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Scientific Significance Statement

Seagrasses are expected to thrive in future acidified oceans due to their ability to overcome the low CO, diffusion into plant
tissues. However, the effects of the co-occurrence of CO, and toxic compounds on the plant and, as a consequence, on the
structure and function of the entire ecosystem are largely unknown. In this study, we show that the co-occurrence of CO, and
H,S in a shallow volcanic vent has detrimental effects on the seagrass Posidonia oceanica, from the leaf to the meadow level,
due to sulfide intrusion, which impairs growth performance. The expected beneficial effects of high CO, levels on seagrasses
may be dampened by other factors, highlighting the need to consider the natural complexity of ecosystems in ocean acidifica-
tion studies.

Abstract

Although seagrasses are expected to thrive in future acidified oceans by overcoming low CO, diffusion into
plant tissues, the co-occurrence of environmental stressors may affect their growth. Volcanic CO, vents are
often associated with toxic gases and metal-rich fluids representing ideal sites to assess the effects of multiple
stressors. We evaluated the response of Posidonia oceanica growing near shallow CO, vents characterized by H,S
spill-out by comparing meadow structure and phenology to an area with no gas emissions. Seagrass descriptors
at meadow, shoot and leaf level indicated that P. oceanica experienced stressful conditions at the vent area, in
clear contrast to the flourishing features of P. oceanica previously described at CO, vents with no evidence of
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toxic inputs. Furthermore, the reduction in both leaf 8**S and growth at the vent area indicates that sulfide
intrusion occurs and affects seagrass growth performance, dampening the expected beneficial effects of high

CO, levels.

Anthropogenic CO, emissions alter the carbon chemistry of
the oceans by increasing pCO, and decreasing pH, a phenome-
non known as ocean acidification (OA), which can alter the
stability and functioning of marine ecosystems (Mostofa
et al. 2016; Sunday et al. 2017; Cattano et al. 2018§;
Hall-Spencer and Harvey 2019; Aiuppa et al. 2021). Natural
CO, vents are subtidal marine areas characterized by the emis-
sion of volcanic gases (mainly CO,) that cause the formation of
spatial pH gradients and create the conditions predicted by
future acidification scenarios (i.e., pH decrease of 0.2/0.4 units
by 2050-2100 according to the RCP8.5 scenario; Bindoff
et al. 2022). They are therefore recognized as natural laborato-
ries where scientific hypotheses on OA can be tested in situ
(Hall-Spencer et al. 2008; Vizzini et al. 2017; Foo et al. 2018;
Rastrick et al. 2018; Mirasole et al. 2020). Moreover, CO, vents
are distributed across temperate and tropical latitudes overcom-
ing the inherent limitations of laboratory and mesocosm stud-
ies by encompassing the environmental variability of natural
systems. Although CO; accounts for the majority (90-99%) of
volcanic emissions (Aiuppa et al. 2021), it is often associated
with other gases (i.e., mainly N,, O,, CH4, H,S) and metals,
which may represent non-negligible additional stressors and
confounding factors when studying the ecological effects of OA
(Vizzini et al. 2013; Agostini et al. 2015; Zitoun et al. 2020).
Such a combination of chemical stressors may create extreme
environmental conditions to which dwelling species must adapt
in order to survive and thrive, and therefore provides opportuni-
ties to study their physiological, morphological, and behavioral
responses and adaptations to future climate change conditions.

Seagrasses are habitat-forming species that play a crucial role
in temperate and tropical coastal zones, supporting high biodi-
versity and delivering multiple ecosystem services (Fourqurean
et al. 2012; Ondiviela et al. 2014). Despite some species-
specificity (Russell et al. 2013; Ow et al. 2015), it is generally
accepted that seagrasses, along with other primary producers,
will be the “winners” in a high-CO, world because of their
strong affinity for dissolved inorganic cartbon, mainly CO, and
HCOj3;, which can stimulate primary production leading to
increased photosynthetic rates and standing crop (resource-
effect of CO,) (Koch et al. 2013; Sunday et al. 2017). However,
the combined exposure to high CO, and environmental
stressors such as toxicants (Vizzini et al. 2013), increased tem-
perature (Repolho et al. 2017; Collier et al. 2018) or eutrophi-
cation (Campbell and Fourqurean 2014) may result in
antagonistic effects where the stressor negative effects out-
weigh the beneficial effects of OA (Repolho et al. 2017; Perry
et al. 2019). In contrast, to our knowledge, the effects of com-
bined exposure to high CO, and H,S, one of the most potent
phytotoxins in the marine environment (Lamers et al. 2013),

have never been assessed. There is evidence that sediment
porewater sulfides can enter and diffuse into seagrass tissues,
disrupting plant physiology and exerting toxic effects. For
instance, sulfide intrusion can suppress photosynthesis in
Zostera marina (Holmer et al. 2005) and leaf production and
growth in Posidonia oceanica, ultimately affecting survival
(Calleja et al. 2007; Frederiksen et al. 2007; Garcias-Bonet
et al. 2008).

In this context, the stable sulfur isotope ratio (834S) is con-
sidered a valuable proxy for sulfide intrusion in seagrasses
(Holmer and Hasler-Sheetal 2014). Potential sulfur sources for
seagrasses have different isotopic signatures, with porewater
sulfides being significantly negative (6**S = —10%0 to —20%o)
compared to seawater and porewater sulfates (5**S ~ +21 and
+20-60%o, respectively) (Frederiksen et al. 2008). These differ-
ences can therefore be used to trace the origin of sulfur in
seagrass tissues. Thus, a decrease of P. oceanica §**S from its
normal values toward less positive values indicates that sulfur
from sedimentary sulfides has accumulated in plant tissues
and negative effects on plant performance are expected
(Holmer and Hasler-Sheetal 2014).

Here we aimed to investigate the response of structural traits
of P. oceanica, the foundation seagrass species forming one of
the most important coastal ecosystems in the Mediterranean
Sea, to combined exposure to CO, and H,S in a natural hydro-
thermal vent, considering multiple levels of biological organiza-
tion (i.e., meadow, shoot, and leaf) of the seagrass living near
and away from the shallow vent. Although it was not possible
to test the effects of CO, and H,S individually, we hypothe-
sized that the stressor effect of H,S would dampen the
resource-effect of CO,, so that the expected increase in density,
biomass, and canopy height at the meadows near the vent
compared to a reference area would not occur. We also investi-
gated the effects of co-exposure to CO, and H,S on leaf epi-
phyte biomass and grazing pressure, to evaluate the
propagation of the seagrass response throughout the meadow
ecosystem.

Materials and methods

The study was carried out east of Panarea Island (Aeolian
Archipelago, southern Tyrrhenian Sea) in the submerged area
enclosed by the islets of Dattilo, Lisca Bianca, Bottaro, and
Lisca Nera. Here, shallow vents dominated by CO, (~ 90-
99 vol.%), but also featured by N, and H,S emissions (both
~ 0-6 vol.%), and pH gradients (Italiano and Nuccio 1991;
Steinbriickner 2009; Romano et al. 2019) characterize the sub-
tidal environment. White/yellowish deposits have been
recorded around volcanic emissions due to sulfur precipitation
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and bacterial mat formation by sulfur-oxidizing bacteria
(Gugliandolo et al. 2006; Steinbriickner 2009). The area has also
been characterized by parossistic events, such as in November
2002, when explosive submarine activities west of Bottaro Islet
severely affected the surrounding environment and biota
(Aliani et al. 2010; Vizzini et al. 2010). The annual rhizome
elongation of the nearby P. oceanica collapsed over the next
2 yr (Vizzini et al. 2010), followed by a gradual improvement
with a complete recovery by 2010 (Noe et al. 2020).

Fieldwork was carried out at two areas with similar depth
(~ 9 m), sandy bottom, wind, and currents, and characterized
by the presence of P. oceanica meadows. A venting area, here-
after referred to as “vent,” was identified east of Bottaro islet
(38°38.270'N, 15°6.700'E), where continuous gas bubbling

H3S wanes seagrass benefit from high CO,

with CO, (96-99%) and H,S (0.5-2.5%) emissions was
observed (Italiano and Nuccio 1991; Caracausi et al. 2005). A
non-venting area, hereafter referred to as “reference,” was
located east of Lisca Nera (38°38.110'N, 15°6.460’'E) and
Dattilo (38°38.370'N, 15°5.980’E) islets, where gas emissions
and fluid discharges were never recorded (Italiano and
Nuccio 1991; Tassi et al. 2014). Within each area, two sites
with similar environmental characteristics were randomly
selected. The first sampling campaign, in July 2010, aimed to
investigate the seagrass response at the meadow level only:
shoot density was recorded by SCUBA divers at each site (six
replicates) using a quadrat metal frame (40 x 40 cm) (Buia
et al. 2004). During the second sampling campaign, in July
2011, the investigation at the meadow level was repeated and

Table 1. Mean + SD values of the Posidonia oceanica descriptors at the meadow (a) shoot (b), and leaf (c) levels measured at the vent

and reference areas in 2010 and 2011. Leaf 84S is also shown (d).

Area
Vent Reference
Descriptor Year Mean + SD Mean + SD
(a) Meadow
Density (shoot m~2) 2010 261.5 + 58.8 435.9 +128.8
2011 248.4 + 52.8 465.1 +104.4
(b) Shoots
Total leaves (n) 2011 6.0+2.2 39+0.6
Adult leaves (n) 3.7+1.6 29+0.6
Intermediate leaves (n) 1.5+0.5 1.0+ 0.5
Juvenile leaves (n) 0.8+0.6 0.0
Surface (cm? shoot ™) 61.5 +23.7 243.0 +73.8
Biomass (mg dw shoot ™) 345.4 + 146.8 1350.4 + 476.6
Green tissue (%) 09+0.0 1.0+ 0.0
Brown tissue (%) 0.1 +£0.0 0.0+ 0.0
Leaf epiphyte biomass (mg dw shoot™") 256 +11.3 172.0 £ 98.0
Coefficient A (%) 0.4+0.2 0.7+0.2
(c) Leaves
Adult leaves
Length (cm) 2011 22.7 £ 6.4 79.7 + 23.7
Width (cm) 0.6 +£0.1 0.8 +£0.1
Biomass (mg dw leaf™") 79.0 + 28.2 382.4 +134.5
Sheath length (cm) 1.9+0.6 44 +1.1
Sheath biomass (mg dw leaf™ ") 15.5+11.3 45.8 +27.1
Epiphyte biomass (mg dw leaf ") 6.3+ 3.8 53.0 £ 30.4
Intermediate leaves
Length (cm) 14.8 + 8.7 68.2 + 26.7
Width (cm) 0.6 +£0.1 0.8 +0.1
Biomass (mg dw leaf™ ) 35.4 +22.1 241.5 +£122.9
Epiphyte biomass (mg dw leaf ') 1.5+24 183+ 14.7
(d) Stable isotopes
Leaf 534S (%o0) 2011 10.6 + 0.8 15.5+0.5
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extended to the shoot and leaf level: five shoots were ran-
domly collected at each site for the assessment of shoot and
leaf descriptors (Table 1, Buia et al. 2004) including the analy-
sis of stable sulfur isotopes (6**S) of P. oceanica leaves and the
associated epiphyte biomass. At both sampling campaigns,
temperature, salinity, dissolved oxygen, and pH at the
sediment-seawater interface were recorded in triplicate at each
site using an HYDROLAB DSS multiparametric probe.

In the laboratory, after leaf biometry estimation, freeze-
dried leaves (both adult and intermediate) from each
P. oceanica shoot were ground, homogenized, and packed into
tin capsules for stable sulfur isotope analysis. Samples were
then analyzed using a Thermo IRMS (Delta V ADVANTAGE)
coupled with an elemental analyzer (EA Flash 2000). Results
are given in the & notation as per mil deviation from the inter-
national standard (V-CDT) as follows: 8**S = [(**S/**Ssampie)/
(348/3255tandard) - 1] X 103

The analytical precision, based on the standard deviation
of replicates of internal standards (IAEA-SO-6, IAEA-S-1, NBS
127) was £ 0.2%o.

Seawater variables and meadow descriptors were analyzed
using the following design: Area (two levels: vent, reference)
and Year (two levels: 2010, 2011) as orthogonal and fixed fac-
tors, and Site as a random factor (nested in both Area and
Year). Shoot and leaf descriptors, only available for 2011, were
tested considering only the factors Area and Site (nested in
Area). Univariate ANOVA was performed on seawater and
seagrass descriptors at all levels (meadow, shoot, leaf) and on
8*S (STATISTICA 12, StatSoft). The normality assumption was
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Fig. 1. Density of Posidonia oceanica at the two sites of the vent and
reference areas in 2010 and 2011 (n=12). Whiskers indicate the
non-outlier range of variation; boxes: 25" to 75™ percentiles. Significant
differences between areas are indicated (see Supporting Information
Table S2 for details).
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tested using the Shapiro-Wilk test and the log(x + 1) transfor-
mation was applied when the normality assumption did not
hold. Homogeneity of variances was tested using Cochran’s
test. Multivariate permutational ANOVA (PERMANOVA;
PRIMER 6 and PERMANOVA-+ package) was run on the
seagrass descriptors grouped by level of organization. PER-
MANOVA was run on the Euclidean distance matrices
obtained from log(x + 1) transformed normalized data, and
the Monte-Carlo test was run in the case of low permutations
(< 100). Pairwise post hoc tests were conducted when signifi-
cant effects of the interactions of the factors Area and Year
were found.

Results

Seawater variables showed similar values between areas,
years, and sites except for pH, which was significantly lower
at the vent than at the reference area (Supporting Information
Table S1; Signa et al. 2023). At the meadow level, the density
of P. oceanica was significantly lower at the vent than at the
reference area, with no inter-annual or inter-site variability
(Fig. 1; Table 1; Supporting Information Table S2).

At the shoot level, significant differences were detected
between areas and sites (Supporting Information Table S2). As
shown in Table 1, shoots at the vent area were characterized
by a higher number of leaves for all age categories (i.e., adult,
intermediate and juvenile leaves) together with a higher per-
centage of brown tissue than at the reference area. On the
other hand, shoots showed higher leaf surface and biomass,
epiphyte biomass, percentage of green tissue and eroded api-
ces (Coefficient A) in the reference area (Table 1; Supporting
Information Table S2). There were no juvenile leaves in the
shoots at the reference area (Table 1).

At the leaf level, the differences between the two areas
became more pronounced, while the inter-site variability dis-
appeared. Specifically, the values of all descriptors of both adult
and intermediate leaves were lower at the vent area than at the
reference area (Table 1; Supporting Information Table S2). Simi-
larly, 5*S values of P. oceanica leaves were significantly lower at
the vent than at the reference area, with no difference between
sites (Table 1; Supporting Information Table S2).

Discussion

This study showed significant impairment in meadow
structure and plant phenology of P. oceanica living near a shal-
low volcanic vent affected by both CO, and H,S inputs com-
pared to a reference area. Although the peculiarities of the
vent area did not allow to investigate separately the effects of
CO; and toxic H,S emissions, the changes in seagrass traits
(i.e., reduced density, biomass, canopy height and leaf size),
together with the evidence of sulfide intrusion, suggest that
CO; and H,S may have acted antagonistically, dampening the
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expected CO,-resource positive effect and resulting in an over-
all negative response of the plant at the vent area.

Hydrogen sulfide concentration in the vent area was not
measured in this study, but the presence of white mat-forming
bacteria alongside the typical sulfur smell confirms the presence
of this toxic gas, as previously evidenced (Italiano and
Nuccio 1991; Caracausi et al. 2005). Furthermore, the decrease
in 83*S of P. oceanica leaves from the vent area compared to the
reference area is a valuable indication not only of the presence
of sulfides in the former (Italiano and Nuccio 1991;
Steinbriickner 2009; Romano et al. 2019), but also of sulfide
intrusion into plant tissues (Holmer and Hasler-Sheetal 2014).
Hydrothermal and biogenic porewater sulfides, which are abun-
dant in Panarea sediments (Peters et al. 2011), are thought to be
an important source of sulfur in leaf tissues near vent sites, as
they enter through roots and are transferred to rhizomes and
leaves, when present (Frederiksen et al. 2008). As porewater sul-
fides typically have negative 'S values, a decrease in §**S in
seagrass tissues is a valuable proxy for sulfide exposure and
intrusion (Holmer and Hasler-Sheetal 2014). Indeed, §%*S of
P. oceanica leaves from the reference area falls within the range
(+15-27%o) reported by Holmer and Hasler-Sheetal (2014) for
areas unaffected by sulfides, while the decrease of about 5%o
found near the Panarea vents provides evidence that some
amount of sulfur from sedimentary sulfides has accumulated in
P. oceanica leaves. Furthermore, the reduction in both leaf 534S
and biometric parameters provides clear evidence of the stressor
effect of sulfide intrusion on seagrass performance in line with
previous studies showing reduced growth, meristem activity and
above-ground productivity and increased mortality following
sulfide intrusion in P. oceanica (Calleja et al. 2007; Frederiksen
et al. 2008; Garcias-Bonet et al. 2008).

The reduction in shoot density and biomass found here was
opposite to previous findings on P. oceanica living near the volca-
nic vent of Ischia (Italy, Tyrrhenian Sea) where volcanic gas
emissions are constituted by CO, with no hydrogen sulfide (Foo
et al. 2018). Under these “pure” acidic conditions, P. oceanica
thrives at densities twice as high as those observed in the refer-
ence area and 10-fold higher than those found in the vent area
of the present study (Hall-Spencer et al. 2008; Mecca et al. 2020;
Mirasole et al. 2021). In contrast, patterns similar to those found
in this study were highlighted for Cymodocea nodosa growing
neartby Vulcano vents (Eolian Archipelago) (Apostolaki
et al. 2014), where the seagrass is likely to be stressed by H,S,
CH,, and metals (Capaccioni et al. 2001; Vizzini et al. 2013). The
contrasting characteristics of gas emissions at Panarea and Ischia
vents may also account for the different expression patterns of
key stress-related genes previously observed in P. oceanica near
the two vent systems, representing the result of site-specific envi-
ronmental stress rather than the reflection of contrasting
homeostatic evolutionary compensation (Lauritano et al. 2015).

As regards plant phenology, it is worth noting that the
leaves of the shoots at the vent area were more numerous than
at reference conditions, but they were also shorter and thinner,

H3S wanes seagrass benefit from high CO,

with a higher proportion of brown than green tissue. Changes
in leaf color may be the result of (i) the alteration of the ratio
between phaeopigments and chlorophyll g, as already observed
in Zostera noltii under thermal stress (i.e., warming) (Repolho
et al. 2017) and/or (ii) a faster leaf aging process under sulfide
stress (Lamers et al. 2013). This is further supported by the pres-
ence of young leaves only in plants close to the vents, consis-
tent with increased leaf turnover (Perry et al. 2019) probably as
a physiological mechanism to offset the early leaf aging.

The undersizing of P. oceanica leaves in response to extreme
environmental conditions has already been observed in Mediter-
ranean marine areas (Gravili et al. 2021; Mancuso et al. 2023;
Nguyen et al. 2023), including Panarea, where P. oceanica “bon-
sai” shoots have recently been described (Gambi et al. 2023).
Consistently, we found smaller plants near the vents, but with
more leaves than at reference sites, confirming the complexity of
the plant response to multiple gases and the need for further
investigation, especially to distinguish acclimatization mecha-
nisms from young plants recovering after strong disturbances
(parossistic events). The divergent pattern found here between
high leaf abundance and turnover and low leaf size at the vent
area seems to mirror the occurrence of acclimatization mecha-
nisms in P. oceanica exposed to combined CO, and H,S emis-
sions, resulting in a scarce efficiency of the plant to allocate the
additional carbon of volcanic origin into new biomass under
stressful conditions (Invers et al. 2001; Apostolaki et al. 2014;
Vizzini et al. 2019), rather than a higher grazing pressure.
Indeed, the low Coefficient A (i.e., number of eroded leaf apices)
found in the vents confirms this hypothesis, suggesting low
exploitation of P. oceanica by herbivores and macrograzers, con-
trary to previous observations in the “pure” CO, Ischia vents
(Donnarumma et al. 2014; Mirasole et al. 2020). Indeed, OA is
commonly associated with increased nutritional value (low C : N
ratio) and decreased deterrent compounds (i.e., phenolics) in
P. oceanica and, consequently, higher seagrass exploitation by
herbivores (Ricevuto et al. 2015), all aspects that deserve further
research under the complex environmental conditions of the
Panarea vent system.

Differently, the drastic reduction in epiphyte biomass
observed near the vents is consistent with the classic response
of calcifying epibionts to OA (Hall-Spencer et al. 2008;
Nogueira et al. 2017), although the low leaf size and faster leaf
turnover may have certainly played a role, resulting in a
reduced leaf surface and time available for epiphyte coloniza-
tion. The low epiphyte colonization observed in the vent area
may also have increased light exposure, which in turn may
have contributed to the previously discussed leaf aging pro-
cess and die-off (brown tissue) (Munné-Bosch and Alegre 2002;
Zimmermann and Zentgraf 2005).

Overall, the outcomes of this study underlined highly
stressful conditions associated with sulfide intrusion in the tis-
sues of P. oceanica living near the Panarea vents and the con-
sequent negative response in plant density and biomass. This
response contrasts with the thriving condition of the same
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species previously described at the Ischia vents, where there is
no evidence of toxic inputs (Hall-Spencer et al. 2008; Mecca
et al. 2020; Mirasole et al. 2021), suggesting that H,S emis-
sions from volcanic vents, when they occur, affect seagrass
performance, net of the potential beneficial effects of increas-
ing CO, concentrations. Indeed, we observed here that the
response of seagrasses to OA can deviate from expectations
when increased CO, is combined with chemical stressors, and
that this response is as complex as highly context-dependent,
given the variability of volcanic input at shallow vents (Koch
et al. 2013; Mostofa et al. 2016; Sunday et al. 2017; Collier
et al. 2018; Hall-Spencer and Harvey 2019; Perry et al. 2019).
Moreover, we revealed that eco-physiological mechanisms of
acclimatization occur at multiple levels (from leaf to meadow)
of P. oceanica long-term exposed to CO, and toxicants, paving
the way for further research on the response of seagrass eco-
systems under future global change scenarios. Although the
results of this study suggest that the combination of CO, and
H,S may act antagonistically on P. oceanica, further studies are
needed to determine the specific underlying mechanisms,
using specific multiple stressor designs and possibly combin-
ing field and manipulative approaches.

Data availability statement
Data and metadata are available on Zenodo at https://
zenodo.org/records/8425339.
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