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Highlights

• We introduce a new decision problem arising in the context of touristic
packages offering.

• We model it as a Nested Multi-Dimensional Multi-Knapsack Problem
with Conflicts, which has never been studied previously in the literature

• We provide a mathematical formulation for its solution.

• We propose a new matheuristic framework based on the concept of
consensus (CKS)

• Our approach is easy to generalize to broad classes of stochastic and
bi-level problems.

• We compare our matheuristic with the classical Kernel Search and we
show that it systematically provides better solutions for our problem
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Abstract

Sport mega-events, such as the Soccer World Cup or Olympic Games, attract
many visitors from all over the world. Most of these visitors are also inter-
ested in, besides attending the sports events, visiting the host nation and the
neighboring countries. In this paper, we focus on the upcoming FIFA World
Cup Qatar 2022. As per the schedule of the tournament, a national team can
play 7 matches at most. Therefore, a supporter will have six short breaks
(of three to five days) between consecutive matches in addition to two longer
ones, immediately before and after the tournament, during which they can
plan some touristic trips. We study the problem faced by a touristic trip
provider who wants to offer a set of touristic packages, chosen among a very
large set of options, devoted to World-Cup related tourists. The number
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of packages offered must be limited due to organizational reasons and the
necessity to guarantee a high participation in each trip. In this study, a set
of user profiles is considered. It represents different categories of tourists,
characterized by different preferences and budgets. Each user is supposed to
pick the packages that maximize their satisfaction, considering their budget
and time restraints. The goal of the company is to choose the set of packages
to be offered that would maximize the average users satisfaction. To address
this NP-Hard combinatorial optimization problem we provide a mathemati-
cal formulation and a matheuristic, named Consensus-Based Kernel Search
(CKS), wherein an alternative rule is used to create the initial Kernel and
partition variables in buckets. Computational results evidence the excellent
performance of CKS and prove that the newly introduced algorithm system-
atically outperforms the classical Kernel Search.

Keywords: Combinatorial Optimization; Knapsack; Kernel Search; Sports
Mega-Events, FIFA World Cup 2022.

1. Introduction

Travelling to attend sports events is a very old phenomenon that started
centuries ago with the Olympic Games and has continued till today with an
increasing number of world wide sport mega-events. FIFA World Cup (FWC)
tournament is an example of mega-events whose purpose goes beyond the
level of simple sports competitions. These mega-events often present oppor-
tunities for cultural exchange, political visibility, and economic development
for the organizing countries. For this reason, huge investments are often
allocated to ensure adequate transport infrastructure, public services, and
utilities. According to Pop et al. (2020), the cost of organizing the FWC has
remarkably increased with time reaching (in USD billion) 7.5 in 2010 (South
Africa), 14 in 2014 (Brazil), and 21.5 in 2018 (Russia). In the case of FIFA
2022, that will be held in Qatar, the cost will be much more substantial, since
the total budget is estimated to be USD 200 billion to be spent on improving
the port, airport, railway, stadiums, and roads (Abeza et al. (2020)). On the
other hand, FWC games have a positive impact on the host countries’ econ-
omy and tourism. For example, in the case of FIFA 2018 , the cumulative
impact on the Russian economy has been estimated to be USD 31 billion,
21% of which was accounted for by the related tourism revenue. Moreover,
the number of foreign sport tourists was estimated to be 1.6 million, with an
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average stay of 12 nights each, which is much longer than stays for any other
tourism purpose (Pop et al. (2020)).

Some studies have claimed that in these kinds of mega-events, not all vis-
itors are really interested in the games, and almost 20% attend only to give
company to their relatives or friends (Weed (2006)). Such visitors would
be interested in activities other than the sporting event. To attract such
travelers to FIFA 2022, it is important to provide touristic packages that
can amplify their interest in attending in the sports event and enrich their
tourism experience. Moreover, even committed fans often seek to “get en-
gaged in other activities as well, such as leisure, adventure, cultural or make
visits to religious or historical places” (Kapur (2018)). Thus, all visitors will
have greater motivation to attend the 2022 FWC in Qatar in knowing that
they can engage in touristic activities during the breaks between games. Sig-
nificant efforts should be directed at selecting and planning, in advance, a set
of local and regional touristic packages that suits all potential visitors’ inter-
ests. According to a recent survey, over 92% of touristic providers think that
touristic planning is an urgent necessity in the context of sports tourism and
over 87% believe that appropriate planning can promote the development of
the tourism industry in the future (Dhahir et al. (2019)).

The purpose of this paper is to help select and plan a set of touristic
packages that will let the FIFA 2022 visitors plan their trips based on their
preferences. It takes into account the schedule of the FWC tournament and
the geographical characteristics of the host country in proposing a decision
support tool that will help the FIFA 2022 participants and visitors in plan-
ning their trips. The idea is to develop an optimization model that selects
an optimal set of touristic packages to be scheduling between games based
on traveler preferences (budget, interest, geographical range, etc.). To the
best of our knowledge, this is the first study that intertakes the planning
of touristic itineraries around sports mega-events. We also develop an in-
novative matheuristic method, called Consensus-based Kernel Search, that
efficiently solves the resulting touristic package selection problem.

The main contributions of this paper can be summarized as follows:

• We introduce a new decision problem arising in the context of touristic
package offering.

• We model it as a Nested Multi-Dimensional Multi-Knapsack Problem
with Conflicts, which has never been studied previously in the litera-
ture, and we provide a mathematical formulation for its solution.
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• The proposed model not only describes the application under study but
can also be applied to other contexts such as portfolio optimization and
retail management.

• We propose a new matheuristic framework that introduces, for the
first time, the concept of consensus in the context of touristic package
selection. Our approach is easy to generalize for other applications and
is specifically suitable for addressing broad classes of stochastic and
bi-level problems.

• We compare our matheuristic with the classical Kernel Search and show
that it systematically provides better solutions for our problem.

• We perform a sensitivity analysis in order to study how the instances’
parameters influence the difficulty of solving the problem.

The paper is organized as follows. We summarize the relevant literature
in the next section. In Section 3, a formal definition of the problem is given,
alongside our suggested knapsack-based model. Section 4 will be devoted
to the description of our solution method. Our computational analysis is
summarized in Section 5, and finally, some concluding remarks and future
avenues of research are presented in Section 6.

2. Literature Review

The topic of this paper finds its root in two different streams of research.
The first one is related to the interdisciplinary field of sport tourism, which
succeeded in attracting an increasing attention as an independent topic of
research during the last few decades (Daniell (2013)). However, according to
Dhahir et al. (2019), the integration of tourism planning will be extremely
significant in the development of sports tourism. Therefore, it is necessary
to consider tourism planning in terms of the tour packages offered by tour
operators and create itineraries to satisfy the need of tourists in order to
improve sport tourism. The topic of touristic packages for itinerary planning
has flourished as a separate research stream in the last few years, and the issue
has been modeled by many researchers as a knapsack problem, a modeling
approach that has been intensively and efficiently used in the context of
touristic itinerary planning.
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2.1. Sport Tourism
According to Csoka et al. (2019), sport tourism can be defined as “any

travelling that is done to participate in a sporting event – including just
watching”. The authors also claimed that sport tourism constitutes an in-
creasingly growing segment of the tourism industry and, more generally, the
global economy. For example, in 2008, more than 55 million people from
the USA travelled to participate in a sporting event, which resulted in rev-
enue growth of 6.6% with respect to 2007 and 31% with respect to 2003
(Daniell (2013)). Csoka et al. (2019) reported that sports tourism was a
business worth USD 15.8 billion in 2016 and is expected to quadruple in the
upcoming years.

Weed (2006) has identified three main stakeholders with a major role in
sports tourism: participants, policy-makers, and package providers. This
work is focused on package providers, who need to offer attractive touris-
tic packages. Within this context, Weed and Bull (2012) proposed a sport
tourism diagram that correlates the level of participation in sports events
with the level of importance assigned to the trips by travelers. The graph-
ical depiction of the model (Figure 1) shows how the level of participation
increases with the importance assigned to the corresponding trip. The same
graph allocates different names characterizing the increasing level of com-
mitment towards sports events and even identifies participants with negative
importance, i.e., those who attend the events only as companions.

Football spectators are placed in the highest zone of the participation-
importance triangular model. With reference to the sports tourism literature,
football fans are classified as committed and even regarded as driver partic-
ipants, to the point that they are sometimes resembled to religious devotees
(Weed (2006)). They are increasingly willing to support their teams even be-
yond their local and regional boundaries. An example of such commitment
can be seen in the English Premier League, that attracts not only a huge
television audience worldwide but also eight-hundred thousand international
visitors annually. Moreover, statistics confirm that sports tourists who in-
clude a football game in their touristic plan stay longer in the UK compared
to other tourists (Rudkin and Sharma (2020)). This has been obtained by
applying a quantile regression model to investigate the effect of attending
live football games on the total expenditure by sports tourists. While the
employment of quantitative approaches is very rare in the context of sports
tourism, scholars have dealt with many other topics of research such as devel-
oping conceptual consensus on sport tourism (Daniell (2013)), achieving sus-
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Figure 1: The Sports Tourism Participation Model (from Weed and Bull, 2012)
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tainability while organizing sports events (Kersulic et al. (2020)), exploring
country-oriented behavior in sports tourism (Swart (1998); Xia et al. (2013);
Wickramaratne and Kumari (2016); Csoka et al. (2019)), studying the rela-
tionship between sports tourism and tourism management (Daniell (2013)),
examining corporate social responsibility within sport tourism (Heuwinkel
and Bressan (2016)), analyzing the social impact of organizing large scale
sporting events (Kim et al. (2015)) and so on. The most relevant paper re-
lated to our study by Dhahir et al. (2019), who studied the importance of
tourism planning in the development of sports tourism and boosting of the
organizing country’s economic growth. However, to the best of the authors’
knowledge, neither this paper nor any other work has explored the use of op-
timization techniques/models to plan touristic packages surrounding sports
mega-events.

2.2. Knapsack Problem
The Knapsack Problem (KP) is one of the most widely investigated prob-

lems in the field of optimization techniques due to its ability to represent and
solve complex real-life issues (Wilbaut et al. (2008)). Given a set of compos-
ite items, with each item having its own weight and profit, the goal of the
classical knapsack optimization model is to load a set of possible items into
the knapsack such that the total profit of the selected items has the maximum
value while respecting the weight knapsack capacity. For a review on the ex-
act and heuristics methods used for the KP we refer the readers to Kellerer
et al. (2004) and Martello and Toth (1990). Moreover, the 0–1 KP with sin-
gle and multiobjective versions is a well-studied combinatorial optimization
problem (Erlebach et al. (2002); Lust and Teghem (2012)). Research has
shown that the multiobjective variant of the problem is much harder to solve
than the single objective problem (Kumar and Banerjee (2006)). Various
effective solution approaches have been proposed to solve the multiobjective
version of the problem (Sato et al. (2007); Bazgan et al. (2009); Gao et al.
(2014); Kantour et al. (2019)).

Among the many variants of the KP, the most well-known extensions are
the Multiple Knapsack Problem (MKP), Multiple Choice Knapsack Prob-
lem (MCKP) and the Multi-Dimensional Knapsack problem (MdK), which
have received considerable attention from the operational research commu-
nity in the last decades. For surveys on these problems, we refer the readers
to Dell’Amico et al. (2019), Zhong and Young (2010), and Fréville (2004). In
an MKP, multiple knapsacks are available, each with a possibly different ca-
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pacity. The goal is to determine a list of items to select from and assign them
to knapsacks in order to maximize the total collected profit, while respecting
the capacity constraint. In an MCKP, a set of items is partitioned into cat-
egories and exactly one item must be picked per category. This means that
an MCKP adds additional constraints that prohibit the inclusion of an item
in the solution set if another item of the same category is selected (Nauss
(1978)). In the MdK, items are instead characterized by two or more dimen-
sions (e.g., weight, volume, etc.), and the knapsack has a limited capacity
for each dimension. These problems find application in several fields, such as
logistics, finance and so on. Several variants of MKP, MCKP and MdK have
also been studied in the past (Tönissen et al. (2017); Lahyani et al. (2019);
and Meng et al. (2019)). However, for brevity, we focus our attention on that
which are closer to our problem.

An extension of the MdK, considering assignment constraints between
items and knapsacks was introduced by Kataoka and Yamada (2014), and
efficient algorithms to solve it have been proposed in Martello and Monaci
(2020). A robust version of the multiple choice multidimensional Knapsack
problem (MMKP) was introduced in Caserta and Voβ (2019). Recently,
Lamanna et al. (2021) proposed a two-phase heuristic framework to solve
the MMKP. Another variant of the KP close to our interest is the Nested
knapsack, which addresses situations where items must be loaded into a knap-
sack and successively packed into disjoint compartments within it (Johnston
and Khan (1995)). Despite its practical relevance in logistics, this problem
has received limited attention in the literature compared to other more pop-
ular KP variants. The issue of mutual exclusivity of items in KPs has been
broadly addressed. Many exact and heuristic algorithms have been proposed
to handle this feature, among which we cite Bettinelli et al. (2017) and Bas-
net (2018). Nested MCKP is the generalized form of MCKP where several
resource constraints are nested across the multiple choice classes. Last, but
not least, literature on KPs involving families of items is particularly rich.
We cite the paper by Mancini et al. (2021), which reports an application in
resource management of distributed computing, as well as all the references
therein.

2.3. Touristic Packages and Itinerary Planning

The other stream of research that is of great relevance to our topic is the
selection of touristic packages for itinerary planning. Several works have been
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published in this vein, including Souffriau et al. (2011), Malucelli et al. (2015),
Maimani et al. (2016), Tricoire et al. (2016), Mancini and Stecca (2018),
Pan and Wang (2018), Exposito et al. (2019), and Zhou et al. (2019). An
insightful review of the models and methods adopted for designing touristic
packages can be found in the recent paper by Yochum et al. (2020). However,
we will focus here on the approaches based on the use of knapsack models that
will be adopted in this study. Several researchers have modeled the touristic
package generation problem as a special case of the KP and have sometimes
combined it with the Traveling Salesman Problem (TSP) modelling features
(Herzog and Worndl (2014); Nakamura and Shimbo (2016); Deolekar et al.
(2019), etc.).

More specifically, Liu and Chen (2008) proposed a two-step procedure to
develop a tour plan. In following this procedure, first, the touristic spots
are selected using the 0-1 KP, and the tour route is then developed using a
spanning tree-based Genetic Algorithm (GA). Picot-Clemente et al. (2012)
presented the tour planning problem as an MMKP. Given the complexity of
the MMKP, Khalili-Damghani et al. (2013) solved it by using a combina-
tion of Simulated Annealing (SA) technique and semantic web technologies.
Campos et al. (2014) proposed a heuristic method that combines the GRASP
procedure with path-relinking methodologies to find approximate solutions
to the same optimization problem. Bolzoni et al. (2014) presented the cluster
itinerary planning algorithm as a MdKP. The algorithm can recommend tour
itineraries with constraints on the maximum number of times each Point Of
Interest (POI) can be recommended. Wang and Chen (2015) developed a De-
cision Support System (DSS) based on a tourism information system, called
MAP technology, to achieve a cross-check of space and attribute data and
then explore the KP using GAs. Their DSS optimize the travel path inquiry
and provide the latest shareable maps for tourists. Cvetkovic et al. (2016)
presented a personalized trip planner that can be accessed via a web browser
or a mobile application. The planner algorithm is based on implementing
concepts related to the TSP and is a suitably modified version of the KP.
More recently, Pan and Wang (2018) modeled the tour planning problem as
a multi-attribute 0-1 KP. They solved the problem by using the Analyti-
cal Hierarchy Process (AHP) and a greedy SA technique. In the first step,
the identified spots were evaluated comprehensively using AHP, and then
the greedy SA was adopted to select the best spot with the highest evalua-
tion score. Finally, Deolekar et al. (2019) developed an integrated approach
that combines a clustering algorithm with the KP to achieve the selection
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of the best candidate POIs to visit alongside a TSP method to identify the
corresponding visit sequence.

From the above literature review, it appears clear that even though op-
timization techniques have been heavily used to design touristic packages,
they have never been implemented in consideration of sports events. This
study will bridge this gap and develop an ad-hoc knapsack-based approach
for designing touristic packages in combination with major sports events.

3. Problem Statement and the Knapsack-Based Optimization Model

The visitors to Qatar on the occasion of FIFA 2022 World Cup are inter-
ested in attending some, but not all, of the football games and will be willing
to take some trips between the games. The goal is, then, to provide the best
touristic package combination based on user preferences. A set of available
slots K is defined (Figure 2). Each slot between two consecutive games, k,
is identified by its length, which is expressed in days, Duk (depending on
the specific games schedule of user u). A set of users, U , composed of Nu

users is considered. Each user, u, gives his/her total budget Bu, which can
be arbitrarily split across all the slots, and his/her preferences, expressed as
level of interest, puc, for each activity category, c, from a set of categories,
C (i.e., historical sites, cultural sites, religious sites,, beaches, nature, sports
excursions, children’s entertainment, relaxation and so on.) Each user can
also provide a list of neighboring countries (or geographical areas) that they
are not interested in visiting (because they have already visited them or be-
cause it is difficult to obtain entry visas). Thus, we introduce here a constant
wua ∈ [0, 1] for all countries a in the set of countries A to express the will-
ingness of user u to visit a country or not (wua gets closer to 1 when the
willingness increases). A set of touristic packages, I, is available. For each
package, i, included in I, we know the destination country (or geographical
area), αi, the duration expressed in days, di, the purchasing cost, bi and a
score related to each category c, σic. The touristic operator can choose, from
among the set of available packages I, a subset P composed of at most Np

packages, to offer to the user. Each user can select the combination of pack-
age, from among those offered by the operator that maximizes their collected
score while respecting their own time and budget constraints. Packages must
be assigned to one and only one slot, but a slot can contain more than one
package, if they fit. Furthermore, only one package for a country/area can
be picked by each user. (For example, if a user goes to Egypt in the first
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slot to visit the Pyramids, it does not make sense for them to, after coming
back to Doha to watch a football match, visit Egypt again to see the Reef
Barrier. It is better for them to stay longer in Egypt and choose a package
that includes both the Pyramids and the Reef Barrier. Moreover, a mutual
exclusivity holds for certain pairs of packages, i1 and i2, represented by a
constant hi1i2 , assuming a value of 1 when i1 and i2 are mutually exclusive
and 0 otherwise. This exclusivity constraints model cases in which two very
similar experiences are offered in different packages (i.e. scuba diving ex-
cursion in the Reef Barrier) and even a user who is very interested in such
an experience would not perform it twice, preferring to spend their time in
different activities.
The overall goal is to choose the combination of packages, P , that maximizes
the average score collected by the users (3). The score perceived by user u
while selecting package i is given by the sum of the scores obtained by i in
each category c, σic, weighted by the preference level expressed by the user
for this category, puc. The final score of user u is then obtained by multiply-
ing this value with the times his/her willingness to visit the regional area,
αi, associated with package i, wuαi

. The score perceived by user u for each
package i is computed as sui =

∑
c∈C puc ∗ σic ∗wuαi

. This allows for a realis-
tic representation of the fact that the perceived score of a package is clearly
based on package features and attractiveness but can sensibly vary among
users depending on their interests. Furthermore, the total score of user u
collected for a given category c must be greater than or equal to a minimum
value luc, which is equal to the level of interest shown by the user in this
category, puc, multiplied by a given constant f . With the term user, we do
not refer to a specific person but rather to a user profile with a predefined
set of characteristics such as category preferences and budget.

3.1. Nested Structure of the problem
As discussed in Subsection 2.2, there are many variants of KP. Based

on the discussion in Section 3, our problem can be modeled as a Nested
Multi Dimensional Multiple Knapsack Problem with Items Compatibility
(N-MDMKP-IC), which is an extension of the Multiple Knapsack, Multi-
Dimensional Knapsack, Knapsack with Items Incompatibility and also of
Nested Knapsack. In N-MDMKP-IC, items are grouped into families and
there are further constraints limiting the maximum number of items, belong-
ing to the same family that can be simultaneously selected. Although these
problems have been separately studied in the literature, all these features
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Figure 2: Touristic Packages Scheduling during FIFA-2022 Games

Figure 3: Input and Output of the Optimization Framework
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have never been addressed together within the same optimization frame-
work. Therefore, the problem we introduces is innovative and fills a gap
in the literature in the context of KP extensions. Regarding its computa-
tional complexity, since the N-MDMKP-IC is a combination of problems that
have already been proved to be NP-Hard, consequently it is NP-Hard too.
In our N-MDMKP-IC, items represent touristic packages, while knapsacks
are the available slots between two consecutive matches. The problem is
multi-dimensional, since each item is characterized by two dimensions: cost
and duration. It is a three-level nested problem in which the items must
be inserted in a first knapsack representing the subset of items chosen to be
offered by the touristic operator, characterized by only one dimension, i.e.,
the number of items. Then, this problem is connected to Nu nested knapsack
sub-problems, one for each user. Each of these sub-problems is composed of
a first knapsack representing the total excursion plan for the user, which is
characterized by a maximum budget and a maximum duration. Within these
constraints items must be partitioned into several mono-dimensional knap-
sacks, characterized by potentially different durations (expressed in number
of days). Each user’s sub-problem also considers mutual exclusivity between
pairs of items. Furthermore, the problem is similar to the Multiple Choice
Knapsack Problem, except for the fact that one item per category can be
selected at most in the former while, in the latter, exactly one item per cat-
egory must be picked. The nested structure of the problem is illustrated in
Figure 4.

3.2. Integer Programming Model

In order to facilitate the reader to become familiarized with the notation,
we reported in Table 1, the set of variables and parameters indexes.

K = 1, ..., Nk set of time slots
I = 1, ..., Ni set of available packages
C = 1, ..., Nc set of categories
U = 1, ..., Nu set of user profile

Table 1: List of sets of variables and parameters indexes

Moreover, we define the following decision variables:

• xui: binary variable stating whether package i is selected by user u or
not
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Ko monodimensional tour operator’s knapsack
Capacity: Np packages

users

Ku1 Kui Kun… …
Nu bidimensional knapsacks

Budget: Bu | Time capacity: D*

Slots:
Nk monodimensional knapsacks

Time capacity Dk

1st Level

2nd Level

3rd Level

Figure 4: Illustration of the nested structure of N-MDMKP-IC

• yuik: binary variable stating whether package i is assigned to slot k by
user u or not

• zi: binary variable stating whether package i is offered by the touristic
operator

max
∑

u∈Ui∈I
suixui/Nu (1)

∑

i∈I
bixui ≤ Bu ∀u ∈ U (2)

xui =
∑

k∈K
yuik ∀u ∈ U ∀i ∈ I (3)

∑

i∈I
diyuik ≤ Duk ∀k ∈ K ∀u ∈ U (4)

∑

i∈I|αi=a

xui ≤ 1 ∀a ∈ A ∀u ∈ U (5)
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∑

i∈I
σicxui ≥ fpuc ∀c ∈ C ∀u ∈ U (6)

xui ≤ zi ∀i ∈ I ∀u ∈ U (7)

∑

i∈I
zi ≤ |P | ∀i ∈ I (8)

xui + xuj ≤ 1 ∀i ∈ I ∀j ∈ I|hij = 1 ∀u ∈ U (9)

The objective function aims to maximize the average score collected by
the users. Constraint 2 imposes a maximum cumulative budget on all the
slots, which is potentially different for every user. Constraints 3 state that,
if a package is selected, it must be assigned to exactly one slot. Constraints
4 ensure that time capacity, expressed in days, is respected for each slot of
each user. Constraints 5 imply that each user can select one package at most
for each geographical area, while constraints 6 ensure that a minimum score
is achieved in each category by each user, depending on user preferences and
interests. Constraints 7 ensure that a user can select a package only if it has
been offered by the operator. The number of packages that can be offered
is bounded by constraints 8. Finally, mutual exclusivity between packages is
modeled through constraints 9.

4. Solution Approach: A new Kernel Search-based matheuristic

Kernel Search, (KS) is a very effective general purpose matheuristic in-
troduced by Angelelli et al. (2010). The algorithm can be applied to a broad
class of 0/1 decision problems, where the decision-maker has to choose among
a very large set of options, for instance, the KP and all its variants. It is
based on the idea of identifying a small subset of potentially good variables,
called kernel, and partitioning all the others into disjoint buckets. At each
iteration of the algorithm a different bucket is picked and a restricted version
of the original problem, involving only those variables belonging to the ker-
nel and the selected bucket is solved. The restricted problem can be solved
optimally, or run with a timelimit. If some of the variables belonging to the
bucket are active in the optimal (or best found) solution of the restricted
problem, they are permanently added to the kernel. The algorithm is termi-
nated when all the buckets have been explored. The general KS framework
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is characterized by three main features: (i) the rule according to which the
variables are inserted in the kernel, (ii) the number of buckets, their size and
the rules according to which variables are partitioned into buckets, and (iii)
the updating mechanism for the kernel. In the basic version of KS introduced
in Angelelli et al. (2010), the linear relaxation (LP) of the model is exploited
to identify the initial kernel, which is composed as a set of variables, N , given
by the |N | variables with the highest values in the optimal solution of the LP.
The remaining variables are sorted in a non-decreasing order by the value
they assumed in the optimal solution of the LP. The kernel size is always
non-decreasing, i.e., new promising variables can be added to the kernel but
no variables are removed from it.

The basic KS was applied, obtaining very good performances, on differ-
ent combinatorial optimization problems such as multi-dimensional knapsack
problem, (Angelelli et al. (2010)), portfolio selection problem, (Angelelli et al.
(2012)), the capacitated facility location problem, (Guastaroba and Speranza
(2012b)), and the multi-plant lot sizing problem with setup carry-over (Car-
valho and Nascimento (2018)). Guastaroba and Speranza (2012a) proposed
a variant of the KS, named Improved Kernel Search (IKS) that starts per-
forming the Basic Kernel Search (BKS) and exploits information about the
desirability of each variable to identify the most promising ones. All the im-
proving solutions found by the BKS are analyzed, and the variables that are
selected in a great percentage of the solutions are marked as promising, since
the probability that they will also be selected in the optimal solution is very
high. Subsequently, a MILP problem considering all the variables is solved,
forcing the selection of the most promising variables setting the correspond-
ing binary variables equal to 1. The authors successfully applied the IKS to
the index tracking problem. A bi-objective version of the same problem was
successfully addressed with KS in Filippi et al. (2016). Another variant of
the BKS, named Adaptive Kernel Search, AKS, was presented in Guastaroba
et al. (2017). According to this method, once the subproblems become hard
to be solved within short computational times, due to the large size of the
kernel, a kernel update procedure is applied, whereby variables that have not
been recently selected in the optimal solution of the subproblems are excluded
from the kernel. The aim of this operation is to reduce the size of the kernel
by dropping less promising variables. The authors showed the effectiveness
and efficiency of the AKS on a set of benchmark instances taken from differ-
ent well-known combinatorial optimization problems. More recently, KS has
been successfully applied also to bi-level programming problems, such as in
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Santos-Penate et al. (2020), where the leader-follower location problem was
addressed.

4.1. A New Consensus KS Method

All the KS versions published in the literature start from an initial solu-
tion based on the Linear Relaxation of the problem. Although this may be
advantageous for some families of problems, there are other families for which
the LP optimal solution greatly differs from the optimal solution of the orig-
inal problem. In these cases, the convergence toward good quality solutions
can be slow, as the search process starts from a very bad kernel. To over-
come this shortcoming, we propose, in this paper, a new KS version, named
Consensus-based Kernel Search (CKS), in which a different rule, based on
consensus, is adopted to choose the variables to insert in the initial kernel, as
well as to partition the remaining variables in buckets. This approach is not
only suitable for addressing this specific problem but can also be adopted to
address all problems sharing a similar structure. Among these, we can cite
two-stage stochastic problems, where the value assumed by the first stage
variables impact the solution of the second-stage for each scenario, as well as
bi-level programming problems and problems in which the values assumed
by a subset of variables act as input for a set of correlated sub-problems.
More specifically, the Nested Multiple Knapsack Problem with Item Con-
flicts is suitable to describe portfolio problems in which a financial promoter
has to provide, by choosing from a huge number of alternatives, a set of
investments to the customers. Subsequently, each customer can select the
most appropriate combinations of investment for their portfolio, based on
their own budget, risk aptitude, and other characteristics. Item conflicts can
represent cases in which the number of investments of a certain category is
limited by certain financial rules. Another potential application could arise
in the retailing industry. In fact, this model can be used to describe the
problem faced by an owner of a store (retailer) who has to select a subset of
items to order, among a huge number of options from various brands. Their
objective is to attract different types of users to the store and to maximize
the total profit.

The idea of consensus originated from the idea that a super-optimal so-
lution is obtained when every user can freely choose their preferred packages
out of the available packages. Since user preferences and characteristics are
potentially very dis-homogeneous, it is very likely that they would select dif-
ferent packages and that the total number of packages selected would exceed
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the maximum allowed number, P . In this case, the super-optimal solution
would turn out to be infeasible, but its value could act as an upper bound for
the optimal solution. To move from this infeasible solution to a potentially
good feasible solution, we encourage consensus among users in order to select
the P packages to be offered. For this reason, the packages with the highest
consensus, i.e., the ones that would be selected by most of the user, or the
ones that would contribute mostly to the objective function, should most
likely be offered. Following this main idea, we developed our novel CKS as
described below.

We first solve separately a simplified problem for each user profile, u,
which can be formulated as follows:

max
∑

i∈I
suixui (10)

∑

i∈I
bixui ≤ Bu (11)

xui =
∑

k∈K
yuik ∀i ∈ I (12)

∑

i∈I
diyuik ≤ Duk ∀k ∈ K (13)

∑

i∈I|αi=a

xui ≤ 1 ∀a ∈ A (14)

∑

i∈I
σicxui ≥ fpuc ∀c ∈ C (15)

xui ≤ zi ∀i ∈ I (16)

∑

i∈I
zi ≤ |P | ∀i ∈ I (17)

xui + xuj ≤ 1 ∀i ∈ I ∀j ∈ I|hij = 1 (18)

where constraints (11)-(18) play the same role as constraints (2)-(9), re-
spectively. The objective function of this problem is the maximization of the
score collected by user u.
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After solving the restricted problem for each user, we calculate the con-
tribution of each package, i, to the global objective function, γi, as follows:

γi =
∑

u∈U
suixui (19)

Please note that for packages that have not been selected by any user,
γi = 0.

We order all the packages by γi in a non-increasing order and pick, out
of those, the first |P | ones, which contribute mostly to the global objective
function, to be inserted in the initial kernel. All the other packages are
partitioned into N buckets of homogeneous size. First, they are ordered in
a non-increasing order with respect to the potential maximum contribution
they can give to the objective function if selected by all the compatible users.
This contribution, Γi, is computed as follows:

Γi =
∑

u∈U
sui (20)

Second, they are grouped into N buckets, where each bucket is generated
sequentially by selecting (|I| − |P |)/N items from the ordered list.

After defining the initial kernel and the buckets, our solution process
adopts the classical KS framework proposed in Angelelli et al. (2010). We
solve at each iteration a restricted version of the problem involving only the
packages belonging to the Kernel and to a single bucket. If the optimal
solution of this problem contains packages from the bucket, they are added
to the Kernel for the following iterations. The procedure terminates when
all buckets have been taken into consideration, i.e., after N iterations.

It is worth stressing that, even though the consensus method is inspired by
the kernel search, it is an innovative and completely different approach since
it adopts a different rule for partitioning the buckets. Indeed, the classical
Kernel Search groups the variables in buckets, exploiting only information
about the solution of the linear relaxation of the problem, while our method
is based on the innovative idea of achieving consensus among scenarios (in
this case, a scenario is represented by a single user profile). This allows
for the exploitation of the information about how to select an item to be
included in the first-level knapsack (i. e., the set of packages proposed by
the tourist operator) impacts on the objective of each second level knapsack
(i. e. the set of packages picked by a single user among those provided by
the operator).
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A pseudocode of the algorithm is reported in Algorithm 1.

Algorithm 1 CKS pseudocode

1. Solve the problem (10-18) for each user
2. Order the packages in decreasing order of the score obtained solving the
problems for a single user
3. Select the first |P | packages from the ordered list, and add them to the
Kernel
4. Order the remaining packages by decreasing the potential score achiev-
able if selected by all the compatible users
5. Split this ordered list into N homogeneous buckets
for all n ∈ N do

6. Solve the restricted problem involving only packages belonging to the
Kernel and to the n-th bucket, with a short time limit
if an improving solution is found then

7. Keep it as current best solution
8. Add to the Kernel all the packages selected in the current best
solution that were not already in the Kernel

end if
end for

4.2. Fast Upper Bounds

The relaxations used in CKS and KS to identify the initial kernel can
also be exploited to provide fast upper bounds. For what concerns KS, the
value of the optimal solution of the relaxation of the LP problem provides
an upper bound for the original problem. This upper bound coincides with
the optimal solution of the original problem, only in the case where the
optimal solution of the LP relaxation results to be integer. A fast upper
bound can also be obtained exploiting the relaxation used to identify the
initial kernel in CKS. If we separately solve a single problem for each user,
allowing the user to choose among all the packages, we can obtain an upper
bound for the global problem since constraints 8 could be violated. In fact,
if we allow each user to freely choose the most profitable items for them, we
could come up with more than |P | items selected. In this case, the solution
value provided by the relaxation is an upper bound of the optimal solution,
while, in case the number of packages selected is lower than or equal to |P |,
this solution is optimal for the original problem as well. It is worth noting
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that while the optimal solution of the LP relaxation may potentially violate
all the constraints of the original problem, the solution provided by solving
the problem separately for each user can only provide an infeasibility for
constraint 8, while all the other sets of constraints would be respected.

5. Computational Experiments

In this Section, we report the computational results obtained on instances
with different number of packages (Ni) and geographical areas (Na). Since
this particular version of the KP is addressed for the first time in this paper,
no benchmark instances are available in the literature. Hence, we generated
8 sets (S1-S8) composed of 5 instances each. Each set is characterized by
a different combination of Ni and Na, as shown in Table 2. The number
of packages to be selected, |P | and the number of users profiles Nu, are
homogeneous across all instances and assume values equal to 20 and 10, re-
spectively. We made this choice since those two parameters are generally
fixed in a real application. The number of packages to be offered depends on
organizational constraints, and a touristic company faces fixed costs when
offering a package, even if no users select it. Therefore, on the one hand, the
company would like to offer a rich portfolio of alternatives to its customers,
but, on the other hand it must limit the organizational costs and useless
efforts. With respect to the number of user profiles adopted, we believe that
10 is a sufficient number to cover a representative sample of user typologies.
The number of score categories |C| is fixed and equals to 5, while the number
of knapsacks, i.e., the available slots for traveling, |K|, is given by the regu-
lations of the World Cup, and it is equal to 8, as shown in Figure 2. In fact,
the maximum number of matches a team can play during the competition
is 7: three mandatory matches at the group stage, round-16, quarter-final,
semi-final, and final. Therefore, a user would have 6 small-sized periods (3-5
days) between consecutive matches in addition to two longer ones, before the
first match and after the last match.

All the instances have been generated according to the following proce-
dure. For each user profile, the attractiveness of each category is a randomly
generated integer number between 0 and 5. The attractiveness of a country
(or geographical area) is equal to 1 with a probability of 80%, and a random
value between 0 and 0.9 with a 20% probability. Values are rounded at the
first decimal digit. The budget value is randomly selected between 5000 and
30000, considering only multiples of 1000. Concerning the packages, (i) we
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SET Ni Na

S1 100 10
S2 100 20
S3 200 20
S4 200 40
S5 500 20
S6 500 50
S7 1000 50
S8 1000 100

Table 2: Instances sets

consider the same number of packages for each geographical area, (ii) du-
ration is randomly drawn between 2 and 7, (iii) costs are correlated with
the duration, and are computed as “r1*100*duration+200”, where r1 is an
integer number that is randomly drawn between 0 and 4, (iv) scores for each
category are correlated to the duration and are computed as “r2*(duration-
1)” with r2 being an integer number that is randomly chosen between 0 and
10.

We compare the results obtained by the Integer Programming Model
presented in Section 3.2, simply referred to as MODEL here onward, a
traditional Kernel Search approach (KS) and the newly proposed Consensus
based Kernel Search, (CKS).

All the procedures have been implemented in the Xpress-Model language,
and both the MODEL and the IP models addressed in CKS and KS have been
solved by means of the commercial solver Xpress 7.9, running on a system
equipped with an Intel-i7-5500U processor with a 2.4 GHz clock speed and
16 GB RAM. For both KS and CKS, a number of buckets, N=10, have been
used in all the computational tests. This parameter has been tuned based
on the preliminary tests.

Our results are summarized in Table 3, which is organized as follows.
Each row reports the average results for a different set. For the MODEL,
we report the optimal objective function value, the optimality gap, and the
computational time (expressed in seconds) required to solve the instance to
optimality. For both CKS and KS, we report the best objective function value
obtained, the gap with respect to the optimal solution value, the time elapsed,
and the size of the final kernel, i.e., the number of packages belonging to the
kernel after the last iteration. This number gives a measure of the quality of
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MODEL CKS KS
SET N i N a OF OPT GAP TIME OF GAP TIME —KERNEL— OF GAP TIME —KERNEL—
S1 100 10 3322.64 0.00% 60.64 3310.54 0.37% 25.83 26.80 3298.34 0.73% 20.67 46.40
S2 100 20 3926.30 0.00% 301.79 3893.06 0.86% 39.86 27.20 3883.38 1.10% 36.13 43.80
S3 200 20 4151.56 0.00% 240.71 4113.60 0.90% 50.99 27.60 4105.30 1.12% 44.36 45.00
S4 200 40 4284.42 0.00% 168.56 4270.62 0.33% 52.50 25.80 4253.72 0.72% 41.34 42.00
S5 500 20 4436.20 0.00% 383.97 4396.00 0.89% 96.60 34.20 4372.98 1.42% 91.55 52.00
S6 500 50 4873.22 0.00% 1801.30 4838.46 0.70% 106.63 26.00 4828.50 0.91% 104.61 43.60
S7 1000 50 4831.90 0.00% 2122.94 4820.68 0.23% 131.43 37.00 4711.62 2.49% 105.28 49.80
S8 1000 100 4895.74 0.00% 1905.61 4873.94 0.45% 133.45 27.80 4813.24 1.68% 103.16 45.40

AVG 4340.25 0.00% 873.19 4314.61 0.59% 79.66 29.05 4283.39 1.27% 68.39 46.00

Table 3: Comparison among MODEL, CKS, and KS

the initial solution and of the performance of the algorithm throughout the
iterations. The larger this number is, the larger is the number of items that,
if added to the initial kernel, improved the solution. A lower value means
that the initial kernel already contained most of the items belonging to the
optimal solution. Conversely, when the final size of the Kernel is large, it
means that several items belonging to the optimal solution were not included
in the initial kernel.

Both CKS and KS show excellent performances obtaining solutions that
are, on average, only 0.59% and 1.27% far from the optimum. As reported
in Figure 5, CKS systematically outperforms KS on all instances sets. The
effectiveness of CKS is not significantly affected by the size of the instances,
which is a very strong feature of the method. On the other hand, a slight
worsening in the performance of KS can be noted with an increase in the
number of packages involved in the instances. All these aspects make CKS
remarkably preferable from an effectiveness point of view. The average com-
putational times are slightly lower for KS (68 secs) with respect to CKS (79
secs), but both methods are more than 10 times faster than the MODEL. As
can be evinced from Figure 6, the growth of computational times, with the
increase of instance sizes, is very limited for both CKS and KS, while it is
huge for the MODEL. This shows that both the proposed heuristics are very
efficient.

Moreover, it is interesting to see how the average size of the final kernel is
greatly lower for CKS (29 items) with respect to KS (46 items). This means
that most of the elements selected in the initial kernel of KS are not part
of the optimal solution, i.e., the rule according to which the initial kernel
is constructed, is not performing well in the case of KS. Conversely, the
final kernel of CKS contains only 29 items (with respect to the 20 of the
initial kernel), proving that the newly presented consensus-based approach
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Figure 5: Optimality gap for MODEL, CKS and KS

is capable of generating a much better initial kernel. This fact is particularly
evident in the small instances (S1 and S2) with 100 packages, for which KS
needs to consider almost half of the items in the kernel in order to find the
best solution (46 items), while only 5 items are added to the initial kernel by
CKS to find the best solution, which is by far better than the one obtained by
KS. In Figure 7, we compare the solution value obtained considering only the
items belonging to the initial kernel of CKS and of KS. CKS systematically
obtains much better initial solution values, confirming that the consensus-
based strategy is more effective in identifying the most promising items that
should be included in the initial kernel compared to the traditional strategy
based on the LP relaxation of the problem that is normally adopted in the
KS. Our last experiment consists in comparing the upper bounds that can be
computed starting from the relaxation used, in CKS and KS, to determine the
initial kernel, as explained in Section 4.2. Even in this case, CKS performs
much better than KS, providing much tighter upper bounds, as shown in
Figure 8. Finally, we show, in Figure 9, the percentage gaps between the
initial solution value and the upper bound, both for CKS and KS. This gap
is around 10% on average for CKS, whereas it is around 40% for KS, showing
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Figure 6: Computational times for MODEL, CKS and KS

once more that CKS is highly preferable over KS.

5.1. Analysis of the Impact of the Number of User Profiles

All the previous sets of instances (S1-S8) considered a fixed number of
users profiles Nu, equal to 10. In order to analyze the impact of this pa-
rameter on the level of challenge of the instances, we generated 4 additional
sets having 5 instances each, namely S9-S11. All the new instances have the
same characteristics of S2 in terms of Ni and Na but an increasing number
of users profiles Nu, namely 20, 30, and 50.

In Figure 10, we report, the gap with respect to the best upper bound
obtained by the MODEL within 3600 seconds of computation, for the best
solution value obtained by the MODEL, CKS, and KS, at the variation of the
number of users Nu. As clearly shown in the graphics, although KS performs
only slightly worse respect to CKS on the instances with 10, 20, and 30
users, when Nu grows to 50, the performance of KS deteriorates and the gap
rises to 6% compared to the only 0.91% obtained by CKS. This means that
when Nu increases, KS is no longer competitive in providing good quality
solutions, while CKS performances are only very slightly influenced by this
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Figure 7: Comparison of the objective function of the solutions obtained considering only
the items belonging to the initial kernel of CKS and KS
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Figure 8: Comparison of the upper bounds obtained exploiting the relaxation used to
identify the initial kernel in CKS and KS

27

                  



Figure 9: Comparison of gaps between the upper bounds and the initial solutions obtained
by CKS and KS

parameter, which makes CKS strongly preferable. In Figure 11, we reported
variation computational times (in seconds) with the increment of Nu. We can
observe that both KS and CKS are much faster than the MODEL, and for
both algorithms, the computational times are very slightly affected by this
parameter. On the contrary, MODEL computational times quickly rise with
the increasing of Nu. Indeed, MODEL is capable of solving all the instances
to optimality within the 3600-second time limit, but this is only with the
smaller number of users tested, Nu = 10. The very neglectable difference in
computational times between CKS and KS, in favour of KS, which results to
be slightly faster, does not justify the huge difference in terms of solution’s
quality observed on the larger instances (Nu = 50). Therefore, globally, CKS
is strongly preferable over KS, since it provides much better solutions in
greatly longer computational times.

6. Conclusion and Future Work

Some studies claim that in sports mega-events, such as Olympic Games
or FIFA World Cup, not all visitors are interested in attending the compe-
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Figure 10: Variation of the optimality gap for MODEL, CKS and KS respect to different
number of users Nu
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Figure 11: Variation of average computational times required by MODEL, CKS and KS
respect to different number of users Nu
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tition, but are simply accompanying relatives or friends and exploiting such
visits to explore the host country and the surrounding areas. To attract this
category of visitors, it is important to provide a set of touristic packages
that can amplify their interest in participating in the sports event and can
enrich their touristic experience. Moreover, even committed fans are often
interested in participating in touristic activities when they are not attend-
ing the games. We focus our attention on the upcoming World Cup Qatar
2022. The schedule of the tournament allows small breaks between consec-
utive matches of the same team. In this case, supporters may have several
small breaks (3-5 days) that they can spend travelling around and visiting
the host country as well as the neighbouring areas. They may also be inter-
ested in planning longer trips before the starting of the tournament and after
its conclusion, before getting back to their home countries. In this paper,
we study the problem of selecting a set of attractive touristic packages to
be offered in the World Cup period. Out of these users can pick the ones
that best fit their preferences and their budget. We, therefore, introduce a
new combinatiorial optimization problem in which the goal is to select, from
a large set of options, a small number of packages that are to be offered to
visitors, in order to maximize the average satisfaction among a set of user
profiles that are characterized by different preferences and budgets. This
problem is modeled as a Nested Multi Dimensional Multiple Knapsack Prob-
lem with Items Compatibility, (N-MDMKP-IC). To solve this problem, we
provide an integer programming formulation and a matheuristic approach
named Consensus based Kernel Search (CKS). In CKS, instead of using the
LP relaxation to identify the initial kernel and to group the remaining items
in buckets (as in traditional KS), we use a consensus-based rule, aiming at
identifying the most attractive items for the users globally. We provide an
experimental campaign carried out on instances of different sizes in order
to test the performance of the developed matheuristic and to compare it
with the traditional KS. Both CKS and KS show excellent performances,
providing very good solutions (around 1% from the optimum) in reasonable
computational times. We show how the newly proposed version, CKS, sys-
tematically outperforms KS in terms of both final solution quality and the
provision of a better initial solution. Furthermore, the rule used to search for
consensus in order to determine the initial kernel can be exploited to derive
a fast upper bound. We show in the computational experiments that this
upper bound is much tighter than the one provided by the LP relaxation
commonly used in KS. We also discuss that the newly proposed CKS is not
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only perfectly suited to address this specific problem but can be used as a
general framework for solving problems showing a similar structure, such as
bi-level and stochastic problems. This work can be extended along several
directions. Further methodological development in this field can address the
generalization of the CKS approach and its application to other problems,
while, from an application point of view, future research could address a
bi-level version of the touristic package selection problem. In the bi-level
formulation, the goal of the touristic provider would be not to maximize the
tourists’ satisfaction but rather to maximize their own revenue, based on the
fact that users usually select packages that allow maximizing their personal
satisfaction.
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