increasing depth, indicating that deeper 
fish communities may be composed of colder affinity species, more vulnerable to 
future warming. We also found that MTC had a step-wise rather than linear increase 
with increasing water temperature, suggesting that fish communities may be able to 
adapt to gradual changes in temperature up to a certain threshold before undergoing 
abrupt changes. Our findings highlight the importance of considering the non-linear 
dynamics of fish communities when assessing the impacts of temperature on marine 
ecosystems and provide important insights into the potential impacts of climate 
change on demersal fish communities in the Central Mediterranean Sea.
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1  Introduction

Human activities are deeply impacting the global climate with strong conse-
quences to the biotic and abiotic components of the ocean ecosystems (Hoegh-
Guldberg and Bruno 2010). Climatic phenomena and global warming are recog-
nized to be the main drivers for sea temperature increase (Levitus et  al. 2000). 
These drives may lead to changes in the biological/physiological characteristics 
of fish populations, including somatic growth, maximum consumption rate and 
metabolic rate (Gillooly et al. 2001; Brown et al. 2004). Climate change impacts 
also on species phenology and related reproductive aspects (e.g. onset and dura-
tion of spawning (Poloczanska et al. 2013)) and, as they are strongly dependent 
on the physiological aspects, species may respond to ocean warming by modify-
ing their vertical distribution (Dulvy et al. 2008) and/or latitudinal range (Perry 
et al. 2005).

Over the years, the changes due to ocean warming led to a profound and docu-
mented impact on fisheries. Specifically, these changes impact on increasing the 
warm-water species in fish communities and, in turn, in fisheries catch (Cheung 
et  al. 2010; Cheung et  al. 2013; Baptista et  al. 2014). Therefore, assessing the 
effects of climate change on fisheries is one of the challenges for their sustainable 
management (Leitão et al. 2014). The mean temperature of the catch (MTC) is a 
well-recognized index to assess the effects of climate change, especially in terms 
of warming, on fisheries catches (Cheung et al. 2013; Valente et al. 2023). Par-
ticularly, the MTC, computed from the average inferred temperature preference 
of exploited species and weighted by their biomass in the catch, correlates with a 
trend in sea surface temperature (Cheung et al. 2013). MTC was recently used to 
assess the effect of ocean warming both in large marine ecosystems and at local 
level: e.g. the Mediterranean (Tsikliras and Stergiou 2014; Tsikliras et al. 2015; 
Keskin and Pauly 2014; Valente et al. 2023), Caribbean (Maharaj et al. 2018) and 
Adriatic Sea (Fortibuoni et al. 2015).

The Mediterranean Sea has a long history of fishing activity that has led to the 
overexploitation of most of the Mediterranean fish stocks (Colloca et  al. 2013), 
increasing their vulnerability to climate variability. In fact, Sea Surface Tempera-
ture (SST) is increasing at a higher rate than the global average, leading to fast 
changes in the catch composition of fisheries but with controversial results. Par-
ticularly, in the eastern part of the Mediterranean Sea, the temperature increase 
has a most evident impact on the marine faunal composition, which has also been 
altered by alien species from the Suez Canal (Tsikliras and Stergiou 2014). On 
the contrary, Fortibuoni et al. (2015) did not found any significant change in MTC 
of fisheries catches of the Adriatic Sea. Understanding how climatic variability is 
affecting MTC is also relevant for predicting future changes in fish communities 
and related fisheries catches under different climatic scenarios. Moreover, biolog-
ical systems’ responses to environmental changes can be shifted over time. (Leg-
endre and Legendre 1998; Olden and Neff 2001). The scale of this delay is vari-
able and is related to the frequency of occurrence of the event (e.g. daily, monthly 
or inter-annually) in relation to the life cycle of the different taxonomic groups 
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being examined. For instance, variations in phytoplankton species response can 
be observed in relatively short time periods (e.g. hours or days) (Li et al. 2009; 
Chen et al. 2010; Vidal et al. 2010), whereas fishes usually respond over longer 
time scales (e.g. months or years) (Parraga et al. 2010; Qiu et al. 2010; Von Biela 
et  al. 2011). In the case of demersal communities exploited by fishing, under-
standing the temporal relationship between environmental changes and commu-
nity variations could be helpful for adequate resource management.

In this study, we apply a Bayesian spatio-temporal statistical framework to assess 
the change in the MTC index using trawl surveys’ biomass indices in a Mediter-
ranean fish biodiversity hotspot (Di Lorenzo et al. 2018). We estimate a spatio-tem-
poral model using the Integrated Nested Laplace Approximation (INLA) and the 
Stochastic Partial Differential Equation (SPDE) approaches with different potential 
predictors to disentangle the role of different driving forces on MTC changes. We 
use this approach to efficiently take into account the effect of spatial correlation and 
describe the temporal evolution of MTC. Moreover, we compare different time lags 
between environmental temperature and MTC level in order to highlight how long 
a change in environmental temperature takes to express its effect on faunal compo-
sition. To the best of our knowledge, this is the first time that this methodological 
approach has been applied to investigate the relationship between climate change 
and the thermal affinity of marine communities.

The paper is structured as follows: in Sect. 2, a description of the study area and 
the motivating data is given. In Sect. 3, the statistical methods for spatial data used 
in this research are described. Section 4 is devoted to a discussion of results, and in 
Sect. 5 some brief conclusions are reported. Supplementary material is provided in 
the Appendix (Section A).

2 � Materials

The Strait of Sicily is a transition area in the south-central Mediterranean Sea con-
necting the Western and Eastern Mediterranean sectors. Along the southern coast of 
Sicily (south Italy), the continental shelf is characterized by two wide and shallow 
(100 m depth) banks in the western (Adventure Bank) and eastern sectors (Malta 
Bank), separated by a narrow shelf in the middle part. Recent studies highlighted 
that this area is a biodiversity hotspot in the Mediterranean Sea, including a high 
diversity and biomass of demersal communities over the offshore detritic bottoms of 
the Adventure Bank (Consoli et al. 2016; Di Lorenzo et al. 2018).

We collected georeferenced biomass indices of fish within the demersal trawl sur-
veys MEDITS (Mediterranean International Trawl Survey program (Bertrand et al. 
2002)), performed in the study area between 1995 and 2018. The MEDITS survey 
is carried out annually in late spring-early summer, providing a long-term dataset 
of fishery-independent data relating to demersal species abundance, demographic 
structure, and spatial distribution. Sampling followed a random design stratified by 
depth (depth strata: 10–50 m, 51–100 m, 101–200 m, 201–500 m, 501–800 m) with 
the number of haul per stratum proportional to each stratum surface.
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In the present work, only the hauls located on the continental shelf (depth < 200 
m) are considered, assuming that the organisms that inhabit this area have a greater 
probability of being influenced by changes in the sea temperature (Fig. 1).

At each trawl station, fish species are sorted, weighted, counted and measured, 
and their relative abundance is expressed as kg∕km2 . Each species’ preferred tem-
perature (median, 25th and 75th percentile) is acquired from the online database 
FishBase (http://www.fishbase.org). The MTC was then calculated for each haul as 
the average of the temperature preference of all the exploited fish species weighted 
by their annual MEDITS catch, that is

where Chti are the catches of species i for year t in haul h, Ti is the median tempera-
ture preference of species i and n is the total number of species in the annual catch. 
An increase in the level of MTC in an area indicates a change in the thermophilic 
composition of the MEDITS catch, which suggests an increase in the dominance of 
warm-water species in that area (Cheung et al. 2013).

In order to assess the temporal and spatial changes of the MTC in the Strait of Sicily, 
several factors, which are assumed to be related to the MTC level, were also consid-
ered: the annual mean of the SST and the annual mean of the Bottom Sea Tempera-
ture (BST, both measured in Celsius degrees); the depth of the catch, categorized in 
three levels (low: [10–60 m], medium: (60–100 m], high: [100–200 m], based on a 

(1)MTCht =

∑n

i=1
TiChti∑n

i=1
Chti

,

Fig. 1   Locations of the catch points in the study area
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hierarchical cluster performed on community Bray-Curtis dissimilarities matrix); and 
the spatial (latitude and longitude) and temporal (year) coordinates.

Raster annual maps of SST and BST were constructed by averaging monthly contin-
uous digital maps (downloaded from the website http://​marine.​coper​nicus.​eu—MED-
SEA MULTIYEAR PHY 006 004–0.042° × 0.042° pixel resolution). Also, consid-
ering that a change in temperature may take time to express its effects on the faunal 
composition, time lags of one, two and three years were considered in modelling the 
effects of SST and BST on MTC. Initially, variables related to undersea currents and 
salinity (downloaded from the website http://​marine.​coper​nicus.​eu - MEDSEA MUL-
TIYEAR PHY 006 004–0.042° × 0.042° pixel resolution) were also taken into account 
by means of a preliminary analysis, from which, however, there was no evidence of any 
significant impact on the level of the MTC; so, they were excluded from the study.

Figure  2 shows the smoothed trend of BST during the time interval 1995–2018, 
according to each level of depth.

The BST trend appears to have almost constantly increased in shallow areas, which 
are likely to be the most susceptible to changes in external environmental temperature.

3 � Methods

3.1 � General framework

In general, spatial data can be considered as realizations of a stochastic process indexed 
in space (Cressie 1993):

where s is the vector of spatial coordinates associated to Y in a d-dimensional euclid-
ean space and D is the observed portion of space, with D ∈ ℝ

d . In the case of d = 2 , 
generally s contains latitude and longitude of Y. In particular, in the geostatistical 

(2){Y(s) ∶ s ∈ D},

Fig. 2   Smoothed trend of BST during the time interval 1995–2018, according to each level of depth

http://marine.copernicus.eu
http://marine.copernicus.eu
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approach (see, e.g. Cressie and Wickle (2011)) point-referenced data consists of a 
set of measurements (realizations) of Y taken at a finite set of points {s1,… , sn} in 
D, and the spatial index s can take any value in the continuum in D. The interest, 
typically, is in inferring the main characteristics of the spatial process such as its 
mean and variability and predicting values of Y at unobserved points in space using 
information derived from the analysis of the observed data y.

An useful approach for the estimation of a geostatistical model is to assume that 
there is a spatially continuous variable underlying the observations that can be mod-
eled using a Gaussian random field (GRF) (Abrahamsen 1997) U(s) , which is a ran-
dom function for which holds that, for every finite set of points {s1,… , sn},

where u = {u(s1),… , u(sn)} is a realization of U(s) at n locations, and � and � are 
the mean vector and the covariance matrix of the process, respectively.

The GRF incorporates the correlation structure of the process by means of its 
covariance matrix � = (Σi,j) , i, j = (1,… , n) , which is constructed from a covariance 
function. A common choice for the specification of the covariance function, which is 
of main interest here, is the Matérn function (Matérn 1960), which implies that each 
single element Σij of the covariance matrix � is defined as

where �2
u
 is the marginal variance of the process, 𝜈 > 0 is the smoothing parameter, 

k > 0 is a scale parameter, ||si − sj|| is the euclidean distance between si and sj and 
K� is the modified Bessel function of second kind and order 𝜈 > 0 . Instead of the 
parameter k, for better interpretability we generally consider the range parameter, 
i.e., the distance such that the spatial correlation between two points is very small; in 
our case the range (about 0.14) has been defined empirically by the following rela-
tionship (Lindgren and Rue 2015):

Although the use of GRFs proves convenient due to their good analytical properties, 
parameter estimation is often problematic in practice, especially with large data sets. 
Indeed, inference on the parameters of equation (4) has a computational cost equal 
to O(n3) , as it requires factoring fully dense n × n covariance matrices (Lindgren 
et al. 2011). Furthermore, the fitting of a model in a Bayesian inferential paradigm 
is traditionally based on Markov chain Monte Carlo algorithms, which require these 
calculations at each iteration, making the task even more difficult. In this regard, 
see Banerjee et al (2003, p. 387).

An approach to overcome this problem, which is based on stochastic partial 
differential equations (SPDE), has been developed by Lindgren et  al. (2011). 
The method consists in approximating a (continuous) Matérn GRF with a spatial 
process with a discrete index (i.e. a Gaussian Markov Random Field (GMRF)). 

(3)u ∼ Nn(�,�),

(4)Σij = CovM(u(si), u(sj)) =
�2
u

Γ(�)2�−1
(k||si − sj||)�K�(k||si − sj||),

(5)r =

√
8�

k
.
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This discretization of the study region, which is called a mesh, consists of a basis 
function representation defined on a triangulation of the spatial domain D; the 
vertices of the triangles are called nodes, and each node corresponds to a basis 
function. Therefore, due to the sparsity of the precision matrix of GMRFs (which 
is induced by the conditional independence structure of the process), it is pos-
sible to use appropriate computational techniques for sparse matrices (for an 
extensive description, see Rue and Held (2005)). For a GMRF model in ℝ2 , the 
computational cost is typically O(n3∕2) (Lindgren et al. 2011), which is a signifi-
cant improvement over the O(n3) cost of the Gaussian field (GF). The use of such 
computational techniques allows the model to be estimated efficiently, within the 
Bayesian framework, using INLA (Rue et al. 2009).

3.2 � The spatio‑temporal model for MTC

Let y(s, t) denote the observed value of the MTC level measured at location s and 
year t = 1,… , T  . We assume that

where �0 is a regression intercept, �(s, t) ∼ N(0, �2
�
) is the measurement error, x(s, t) 

is a vector of covariates (namely, BST and Depth) with corresponding vector of 
regression coefficients � , and u ∣ (�2

u
, r) is a realization of the Gaussian spatial field 

at location s , which is represented by its GMRF approximation according to the 
SPDE approach. Online Fig. A1 shows the measurement locations (red dots) within 
the mesh in two dimensions; details about how we set the parameters related to the 
mesh construction are reported in the caption (general information about the mesh 
construction criteria can be found in Krainski et al. (2019)).

Moreover, in order to investigate the overall trend of the MTC according to 
each level l of depth, a random walk vl(t) of order 1 has been included into the 
model as a smoothing latent component. A detailed description of the use of ran-
dom walk models for smoothing methods with INLA can be found in Wang et al. 
(2018) to take care of possible non-linear relationship, with

where �2
v
 , together with �2

�
 , controls the smoothness of the function.

Because no prior information was available, a non-informative zero-mean 
Gaussian prior distribution was used for the parameters �0 and � . Also, the 
GMRF prior (according to the SPDE approach) and the random walk prior 
in Equation    (7) were assigned to u and v , respectively. Hence, the latent field 
� = (�0, �, u, v) is jointly Gaussian with hyperparameter vector �

1
= (�u, r, �v) . 

The observations y are assumed to be independently Normally distributed given � 
and �

2
= ��.

Denoting the vector of all hyperparameters by � = (�
1
,�

2
) , the joint posterior 

distribution is then

(6)y(s, t) = �0 + x(s, t)� + u(s) + vl(t) + �(s, t),

(7)vt+1,l − vt,l ∼ N(0, �2

v
),
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The posterior marginal distributions for each component of � and � are estimated 
using INLA (for further details see, e.g., Rue et al. (2009) and Rue et al. (2017)).

4 � Results and discussion

The posterior densities of regression coefficients and hyperparameters, estimated by 
the INLA-SPDE model, are shown in Online Figs. A2 and A3, respectively. Their 
relevant statistics are reported in Table 1, along with their 95% HPD (Highest Pos-
terior Density) intervals. Graphical representations of model results and checks can 
also be found in Section A (Online Figs. A4 and A5).

The estimated posterior mode of the standard deviation (SD) of the SPDE ran-
dom component (0.57 °C) suggests that its inclusion into the model allowed to cap-
ture some spatial heterogeneity unexplained by the other covariates. This can also 
be seen by looking at Online Fig. A4, which shows the estimated posterior mean of 
the SPDE component across the study region. Online Fig. A5 shows the estimated 
Matérn correlation as a function of distance. Considering the dimension of the rec-
tangle which contains the study area (about 374.6×130.8 km), spatial correlation 
seems to decrease fairly quickly (the posterior mode of the range is 19◦ ≈ 21.06 km ), 
suggesting a relatively high variability in the spatial distribution of species. Online 
Fig. A8 illustrates the estimated effect of the Random Walk smoothing component, 
which allowed to capture the non-linear temporal evolution of the MTC. This effect 
also appears to vary across different depth strata.

Using BST  and not SST  as the environmental temperature variable, led to a 
decrease in Deviance Information Criterion (Spiegelhalter et al. 2002) (DIC) equal 
to 6.39. BST turned out to have a significant effect on the MTC level, with the best 
fit given by its three years lag (DIC values are 2444, 2450, 2443 and 2442 for lag 
0, 1, 2, 3, respectively). We also run a 10-fold cross-validation (Hastie et al. 2009) 

(8)p(�,� ∣ y) ∝

n∏

i=1

p(yi ∣ �,�) × p(� ∣ �) × p(�).

Table 1   Statistics of the estimated posterior distributions of regression coefficients and hyperparameters

Coefficient Mean SD Median Mode HDI low HDI high

Intercept 7.66 1.29 7.66 7.68 5.13 10.17
BST lagged (3 years) 0.27 0.08 0.27 0.27 0.10 0.43
Depth medium (ref: high) 1.07 0.19 1.07 1.07 0.69 1.46
Depth low 1.55 0.25 1.55 1.55 1.06 2.04

Hyperparameter Mean SD Median Mode HDI low HDI high

SD of Gaussian observations 1.14 0.03 1.14 1.15 1.08 1.21
SD of SPDE 0.60 0.11 0.59 0.57 0.41 0.82
Range of SPDE 0.22 0.08 0.21 0.19 0.09 0.37
SD of random walk 0.29 0.07 0.29 0.28 0.16 0.43
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comparing SST and the different lags of BST. We considered the Root Mean Square 
Error (RMSE) as the out-of-sample performance measure, computed using the dif-
ferences between posterior means of the MTC and the observed values (RMSE 
results are 1.2154, 1.2104, 1.2193, 1.2155 and 1.2103 for SST and BST lag 0, 1, 2, 
3, respectively). Although the comparison based on the results of DIC and cross-
validation showed rather marginal differences, a preference emerged for the inclu-
sion of BST lag 3 in our model. This choice is also substantiated by the understand-
ing that changes in species abundance in response to temperature variations are not 
typically observable within the same or the subsequent year. This delay is due to 
the necessary growth period organisms require before they can be effectively cap-
tured in nets, considering each species’ minimum size of retention. The lag 3 thus 
reflects a realistic temporal frame to observe the impacts of temperature on spe-
cies abundance, acknowledging the biological growth cycles intrinsic to the species 
under study. In general, the significant effect of BST suggests a positive relationship 
between environmental temperature variations and change in MTC.

Understanding the impact of environmental change on marine organisms neces-
sitates a comprehensive grasp of their proximity to thermal limits and their capacity 
to adapt to rising habitat temperatures (Stillman 2003; Deutsch et al. 2008; Nguyen 
et al. 2011). Many marine species, including ectotherms like fish, crustaceans, and 
molluscs, operate near their upper thermal tolerance, making them highly suscepti-
ble to even minor temperature increases (Helmuth et al. 2005; Harley et al. 2006). 
These changes can significantly affect their survival, adaptation abilities, biodiver-
sity, and community structure (Pörtner and Farrell 2008; Doney et al. 2012).

Elevated temperatures accelerate metabolic processes in ectotherms, increasing 
energy demands for basic functions and potentially leading to unsustainable meta-
bolic rates and death (Pörtner and Farrell 2008; Sunday et al. 2012; Somero 2012). 
Additionally, higher temperatures decrease seawater’s dissolved oxygen, causing 
hypoxia or anoxia, detrimental to oxygen-dependent marine life (Duarte et al. 2012). 
Physiological stress from temperature rise triggers various organism responses, 
including increased heart rate, hormonal changes, and reduced immunity, leading 
to disease and mortality. Moreover, temperature changes affect cellular membrane 
integrity and disrupt internal processes like hydration, acid–base balance, and ion 
regulation (Duarte et al. 2012). Consequently, rising temperatures profoundly impact 
the health and viability of marine organisms, especially ectotherms, by altering their 
metabolism, oxygen availability, physiological stability, cellular integrity, and inter-
nal homeostasis.

Considering the estimated posterior mode of the coefficient of BST, a one-degree 
increase of BST results in an increase of 0.27 °C of MTC, on average. The value, 
being less than 1, indicates that communities inhabiting or projected to inhabit 
warmer waters are situated further from their thermal optimum. This disparity may 
intensify in the future. Numerous studies have demonstrated that marine commu-
nities thriving in warmer environments often experience a greater deviation from 
their optimal temperature range compared to those residing in colder waters. Sunday 
et  al. (2015) analyzed the thermal physiology of 457 marine species from around 
the world and found that the thermal niche of many species is closer to their upper 
thermal limit in warmer regions. This means that in warmer regions, species are 
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often living closer to their upper thermal limits and may be more vulnerable to the 
impacts of warming, such as reduced metabolic rates, reduced growth, and increased 
susceptibility to disease and predation. Additionally, even a small increase in tem-
perature could have significant effect on their physiology and survival. Sorte et al. 
(2010) found that species living in areas where temperature varies less throughout 
the year have narrower thermal niches and may be more vulnerable to warming than 
species living in areas with more variable temperatures. This is because species in 
areas with more variable temperatures may have greater physiological plasticity and 
be better able to cope with changing temperatures. These findings suggest that spe-
cies living in warmer waters may be more vulnerable to the impacts of warming 
due to their proximity to their thermal limits. The potential impacts of warming on 
marine species could have significant consequences for the structure and functioning 
of marine ecosystems, and for the services they provide to human societies (IPCC 
2022).

There is evidence that the cause and effect relationship in marine communities 
can have a temporal lag of several years. Poloczanska et al. (2013) found that the 
timing of impacts of climate change on marine ecosystems can vary widely, with 
some species responding to changes in temperature and other environmental varia-
bles much more rapidly than others. This lag can occur because species may respond 
differently to environmental change, or because changes in environmental variables 
may not immediately translate into changes in population dynamics. Understanding 
these lag effects is important for predicting the long-term impacts of environmental 
change on marine ecosystems and for developing effective conservation strategies.

Temporally delayed relationships in marine communities can be explained by 
both physiological and ecological factors. Physiologically, some species may have 
mechanisms to cope with environmental change in the short term, but may not be 
able to sustain these mechanisms over the long term. Ecologically, some species 
may be more resilient or resistant to environmental change than others (Chevin et al. 
2010). Resilient species may be able to recover quickly from disturbances, while 
resistant species may be less affected by disturbances in the first place. In contrast, 
species that are less resilient or resistant may experience population sudden declines 
or extinctions in response to environmental change. The interactions between spe-
cies in a community can also influence the lag effects of environmental change. For 
example, a species may experience a decline in response to environmental change if 
it relies on another species that is also declining. This indirect effect can compound 
the lag effects of environmental change and make it more difficult to predict the 
long-term impacts on marine communities (Stachowicz et al. 2007). Overall, under-
standing the temporal lag in the response of marine communities to environmen-
tal change is critical for predicting the long-term impacts of environmental change 
on marine ecosystems and for developing effective conservation strategies. This 
requires a comprehensive understanding of the physiological and ecological fac-
tors that underlie the response of marine communities to environmental change, as 
well as the complex interactions between species in a community (Poloczanska et al. 
2013).

Tsikliras and Stergiou (2014) found a time lag towards temperature variations, 
only for the eastern Mediterranean communities, while for those of the central 
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Mediterranean they did not found a time lag, but a direct relationship. On the other 
hand, after 10 years from Tsikliras and Stergiou (2014), our study highlights a 
possible time lag also for the central Mediterranean communities. This could be 
explained by two possible hypotheses: first, central Mediterranean communities over 
time adapted to the changes, acquiring a certain resilience and resistance; second, 
thermophilic species are increasing in our communities, which are more resistant to 
change.  

Figure 3 shows the estimated overall trend of the MTC, according to each level 
of depth, which was computed averaging, for each year, the posterior means of 
the MTC and the upper and lower bounds of their credibility intervals. To evalu-
ate the reliability of the overall trend estimation, a retrospective analysis has been 
done by removing 1 to 4 years from the end of the study period, to see how much 
the trend estimate was affected by that. Online Fig. A9 shows a visual comparison 
of the estimated curves, including that of the model estimated with the complete 
dataset (0 years removed), from which it can be seen that trend estimations are 
fairly stable. Figure 4 shows the posterior means of the predicted values of the 
MTC across the study area (upper and lower bounds of the corresponding cred-
ible intervals are represented in Online Figs. A7 and A6, respectively). Also, to 
highlight both the direction and the rate of the change of the MTC level, the dif-
ference between model predictions at t and t − 1 time values has been computed 
for each time point, across the study area (Fig. 5). In particular, the MTC increase 
that began in 2002 become faster from 2005 to 2006; then, a quite rapid decrease 
happened between 2010 and 2012. The MTC does not appear to increase linearly; 
instead, it is characterized by step-like changes (Fig. 3 - low depth) because the 
distribution of marine species is not uniform in the ocean (Fig. 4), and their spa-
tial distribution may vary non-linearly with climate change. The warming of the 
oceans can lead to the redistribution of marine species, as they move away from 
their original distribution areas in search of cooler waters or adapt to new cli-
matic conditions. This can lead to a step-like dynamics of the MTC, in which the 

Fig. 3   Estimated overall trend of the MTC, according to depth level of the catch
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average temperature of the catches remains relatively stable for a certain period 
of time and then increases sharply due to the redistribution of marine species.

Some marine species may be able to migrate to deeper waters in response to 
warming temperatures, although the ability of species to do so is complex and 
dependent on several factors. Pinsky et  al. (2013) found that some species of fish 
in the North Atlantic were shifting their distributions to deeper waters as a response 
to warming temperatures, but the rate and extent of these shifts were dependent on 
several factors including the physiological tolerances of the species, the depth and 
distribution of suitable habitats, and the rate and extent of environmental change.

However, not all species may be able to migrate to deeper waters as a response 
to warming temperatures. The availability of suitable habitats, competition, pre-
dation, and resource availability can all constrain the ability of species to migrate 
to deeper waters. Additionally, the loss of species from shallower waters may 
have cascading effects on food webs and ecosystem processes, while the influx of 
new species to deeper waters may have similar effects on those ecosystems.

The estimated overall trend of the MTC level, as is shown in Fig. 3, suggests 
a clear increase starting in 2003 in shallow-water area, but not in the medium 

Fig. 4   Posterior mean of the predicted MTC in the study area, for each year
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and deep strata. The observed MTC increase suggests an alteration in the relative 
catch proportions of species; the thermophilic species (those that prefer warmer 
temperatures) increased in proportion in the catches over the time series, while 
psychrophilous (those that prefer colder temperatures) decreased (until 2015). 
Such change could be due to the displacement of the thermophilous species to 
a higher latitude and the shift of the psychrophilous species in mean latitude or 
depth or in both.

The ability of marine species to migrate to deeper waters as a response to warm-
ing temperatures has implications for the structure and function of marine ecosys-
tems. It is therefore important to understand the factors that influence the ability of 
species to migrate to deeper waters and the potential consequences of these migra-
tions for marine ecosystems.

Other factors such as over-fishing and contamination can also influence the distri-
bution of marine species and the dynamics of the MTC. For example, a reduction in 
the populations of a particular fish species due to over-fishing can lead to a reduction 
of contribution in the MTC for that species.

The use of deep-sea environments as “refugia” (or protected areas) to protect 
marine biodiversity from the impacts of climate change has been proposed in some 
studies. The idea is that deep-sea environments may provide a refuge for species that 
are unable to cope with the changing environmental conditions at shallower depths, 
due to their relative stability in environmental conditions.

For example, Levin et al. (2019) proposed that deep-sea habitats may provide ref-
uge for some species that are at risk from the impacts of climate change. The study 

Fig. 5   Estimated rate of MTC change, calculated as the difference between model predictions at t and 
t − 1 time values
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suggested that deep-sea habitats, which are often characterized by relatively stable 
environmental conditions, could act as a “lifeboat” for some species, allowing them 
to persist in the face of warming and other environmental stressors.

However, the idea of using deep-sea environments as protected areas is not with-
out challenges. One challenge is that deep-sea habitats are often poorly known and 
difficult to study, making it difficult to assess their potential as refugia. Addition-
ally, deep-sea ecosystems are often subject to other anthropogenic stressors, such as 
deep-sea mining and over-fishing, which can have negative impacts on biodiversity.

Furthermore, it is important to consider the potential consequences of using deep-
sea environments as refugia, such as the displacement of existing deep-sea species 
and potential impacts on deep-sea ecosystems. Additionally, while deep-sea habitats 
may provide refuge for some species, they may not be able to support entire com-
munities, and there may be limited opportunities for connectivity between deep-sea 
protected areas and shallower ecosystems.

In summary, the use of deep-sea environments as refugia to protect marine bio-
diversity from the impacts of climate change is a subject of ongoing research and 
debate. While there are potential benefits to using deep-sea habitats as refugia, it is 
important to consider the potential challenges and consequences associated with this 
approach.

The process of recovery in a marine community suffering a disturbance is com-
plex and depends on a variety of factors. One key factor is the resilience of the com-
munity, which refers to its ability to regain suffering a disturbance. Resilience is 
influenced by factors such as the diversity of the community, the functional roles 
of different species, and the availability of propagules (Bongaerts et  al. 2010). 
Additionally, the intensity and duration of the disturbance can affect the ability of 
a community to recover. Once a disturbance has ceased, the process of recovery can 
proceed through several stages. The first stage is the recruitment of new individu-
als to the community, which can occur through the growth of existing individuals 
or the arrival of new propagules (Connell 1978). The second stage is the reestab-
lishment of the community structure and function, which can be influenced by the 
order of species arrival, species interactions, and abiotic factors (Airoldi and Beck 
2007). The final stage is the stabilization of the community, which occurs when the 
community reaches a steady state and the species composition and function become 
more predictable (Gorman and Connell 2009). Overall, the process of recovery in a 
marine community following a disturbance is complex and depends on a variety of 
factors, including resilience, the intensity and duration of the disturbance, and the 
stages of the recovery process. Understanding these factors is critical for predicting 
the resilience of marine communities to disturbances and for developing effective 
conservation strategies.

Refugia, or protected areas, are important for marine conservation and for the 
recovery of communities that have been impacted by disturbances (es. over-fish-
ing, habitat destruction). These disturbances can cause a reduction in biodiversity, 
a decrease in vegetation cover, and a change in species composition. Refugia can 
help to mitigate the effects of these disturbances by providing a protected environ-
ment for marine species where organisms can find refuge and reproduce, ensur-
ing the survival of species and the restoration of populations. Moreover, protected 
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areas contribute to the re-establishment of ecological connections between different 
marine communities. This fosters the dispersal of species and facilitates the repopu-
lation of adjacent areas. The establishment of refugia can take various forms, includ-
ing marine protected areas, reserves, sanctuaries, fishing exclusion zones, and other 
initiatives aimed at safeguarding marine habitats. When properly designed and man-
aged, these protected zones are crucial for the conservation and recovery of marine 
biodiversity inside (Sala and Giakoumi 2018) and in the adjacent fished areas (Di 
Lorenzo et al. 2016, 2020). In the global warming context, the MPAs are recognized 
to be important in protecting marine species (Frid et al. 2023).

The MTC significantly decreases with depth, as expected (estimated posterior 
mode of the coefficients for medium and low depth are 1.07 and 1.55, respectively, 
with baseline category being “high depth”): regions characterized by shallow waters 
are, in general, inhabited by species with higher preferred temperature. Overall, the 
decrease in MTC with depth highlights the importance of considering depth as a 
factor in fisheries management and conservation. Understanding the factors that 
contribute to this pattern can inform the development of more effective management 
strategies that account for the unique characteristics of different fish communities at 
different depths.

5 � Conclusions

In this paper, we analysed the effects of environmental temperature on the MTC of 
demersal fish communities in the central Mediterranean Sea from 1995 to 2018, 
using the INLA-SPDE modelling approach. The proposed model allowed us to 
quantify the effect of ambient temperature (BST) and depth on the MTC, as well as 
to describe the spatio-temporal evolution of the MTC in the study area.

The study emphasises the vulnerability of ectothermic organisms such as fish, 
crustaceans and molluscs to even slight increases in temperature, as they operate 
near the upper limits of thermal tolerance. Increased temperature accelerates met-
abolic processes, potentially leading to unsustainable rates, oxygen depletion in 
the water, physiological stress and ultimately higher mortality rates. A one-degree 
increase in BST translates into an average 0.27 °C increase in MTC, indicating a 
shift away from optimal temperature conditions for marine communities. The change 
in MTC patterns in the study area, particularly since 2003, reflects a shift towards 
thermophilic species and a decline in psychrophilic species, indicative of a redis-
tribution due to warming waters. The potential of deep-water environments as refu-
gia for species affected by climate change was also explored. Although deepwater 
habitats may offer stable conditions, there are challenges, including the unknowns of 
these ecosystems and the impact of human activities such as over-fishing.

Our results highlight the importance of considering depth in fisheries manage-
ment and conservation. The significant decrease in MTC as depth increases under-
lines the need for customised strategies to protect different fish communities. Refu-
gia or protected areas are crucial to mitigate disturbance and promote the recovery 
and conservation of biodiversity, especially in the context of global warming.
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This study, therefore, contributes to the understanding of the response of marine 
ecosystems to environmental changes and the development of effective conservation 
strategies. Overall, these results emphasise the need for continuous monitoring of 
marine communities and their responses to climate change, as well as the devel-
opment of adaptive management strategies that take into account the complex and 
dynamic nature of these systems.
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