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Abstract. Let A be superalgebra over a field of characteristic zero and let ∗ be either a graded
involution or a superinvolution defined on A. In this paper we characterize the ∗-algebras whose

∗-cocharacter has multiplicities bounded by one, showing a set of ∗-polynomial identities satisfied
by such algebras.

1. Introduction

Let A be an algebra, over a field F of characteristic zero, graded by Z2, the cyclic group of order
2, and let ∗ be either a graded involution or a superinvolution on A. The set of all ∗-polynomial
identities is denoted by Id∗(A) and it has a natural structure of T ∗-ideal, i.e. an ideal invariant
under all ∗-endomorphism of the free associative ∗-superalgebra. Moreover, it is well-known that
in case charF = 0, Id∗(A) is determined by the multilinear polynomials it contains. Thus we can
consider P ∗n1,n2,n3,n4

, the space of multilinear polynomials of degree n in n1 fixed symmetric even
variables, n2 fixed skew–symmetric even variables, n3 fixed symmetric odd variables and n4 fixed
skew–symmetric odd variables, where n = n1 + n2 + n3 + n4. In order to simplify the notation, let
P ∗〈n〉 = P ∗n1,n2,n3,n4

, where 〈n〉 = (n1, n2, n3, n4). Hence, if one sets

P ∗〈n〉(A) =
P ∗〈n〉

P ∗〈n〉 ∩ Id∗(A)
,

we can define c∗〈n〉(A) = dimF P
∗
〈n〉(A) and

c∗n(A) =
∑

n1+...+n4=n

(
n

n1, . . . , n4

)
c∗〈n〉(A), n ≥ 1,

where
(

n
n1,...,n4

)
is the multinomial coefficient.

Such a sequence is called the ∗-codimension sequence of the superalgbera A and it was introduced
firstly in the setting of associative algebras without any additional structure by Regev in [13]. In
some sense, it gives a quantitative measure of the identities satisfied by a given algebra. In the same
paper, the author showed that if A satisfies a non-trivial polynomial identity, then the codimension
sequence is exponentially bounded.

It turned out that the study of the asymptotic behavior of the codimensions is a powerful tool
that one can use in order to give a sort of classification of the algebras. In fact, a celebrated theorem
of Kemer establishes that in case of ordinary polynomial identities, cn(A) is exponentially bounded
of grows polynomially (see [11]). Similar results hold also for algebras with graded involution ([10])
and superinvolution ([6]).

Unluckily often it is not simple to determine exactly c∗n(A), thus one settles for a bound that
allows to figure out at least the asymptotic behavior of the codimension sequence. In order to
reach this goal, an important role is played by the representation theory of symmetric groups.
In fact, we can naturally act on P ∗〈n〉 with Sn1 × Sn2 × Sn3 × Sn4 by permuting the variables of

the same homogenous degree and the same symmetry with respect to ∗. Since Id∗(A) is invariant
under all ∗-endomorphism, then the previous action is inherited by P ∗〈n〉(A) that becomes a left

Sn1
× Sn2

× Sn3
× Sn4

-module.
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Given a 4-tuple 〈n〉 = (n1, n2, n3, n4), the corresponding Sn1
×Sn2

×Sn3
×Sn4

–character, called
the 〈n〉-th cocharacter of A and denoted by χ∗〈n〉(A), decomposes into irreducibles

χ∗〈n〉(A) =
∑
〈λ〉`〈n〉

m〈λ〉χλ(1) ⊗ χλ(2) ⊗ χλ(3) ⊗ χλ(4),

where 〈λ〉 = (λ(1), λ(2), λ(3), λ(4)), χλ(i) is the irreducible Sni-character corresponding to the
partition λ(i) ` ni and m〈λ〉 ≥ 0 are the multiplicities. It is clear that if one knows χ∗〈n〉(A) for all

n ≥ 1, then he can gather informations about c∗n(A).
One of the main objectives of the theory is to determine such multiplicities. This is in general

a very difficult problem and in the past years several authors have given quite a few contributions
in various settings (see for instance [2, 3, 4, 7, 12]).

The purpose of this paper is to classify the T ∗-ideals of identities such that the multiplicities
m〈λ〉 are bounded by one, in case ∗ is a graded involution or a superinvolution. In particular, we
show that these multiplicities are bounded by one if and only if the ∗-superalgebra A satisfies a
suitable list of ∗-polynomial identities.

The corresponding result for ordinary polynomial identities was given by Ananin and Kemer in
[1] and, later on, it was extended by Giambruno and Mishchenko in [8] in case of superalgebras or
algebras with involution and by Giambruno, Polcino and Valenti in [9] in case of algebras graded
by a finite group G.

2. Preliminaries

Throughout this paper, F will denote a field of characteristic zero and A = A0⊕A1 an associative
algebra over F graded by Z2, the cyclic group of order two, satisfying a non-trivial polynomial
identity. In this setting, the elements of A0 and A1 are called homogeneous elements of degree zero
(or even elements) and of degree one (or odd elements), respectively.

We now assume that the superalgebra A is endowed either with a graded involution, i.e. an
involution preserving the grading, or with a superinvolution. Recall that a superinvolution ∗ is a
graded linear map ∗ : A→ A such that (a∗)∗ = a and (ab)∗ = (−1)|a||b|b∗a∗, for all a, b ∈ A0 ∪A1.
Here |c| stands for the homogeneous degree of c.

Notice that if the grading on A is trivial, i.e. A1 = 0, then the graded involutions and the
superinvolutions coincide with the involutions on A. Moreover, if A2

1 = 0, then the superinvolutions
are in particular graded involutions.

From now on, let ∗ be indifferently a graded involution or a superinvolution on A, thus in
order to simplify the exposition, we refer at ∗ as a gs-involution. Since we are assuming that
charF = 0, we can write A = A+

0 ⊕ A
−
0 ⊕ A

+
1 ⊕ A

−
1 , where for i ∈ {0, 1}, A+

i = {a ∈ A | a∗ = a}
and A−i = {a ∈ A | a∗ = −a} denote the sets of symmetric and skew-symmetric elements of A,
respectively.

If X = {x1, x2, . . .} is a countable set of variables, we write F 〈X〉 to denote the free algebra
on X over F , i.e., the algebra of polynomials in the non-commuting indeterminates of X. As in
the case of graded algebras or of algebras with involution, if ∗ is a gs-involution on A, then F 〈X〉
inherits ∗ in a natural way. We write the set X as the union of two disjoint infinite sets Y and
Z, requiring that their elements are of homogeneous degree 0 and 1 respectively. Then each set is
written as the disjoint union of two other infinite sets of symmetric and skew elements respectively.
The free algebra endowed with ∗ is denoted by F 〈Y ∪ Z, ∗〉 and it is generated by symmetric and
skew elements of even and odd degree. We write

F 〈Y ∪ Z, ∗〉 = F 〈y+1 , y
−
1 , z

+
1 , z

−
1 , y

+
2 , y

−
2 , z

+
2 , z

−
2 , . . .〉,

where y+i stands for a symmetric variable of even degree, y−i for a skew variable of even degree,
z+i for a symmetric variable of odd degree and z−i for a skew variable of odd degree.

Let f(y+1 , . . . , y
+
n , y

−
1 , . . . , y

−
m, z

+
1 , . . . , z

+
t , z

−
1 , . . . , z

−
s ) ∈ F 〈Y ∪ Z, ∗〉 be a polynomial. We say

that f is a ∗-polynomial identity of A (or simply a ∗-identity), and we write f ≡ 0, if for all
u+1 , . . . , u

+
n ∈ A+

0 , u
−
1 , . . . , u

−
m ∈ A−0 , v

+
1 , . . . , v

+
t ∈ A+

1 and v−1 , . . . , v
−
s ∈ A−1 , we have

f(u+1 , . . . , u
+
n , u

−
1 , . . . , u

−
m, v

+
1 , . . . , v

+
t , v

−
1 , . . . , v

−
s ) = 0.

We denote by Id∗(A) = {f ∈ F 〈Y ∪ Z, ∗〉 | f ≡ 0 on A} the T ∗2 -ideal of ∗-identities of A,
i.e., Id∗(A) is an ideal of F 〈Y ∪ Z, ∗〉 invariant under all Z2-graded endomorphisms of the free
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superalgebra commuting with ∗. It is well known that in characteristic zero, every ∗-identity is
equivalent to a system of multilinear ∗-identities. Hence if we denote by

P ∗n = spanF

{
wσ(1) · · ·wσ(n) | σ ∈ Sn, wi ∈

{
y+i , y

−
i , z

+
i , z

−
i

}
, i = 1, . . . , n

}
the space of multilinear polynomials of degree n in y+1 , y

−
1 , z

+
1 , z

−
1 , . . . , y

+
n , y

−
n , z

+
n , z

−
n (i.e., y+i or

y−i or z+i or z−i appears in each monomial at degree 1) the study of Id∗(A) is equivalent to the
study of P ∗n ∩ Id∗(A), for all n ≥ 1.

Let n ≥ 1 and write n = n1 + · · · + n4 as a sum of four non-negative integers. We denote by
P ∗〈n〉 ⊆ P ∗n the vector space of multilinear ∗-polynomials in which n1 variables are symmetric of

even degree, n2 variables are skew of even degree, n3 variables are symmetric of odd degree and n4
variables are skew of odd degree. The group Sn1

×· · ·×Sn4
acts on the left on the vector space P ∗〈n〉

by permuting the variables of the same homogeneous degree which are all even or all odd at the
same time. Thus Sn1 permutes the variables y+1 , . . . , y

+
n1

, Sn2 permutes the variables y−1 , . . . , y
−
n2

,
and so on. In this way P ∗〈n〉 becomes an Sn1

×· · ·×Sn4
-left module. Now, P ∗〈n〉∩ Id∗(A) is invariant

under this action and so the vector space

P ∗〈n〉(A) =
P ∗〈n〉

P ∗〈n〉 ∩ Id∗(A)

is an Sn1
× · · · × Sn4

-left module with induced action. We denote by χ〈n〉(A) its character and we
call it the 〈n〉-th cocharacter of A.

If λ ` n, we denote by χλ the corresponding irreducible Sn-character. Thus, if λ(1) ` n1,
. . . , λ(4) ` n4 are partitions, we write 〈λ〉 = (λ(1), . . . , λ(4)) ` 〈n〉 and we say that 〈λ〉 is a
multipartition of n = n1 + · · · + n4. Since charF = 0, by complete reducibility, χ〈n〉(A) can be
written as a sum of irreducible characters

(1) χ〈n〉(A) =
∑

〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)

where m〈λ〉 ≥ 0 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(4) in χ〈n〉(A). Such a sequence is called ∗-
cocharacter sequence and for all n ≥ 1, χ〈n〉(A) is called 〈n〉-th ∗-cocharacter. Here recall that the
multiplicities in the cocharacter sequence are equal to the maximal number of linearly independent
highest weight vectors, according to the representation theory of the general linear group GLn.
Moreover, a highest weight vector is obtained from the polynomial corresponding to an essential
idempotent by identifying the variables whose indices lie in the same row of the corresponding
Young tableaux (see [5, Chapter 12] for more details).

3. The main result

In this section we will prove the main theorem of the paper. In fact, we will show that the
multiplicities in the ∗-cocharacter of a ∗-superalgebra A are bounded by one if and only if A satisfies
a list of suitable ∗-identities. Since in [8] the authors dealt with superalgebras and algebras with
involution, we may assume that in our case the Z2-grading and the gs-involution ∗ are always
non-trivial.

In what follows, we denote by [x1, x2] = x1x2−x2x1, the usual commutator among two variables,
and by x1 ◦ x2 = x1x2 + x2x1, the Jordan product among x1 and x2.

Lemma 3.1. Let A be a superalgebra with gs-involution ∗ and let

χ∗〈n〉(A) =
∑
〈λ〉`〈n〉

m〈λ〉χλ(1) ⊗ . . .⊗ χλ(4)

be its 〈n〉-th ∗-cocharacter. If m〈λ〉 ≤ 1 for all 〈λ〉 ` 〈n〉 and for all n ≥ 1, then A satisfies

(2) α1y
+
1 [y+1 , y

+
2 ] + β1[y+1 , y

+
2 ]y+1

(3) α2y
−
1 [y−1 , y

−
2 ] + β2[y−1 , y

−
2 ]y−1 ,

for some αi, βi ∈ F, (αi, βi) 6= 0, i = 1, 2, plus at least one identity of each group:

(i) y+1 z
+
2 ≡ 0 or y+1 ◦ z

+
2 ≡ 0 or [y+1 , z

+
2 ] ≡ 0;

(ii) y+1 z
−
2 ≡ 0 or y+1 ◦ z

−
2 ≡ 0 or [y+1 , z

−
2 ] ≡ 0;
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(iii) y−1 z
+
2 ≡ 0 or y−1 ◦ z

+
2 ≡ 0 or [y−1 , z

+
2 ] ≡ 0;

(iv) y−1 z
−
2 ≡ 0 or y−1 ◦ z

−
2 ≡ 0 or [y−1 , z

−
2 ] ≡ 0;

(v) z+1 z
−
2 ≡ 0 or z+1 ◦ z

−
2 ≡ 0 or [z+1 , z

−
2 ] ≡ 0;

(vi) y+1 y
−
2 ≡ 0 or y+1 ◦ y

−
2 ≡ 0 or [y+1 , y

−
2 ] ≡ 0.

Proof. First let us consider the regular representation P ∗3,0,0,0 and its decomposition into irreducible
submodules. Since m〈λ〉 ≤ 1 for all multipartitions, we get that in particular the submodule
M(2,1),∅,∅,∅ has multiplicity less or equal to one, thus the highest weight vectors corresponding to
standard tableaux of shape (2, 1) must be linearly dependent modulo Id∗(A). This implies that
there exist α1, β1 ∈ F such that

α1y
+
1 [y+1 , y

+
2 ] + β1[y+1 , y

+
2 ]y+1 (mod Id∗(A)).

This proves identity (2). By considering the regular representation P ∗0,3,0,0 and its irreducible
submodule M∅,(2,1),∅,∅, with similar arguments one can also prove that (3) also holds in A.
Let now consider the regular representation P ∗〈2〉 and its decomposition into irreducible Sn1

× . . .×
Sn4 - submodules. In particular, if one takes into account the submodule M((1),∅,(1),∅), since the
multiplicity corresponding to the multipartition ((1), ∅, (1), ∅) is less or equal to 1, then there exist
α, β, γ, δ ∈ F, (α, β) 6= (0, 0), (γ, δ) 6= (0, 0), such that

αy+1 z
+
2 + βz+2 y

+
1 + γy+2 z

+
1 + δz+1 y

+
2 ≡ 0 (mod Id∗(A)).

Due to the fact that Id∗(A) is multihomogeneous, we get that

(4) αy+1 z
+
2 + βz+2 y

+
1 ≡ 0 (mod Id∗(A)).

By applying the gs-involution ∗ we also obtain

(5) αz+2 y
+
1 + βy+1 z

+
2 ≡ 0 (mod Id∗(A)).

If either α = 0 or β = 0, then y+1 z
+
2 ≡ 0 that is equivalent to z+2 y

+
1 ≡ 0. Otherwise, by summing

(4) to (5) we get

(α+ β)y+1 z
+
2 + (α+ β)z+2 y

+
1 ≡ 0 (mod Id∗(A)).

If α + β 6= 0, we get y+1 z
+
2 + z+2 y

+
1 = y+1 ◦ z

+
2 ≡ 0, otherwise notice that α − β must be non-zero,

hence by subtracting (5) to (4) we obtain

(α− β)y+1 z
+
2 + (α− β)z+2 y

+
1 ≡ 0 (mod Id∗(A))

and so y+1 z
+
2 − z

+
2 y

+
1 = [y+1 , z

+
2 ] ≡ 0. Thus we proved that A satisfies at least one identity of the

group (i) of the statement.
Following step-by-step the previous arguments also for the irreducible submodules M(1),(1),∅,∅,
M(1),∅,∅,(1), M∅,(1),(1),∅, M∅,(1),∅,(1)and M∅,∅,(1),(1) we get that A must satisfy at least one identity
of the groups (ii) – (vi) of the statement and we are done. �

We can also prove the following.

Lemma 3.2. Let A be a superalgebra with gs-involution ∗ and let

χ∗〈n〉 =
∑
〈λ〉`〈n〉

m〈n〉χλ(1) ⊗ . . .⊗ χλ(4)

be its 〈n〉-th ∗-cocharacter. If A satisfies at least one identity of each group:

(i) y+1 z
+
2 ≡ 0 or y+1 ◦ z

+
2 ≡ 0 or [y+1 , z

+
2 ] ≡ 0;

(ii) y+1 z
−
2 ≡ 0 or y+1 ◦ z

−
2 ≡ 0 or [y+1 , z

−
2 ] ≡ 0;

(iii) y−1 z
+
2 ≡ 0 or y−1 ◦ z

+
2 ≡ 0 or [y−1 , z

+
2 ] ≡ 0;

(iv) y−1 z
−
2 ≡ 0 or y−1 ◦ z

−
2 ≡ 0 or [y−1 , z

−
2 ] ≡ 0;

(v) z+1 z
−
2 ≡ 0 or z+1 ◦ z

−
2 ≡ 0 or [z+1 , z

−
2 ] ≡ 0,

then m〈n〉 ≤ 1 if either 〈λ〉 = (∅, ∅, λ(3), ∅) or 〈λ〉 = (∅, ∅, ∅, λ(4)), for all n ≥ 1.

Proof. We will prove the statement providing that ∗ is a graded involution and 〈λ〉 = (∅, ∅, λ(3), ∅).
The cases 〈λ〉 = (∅, ∅, ∅, λ(4)) or ∗ superinvolution will follow with similar arguments.
Let us start by considering the first group of polynomials. In order to simplify the notation, let us
sumarizing them by writing that A must satisfies

(6) αy+1 z
+
2 + βz+2 y

+
1 ≡ 0 (mod Id∗(A)),
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where either (α, β) = (1, 0) or (α, β) = (1, 1) or (α, β) = (1,−1).
Analogously, let us write the polynomials of the third group as

(7) α′y−1 z
+
2 + β′z+2 y

−
1 ≡ 0 (mod Id∗(A)),

where either (α′, β′) = (1, 0) or (α′, β′) = (1, 1) or (α′, β′) = (1,−1).
Let us assume first that (α, β) = (1, 0), thus y+1 z

+
2 ≡ 0. Since z+1 ◦z

+
3 is an even symmetric variable,

let us substitute it inside the previous identity. We get

z+1 z
+
3 z

+
2 + z+3 z

+
1 z

+
2 ≡ 0 (mod Id∗(A)).

By taking the ∗ of the previous one, we also get

z+2 z
+
3 z

+
1 + z+2 z

+
1 z

+
3 ≡ 0 (mod Id∗(A)).

It readily follows that

P ∗0,0,n,0(A) = spanF {z+1 . . . z+n }, if n ≥ 3 and P ∗0,0,2,0(A) = spanF {z+1 z
+
2 , z

+
2 z

+
1 }.

It is clear that if n = 2 we have nothing to prove, moreover if n ≥ 3 then dimF P
∗
0,0,n,0(A) ≤ 1 and

only χ∅,∅,(n),∅ can participate in the cocharacter. Since m∅,∅,(n),∅ ≤ degχ∅,∅,(n),∅ = 1, we are done.

Let now assume (α, β) = (1, 1), thus y+1 z
+
2 + z+2 y

+
1 ≡ 0 and so

(8) (z+1 ◦ z
+
3 )z+2 + z+2 (z+1 ◦ z

+
3 ) ≡ 0 (mod Id∗(A)).

Since [z+1 , z
+
3 ] is an even skew-symmetric variable, we can replace it in (7) instead of y−1 .

If (α′, β′) = (1, 0), then it follows that z+1 z
+
3 z

+
2 − z

+
3 z

+
1 z

+
2 ≡ 0 and z+2 z

+
3 z

+
1 − z

+
2 z

+
1 z

+
3 ≡ 0 modulo

Id∗(A). As in the previous case, we can prove the claim.
If (α′, β′) = (1, 1), then [z+1 , z

+
3 ]z+2 + z+2 [z+1 , z

+
3 ] ≡ 0. Summing the latter one to identity (8), one

gets

z+1 z
+
3 z

+
2 + z+2 z

+
1 z

+
3 ≡ 0 (mod Id∗(A))

and an easy computation shows that

P ∗0,0,n,0(A) = spanF {z+1 . . . z
+
n−1z

+
n , z

+
1 . . . z

+
n−2z

+
n z

+
n−1}

and so dimF P
∗
0,0,n,0(A) ≤ 2. This says that only the characters χ∅,∅,(n),∅ and χ∅,∅,(1n),∅ can

partecipate in the character of P ∗0,0,n,0(A). Since m∅,∅,(n),∅ ≤ degχ∅,∅,(n),∅ = 1 and m∅,∅,(1n),∅ ≤
degχ∅,∅,(1n),∅ = 1, we are done.

If (α′, β′) = (1,−1), then [z+1 , z
+
3 ]z+2 − z

+
2 [z+1 , z

+
3 ] ≡ 0. By summing the latter identity to (8), we

get

(9) z+1 z
+
3 z

+
2 + z+2 z

+
3 z

+
1 ≡ 0 (mod Id∗(A)).

Notice that using (9), we get (z+1 z
+
2 z

+
3 )∗ = z+3 z

+
2 z

+
1 ≡ −z

+
1 z

+
2 z

+
3 , thus any product of three

odd symmetric variables is an odd skew-symmetric variable. So we have to consider three more
possibilities. Recall that in addition to (9), we are assuming

(10) y+1 z
+
2 + z+2 y

+
1 ≡ 0

and

(11) y−1 z
+
2 − z

+
2 y
−
1 ≡ 0.

If z+1 z
−
2 ≡ 0, then z+1 z

+
2 z

+
3 z

+
4 ≡ 0 and P ∗0,0,n,0(A) = 0 for all n ≥ 4. Furthermore, if n = 2 we have

nothing to prove and if n = 3, then P ∗0,0,n,0(A) = spanF {z+1 z
+
2 z

+
3 , z

+
1 z

+
3 z

+
2 , z

+
2 z

+
1 z

+
3 }. This implies

that the characters that can appear in the cocharacter decomposition of P ∗0,0,n,0(A) are χ∅,∅,(3),∅,
χ∅,∅,(13),∅ and χ∅,∅,(2,1),∅. Notice that the last one cannot appear with multiplicity equal to 2 since
its degree is 2 and dimF P

∗
0,0,n,0(A) ≤ 3. Moreover, degχ∅,∅,(3),∅ = degχ∅,∅,(13),∅ = 1 and also in

this case the claim is established.
Now let [z+1 , z

−
2 ] ≡ 0, then

z+1 z
+
2 z

+
3 z

+
4 ≡ z

+
4 z

+
1 z

+
2 z

+
3 .

If n ≤ 3 then the previous argument applies, so let suppose n ≥ 4. In particular, if n > 4 then due
to the previous identity plus identity (9), one can always reorder all the variables modulo Id∗(A),
i.e.

P ∗0,0,n,0(A) = spanF {z+1 . . . z+n }
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and we have nothing to prove. In case n = 4, then it is easily checked that

P ∗0,0,n,0(A) = spanF {z+1 z
+
2 z

+
3 z

+
4 , z

+
1 z

+
3 z

+
2 z

+
4 , z

+
1 z

+
2 z

+
4 z

+
3 , z

+
2 z

+
1 z

+
4 z

+
3 , z

+
3 z

+
1 z

+
4 z

+
2 , z

+
2 z

+
1 z

+
3 z

+
4 }

and so dimF P
∗
0,0,n,0(A) ≤ 6. Furthermore, in the corresponding character, χ∅,∅,(4),∅, χ∅,∅,(14),∅,

χ∅,∅,(2,2),∅, χ∅,∅,(2,12),∅ and χ∅,∅,(3,1),∅ can occur. It is clear that we have to check only the multi-
plicities of the last three irreducible characters, since degχ∅,∅,(4),∅ = degχ∅,∅,(14),∅ = 1.
Let start with χ∅,∅,(2,2),∅. If we fill the corresponding Young diagram in all possible standard ways,
we get two highest weight vectors

f1 = z̄+1 z̃
+
1 z̄

+
2 z̃

+
2 and

f2 = z̄+1 z̄
+
2 z̃

+
1 z̃

+
2 ,

where¯ and˜mean alternation on the corresponding variables. Let use identities (9) and (10) in
order to reduce f1 modulo Id∗(A). Here recall that (z+i )2 is an even symmetric variable. Moreover
notice that due to identity (9), we get z+1 z

+
2 z

+
1 z

+
3 ≡ 0 and z+1 z

+
2 z

+
3 z

+
2 ≡ 0. Hence

f1 =(z+1 )2(z+2 )2 − z+2 (z+1 )2z+2 − z
+
1 (z+2 )2z+1 + (z+2 )2(z+1 )2 ≡

(z+1 )2(z+2 )2 + (z+1 )2(z+2 )2 + (z+1 )2(z+2 )2 − z+2 (z+1 )2z+2 ≡
3(z+1 )2(z+2 )2 + (z+1 )2(z+2 )2 = 4(z+1 )2(z+2 )2.

Similarly,

f2 =z+1 z
+
2 z

+
1 z

+
2 − z

+
2 (z+1 )2z+2 − z

+
1 (z+2 )2z+1 + z+2 z

+
1 z

+
2 z

+
1 ≡

(z+1 )2(z+2 )2 + (z+1 )2(z+2 )2 = 2(z+1 )2(z+2 )2.

This shows that f1 and f2 are linearly dependent modulo Id∗(A) and so m∅,∅,(2,2),∅ ≤ 1.
Let now consider χ∅,∅,(3,1),∅. In this case we may have three highest weight vectors:

g1 = z̄+1 (z+1 )2z̄+2 ,

g2 = z̄+1 z̄
+
2 (z+1 )2,

g3 = z̄+1 z
+
1 z̄

+
2 z

+.

It turns out that since z+1 z
+
2 z

+
1 z

+
3 ≡ 0 and z+1 z

+
2 z

+
3 z

+
2 ≡ 0, then gi ∈ Id∗(A) for all 1 ≤ i ≤ 3.

Hence m∅,∅,(3,1),∅ = 0.
Finally, let us consider χ∅,∅,(2,12),∅ and the corresponding highest weight vectors

h1 = z̄+1 z
+
1 z̄

+
2 z̄

+
3 ,

h2 = z̄+1 z̄
+
2 z

+
1 z̄

+
3 ,

h3 = z̄+1 z̄
+
2 z̄

+
3 z

+
1 .

Using the same identities as before, it readily follows that h1 ≡ h2 ≡ h3 ≡ 4z+2 z
+
3 (z+1 )2, thus they

are linearly dependent and m∅,∅,(2,12),∅ ≤ 1.

We are left with the case z+1 ◦ z
+
2 ≡ 0. A straightforward computation with similar arguments as

in the case [z+1 , z
+
2 ] ≡ 0, shows that even here the multiplicities are bounded by one.

Hence m∅,∅,λ(3),∅ ≤ 1 for all λ(3) ` n and for all n ≥ 1 and the proof is complete. �

We are now in a position to prove the main theorem of the paper.

Theorem 3.1. Let A be a superalgebra with gs-involution ∗ and let

χ∗〈n〉 =
∑
〈λ〉`〈n〉

m〈n〉χλ(1) ⊗ . . .⊗ χλ(4)

be its 〈n〉-th cocharacter. Then m〈λ〉 ≤ 1 for all 〈λ〉 ` 〈n〉 and for all n ≥ 1, if and only if A
satisfies the identities (2), (3) plus at least one identity of each group:

(i) y+1 z
+
2 ≡ 0 or y+1 ◦ z

+
2 ≡ 0 or [y+1 , z

+
2 ] ≡ 0;

(ii) y+1 z
−
2 ≡ 0 or y+1 ◦ z

−
2 ≡ 0 or [y+1 , z

−
2 ] ≡ 0;

(iii) y−1 z
+
2 ≡ 0 or y−1 ◦ z

+
2 ≡ 0 or [y−1 , z

+
2 ] ≡ 0;

(iv) y−1 z
−
2 ≡ 0 or y−1 ◦ z

−
2 ≡ 0 or [y−1 , z

−
2 ] ≡ 0;

(v) z+1 z
−
2 ≡ 0 or z+1 ◦ z

−
2 ≡ 0 or [z+1 , z

−
2 ] ≡ 0;

(vi) y+1 y
−
2 ≡ 0 or y+1 ◦ y

−
2 ≡ 0 or [y+1 , y

−
2 ] ≡ 0.
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Proof. If m〈λ〉 ≤ 1 for all 〈λ〉 ` 〈n〉 and for all n ≥ 1, then the statement follows directly from
Lemma 3.1.

Conversely, let us assume that A satisfies the identites (2), (3) plus at least one identity of
each group (i)–(vi). From Lemma 3.2, it follows that m〈λ〉 ≤ 1 if either 〈λ〉 = (∅, ∅, λ(3), ∅) or
〈λ〉 = (∅, ∅, ∅, λ(4)). Moreover, since A satisfies (2) and (3), following the lines of [1], one can prove
that m〈λ〉 ≤ 1 if either 〈λ〉 = (λ(1), ∅, ∅, ∅) or 〈λ〉 = (∅, λ(2), ∅, ∅).
Let now analyze irreducibles corresponding to multipartition of the type 〈λ〉 = (λ(1), λ(2), ∅, ∅) `
(n1, n2, 0, 0), n1 6= 0 and n2 6= 0. It is clear that if y+1 y

−
2 ≡ 0, then also y−2 y

+
1 ≡ 0, in fact

(y+1 y
−
2 )∗ = −y−2 y

+
1 . Hence m〈λ〉 = 0. If we suppose that either y+1 ◦ y

−
2 ≡ 0 or [y+1 , y

−
2 ] ≡ 0, then

the variables y+’s and y−’s can be separated modulo Id∗(A). Hence

P ∗n1,n2,0,0 ≡ spanF {y+i1 · · · y
+
in1
y−j1 · · · y

−
jn2
}

or

P ∗n1,n2,0,0 ≡ spanF {y−i1 · · · y
−
in1
y+j1 · · · y

+
jn2
}

modulo Id∗(A). It readily follows that for all 〈λ〉 = (λ(1), λ(2), ∅, ∅) we get

m〈λ〉 ≤ max{m(λ(1),∅,∅,∅),m(∅,λ(2),∅,∅)} ≤ 1.

Similar arguments hold also if either 〈λ〉 = (λ(1), ∅, λ(3), ∅) or 〈λ〉 = (λ(1), ∅, ∅, λ(4)) or 〈λ〉 =
(∅, λ(2), λ(3), ∅) or 〈λ〉 = (∅, λ(2), λ(3), ∅) or 〈λ〉 = (∅, ∅, λ(3), λ(4)).
Finally, let 〈λ〉 = (λ(1), . . . , λ(4)). By using the identities of the groups (i)–(iv), it is clear that, as
in the previous case, in P ∗〈n〉(A) we can separe the even variables from the odd ones, thus

m〈λ〉 ≤ max{m(λ(1),λ(2),∅,∅),m(∅,∅,λ(3),λ(4))} ≤ 1

and we are done. �

We conclude the paper by making some short considerations about the lattice of the subvarieties
of a ∗-variety.
Recall that the lattice of subvarieties is said to be distributive if for any subvarieties A,B, C of V,
(A∩B)∪C = (A∪C)∩ (B∪C). Let V be a variety of algebras (without any addictional structure).
As a consequence of [1], we have that V has distributive lattice of the subvarieties if and onfly if
in the corresponding cocharacter sequence, all the multiplicities are bounded by one.

This result was extended by Giambruno and Mishchenko in [8] for superalgebras, whereas in the
same paper the authors proved that the same extension does not hold for algebras with involution,
by showing a ∗-variety whose multiplicities of the cocharacter are not bounded by one but with a
distributive lattice.

Concerning superalgebras with gs-involution, a similar result to that of algebras with involution
holds. Indeed, it is possible to construct a ∗-variety with multiplicities equal to two, for some
suitable multipartition, even if its lattice is distributive. Since this construction is very similar to
that of the involution case, we remand the reader to [8, Section 4] for more details.
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