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ABSTRACT: 
The use of the thermal imaging camera for Unmanned Aerial Vehicle (UAV) survey is to date very common for environmental 
analysis, especially if high spatial resolution images are required. Some analyses require images to be acquired close to sunrise, to 
avoid the influence of the incident solar radiation on the surface temperature, as in the case of a landfill survey. Indeed, thermal 
anomalies due to generated landfill biogas can be characterized once other heat sources are excluded. In this framework, thermal 
images need to be processed similarly to optical images by typical photogrammetric workflows producing both a Digital Surface 
Model (DSM) and an ortho-image. The low spatial resolution of thermal cameras, optical distortion and low and homogeneous 
spatial distribution of radiant exitance at sunrise require, however, an adapted workflow. In this work, some first tests were carried 
out at a landfill in Palermo (Italy) to evaluate the feasibility of using thermal images to determine the DSM and the thermal ortho-
image of the area, aiming to identify thermal anomalies related to landfill heat sources such as biogases. 

* Corresponding author 

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been used for many 
applications in recent years in the field of cultural heritage, 
archaeology, 3D mapping and environmental monitoring. In 
particular, the UAVs have been used to 3D survey and 
modelling of a historical building (Carnevali et al., 2018; Lo 
Brutto et al., 2018) and archaeological sites (Lo Brutto et al. 
2014; Erenoglu et al., 2017). Also in a hazardous situation, the 
3D documentation was done with UAVs (Zaragoza et al., 
2017). Some works have been carried out for 3D mapping in 
civil engineering applications (Siebert and Teizer, 2014; Santos 
de Melo et al., 2018) or for environmental monitoring 
(Manfreda et al., 2018) and natural hazards monitoring (Gomez 
and Purdie, 2016).  
One of the most recent applications of UAVs is the inspection 
and monitoring of landfills. For example, some applications 
were carried out to monitor slow-evolving processes such as 
waste compactness and landfill subsidence; these processes are 
recognised as threats in causing the major economic loss to 
management of rubbish damps (Gasparini et al., 2014).  
Some UAVs aerial surveys for landfill monitoring have been 
conducted using thermal sensors. In Baiocchi et al. (2018) first 
tests have been performed to evaluate the altimetric and thermal 
accuracy of a UAV landfill survey. 
Other recent works have been aimed at measuring gas emissions 
through thermal imaging cameras pointing out that emissions 
are localized in hotspots points (Röwer et al., 2011; Xu et al., 
2014) due to the mixed nature of the landfills (composed by 
litters, soil, organic matter, leachate liquid, etc.).  
An optimum landfill management requires the detection of 
landfill gas (LFG) emission hotspots. Thus, thermal images are 
clearly useful as the gas emissions generally are observable as 
thermal anomalies. Indeed, the degradation of organic waste 
produces LFG mainly composed of methane (CH4) and carbon 
dioxide (CO2). The former is generated by an exothermic 
process which warms up the surrounding area (as these gasses 

are characterized by temperatures up to 60° C). The detection of 
thermal anomalies due to generated LFG could be performed 
once other heat sources are excluded; thus, leading to the need 
of performing acquisitions close to sunrise, to avoid the 
warming up of the surface due to the incident solar radiation... 
Some limitations in the use of the thermal sensors to detect LFG 
emission hotspots have been highlighted in Lewis et al. (2003); 
these limitations include sunlight, ambient temperatures, wind, 
surface materials and distance between a sensor and the source. 
These authors conclude “that unless all the fundamental factors 
are clearly understood and addressed, the technique (i.e., 
infrared thermography) currently can only be used as a 
screening tool rather than as a precise tool to detect landfill gas 
leakages”. 
Ground-based surface campaigns for locating emission hotspots 
are generally difficult as time-consuming and labour-intensive. 
In addition, landfills are often moderately/largely extended (up 
to hectares in area) and not always easily accessible. For these 
reasons, the UAV survey appears to be worthwhile to detect 
hotspots’ emissions. 
An aerial infrared thermography approach to identify thermal 
anomalies with a good resolution over a large region of the 
landfill surface was showed in Tanda et al. (2017). A simplified 
procedure to evaluate the biogas flow rate emerging from the 
soil into the atmosphere, based on infrared thermography 
measurements, was also presented in this paper.  
Fjelsted et al. (2018) have used an UAV-mounted thermal 
infrared camera’s to delineate landfill gas emission hotspots; the 
authors have evaluated the methodology in two landfills test 
areas of 100 m2. The relationship between landfill gas emissions 
and soil surface temperatures were investigated in these case 
studies through several measuring campaigns, in order to cover 
different atmospheric conditions. Because the extension of the 
area of the landfills and the high spatial resolution often 
required for these type of survey, it could be useful to process 
thermal images similarly to optical images. Thermal images, 
acquired from UAV, can be processed by applying the typical 
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photogrammetric workflow, and in particular, the 
photogrammetric/structure-from-motion (SfM) approach, prior 
to use these data to localize gas emission hotspots. 
The use of thermal images in a typical photogrammetric/SfM 
approach is showed in Mauriello and Froehlich (2014) and in 
Westfeld et al. (2015). These authors have investigated the 
possibility to efficiently use SfM approach with thermal images 
for 3D point cloud generation; these works are, however, aimed 
at buildings survey. In environmental survey, the use of 
photogrammetric/SfM workflow allows obtaining from thermal 
data the DSM beyond the thermal ortho-image of the area. 
However, low spatial resolution of thermal cameras, optical 
distortion and low and homogeneous radiant exitance spatial 
distribution impose an adapted workflow. 
Within this work, preliminary tests were carried out to evaluate 
the feasibility to use thermal images acquired from a UAV for 
DSM extraction and for ortho-image production in a landfill 
environment. The study area is within the landfill of Bellolampo 
(close to Palermo, Italy) where landfill managers are interested 
in thermal behaviour and actual DSM that undergo temporary 
storage, consolidation, compaction and transfer of waste 
material. The work was carried out in a quite small area test 
(about 2.5 hectares) of the landfill. In this operative scenario, 
we performed optical and thermal flights to compare outcome 
from the thermal images process with a medium/large UAV (~7 
kg weight). 

2. STUDY AREA

The “Bellolampo landfill” is used as landfill for the waste of the 
city of Palermo (Sicily, Italy) and for some municipalities near 
Palermo. The landfill receives the waste of about one million 
people; on average about one thousand tonnes of waste per day 
is stored in the landfill. The “Bellolampo landfill” is located 5 
km from the city, in the North-West of Palermo, in a site far 
away devoted as the landfill of the city (Figure 1). The nearest 
inhabited settlement is far away just 1 km south of the landfill 
facilities.  
The landfill covers on the whole an area of about 30 hectares 
and is located at an altitude of about 500 m above sea level 
(a.s.l.), between Badami Plain and mount Gibilforni (Figure 2). 

Figure 1. Positioning of “Bellolampo landfill” (from Google 
Maps©). 

Figure 2. The “Bellolampo” site (from Google Maps©). 

In addition to a historical “reclaimed” landfill in which waste 
was accumulated without controls for almost 3 decades, five 
more landfills have been built in the last 2-3 decades. More 
recently, five controlled landfills were built starting from 1990 
to 2010; these latter nowadays are closed. A sixth landfill 
(namely the landfill #6) is under construction since 2015, and it 
is currently in operation. This latter landfill has an area of about 
90,000 m2 and a volume of about 1,700,000 m3; it is composed 
by four sectors (namely sector #1 to sector #4, numbered 
counter-clockwise from the southeast corner of the landfill #6). 
Altitudes of the first two sectors range approximately between 
510 and 520 m a.s.l., while altitudes of the last two sectors 
extend up to ≈ 560 m a.s.l.. The first two sectors are already 
filled and covered by a capping. High-density polyethylene 
(HDPE) has been used as cap (Figure 3).  

Figure 3. HDPE used as cap for the sector #1 and sector #2 of 
the landfill #6 (from RAP S.p.A. website). 

This geomembrane cap contains landfill gas and prevents 
precipitation becoming leachate, and a floating cover prevents 
odour emissions. Biogas recovery facility as well as leachate 
storage and treatment plants are present. The Landfill gas plant 
is characterized by an installed power of 6.35 MW generated at 
municipal solid waste (MSW). 
The study was limited to only part of the landfill #6; the area of 
interest is about 130 m x 200 m and is delimited by a red line in 
figure 4. The area is almost all covered by an impermeable cap; 
only a small part is partially vegetated and covered with soil. 
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Figure 4. Flown area (red box) over an image from Google 
Maps©. 

3. DATA ACQUISITION

The area of interest was flown on the 30th of January 2018 by an 
NT-8 Contras octocopter carrying on-board an Optris PI450 
thermal camera and a GoPro HERO Black 4 camera (Figure 5). 
The Optris PI450 is a microbolometer acquiring in the 7.5 - 13 
µm spectral range with 40 mK thermal sensitivity; it produces 
thermal images with a resolution of 382 pixels x 288 pixels. 
GoPro HERO Black 4 is a well-known action camera that could 
be used for photogrammetric image acquisition in contexts 
where is not required a high level of accuracy (Hastedt et al., 
2016).  

Figure 5. The NT-8 Contras octocopter used for images 
acquisition.  

Four strips were planned at an average UAV flight height of 50 
m above the ground level; the flight direction was parallel to the 
contour lines (Figure 6). The acquisition was done by two 
flights; the first acquisition was carried out at 06:20 local time, 
very close to sunrise (starting at 06:10 local time) under diffuse 
solar radiation and the second just after sunrise with direct plus 
diffuse solar radiation (at 07:00 local time). 
With thermal camera and GoPro, only videos have been 
acquired for the area of interest. The resulting thermal images 
were characterized by a pixel spatial resolution of ≈ 14 cm; 
about 5 times coarser than the visible images (≈ 3 cm).  

Figure 6. View of UAV acquisition scheme. 

Aluminium targets (20 cm x 20 cm) were deployed on the 
ground as suitable ground control points (GCPs) for thermal 
images. Aluminium is indeed characterized by very low 
emissivity (ε=0.04-0.07 for foil and rough surfaces, 
respectively) resulting in pixels with very low brightness 
temperature. Even though the night-time thermography was 
characterized by low homogeneous radiative temperature these 
targets were clearly detectable within the scene. On the other 
hand, these aluminium targets were not simply detectable on the 
visible images due to sparse vegetation mixed to waste 
emerging from the soil. The coordinates of the targets were 
measured by a Network Real Time Kinematic (NRTK) survey 
using a Topcon Hiper V receiver (both GPS and Glonass) 
(Figure 7). NRTK positioning was carried out using the 
hardware and software infrastructure of the permanent Netgeo-
Topcon network (http://www.netgeo.it/index.php) framed in 
the reference system ETRF2000 (powered by IGMI, the Italian 
Military Geographic Institute) and in particular via the VRS 
(Virtual Reference Station) stream. The survey has a planimetric 
and altimetric accuracy of the centimetre level.  

Figure 7. GNSS survey of the aluminium targets. 

4. DATA PROCESSING

The first step in data processing was to extract the single frames 
from the video sequences. One frame per second was extracted 
from the videos of both the thermal camera and the GoPro. As 
the ground-speed of the UAV was 2 m s-1 a sequence of images 

Thermographic characterization of a landfill trough an Unmanned Aerial Vehicle

110



with a high percentage of coverage was obtained from both 
flights.  
Visible and thermal images were processed using the Agisoft 
PhotoScan Pro software; the typical photogrammetric/SfM 
approach was carried out by image alignment and estimation of 
internal camera parameters, dense point cloud computing, DSM 
and ortho-image production.  
To use thermal images with Agisoft PhotoScan Pro software it 
was necessary to convert the thermal sequence in TIF images 
and to reduce the image radiometric resolution to 8 bit.  
Three different Agisoft PhotoScan Pro projects have been setup: 
two with the thermal images of the first and second flight and 
one with the visible images of the second flight. In this way, it 
was possible to obtain three DSMs and three ortho-images (two 
from thermal images and one from visible images) of the test 
area (Figure 8). 

Figure 8. Ortho-image from GoPro data. 

5. DATA ANALYSIS

Thermal images are suitable to detect some landfill 
characteristics not clearly visible elsewhere. Pipelines used for 
biogas conduction (Figure 9, upper panel) generally show 
temperatures (Figure 9, lower panel) higher than the 
surrounding ground, with some pipelines showing values much 
higher than others. Some temperature features are also clear in 
landfill zones with and without capping (in this latter case often 
close to boundaries).  
The acquisition at sunrise allows neglecting the ground heat 
flux due to its inversion at the surface. During the first flight, 
features due to underground heat sources are clearly visible; 
although under diffuse solar radiation (Figure 10, left panel) 
brightness temperature was quite low. During the second flight 
underground heat source were masked by direct shortwave 
radiation warming up surface micro-reliefs (Figure 10, right 
panel) and activating also the vegetation covering the soil (as 
part of the landfill is not covered with capping). The brightness 

increase between the two acquisitions was 4.8 °C on the 
average, with a 2.1 °C standard deviation. Minimum and 
maximum percentiles, 1 and 99% were P01 = 2.8 °C and P99 = 
6.9 °C, respectively. 
A high spatial resolution DSMs characterizing the landfill at the 
time of the acquisition was obtained by processing both thermal 
and visible images (Figure 11). These products are useful as 
active landfills are characterized by morphologies quickly 
evolving in time due to waste movement and compaction. 

Figure 9. A detail of the landfill including biogas pipelines 
(upper panel, visible image) and brightness temperature of the 

same area (lower panel, thermal image). 

-8

20 °C

Figure 10. Brightness acquired at 6:20 local time with diffuse 
radiation (left panel) and at 7:00 under diffuse plus direct 

radiation (right panel). 

DMS obtained by thermal images, DSMTIR, acquired during the 
first flight was compared to the more standard product from 
optical image, DSMVIS, to test the reliability of the former one. 
Altitude values are strongly correlated (r2 ≈ 0.98) with no 
notable over- or under-estimation (the slope was 0.999) and 
quite low dispersion (MAE ≈ 1.1 m) (Figure 12). Lines 
characterizing DSMTIR 10° and 90° percentiles are also reported 
(P10 and P90, respectively) to confirm that few pixels fall outside 
of these extremes. The colour scale (blue to yellow to red) is 
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proportional to the density of pixels falling within the 
scatterplot bin element. The colour scale highlights that most of 
the pixels (in red) are aligned on the 1:1 line (part of the study 
area covered by ground control points); while a second cluster 
of pixels is observed over the part of the landfill were no or few 
aluminium targets were deployed.  

528

583 m

Figure 11. DSMVIS derived from the acquisition under direct 
plus diffuse solar radiation. 

Figure 12. DSMVIS from an overpass under direct plus diffuse 
solar radiation versus DSMTIR from an overpass just after 

sunrise under diffuse solar radiation. 

6. CONCLUSIONS

The work has shown the results of some first tests carried out 
for the thermographic characterization of a landfill in Palermo 
(Italy). The thermal images were acquired by a UAV and were 
used to identify thermal anomalies related to landfill heat 
sources. 
Thermal images acquired close to sunrise, with only diffuse and 
no direct solar radiation, allow highlights features due to 
underground heat sources such biogas production, emission or 
storage; while daily ground heat flux due to net radiation can be 
neglected due to its daily inversion at the surface. If a thermal 
image is acquired during daytime or even when direct 
shortwave radiation hit the surface, underground heat source 
would be masked by warmed up surface micro-reliefs and by 
evaporation and transpiration processes of soil and vegetation if 
occurring. A DSM derived by processing the thermal images 
has been proved to be an unconventional alternative to that 
obtainable from visible images although further and more in-
depth tests must be done to verify the metric reliability of the 
DSM produced from thermal images. Furthermore, the 
processing step highlighted that aluminium targets turn out to 
be suitable ground control points for DSM and ortho-image 
production from thermal images; even when, close to sunrise, 
exitance and reflectance are quite low and standard visible 
targets cannot be easily detected in thermal and visible images. 
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