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Abstract
The automatic analysis of histology images is an open research field where machine learning techniques and neural networks,
especially deep architectures, are considered successful tools due to their abilities in image classification. This paper proposes
a granular computingmethodology for histopathological image classification. It is based on embedding tiles of histopathology
images using deep metric learning, where a self-organizing map is adopted to generate the granular structure in this learned
embedding space. The SOM enables the implementation of an explainable mechanism by visualizing a knowledge space
that the experts can use to analyze and classify the new images. Additionally, it provides confidence in the classification
results while highlighting each important image fragment, with the benefit of reducing the number of false negatives. An
exemplary case is when an image detail is indicated, with small confidence, as malignant in an image globally classified
as benign. Another implemented feature is the proposal of additional labelled image tiles sharing the same characteristics
to specify the context of the output decision. The proposed system was tested using three histopathology image datasets,
obtaining the accuracy of the state-of-the-art black-box methods based on deep learning neural networks. Differently from
the methodologies proposed so far for the same purpose, this paper introduces a novel explainable method for medical
image analysis where the advantages of the deep learning neural networks used to build the embedding space for the image
tiles are combined with the intrinsic explainability of the granular process obtained using the clustering property of a self-
organizing map.
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Introduction

A fundamental approach to computing was proposed by
Zadeh with the theory of granular computing (GrC). Accord-
ing to his point of view, the three fundamental concepts
underlying human cognition are granulation, organization,
and causation. Granulation is the decomposition of infor-
mation into parts, organization involves the integration of
granules as awhole, and causation is the association of causes
with effects [1]. The idea of crisp information granulation
has demonstrated usefulness in multiple related fields [2].
As Zadeh wrote, “Granulation of an object A leads to a col-
lection of granules of A, with a granule being a clump of
points (objects) drawn together by indistinguishable simi-
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larity, proximity, or functionality” [1]. Granulation involves
the decomposition into sub-parts, and this process is typically
due to the analysis of composing parts and themanagement of
vague and uncertain information.An improvement is the con-
sideration of a group of individuals rather than the individuals
alone. In other cases, from structured and composite informa-
tion, limited information can provide a suitable solution [2].

The aspects to be considered for the formation of the gran-
ules are the similarity, proximity, and functionality of the
information granules. The formation of the granules answers
the important question of why some information needs to be
aggregated or, conversely, separated. The other aspect of the
granular computing paradigm is computation. Some suitable
methodologies, such as approximation, reasoning, and infer-
ence, extract relationships about closeness, dependency, and
association to represent as much information as possible [2].
In the paper byYao et al. [3], the authors consider the granular
approach to permeate all human endeavours. Any problem
is conceptualized through meaningful entities, the granules,
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that are used to consider the right information abstraction.
Processing is then conducted on these entities, followed by
communicating the results. Like the fuzzy approach, this
abstraction level facilitates a human-centric elaboration.

This paper focuses on analyzing pathology images based
on these premises. Specifically, digital pathology is based
on the scanning and digitization of the histology slides to
produce high-resolution images. The images resulting from
this procedure are called whole slide images (WSI) and are
usually very large: they can have a dimension of more than
80,000 × 60,000 pixels. The automatic analysis of these
images is complex due to their size, posing challenges for
available computational resources. Not all the image areas
hold equal importance, and even if the image can be pro-
cessed considering the image sub-parts, it is essential to
evaluate each portion with proper contextual information.

Many solutions for analyzing these images have been pro-
posed, including dividing the images into low-dimensional
patches and utilizing deep neural networks to evaluate the
presence of pathological regions. Although some solutions
have shown promising results, several challenges remain to
be addressed and solved.

A relevant aspect of these machine learning algorithms is
their lack of explanatory support for the decisions they draw.
It is notorious that the relevant results of the deep models
are rarely coupled with the motivation that supports a given
decision. The noticeable capability to discriminate between
positive and negative samples is supported just by the good
results on the validation set and good machine learning prac-
tices. Anyway, some motivation that an expert in the domain
can understand must be provided with the decision. This
motivation is helpful in assessingwhether the patterns or por-
tions of the image relevant to the deep black-box model align
with those deemed relevant by a physician. Or, in the worst
case, if the model is providing a label according to marginal
and irrelevant artefacts, that gained significance due to the
reduced size of the training data set, enables an informed
observer to spot an error and disregard a wrong decision.

Exploiting the paradigm of granular computing and con-
sidering that the analysis of histopathology samples is a
key task in detecting and monitoring cancer formations.
We propose a method to process visual information for
histopathology exams, focused on the proper representa-
tion to analyze the samples, providing a classification with a
straightforward interpretation.

RelatedWorks

An important feature in medical imaging is the capability
to provide information to support the classification or deci-
sion process. Some information can be associated with this
decision process, allowing us to interpret the operation com-

puted by the model. Usually, in the machine learning (ML)
and artificial intelligence (AI) literature, a distinction ismade
between interpretability and explainability. Rudin in [4] iden-
tifies a set of critical points in explainable and interpretable
models. Interpretability is usually referred to as the property
of the employed features to be interpretable and meaningful
for an observer. On the other hand, explainability is based on
an additional model that agrees with the original model and,
in most cases, explains the behaviour of the original model.

There may be instances where the chosen ancillary mod-
els, chosen for explainability, are not faithful to the compu-
tation of the original model, or it can be the case that they
compute a summary of predictions instead of providing a
full explanation.

The present work is at the intersection of two research
streams: the application of GrC, particularly in the classifi-
cation of images, and the interpretability or explainability of
machine learning systems.

In the following subsections, the state of the art of these
two research fields is analyzed with a particular focus on
interpretable machine learning systems and histopathology
pattern recognition, and the last subsection will discuss some
explainable and interpretable systems for histopathology
image classification.

GrC in Medical Image Classification

Data representation in terms of granular information is a
general paradigm that can provide useful supporting infor-
mation in the data analysis domain. For this reason, this
section reports and discusses some relevant granular com-
puting approaches in image organization and classification,
specifically focusing on the domain of histopathology.

Granular representation can boost the capabilities of a
computational model by focusing its attention on different
details in the input. The granules should be variable in size
so that specific mechanisms can set the most suitable value
for a single granule. Pedrycz and Homenda [5] proposed a
model to justify the width of granular intervals to achieve a
broad representation with semantic specificity. This involves
having a large interval encompassing as much data as possi-
ble, while a narrow interval is easier to identify according
to specific information. The search for the right value is
addressed usingmultiobjective optimization techniques. The
author states that the prototypes obtained through this GrC
approach produce a more detailed and complete insight into
the results than other techniques, such as fuzzy clustering.

Consequently, this general idea has been adopted in the
field of medical imaging applications by Juszczyk et al. [6]
who used a granular approach to separate the internal organs
in a computer tomography image.

Recent contributions to granule representation also use a
self-organizing map (SOM) to generate a granular structure
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on the concept space of the framework for approximate rea-
soning, evenwith a neuralmap of very limited dimension [7].
The advantage of the SOM is its intuitive visual features and
easy pattern exploration. We got this suggestion and adopted
a SOM approach in the presented paper.

In the field of image analysis, basic models of granular-
ization exist [8]. All of them are somewhat related to image
segmentation. Image segmentation is a fundamental task that
is accomplished as the first step in further high-level knowl-
edge extraction from images. Image segments are considered
granules (parts of the image) that are close enough according
to predefined metrics [9].

GrC has also taken advantage of deep learningmethodolo-
gies [10]. In particular, the authors used agenerative approach
based on generative adversarial networks (GAN) to identify
anomalies in breast histopathology images. The GAN maps
masked images into reconstructed ones, and the comparison
with the input image is accomplished to evaluate the pres-
ence of anomalies in the sample and verify the presence of
tumoral regions. Considering the masks applied to the image
as information granules, the technique strongly depends on
the dimension of the considered masks.

Granular methods can also increase the interpretability
and validity of a general machine learning model [11]. This
paper presents a survey of explainable methods, particularly
emphasizing methods based on General Line Coordinates.
This method allows the lossless visualization of data and the
discovery of the most suitable classification modes.

One of the first studies that employes granular computing
in disease diagnosis was the work by Zakareya et al. [12].
The authors exploit the idea that granular computing is based
on the paradigm of breaking down complex problems into
smaller pieces that are easier to solve. Following this line of
thought, the authors divided the medical image into small
regions defined as granules and processed these pieces as
information granules.

This kind of approach is somewhat similar to the one used
in the present paper, with the main difference being that our
approach is focused on explainability rather than on the sim-
ple usage of a deep neural network architecture adopting the
principle of the GrC. In particular, we went further by clus-
tering the image tiles, and we used the cluster centres as
granules of information and also as an approximation of the
distribution of the image tiles in the representation space.

One specific study of granularity in histopathology image
annotations is analyzed in [13]. In the paper, it is discussed
whether it is more informative to annotate regions of the
image or single pixels. The experimental results confirm
that the best performance in classification with deep learn-
ing networks, such as VGG16, ResNet18, and MobileNet, is
obtained at the pixel-wise annotation level. Also, in the task
of cancer grading, the best performance is obtainedwith pixel
annotation and, in fewer cases, with ellipse-shaped annota-

tion. The finer annotation is considered helpful in creating
accurate visual phenotypes, such as the morphology and
colour of the region of interest in contrast to its surroundings.

Explainability of Machine Learning Systems

A classical technique, used to explain the classification with
deep neural network, is gradient-weighted class activation
mapping (Grad-CAM) [14].Grad-CAMis a variation of class
activationmapping and is based on creating amap overlaying
the input images, showing which part is relevant for a given
class. This map highlights the portion of the input sample
that contributes to high activation for the output class. The
Grad term, in particular, is provided by theweights computed
by the gradient. The gradient is the derivative of the output
activation with respect to the weights vector of a chosen con-
volutional layer. Subsequently, a ReLU activation function
is applied to clip the negative values. The regions with the
highest activation values are the ones that provide the most
significant contribution to label attribution. However, while
the map highlights certain portions of the input images, it
does not provide information about the specific features that
triggered the label activation, nor does it offer a high-level
description of the area.

Cynthia Rudin in [4] also proposed a different explain-
ability technique, focused on constructing optimal logical
models, and they define interpretability for specific domains.

An example from the same authors aims to find a pro-
totypical portion of the image supporting the system’s
classification decision. This explainability technique is based
on how people explain the motivation of visual classifica-
tion to each other. Based on prototypes of image portions,
this method is implemented in [15], where a bird is classi-
fied using the portions of the bird’s body that are useful to
discriminate a given bird family from others. In a special
prototype system, a network is trained to provide a set of
prototypical elements derived from the analysis of the bird
image. Our method selects, through unsupervised learning,
the portion of images that are strongly related to a class. In
some measures, the trained SOM behaves like a prototype
map, and the parts of test images are mapped on these pro-
totypical elements.

Explainability in Medical Image
Classification Systems

Systems for explainable or interpretable histopathology
image analysis have been proposed in the recent past. These
systems are mainly focused on supporting the decision of
pathologists, offer a second opinion, or act as a triage support
system in order to help focus on more urgent or severe cases.
These systems are usually oriented to a binary classification
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of the pixel of the image in benign ormalignant or on the iden-
tification of the tumour grade (multi-class classification).

The explainability or interpretability for this kind of sys-
tem is necessary in order to make the pathologist confident in
the system response, as already said in the “Explainability of
MachineLearningSystems” section. Interpretability requires
a transparent system, where system operation is clear and
available to the user analysis. An approach based on expla-
nation is to generate a textual justification of the classification
response available for the consideration of the user. This
second approach requires another system, usually a black
box, that generates the explanation of the system decision,
an approach that can generate unfaithful explanations [4].

In the following, we have selected systems that were
mainly developed in collaboration with medical personnel
with a specific focus on supporting their work.

An explainable machine learning system based on expla-
nation generation is described in [15]. The system presented
in this work contains three neural networks, one dedi-
cated to generating and providing a textual explanation
that comments on some regions of interest (ROIs) in the
histopathologyWSI images. The systemwas developed with
the support of 21 pathologists.

Although the goal of this system was to deliver a
“Pathologist-level interpretable whole-slide cancer diagno-
sis...” as declared in the title of the paper, the same paper re-
ports that there is high variability in bladder cancer diagnosis,
and the percentage of disagreement can be more than 30%.
This consideration raises some doubt about the effectiveness
of the explanations of this system, also considering the prob-
lems highlighted by Rudin on explanation generation [16].

The most common approaches to interpretability often
rely on Grad-CAM or similar techniques. For instance, the
system presented in [17] classifies the WSI images into four
classes. It provides pathologists with a selection of ROI areas
on the image that acts as an explanation of the decision. The
system was trained using images labelled by an expert using
amask highlighting interesting regions. The system is consti-
tuted by two neural networks: one that obtains the ROI areas
and another that performs the classification. The authors con-
sider the interpretability obtained with the ROI highlighting
in the input image; even if this is not a Grad-CAM system,
the result is the same, and there is not a clarification of which
features are responsible for the classification result. The same
result is obtained from the systemdescribed in [18], but in this
case, the pathologist can compare her/his own selected areas
with the ROI suggested by the system and update the system.

The paper in [19] sets an interesting observation that it is
difficult to decide or predict the quality of a pixel in a WSI
without considering its context, so the proposed system uses
two different neural networks, one that produces the embed-
ding of the patch and the other that takes into account its
context. The resultingROIs aremuchmore compact and con-

nected with good accuracy. The interpretability of the system
is still left to the highlighting of the ROIs, and probably the
presence of this kind of context filter is helping to focus user
attention, but there is not an investigation on false negatives,
i.e. regions that can be too small for the context filter.

The same method, like Grad-CAM, was also used in the
system proposed in [20]; in this case, it was focused on
skin cancer.

Our Explainability Approach vs the Existing Ones

All the systems described above are based on highlighting
image details: the first one also builds a textual explana-
tion, while the other simply focuses on some image parts.
The Grad-CAM technique is a straightforward methodology
that emphasizes the details responsible for the highest out-
put value or determines the highest gradient values. In both
cases, these details influence the classification results, and
these image regions are often identified as regions ROI.

As Rudin wrote, there is little information on the signif-
icance of these results or on the features of the ROI that
determine their importance [16]. The method indicates some
regions without explaining why they are important. Again,
according to Rudin, this technique says more about the other
parts of the image, the ones that are not considered important.
Moreover, the highlighting of the image regions is obtained
at the end of the processing chain without any information
on the intermediate results.

Our approach improves upon existing techniques by cre-
ating a processing chain with output that can be easily
visualized and contextualized. In the following, we will see
that this can help both the user and the system developers
at the same time. In the proposed system, as in any other
system presented above, the input image is divided into parts
(tiles in our case) that are processed separately. Each tile is
embedded in a space that can be visualized; Fig. 1 reports an
example of this space: each dot in the figure represents a tile
of the training images; the whole image is a representation
of the knowledge of the system, this will further discussed in
the “Construction of the Embedding Space” section.

These tiles are organized in granules (clusters) using the
SOM map, each of them labelled using the labels of the
training image set. The classification of the input images is
obtained by collecting all the labels of its tiles. This means
that for each image, we can inspect and visualize its label
(for example, in Fig. 2, the tiles classified as malignant have
a red border.)

Compared to Grad-CAM visualization, this improves
explainability becausewehave a classification for each image
tile, indicating the quality assignedby the system.On the con-
trary, in the Grad-CAM system, we have a generic indication
that an area is “important” for classification, and sometimes,
it is said that the highlighted areas are “where the system
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Fig. 1 BreakHis dataset: a
visualization of the embedding
space in 2D, using the two most
informative principal
components

looks”. Moreover, this classification can be explained by
considering the other (training) tiles that are part of the corre-
sponding cluster, tiles that the system considers similar to the
input one. The input tiles were classified “like this” because
they look similar to the tiles of the training set, a mechanism
that resembles the title of the paper [16].

Methods

The proposed approach is based on the idea that some inter-
esting areas can be spotted and characterized in histopathol-
ogy images. These areas can be identified using a set of
known tiles extracted from a labelled set of reference images
(the training set). If a proper image embedding is produced,
similarities and differences among these image tiles are trans-

lated in distances in a projection space and used during the
model’s training. This projection space can be further orga-
nized using the metric learning technique, which builds a
projection in a lower-dimensional space where tiles from
the same class’s images are clustered together and differ-
ent clusters are separated (for example, see Fig. 1). These
large clusters are further divided into granules of informa-
tion using the clustering property of a SOM neural network.
The label of themajority of the clustered tileswill be assigned
to these granules. Fragments from a test image are mapped
in the embedding space and compared to granules using the
Euclidean distance. The new tiles will be labelled with the
closest granule.

An important aspect to consider is the performance mea-
sure in the case of a general medical image classification
system for disease prediction. Performance measurement is

Fig. 2 Three examples of classification (left, centre, right). Each image
is divided into 28 tiles. For each image, the true and predicted classes are
reported (on top of each image). On the left, a benign image is correctly
classified. On the centre, a malignant image is incorrectly classified as

benign. On the right, there is a malignant image that is correctly clas-
sified. The red border on some tiles indicates a fragment labelled as
malignant during the training phase

123

3003Cognitive Computation (2024) 16:2999–3019



boundwith the dataset provided for this kind of study.Most of
the time, public datasets for the classification of histopathol-
ogy images are organized to allow images of the same patient
to be in both the training set and the test set. This could arti-
ficially increase the accuracy and performance of the tested
approaches, which could learn some characteristics related
to a specific patient. Consequently, when possible, we chose
to measure the performance of our approach in a patient-
based manner. This choice reduces the number of reliable
methodologies suitable for comparison.

In the following subsections, the datasets used for train-
ing and testing will be described, and the whole granular
approach, composed of (1) an embedding by a triplet net-
work, (2) a granularization by SOM, and (3) a decision
paradigm, will be detailed and explained.

The Used Datasets

We face two problems in histopathological image classifi-
cation: pathology classification and tumour grade identifi-
cation. For the first problem, we use the BreakHis dataset
[21], a benchmark dataset for classification. For the tumour
grade identification, we use two different datasets: the first
was proposed in [22] and collects images released by the hos-
pital Agios Pavlos (referred to in the following sections as
the Agios Pavlos dataset); the second one is the PathoIDCG
dataset [23].

The BreakHis Dataset

The BreakHis dataset (BH) [21] comprises images taken
from sample tissue of 82 breast cancer patients. Images rep-
resent 8 pathologies: 4 benign and 4malignant; Fig. 3a shows
an image example for each class.

In this work, we analyze only themalignant/benign binary
classification. The images in the data set have a 700×460
pixels resolution and have 4 magnitude values (40×, 100×,

200×, 400×). According to their binary classification label,
we discarded the magnification value and processed all
images together, so the dataset is used as a set of 2480
benign and 5429malignant images (Table 1). Althoughmany
authors used preprocessing techniques on input images, such
as stain normalization or whitening, we do not consider any
of these techniques because they could potentially compro-
mise the extraction of important features from the input
images. This choice is fully justified since our preliminary
experiments show that these preprocessing techniques do not
significantly increase our proposed method’s performance.

The original paper presenting the dataset [21] also pro-
poses a train/test split to train a classifier. This split is based
on a 70–30% proportion arranged to avoid the presence of
images of the same patient in both the training set and the
test set. As written above, this is very important because we

found that if different images of the same patient are in both
training and test, the performances are much higher (around
10% increase); the separation at the patient level allows us
to define the patient-level accuracy PLA, which is a specific
metric for the patient and is defined in Eqs. (11) and (12).

The Agios Pavlos Dataset

The Agios Pavlos dataset [22] contains 300 images with
a resolution of 1280 × 960 and a magnification factor of
40× obtained from 21 patients with invasive ductal carci-
noma. The images are labelled according to their grade: 107
images for Grade 1, 102 images for Grade 2, and 91 images
for Grade 3. Figure 3b shows a sample of the pictures con-
tained in the dataset. Through an in-depth dataset analysis,
we identified nine duplicate images, i.e. those simultaneously
belonging to the Grade 1 and Grade 3 classes. We decided
not to consider these images, obtaining a dataset with 282
samples (Table 2 reports this new configuration). The origi-
nal paper that presents the dataset [22] does not contain any
information to link the images with the 21 patients. Still,
looking at the prefixes of the image file names, we notice
some repeated prefixes, and by grouping them, we obtain 21
groups that could be related to the patients, as we reported
in Table 2. The authors of the dataset, in private communica-
tion, confirmed the connections between the image prefixes
and the patient’s identity. The patient information allows us
to perform a further experiment, building the training and
test sets so that the images of the same patient are not simul-
taneously in both sets.

The PathoIDCG Dataset

The PathoIDCG (Pathological Image Dataset for Invasive
Ductal Carcinoma Grading) [23] contains 3644 histopatho-
logical images of invasive ductal carcinomawith a dimension
of 1000 × 1000 and acquired at two magnification factors:
20× and 40×. Each image is labelled according to its grade.
In Fig. 3c, we report some examples of images, while in
Table 3, we have the sample distribution divided by the mag-
nification value.

The Embedding Space and the Granular Structure

The proposed system is based on two main components:
the embedding space and the granular structure. In the first
component, the input images are divided into tiles and then
represented as vectors in the embedding space. This space
is obtained using a neural network trained with the “metric
learning” procedure. This learning algorithm moves the rep-
resentations of objects of the same class near each other and
moves representations of different classes far apart.
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Fig. 3 Some images from the
three datasets used

In the obtained embedding space, training tiles are roughly
organized in clusters, one for each class: Fig. 1 shows the
result of this phase.

The granular structure, the second component of the sys-
tem, is built in this embedding space. The SOM network
creates a map of the space where are the training tiles: the
SOM units are organized in a lattice that covers the embed-

Table 1 The BreakHis dataset: for each patient, the set of images is
divided in magnifications 40×, 100×, 200×, 400×. Bold indicates the
best values

No. of images No. of patients

Benign 2480 24

Malignant 5429 58

ding space, and each unit is the centre of a small cluster of
similar tiles, i.e. the granules.

Construction of the Embedding Space

This subsystem aims to develop a space where histopathol-
ogy images can be represented and where the classification
of a new image can be obtained transparently.

The images of the three datasets used are classified as
Benign and Malignant for the BreakHis dataset; Grade 1,
Grade 2, and Grade 3 for the Agios Pavlos and PathoIDCG
datasets. These classes should be separated in the used rep-
resentation space as clearly as possible.

The first step is focused on transforming each image in the
training dataset into a set of points in the embedding space.
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Table 2 The distribution of the images in the Agios Pavlos dataset before and after duplicate removal and the file name prefixes that allows to
connect the images to the patients

Class and number of images Prefixes Original images Removed images

Grade 1 : 012xxx 38 images 9 images duplicated in

107 original images 031xxx 34 images 01220xxx and 0121xxx

98 images after G18xxx 4 images

duplicate removal G128xxx 14 images

G130xxxx 5 images

G141xxx 12 images

Grade 2 : 0111xxxx 33 images

102 original images 0112xxxx 24 images

G2887xxx 9 images

G210xxxx 14 images

G2122xxxx 22 images

Grade 3 : 0121xxx 6 images 5 images duplicated in 012xxx

91 original images 01220xxx 6 images 4 images duplicated in 012xxx

82 images after 01221xxxx 11 images

duplicate removal 01222xxx 1 image

06221xxx 10 images

06222xxx 9 images

06223xxx 13 images

06224xxx 11 images

G3174xxx 18 images

G33777xx 6 images

Total num. of prefixes/patients 21 -

Total num. of images - 300 18

This first step is carried out in three sub-activities: first, the
image is divided into tiles, then the tiles are transformed
into points in a feature space, and finally, these points are
projected into a lower-dimensional embedding space.

The input image is divided into tiles for many reasons:
first, because we want information about parts of the image,
not the whole image; second, because even if the dataset
image is a patch of a larger WSI image, it is typically too
big to be processed as a whole. We segment each train-
ing image into small tiles, with dimensions of 96 × 96 for
the BreakHis and Agios Pavlos datasets and 32 × 32 for
the PathoIDCD one. Using a pre-trained ResNet152 [24]
deep neural network, these tiles are transformed into 2048-
dimension vectors. These vectors are post-processed using a
metric learning technique to obtain a clear cluster structure
that respects the categories of the image we are interested

in [25]. The metric learning technique allows us to obtain
separated clusters for each class of the image: Fig. 4 shows
the procedure of the division of the images in tiles and the
embedding network that transforms the images into vectors
in the metric space, while Fig. 1 shows the results obtained
using the metric learning procedure for the BreakHis dataset.
The visualization in Fig. 1 is obtained using the two most
informative principal components.

We use the so-called triplet network [25] to obtain the
embeddings starting from the tiles. Our proposed triplet net-
work consists of a ResNet152 pre-trained on the ImageNet
dataset [26] and a linear layer with 512 units (the embedding
layer) without any activation function. We only apply the L2

normalization to the obtained feature vectors in the embed-
ding layer. The training of this kind of network requires the
use of particular loss functions that consider similarity infor-

Table 3 The distribution of the
images in PathoIDCG dataset

Magnification factor Grade 1 Grade 2 Grade 3 Number of images

20× 600 641 1245 2486

40× 361 480 317 1158

Total 961 1121 1562 3644
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Fig. 4 The constructionof the embedding space; histopathology images
are divided into tiles, and each fragment is projected into the embedding
space. During this phase, the embedding network

mation. The goal of the embedding layer is to transform

the representations x∗ ∈ R
n to the embeddings r∗ ∈ R

n
′
.

According to a distance criterion d during the training pro-
cedure, the weights of the embedding layer are adjusted so
that the value d(ra, rn) is greater than a prefixed margin m
w.r.t. the distance d(ra, rp). The distance criterion d and the
margin m are parameters of the model; the most commonly
used distance criteria are cosine andEuclidean distances. The
loss function used to train the network is the so-called triplet
margin loss [27] defined as follows:

ltri plet = max
{
0, d(ra, rp) − d(ra, rn) + m

}
. (1)

The training algorithm is organized in mini-batches,
selecting the most effective triplets to update the network
weights. There are several selection strategies [27]; in this
work, we adopt the semi-hard negative mining strategy,
defined as follows:

d(ra, rp) < d(ra, rn) < d(ra, rp) + m. (2)

This strategy forces the embedding of the negative exam-
ples rn to be farther away from the embedding of the anchor
ra with respect to the embedding of the positive example
rp but always bounded by the margin m. Consequently, the
network’s loss is bounded by the margin m.

The metric learning procedure is based on training the
ResNet152 representing the network, followed by a linear
layer. Cluster separation is obtained during training using
image triplets constituted by a reference image (anchor),
a positive (same class), and a negative example (different
class). Tiles inherit their label from the image they came
from. Further details on the embedding into a metric space
can be found in [28].

Metric learning approaches have been used successfully
for medical imaging purposes [29–31].

Building the Granular Structure

When all training image tiles are projected in the embedding
space, a clustering algorithm can be used to create a set of
cluster centres that work as an upper-level structure over the
image tiles.

Using the self-organizing map (SOM) [32] is possible to
obtain clustering without specifying the number of clusters
in advance; the SOM network builds in the embedding space
a lattice that contains the neural units, and this lattice con-
stitutes the map. Figures 5, 6, and 7 show that on the map,
it is possible to recognize the clusters, identified with the
areas containing tiles of the same kind (i.e. areas of the same
colour in the figures), sometimes separated by units that do
not contain any tile (the grey units). Each neural unit in these
areas groups image tiles of the same characteristics, repre-
senting a granule [33] with a measurable physical proximity
to other granules in the map. This proximity guarantees a
smooth feature transition from a granule to the nearest one.
This combination of clustering and granular structure on a
bi-dimensional lattice, which allows easy visualization, is the
main reason motivating the use of SOM networks.

The SOM lattice is organized during the training phase
of the network, and this phase is represented in Fig. 8. Each
granule receives a label from its clustered tiles using a major-
ity vote schema. Remember that the image tiles receive these
labels from the image from which they were extracted. In
a malignant image, some tiles will probably not contain

Fig. 5 Distribution of the tiles on the SOM map for the first fold. The
grey colour indicates that the unit does not contain any tiles in the
cluster; the orange colour indicates malignant tiles, and the blue colour
indicates benign ones
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Fig. 6 Agios Pavlos dataset: distribution of the tiles on the SOM map
for the first fold. The grey colour indicates that the unit has not any tiles
in the cluster. The blue indicates Grade 1 tiles, the orange Grade 2 tiles,
and the green Grade 3 tiles

“malignant details”, but this error can be neglected. The rest
of the section will go deep into the training procedure.

As introduced before, the self-organizing map is trained
using unsupervised learning to produce a two-dimensional
projection called a map, preserving the relationship of prox-
imity and distance asmuch as possible. SOMdiffers from the
other neural network types because it uses competitive learn-
ing instead of error correction learning (gradient descent and
back-propagation). SOM learns to recognize similar input
vectors so that close neurons respond to similar input vec-
tors. This technique is generally used to cluster, classify, and
visualize the data.

ASOMconsists of a series of neurons arranged in a hexag-
onal or rectangular lattice, a grid. Each neuron of the grid is

Fig. 7 PathoIDCG dataset: distribution of the tiles on the SOM map
for the first fold. The grey colour indicates that the unit has not any tiles
in the cluster. The blue indicates Grade 1 tiles, the orange Grade 2 tiles,
and the green Grade 3 tiles

Fig. 8 Training of the self-organizing map

connected with the adjacent through neighbourhood relation,
dictating the map’s structure. Each map neuron can be rep-
resented as a weight vector called prototype with d features
mi = [mi1, . . . ,mid ], in our case d = 512 because this is
the dimension of the embedding space. During the training
phase, for each sample r from the input dataset, the distances
between r and all the map prototypes were computed. The
neuron whose weight vector is closer to r is called the Best
Matching Unit (BMU) and can be computed with the follow-
ing equation:

‖r − mc‖ = min
i

‖r − mi‖. (3)

After the BMU finding, the weight vectors are updated so
that the weight vector associated with the BMU is closest to
the input vector in the input space. Furthermore, the neigh-
bours of the BMU are treated in the same way. During the
SOM training, we have two types of learning:

• Competitive learning: The prototype most similar to the
input vector is updated to be more like it.

• Cooperative learning: The algorithm updates the proto-
type and its neighbours.

The SOM update rule for a weight vector i is as follows:

mi (t + 1) = mi (t) + α(t)hci (t)[r(t) − mi (t)] (4)

where:

• x(t) is the input vector at time t ;
• hci (t) is the neighbourhood function that defines the ker-
nel around the winner BMU c:

hci (t) = exp

(−d(c, i)2

2σ 2(t)

)
(5)

• σ(t) is the neighbourhood radius at time t ;
• d(c, i) is the distance between the unit c and the unit i

calculated on SOM lattice;
• α(t) is the learning rate at time t . The learning rate can

be linear α(t) = α0
1−t
T where α0 is the initial learning

rate and T is the number of samples in the training set.
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Another possibility is to set the learning rate inversely
proportional to time: α(t) = A

t+B with A and B suitable
constants.

Before the training phase, it is necessary to initialize the
weight vectors of each unit. Several strategies exist to ini-
tialize the prototypes: for example, the random strategy sets
the weights with small random numbers, or the sampling
strategy uses random samples of the training set. Another
possibility - the one used for our experiments - is to set the
SOM initial weights using the Principal Component Analy-
sis (PCA) weights. This technique initializes the weights to
span the first two principal components, doesn’t depend on
random processes, and makes the training process converge
faster. In Table 4, we reported the settings to train the SOM
to cluster the tile representations obtained using the metric
learning technique. The settings in Table 4 are the same for
the three datasets involved in our experimental activity. We
chose the rectangular SOM topology because a neuron has
four one-neighbor neurons. This choice allows us to reduce
the complexity of the proposed approach. For the radius of the
neighbourhood σ , we try different values in the range [1, 10].
However, we choose σ = 10 because this value allows us
to obtain a more uniform granular structure with most SOM
units with underlying tiles.

Note that we performed further experiments to verify
whether better results are possible for the Agios Pavlos and
PathoIDCG datasets, increasing the number of iterations and
the σ value. However, the results obtained are comparable to
those obtained using the configuration in Table 4 (results are
available upon request).

The Proposed System

The proposed system can be decomposed into these sub-
parts: A first subsystem extracts the tiles from the input
image, a second projects them into the embedding space
using the triplet network, and a following subsystem man-
ages the granule structure supported by the SOM network.
Each SOM unit is an information granule because it repre-

Table 4 SOM training details

SOM training details

Grid dimension Rectangular 10 × 10

Neighbourhood function Gaussian σ = 10

Learning rate Linear α0 = 0.5

Weight initialization PCA weights

Iterations 100

sents a set of similar clustered tiles and is labelled using the
most common label in the cluster. Finally, a last subsystem
collects all the tile labels and generates the final answer. The
working and the output of each subsystem can be inspected
and visualized; for example, it is possible to check the posi-
tion of the tiles in the embedding space of an input image.
Their position on the SOMmap that implements the granular
structure can be inspected, and the nearest tiles that have the
most similar content can be visualized.

In the test phase, a new image will be processed by the
system components (see Fig. 9): the image is divided into
tiles of the same dimension as the training dataset images,
and then each fragment is projected in the embedding space
using the same ResNet152 network and the same projection
mechanism. The embedded tiles are submitted to the SOM,
which answers with a set of labels, one for each tile. At the
end of the procedure, each fragment of the new image has a
label, and the analysis of these labels can begin.

The system was tested for pathology identification and
grade classification. Considering pathology identification, if
all the tiles are classified with benign labels because they are
part of granules that contain only tiles from benign images,
the whole image can be classified as benign with the highest
degree of certainty.

In another case, if a few tiles are in clusters withmalignant
labels, then we need deeper observations.

If a few tiles are labelled as malignant, an expert should
further check the image; the image can still be classified as
benign (because the classificationmechanismuses amajority
vote), but the classification is not certain, and the number

Fig. 9 The test phase
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of malignant tiles can be considered as an indication of the
uncertainty of the classification result. If the majority of the
tiles are labelled as malignant, the image can be classified as
malignant. For a classification example, see the “BreakHis
Dataset” section.

Regarding the grade tumour identification problem, we
first counted the number of tiles in the image of each grade.
Then, we labelled the image, assigning the grade correspond-
ing to the highest number of tiles. The “AgiosPavlosDataset”
and “PathoIDCG Dataset” sections show a classification
example for the Agios Pavlos and PathoIDCG datasets.

Performances Evaluation

In the general context of supervised learning, the commonly
used metrics to evaluate a classification algorithm are accu-
racy, precision, recall (sensitivity), specificity, and F1-score.
In the following, we recall the definitions of these perfor-
mance indices:

Accuracy = T N + T P

T N + FP + T P + FN
(6)

Precision = T P

FP + T P
(7)

Recall (Sensi tivi t y) = T P

T P + FN
(8)

Speci f ici t y = T N

T N + FP
(9)

F1 − score = 2 × Precision × Recall

Precision + Recall
(10)

where TP, FP, TN, and FN indicate the counting of true
positives, false positives, true negatives, and false negatives,
respectively. Thesemetrics are defined for the binary classifi-
cation problem.However, they can be extended tomulti-class
classification, averaging the results of N binary one-vs-rest
classifiers, with N representing the number of classes.

If the patient information is available, classification per-
formances will be reported using the so-called PLA [21], i.e.
a performance index that takes into account the results at the
patient level in the following way:

Patient Score = Nrec

NP
(11)

where NP is the number of images available of the patient
P , and Nrec is the fraction of NP images correctly classified.
The patient-level accuracy (PLA) is defined as follows:

PLA =
∑

Patient Score

T otal Number of patients
. (12)

The patient score is defined as the accuracy of a single patient,
while PLA is an average of the patient scores, which are
evaluated as an average among the patients.

Results

In this section, we describe the results obtained using our
approach. For each of the three datasets considered, we first
report the SOM clustering results, followed by the classifi-
cation results accompanied by selected image examples.

Additionally, we performed other experiments for the
BreakHis dataset. The first consists of testing the effective-
ness of our proposal using ResNet152 as a feature extractor
without the metric learning application. Another experiment
investigates the impact of preprocessing techniques on clas-
sification by applying our approach to image processing
using the stain normalization technique. To strengthen the
robustness of our approach, we provide an analysis of two
classical feature reduction and clustering methods, i.e. PCA
and k-Means. In the embeddings obtained, we apply the PCA
method to reduce the dimensionality of the data, and then we
apply the k-Means algorithm to simulate the results obtained
through the SOM. The last experiment consisted of classi-
fying the images, fine-tuning the ResNet152 network, and
applying the Grad-Cam technique to highlight the image
regions used to assign the label to the image.

BreakHis Dataset

The proposed systemwas tested using the fivefold configura-
tion described in [21]; this means that all the reported results
are averaged over the five training and testing cycles.

The obtained results are reported in Table 5. The pro-
posed technique corresponds to the row with the ML+SOM
tag. A set of experiments that do not employ metric learn-
ing but just the SOM is reported in the row corresponding
to NOML+SOM and shows worse results than the proposed
method. For additional details, see the “Ablation Studies and
Grad-Cam Comparison” section. The row SN+ML+SOM
reports the results obtained using the stain normalization
(SN) procedure; we carried out several experiments that can
be summarized in the following steps: five different images
as target images for stain normalization were selected, and
for each image, the classification was performed, then an
infra class stain normalization was performed, selecting five
different images as a target for benign class, and five for the
malignant class. In both cases, we observed no improvements
in the classification accuracy. Note that the results reported
in the table are obtained from only one image as the tar-
get image, which is the most used procedure when applying
stain normalization.
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Table 5 Comparison of results
for the classification of
BreakHis images between
benign and malignant. ML is
for metric learning; SN is for
stain normalization; Acc is
accuracy; Pre is precision; Se is
sensitivity (recall); Spe is
specificity; and F1 is F1-score.
Bold indicates the best values

Exp Acc PLA F1

NOML+SOM 0.625 ± 0.069 0.635 ± 0.073 0.748 ± 0.083

ML+SOM 0.872 ± 0.020 0.868 ± 0.028 0.906 ± 0.015

SN+ML+SOM 0.836 ± 0.825 0.825 ± 0.023 0.885 ± 0.007

ResNet152 0.849 ± 0.038 0.846 ± 0.036 0.715 ± 0.044

Amato et al. [28] 0.887 ± 0.021 0.889 ± 0.024 0.868 ± 0.023

Exp Pre Se Spe

NOML+SOM 0.877 ± 0.185 0.414 ± 0.339 0.671 ± 0.027

ML+SOM 0.922 ± 0.042 0.835 ± 0.082 0.893 ± 0.031

SN+ML+SOM 0.946 ± 0.029 0.858 ± 0.065 0.833 ± 0.019

ResNet152 0.778 ± 0.047 0.785 ± 0.108 0.890 ± 0.024

Amato et al. [28] 0.882 ± 0.027 0.868 ± 0.022 -

We have compared the proposed methodology with our
last proposal, another explainable approach based on a met-
ric space built with the same method, using the k-nearest
neighbours (k-NN) classifier [28].

The comparison of themetrics (reported in Table 5) shows
similar performances, but our oldmethod classifies the image
as a whole, while the new one proposed here can be able to
highlight some problematic tiles in the classified image.

The system in [28] works as a reference because it is based
on the sameembedding space andwas comparedwith the best
system available in the literature, tested with a patient-based
approach. Moreover, this method [28] has PLA performance
better than or equal to all other black-box systems proposed
in the literature (see the results in the paper). This allows
us to make a comparison, by transitivity, of this new model
with such black-box systems. In fact, the new one has even
better performance in F1-score, precision, and recall than
[28], proving that transparent approaches can be comparable
with black-boxmodels. These results demonstrated that there
is no compromise between explainability and performance,
as Rudin said in [4].

The modularity of our approach allows us to visualize the
behaviour of all components of themethodology. The prelim-
inary clustering obtained from themetric learning subsystem
is reported in Fig. 1, and the results of the SOM classification
are represented in Fig. 5, where each circle corresponds to a
SOM unit, and the pie chart for each cell indicates the frac-
tion of underlying malignant and benign training tiles falling
in that cell. Grey units indicate units that do not have any
underlying training tiles.

Figure2 shows some classification examples: On the left,
there is a benign test image correctly classified as benign.
Notice that the results came from a majority vote because
there are some image tiles that themethod classified asmalig-
nant, highlighted with a red border, and maybe need some
further investigation. The centre of the figure shows a mis-
classified malignant image; this is the most dangerous case

because it is a false negative image. The last image shows a
malignant image correctly classified as malignant.

If the tiles of a new image are not all assigned to the benign
class, the user is guided to the tiles that can contain malig-
nant details. If the user is not satisfied, they can go under the
hood and check the corresponding image granules, verifying
the underlying tiles. This is something that can help to cor-
rect the system’s behaviour by analyzing the “knowledge” of
the system.

Agios PavlosDataset

For the Agios Pavlos dataset, we performed two experiments
to test the effectiveness of the proposed approach. The first
involves applying a fivefold cross-validation testing proto-
col without considering the patient’s information, obtaining
a fivefold image-based. Considering that we have patient
information in the second experiment, we create fivefold
patient-based images so that pictures of the same patient are
not simultaneously in training and test sets. This experiment
allows us to simulate a situation where the pathologist eval-
uates images of an unknown patient. In both experiments,
during the preprocessing phase, we resize the images to
700 × 460 to obtain an amount of 28 patches of dimension
96×96 per image. We report the SOM results in Fig 6. Each
circle represents a SOM unit, and the pie chart of each cell
represents the fraction ofGrade 1,Grade 2, andGrade 3 train-
ing tiles that fall into the cells.Grey circles represent theSOM
unit without underlying training tiles. In Table 6, we report
the classification results for both experiments that we per-
formed. After analyzing the results, it is evident that we expe-
rienced a significant performancedrop in the case of a patient-
based split. In contrast, from the BreakHis experiments in
which we identify the malignant tiles in the image, in this
case, treating a multi-class classification problem, we iden-
tify the tiles that belong to the predicted class in the image.
Figure 10 shows a correct classification of a Grade 1 image.
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Table 6 Agios Pavlos dataset:
obtained results and comparison
between the proposed method
and an alternative method [34].
Bold indicates the best values

Exp Acc PLA F1

Image-based 0.943 ± 0.023 - 0.943 ± 0.023

Patient-based 0.664 ± 0.061 0.530 ± 0.115 0.547 ± 0.080

Calderaro et al. [34] (image-based) 0.968 ± 0.020 - 0.967 ± 0.020

Exp Pre Se Spe

Image-based 0.949 ± 0.018 0.943 ± 0.023 0.976 ± 0.008

Patient-based 0.737 ± 0.100 0.530 ± 0.115 0.832 ± 0.066

Calderaro et al. [34] (image-based) 0.968 ± 0.020 0.968 ± 0.020 -

In the figure framed in red, we have the tiles that belong to the
predicted class. In this case, most tiles belong to the Grade 1
class, so our approach classifies the entire image accordingly.

We compare the results with those obtained using our
previous approach introduced in [34]. In this method, we
represent the histological images using a graph built starting
from the tissue regions of the image. Then, we use a Graph
Convolutional Neural network to perform the classification.
The results obtained using this approach are in the last row
of Table 6. After analyzing Table 6, it is evident that the
results are comparable. However, it is essential to point out
that compared to graph encoding, this new approach is com-
putationally faster and is explainable; in fact, it provides the
domain experts with the tiles used to make the final decision.

PathoIDCG Dataset

For the PathoIDCG dataset, considering that there is no pre-
defined split between training and testing, we use a fivefold
cross-validation to obtain reliable results. The images in this
dataset have a resolution of 1000 × 1000 pixels. To make
our approach applicable to these images, we resize them
to 256 × 256 pixels and extract 64 patches of dimension
32 × 32. Figure 7 shows the results of the SOM clustering
on the training tiles. Each circle represents a SOM unit, and
the pie chart shows the distribution of the samples inside the
unit. Grey circles represent the SOM unit that does match
training tiles. Table 7 reports the classification performances
averaged among the five folds considered. It can be seen that,

Fig. 10 Agios Pavlos dataset: a
correct classification of a Grade
1 image. Framed in red, we have
the image tiles that belong to the
predicted class

123

3012 Cognitive Computation (2024) 16:2999–3019



Table 7 PathoIDCG dataset: obtained results and comparison between the proposed method and an alternative method [34]

Method Acc Pre Se Spe F1

Proposed approach 0.902 ± 0.012 0.907 ± 0.009 0.902 ± 0.012 0.949 ± 0.006 0.902 ± 0.012

Calderaro et al. [34] 0.966 ± 0.009 0.967 ± 0.009 0.966 ± 0.009 - 0.966 ± 0.001

in this case, our approach achieves good results in terms of
accuracy but lower than those obtained for the same problem
using another data set with images with a more significant
dimension. In Fig. 11, we report a correct classification of a
Grade 2 image.

Also, for this dataset, we compare the obtained results
with those obtained in [34]. In this case, the results obtained
using our new approach are worse than the previous one. The
results are compared in Table 7.

Ablation Studies and Grad-Cam Comparison

In the following, we describe a set of experiments performed
to demonstrate the effectiveness of the proposed approach.
These experiments include using the proposed methodology
without the metric learning processing for the embedding
computation, using an alternative clustering approach (i.e.
the combination of PCA and k-Means), and finally, using a
widely employed ResNet152 combined with the Grad-Cam
for the explainability.Weperformed all the experimentsmen-
tioned above using the BreakHis dataset. The need for metric
learning is demonstrated by the ablation study, whose results
are reported in the first row of Table 5. Regarding the abla-
tion study, to obtain the fragments’ representation, we use
a ResNet152 as a feature extractor without applying metric
learning to create the embedding space. Then, we use the
SOM to cluster the training fragments and, finally, to predict

Fig. 11 PathoIDCG dataset: a correct classification of a Grade 2 image.
Framed in red, we have the image tiles that belong to the predicted class

the class of test set images. Analyzing the results reported
in the first two rows of Table 5, it is evident that we have
a vast performance drop for all the considered metrics. This
experiment clearly shows that the representation of the image
fragment obtained using the pre-trainedResNet152 is needed
to get good performance. Separating tiles into two groups
obtained by metric learning is fundamental for subsequent
grouping, and the SOM can create meaningful clusters with
the ResNet152 representation obtained with metric learning.

To assess the effectiveness of the use of SOM as a clus-
tering method and dimension reduction, we conducted an
analysis of two classical feature reduction and clustering
methods, i.e. PCA and k-Means. First, we extracted the
embeddings from the data. Then we apply the PCA to reduce
the data to the first two principal components of the metric
space, thus simulating the result obtained from the SOM.
Then, we apply the k-Means algorithm on the fivefolds with
a variable number of clusters between two and ten and com-
pute the PLA for each of them. Additionally, we consider
also one hundred clusters, which is the same number of cen-
troids considered in the SOM. It is very important to point
out that for k > 2 the binary classification was done by con-
sidering for each test element the most frequent class within
the cluster to which it is assigned. The results are shown in
the Fig. 12.

We report the PLA values considering just the k-Means
and applying the PCA before the k-Means clustering. It may
be noted that this approach provides comparable results to
those obtained with the SOM model. However, unlike the
method presented in this paper, k-Means can not be used to
automatically determine the appropriate number of clusters,
which makes it less robust than the proposed approach.

Furthermore, combiningPCAand k-Means does not allow
us to create a granular structure. Conversely, using our
approach based on SOM clustering, we can obtain a granular
structure since the SOM organizes the data topologically, i.e.
it maps similar data in nearby locations on themap, capturing
a more complex relationship between the data and creating
a set of granules of information that reflects the intrinsic dis-
tribution of the data.

The last experiment we performed concerns the explain-
ability mechanism and consists of classifying the images,
fine-tuning the ResNet152 [24] pre-trained on the ImageNet
dataset [26] with two classes, benign andmalignant, and then
applying the Grad-Cam approach [14]. We train the neural
network for fifty epochs using the Adam optimization algo-
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Fig. 12 k-Means PLA results
for k ∈ [2, 10] and k = 100. For
each k, we report the mean PLA
value and its standard deviation
across all folds, with or without
the use of PCA features
reduction. The best result is
achieved at k = 2 with
PLA= 0.87, in both cases

rithm [35] with a learning rate 1 × 10−3 and a mini-batch
size of cardinality 32. The classification results are shown in
the last row of Table 5. The Grad-Cam approach allows us to
create a heatmap highlighting the image regions used to clas-
sify the image. This informationwill enable us to compare the
explainability results obtained with our proposal with those
obtained using ResNet152 with Grad-Cam.

Figure13a shows awrong classification of a benign image.
On the left, we have the results obtained using our approach,
while on the right, those obtained usingGrad-Cam. It is inter-
esting to note that neither approach correctly classifies the
image. Furthermore, it is possible to see a correspondence
between the image’s region identified by our approach and
the Grad-Cam heatmap. In Fig. 13b, we have a correctly
classified benign image. In this case, both approaches cor-
rectly classify the image but provide different information:
our method returns some malignant tiles—bordered in red—
while Grad-Cam highlights some areas responsible for the
benign classification. The two techniques are coherent since
the area that Grad-Cam highlights is also benign for our
method. Finally, in Fig. 13c, we report a correctly classified
malignant image. In this case,wehave an overlap between the
regions identified by our approach and the areas highlighted
using Grad-Cam. In both cases, this information is responsi-
ble for the correct image classification. It is worth noticing
that while the Grad-Cam just highlights some areas of the
image according to its decision process, the areas highlighted
with our method are the ones that are similar to the regions of
malignant regions. The tiles with red borders have patterns
that are similar to areas labelled as malignant. Conversely,
from the heatmap obtained through the Grad-Cam approach,
only the most relevant image parts for the labelling process
are highlighted. There is no identification of it as malignant.

The information provided by our approach, which is a set of
malignant tiles, can be helpful if integrated into a decision
support system. For instance, during the examination and
diagnosis process, the pathologist could use the identified
malignant tiles for a more in-depth investigation or require
additional exams.

Discussion

From an explainability perspective, the results of our method
have dual significance. As highlighted in [36], it can target
either system developers or physicians, enriching the sys-
tem’s responses with context.

Developers seek to comprehend and predict responses to
ensure the system behaves consistently across various inputs.
They also aim to identify and rectify any erratic behaviour
or, at minimum, understand its causes for future avoidance.
Visualizations like Fig. 1 help developers discern clear class
separations within the training set, crucial for verifying the
embedding phase’s outcomes. The ablation study results in
Table 5 underscores this phase’s importance: poor class sep-
aration leads to diminished system performance.

The foundation of the proposed approach lies in the gener-
alization of the embedded space shaped by the SOMnetwork
granularization. Granules receive a label from the clustered
image tiles, which is used to classify the tiles of a new input
image. The label received from the tiles in a BMU cell is
obtained considering the classes of most tiles in the cell.

The method’s robustness is evidenced by its performance
across various datasets, applicable to both binary and multi-
class classifications.

Images are segmented into squared tiles of 96× 96 pixels
for processing. Each tile undergoes SOM network classifi-
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Fig. 13 A comparison of our
method with Grad-CAM

cation, with the image’s overall classification emerging from
the aggregate tile classes. This method employs a voting
system for each tile, with the final classification reflecting
the majority. The system’s ability to handle images of any
resolution and magnification level is not contingent on the
number of tiles, allowing for versatile application. Further
refinement of this classification process remains a topic for
future research.

Figure2 illustrates the classification of three images using
a majority vote approach, where malignant tiles are marked
with a red border. This method extends to multi-class classi-
fication, as depicted in Figs. 7 and 11. Notably, in the case of
a malignant prediction, Fig. 3 reveals a correlation between

our method’s malignant tile identification and the Grad-
Cam-highlighted areas, affirming ourmethod’s validity. Such
congruence indicates that our method could excel as a deci-
sion support tool, offering dependable, interpretable insights
for precise diagnosis. In addition, the classification context is
provided by the training tiles within the SOM BMU, allow-
ing users to assess the similarity and the method’s accuracy.
The quantity of misclassified tiles may also indicate confi-
dence in the results, warranting further exploration. Lastly,
the label distribution within granules, as shown in Figs. 2, 5,
6, 7, and 10, offers developers insight into label consistency
across tiles or if it results from majority voting.
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As depicted in Figs. 2, 5, 6, 7, and 10 further insights can
be gleaned from the label distribution across granules. These
visualizations enable developers to discern whether a gran-
ule’s label is uniformly distributed across all tiles or if it’s
the result of a majority vote.

In instances where a majority vote determines the label,
the granule possesses a degree of fuzzy information that
could be considered a degree of reliability. Such granules
represent a mere 12% of the total, yet their inclusion in
the system persists. Notably, each dataset exhibits well-
demarcated classes within the SOM, ensuring coherent
regional classifications.

As for performance, our method demonstrates high accu-
racy on the BreakHis dataset, detailed in Table 5. Inter-
estingly, preprocessing techniques like Stain Normalization
appear to offer no significant benefit to the model’s accuracy
or F1-score. The superiority of using SOM for clustering
and dimensionality reduction is evident when compared to
traditional methods like PCA and k-Means, which, despite
similar accuracy levels, lack the capability for automated
cluster analysis.

The method also excels in multi-class classification sce-
narios, particularly in image-based settings. However, a
notable performance decrease is observed in theAgios Pavlos
patient-based dataset. These findings are systematically pre-
sented in Tables 6 and 7 for the Agios Pavlos and PathoIDCG
datasets, respectively.

In summary, our proposed method has the potential to sig-
nificantly impact future medical imaging research, serving
as the cornerstone of a dependable decision support system.
The granular classification data is pivotal, potentially enhanc-
ing the detection of cases warranting further investigation,
such as when malignant and benign patch classifications are
closely matched. Furthermore, our methodology’s simplic-
ity ensures replicability and our provided source code can
address implementation challenges. It also opens avenues
for integrating our approach with others, fostering a collab-
orative environment among expert models.

Conclusions

This paper presented a new granular computing approach for
classifying histopathology images based on image fragment
extraction, metric space embedding, and SOM clustering.
The results obtained on three publicly available binary and
multi-class datasets are encouraging: themethod has an accu-
racy equal to or greater than the state-of-the-art deep learning
approaches based on black-box algorithms while presenting
a transparent (explainability) mechanism that allows the ver-
ification of each step of the classification flow. Interestingly,
this novelmechanismhas shown an agreementwith theGrad-
Camalgorithm, a commonly used approach for convolutional

networks, providingmore context information and enabling a
deep analysis of the classification results. It starts by classify-
ing image tiles using a transparent mechanism and builds the
classification result with a bottom-up process. Our method-
ology does not suffer from any accuracy vs explainability
trade-off since it is intrinsically explainable due to the met-
ric learning adoption. There is undoubtedly room for further
investigations; for example, amore flexible and sophisticated
procedure that considers the neighbourhoodunits of theSOM
can be used to combine the classification of the set of tiles.
The overall methodology is suitable for generic diagnostic
scenarios involving images. The limitation regards the size
of the input images; the bigger the image, the more patch
splits are required to provide the final classification.

In addition, some insights and suggestions can come from
physicians who are the final users of systems based on this
approach. Due to the modularity and explainability of each
component, this can significantly help improve such systems.
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