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Abstract

A Ritz formulation for non-linear analysis of damage initiation and evolu-

tion in variable angle tow composite plates under progressive loading is pre-

sented. The model is built on a few key items. It assumes first order shear

deformation theory kinematics and non-liner strains in the von Kármán sense.

The constitutive relationships are formulated in the framework of continuum

damage mechanics at the ply level, so that each laminate layer can experience

in-plane damage initiation and evolution, then reflected in material softening

and loss of local stiffness. A Ritz polynomial expansion of the primary variables

and the minimization of the total potential energy provide the discrete solu-

tion equations, which are then solved with an incremental-iterative approach

for capturing damage evolution. A few tests have been successfully performed

to validate the approach. Eventually, some original results about variable an-

gle tow plates under progressive in-plane compression loads highlight the effect

of damage on the post-buckling response.

Keywords — Continuum Damage Mechanics, Failure analysis, Variable angle tow

composites, Ritz method, Non-linear analysis
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1 Introduction

Thanks to their properties, namely low density, high stiffness and strength, low fatigue

susceptibility, multilayered composite materials are used in a variety of engineering fields,

including aerospace, naval and automotive, where lightweight structural components are

particularly valuable [1]. Recently, the development of new manufacturing techniques,

such as automated fibre placement, automated tape laying, and additive manufacturing

[2–5], has promoted the design of composite structures with variable mechanical properties,

allowing the realization of variable angle tow (VAT) laminates, which are obtained by

varying the fibre orientation as a function of the position considered over the structure [6,7].

The advantages offered by such class of laminates are nowadays well-known and have been

extensively studied [8–10].

Besides developing new manufacturing techniques for the production of advanced mate-

rials and structural components, designers and engineers need modelling and computational

tools able to predict, with reasonable accuracy, the structural response of the designed com-

ponents. Such demand becomes particularly relevant if the width of the materials design

space, allowed by the novel manufacturing techniques, is considered. In such a context,

where several process and material parameters have huge influence on the quality of the

artifacts, the availability of effective computational tools may help reduce the costs of

experimental campaigns needed for the development of new material configurations, thus

contributing to unleashing the higher potential of new manufacturing/materials routes.

The Finite Element Method (FEM), which has also reached a well-established com-

mercial maturity, is one of the most popular computational approaches to structural prob-

lems [11,12]. The accuracy of FEM is closely related to the quality of the employed mesh

that, in the case of VAT laminates, typically requires a high number of elements, due to

the variation of the in-plane and through-the-thickness material properties, thus leading

to high computational costs [13, 14]. Different mesh-less techniques have been proposed

as alternatives to FEM to address such issues and possibly speed up the analysis while

maintaining a high level of accuracy, see e.g. Ref. [15]; in this context, the Ritz method,

which may be seen as a global mesh-less technique, has proven effective for the analysis of

classical, laminated and VAT composite structures [16–21].

To fully exploit the benefits of VAT composites and identify their operational domain,

it is necessary to assess and possibly predict the onset and evolution of damage, as done for
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other engineering materials and traditional straight-fibre laminates. Different approaches

have been used in the literature to model the initiation and evolution of damage in com-

posite structures; depending on the scale of the idealization, from micro- through meso- to

macro-scale, damage can be modelled using different techniques.

Micromechanical approaches are commonly used at the micro-scale, where the evolu-

tion of damage is represented either as matrix softening or fibre breaking, with both the

matrix and the fibres explicitly represented in the so-called Representative Volume Element

(RVE) [22–25]. Such methods are often employed to investigate basic damage initiation

mechanisms and the material response before cracks or delaminations localize at the ply or

laminate scale. At the opposite macro-scale or component level, a hard discontinuity, such

as a crack or concentrated loss of material stiffness, is frequently used to describe damage

and its influence on the structural functionality or safety [18,26,27].

On the other hand, in meso-scale models, where each ply is represented as orthotropic

and homogeneous, different modelling strategies have been proposed to model damage

processes; one of the most established is Continuum Damage Mechanics (CDM), see e.g.

Refs. [28,29], where damage is represented as a progressive loss of material stiffness. CDM

is today widely employed and it has been successfully used for the analysis of a large variety

of materials, in nano-mechanics investigations [30] and in in multi-scale applications [31].

The initiation and evolution of damage in composites has been investigated employing

CDM in the framework of FEM by several authors. As an example, Maimı́ et al. [32, 33]

developed a CDM-FE model with damage activation functions based on LaRC04 failure

criteria for the prediction of the onset and evolution of intra-laminar failure mechanisms;

Ferreira et al. [34] developed a higher-order FE model that models progressive damage

using generalised kinematics; Lopes and coworkers [35] implemented a user-developed con-

tinuum damage model in the commercial FE software ABAQUS to investigate progressive

damage evolution in VAT composite laminates in post-buckling, up to and structural fail-

ure due to fibre and matrix damage accumulation. Finite elements formulations have also

been employed to develop three dimensional CDM-based material models to simulate the

progressive intra-laminar degradation of fiber reinforced laminates as well as delamination

using cohesive interfaces between layers [36–38].

On the other hand, very few studies have dealt with the development of Ritz approaches

for the analysis of progressive damage in straight-fibre composite laminates. Yang and

Hayman used an instantaneous and a linear degradation model to develop a semi-analytical
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method for estimating the ultimate strength of rectangular composite laminates subjected

to uniaxial in-plane compression [39, 40]. To the best of the authors’ knowledge, no Ritz

approach has been developed for the study of progressive damage in VAT composites,

which is the main aim of the present work.

The manuscript is structured as follows: Section 2 specifies the considered problem,

introduces the geometric description of the plate, the kinematic model and the constitu-

tive relations employed to take into account the presence of damage; next, the governing

equations are derived using the Ritz approximation and the principle of minimum poten-

tial energy, which are written in incremental form in order to solve the non-linear damage

evolution problem. In Section 3 the proposed method is first validated for both small

and moderately-large strains and then used for the analysis of different VAT laminates,

to show its potential. Section 4 discusses strengths and limitations of the present work,

before Conclusions are drawn.

2 Mechanical formulation

In this section the key items of the formulation are briefly presented and discussed. After

identifying the class of mechanical problems considered in the study, the details about

the kinematic and constitutive assumptions are presented. The weak formulation of the

problem, governing the equilibrium at each load step, the features of the Ritz approxima-

tion and the solution incremental-iterative scheme are then discussed, before applying the

method to some test applications.

2.1 Problem definition

Consider a quadrilateral composite plate, whose geometry is schematically represented in

Fig.(1), referred to a Cartesian coordinates system identified by the axis x3, directed along

the plate thickness, and the axes x1 and x2, spanning the reference mid-plane of the plate.

The 2D domain occupied by the plate over the reference mid-plane is denoted by Ω, while

∂Ω identifies its boundary; the plate thickness is denoted by h and each composite lamina

is located between x3 = hk−1 and x3 = hk, with k denoting the lamina considered, so the

bottom and top surfaces are identified by x3 = −h/2 and x3 = h/2 respectively.

In order to model general quadrilateral plates, a natural coordinate system (ξ, η) ∈
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Figure 1: Schematic representation of the VAT composite plate.

[−1, 1] × [−1, 1], mapping the plate mid-plane into a square domain, is introduced, see

Fig.(2), so that the in-plane coordinates are given by

xi =
4∑

α=1

gα(ξ, η)xiα, i = 1, 2 (1)

where xiα are the coordinates of the α-th vertex of the plate mid-plane and gα are the

standard bi-linear shape functions, namely,

gα =
(−1)α−1

4
(ξ + ξα)(η + ηα), α = 1, . . . , 4 (2)

where (ξα, ηα) are the natural coordinates of the four vertices of the square mapping the

plate mid-plane.

2.2 Plate Kinematics and strain-displacement relationship

Adopting the First order Shear Deformation Theory (FSDT), the displacements d =

{d1, d2, d3}⊺ of the points of the plate in the reference system are given by

d = u+ x3Lϑ+ w, L =

[
1 0 0

0 1 0

]⊺

(3)

where u = {u1, u2, u3}⊺ and ϑ = {ϑ1, ϑ2}⊺ collect the reference plane displacement compo-

nents and the section rotations, respectively, and w = {0, 0, w}⊺ collects the components

of prescribed initial displacements, which may describe the possible presence of geometrical
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Figure 2: Plate mid-plane mapping.

plate imperfections.

The strains components may be collected in the vector

e = {e11, e22, e12, e13, e23, e33}⊺ =

{
ep

en

}
, (4)

where ep = {e11, e22, e12}⊺ and en = {e13, e23, e33}⊺ collect the in-plane and out-of-plane

components of strains respectively.

Admitting geometric non-linearity in the von Kármán sense, the strain-displacement

relationships may be written as

ep = Dpu+
1

2
(Dp ⊗ u3)Dnu+ x3DpLϑ+ (Dp ⊗ w)Dnu =

= εp + εnl + x3κ+ ε=

= ε+ x3κ

(5)

and

en = Dnu+Lϑ = γ (6)
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where Dp and Dn are matrix linear differential operators defined as

Dp =


∂x1 0 0

0 ∂x2 0

∂x2 ∂x1 0

 Dn =


0 0 ∂x1

0 0 ∂x2

0 0 0

 (7)

with ∂xi = ∂(◦)/∂xi. In Eqs.(5-6), the symbol ⊗ denotes the Kronecker product, while ε,

κ and γ denote the in-plane strains, curvatures and shear strains vectors, respectively; the

subscript nl denotes non-linear terms induced by the von Kármán assumption.

2.3 Plate constitutive relations in presence of damage

In this section, the constitutive relations for VAT laminae are presented considering the

possible presence of damage. Using the damage model developed by Matzenmiller et al.

[28], the material stiffness coefficients are degraded by means of four damage indices, two

associated with either tensile or compression loading along the fiber direction, namely ωft

and ωfc and two associated with either tensile or compression loading along the direction

transversal to the fibers, i.e. ωmt and ωmc. On the other hand, it is worth underlining

that the constitutive relations are written in the local material coordinate system and are

a function of the in-plane coordinates, due to the variation of the in-plane fiber orientation

θ(x1, x2) for a VAT lamina. This dependency is omitted in the subsequent equations for

the sake of readability.

In the framework of CDM, employing the damage indices ω introduced above, one can

obtain the relation between nominal in plane stress components, collected in σ̃p, and the

effective stress components, collected in σ̂p, as

σ̂p = Mσ̃p, (8)

where M is a damage operator defined as

M =


1

1−ω1
0 0

0 1
1−ω2

0

0 0 1
1−ω6

 , (9)

with ω1, ω2 and ω6 being the longitudinal (fiber–dominated), transverse (matrix–dominated)
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and shear damage indices respectively, defined as

ω1 =

ωft if σ̂11 ≥ 0

ωfc if σ̂11 < 0
ω2 =

ωmt if σ̂22 ≥ 0

ωmc if σ̂22 < 0
(10)

and

ω6 = 1− (1− ωft)(1− ωfc)(1− ωmt)(1− ωmc), (11)

Each damage index ωi can vary between 0, when no damage is present, and 1, when

material failure takes place.

Using the definition in Eq.(8) with the stress-strain relations gives

ẽp = Sσ̂p = SMσ̃p (12)

where ẽp collects the in-plane strain in the local material coordinate system and

S =


1
E1

−ν21
E1

0

−ν12
E2

1
E2

0

0 0 1
G12

 (13)

is the compliance matrix, Ei is the Young’s modulus, νij are the Poisson’s coefficients and

G12 is the shear modulus. Defining the damage compliance tensor as

Ŝ = SM =


1

E1(1−ω1)
−ν21

E1
0

−ν12
E2

1
E2(1−ω2)

0

0 0 1
G12(1−ω6)

 , (14)

where the assumptions on the degradation of the Poisson ratio made by Matzenmiller et al.

[28] have been adopted, and substituting in Eq.(12), one obtains the following constitutive

relation

σ̃p = Ŝ
−1

ẽp = Ĉẽp, (15)
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where Ĉ is the stiffness matrix in presence of damage, explicitly given by

Ĉ =
1

D

 (1− ω1)E1 (1− ω1)(1− ω2)ν21E1 0

(1− ω1)(1− ω2)ν12E2 (1− ω2)E2 0

0 0 D(1− ω6)G12

 , (16)

with

D = 1− (1− ω1)(1− ω2)ν12ν21. (17)

The plate constitutive equations may be obtained following the classical procedure

given in Ref. [41] and read as
N

M

T

 =

A B 0

B D 0

0 0 As



ε

κ

γ

 , (18)

where the membrane stress N = {N11, N22, N12}⊺, the moments per unit length M =

{M11,M22,M12}⊺ and the transverse stress resultants T = {T13, T23}⊺ are given by

N =

∫ h/2

−h/2
σp dx3, M =

∫ h/2

−h/2
σpx3 dx3, T =

∫ h/2

−h/2
Ksσn dx3, (19)

where Ks is a shear correction factor, while the generalized stiffness matrices are

A =

Nply∑
k=1

∫ hk

hk−1

Q⟨k⟩
p (θ) dx3 B =

Nply∑
k=1

∫ hk

hk−1

x3Q
⟨k⟩
p (θ) dx3

D =

Nply∑
k=1

∫ hk

hk−1

x23Q
⟨k⟩
p (θ) dx3 As =

Nply∑
k=1

∫ hk

hk−1

Q⟨k⟩
n (θ) dx3,

(20)

where, for each k -th ply, Q
⟨k⟩
p (θ) = Lp (θ) Ĉ

⟨k⟩
L⊺

p (θ) and Q
⟨k⟩
n (θ) = Ln(θ) Ĉ

⟨k⟩
n L⊺

n(θ) contain

ply stiffness coefficients that depend on the fiber orientation θ(x1, x2); the matrix Ĉ
⟨k⟩

is

defined in Eq.(16) and depends on the local damage level, the rotation matrices Lp and

Ln contain the direction cosines and depend on the local fiber orientation θ(x1, x2) and

9



the matrix Cn is given by

Cn =

[
G23 0

0 G13

]
. (21)

2.3.1 Damage onset and evolution

In the present work, the damage analysis is based on a material degradation model. After an

activation threshold is overcome, the corresponding damage index starts evolving according

to an evolution law, thus inducing strain softening in the constitutive material response.

Damage onset is tracked in the framework of Hashin’s theory [42, 43], which considers

four different activation criteria along the fibers and matrix-dominated transverse directions

under either tensile or compression loading. They are defined as follows.

Fiber tension:

Fft =

Å
σ̂11
XT

ã2
= 1 (22a)

Fiber compression:

Ffc =

Å
σ̂11
XC

ã2
= 1 (22b)

Matrix tension:

Fmt =

Å
σ̂22
YT

ã2
+

Å
σ̂12
SL

ã2
= 1 (22c)

Matrix compression:

Fmc =

Å
σ̂22
2SL

ã2
+

ñÅ
YC
2ST

ã2
− 1

ô
σ̂22
YC

+

Å
σ̂12
SL

ã2
= 1 (22d)

In Eqs.(22), σ̂ij are the components of the stress tensor computed from Eq.(8) and XT ,

XC , YT ,YC , SL, ST are the ply strengths associated with each loading mode and direction.

The shear transverse strength ST , if is not available, can be computed as ST = 0.5YC [42].

Following the onset of damage, further increases of the effective loads generally result in

the evolution of the activated damage indices and thus in the the degradation of the material

properties associated with them. Referring to a linear softening law, as schematically shown

in Fig.(3), upon defining the following equivalent strains for each loading/damage mode

Fibers

eft,eq = ⟨e11⟩

efc,eq = ⟨−e11⟩
Matrix

emt,eq =
»

⟨e22⟩2 + e212

emc,eq =
»
⟨−e22⟩2 + e212

(23)
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where ⟨◦⟩ = (◦ + | ◦ |)/2 denotes the Macaulay brackets, the current value of the i-th

damage index can be computed considering the evolution, during the loading process, of

the quantities

ωi(τ) =
efi,eq

Ä
ei,eq − e0i,eq

ä
ei,eq
Ä
efi,eq − e0i,eq

ä , i = ft, fc,mt,mc, (24)

where τ denotes a generic loading/time ordering parameter spanning the loading history

H , e0i,eq is the equivalent strain at the onset of damage and efi,eq = αi e
0
i,eq is the equivalent

strain at rupture; in particular, to ensure a monotonically increasing evolution, the current

value of the i-th damage index is defined as

ωi = max{0,max
τ∈H

{ωi(τ)}}. (25)

Figure 3: Adopted stress-strain softening curve.

The area under the stress-strain curve in Fig.(3) corresponds to the energy dissipated

per unit volume g =
∫ efeq
0 σeqdeeq in the loading process until failure. Typically, in FE

damage models, the strain softening behavior is expressed in terms of equivalent stresses

VS equivalent displacements, which are used to define the energy dissipated per unit area,

namely the fracture energy G =
∫ δfeq
0 σeqdδeq. The latter definition allows the use of the

fracture energy as input material parameter to compute the final equivalent displacement.

Alternatively, as proposed in Refs. [39, 44] and adopted in the present work, it is possible

to provide the equivalent strain ratio α as an input parameter.

11



2.4 Problem discretization and incremental solution

Considering the non-linear evolution of damage under progressive loading, the solution of

the considered mechanical problem requires the implementation of an incremental-iterative

approach, which will be described in this section. The discrete governing equations at a

given load step can however be obtained stating the stationarity of the plate total potential

energy and employing the plate kinematics assumptions, the constitutive equations and

the Ritz approximation of the kinematic primary variables. Once the discrete equations

are available, the adoption of a suitable incremental-iterative scheme allows capturing the

evolving damage and the associated variation of the structure stiffness coefficients. The

overall procedure is described in the following subsections.

2.4.1 Problem variational statement

At a given load level, the discrete governing equations can be written starting from the

statement of stationarity of the structure total potential energy

δΠ = δU + δV = 0 (26)

where U is the internal energy and V is the work done by the external forces.

Considering the plate kinematics and constitutive relations given in the above sections,

the internal energy U may be written as

U =
1

2

∫
Ω

Nply∑
k=1

®∫ hk

hk−1

(
e⊺pσp + e⊺nσn

)
dx3

´
dΩ =

=
1

2

∫
Ω

Nply∑
k=1

®∫ hk

hk−1

î
(ε⊺ + x3κ

⊺)Q⟨k⟩
p (ε+ x3κ) + γ⊺Q⟨k⟩

n γ
ó
dx3

´
dΩ (27)

while the external work is given by

V = −
∫
Ω
(u⊺q + ϑ⊺m)dΩ−

∫
∂Ω

Ä
u⊺ N + ϑ⊺ M

ä
d∂Ω (28)

where q = {q1, q2, q3}⊺ and m = {m1,m2, 0}⊺ are the external forces and external moments

per unit area applied over the domain Ω, whereas N and M denote prescribed forces and

moments applied on the plate boundary ∂Ωl ⊂ ∂Ω. The plate essential boundary conditions

12



are provided by prescribing the generalized displacements on the boundary ∂Ωc as follows

Ξuu = Ξu u on ∂Ωc

Ξϑϑ = Ξϑ ϑ on ∂Ωc (29)

where Ξu and Ξϑ are boolean matrix operator used for selecting the desired constrained

generalized displacements whereas the over-bar denotes prescribed quantities.

2.4.2 Ritz approximation

According to the Ritz solution scheme and following the work done in Refs. [16, 17], the

discrete governing equations are obtained by approximating the generic component of gen-

eralized displacements χ ∈ {u1, u2, u3, ϑ1, ϑ2} appearing in the variational statement in

Eq.(26), through Eqs.(27-28), by a series of trial functions as

χ =

Mχ∑
m=1

Nχ∑
n=1

ψm (ξ)ψn (η)Cχ(m−1)M+n
= ΨχCχ (30)

where ψm (ξ) and ψn (η) denote 1D Legendre orthogonal polynomials of order m or n and

Cχ(m−1)M+n
are the unknown Ritz coefficients. Eq.(30) can be specialized to the plate

primary variables u and ϑ and written in compact matrix form as

u =

Ψu1 0 0

0 Ψu2 0

0 0 Ψu3



Cu1

Cu2

Cu3

 =

Φu1

Φu2

Φu3

U = ΦuU (31)

and

ϑ =

[
Ψϑ1 0

0 Ψϑ2

]{
Cϑ1

Cϑ2

}
=

[
Φϑ1

Φϑ2

]
Θ = ΦϑΘ. (32)

Using the above equations, the in-plane strains vector ε, the curvatures vector κ and the

shear strains vector γ can be written as

ε = BpUU +
1

2
BnlUU + B̄nlUU ,

κ = BpΘΘ, γ = BnUU +BiΘΘ
(33)

13



where the operators B are given in Appendix A.

2.4.3 Discrete equations and incremental solution

By considering Eqs.(31-32) and employing a penalty approach to enforce the essential

boundary conditions, the stationarity condition δΠ = 0 with respect to U and Θ leads to

the discrete system∫
Ω

ï(
BpU +BnlU + B̄nlU

)⊺
A

Å
BpU +

1

2
BnlU + B̄nlU

ã
+B⊺

nUAsBnU

ò
UdΩ+

+

∫
Ω

[(
BpU +BnlU + B̄nlU

)⊺
BBpΘ +B⊺

nUAsBiΘ

]
ΘdΩ+

+

∫
Ω

ï
B⊺

pΘB

Å
BpU +

1

2
BnlU + B̄nlU

ã
+B⊺

iΘAsBnU

ò
UdΩ+

+

∫
Ω

Ä
B⊺

pΘDBpΘ +B⊺
iΘAsBiΘ

ä
ΘdΩ+

+

∫
∂Ωc

(
Φ⊺

uΞ
⊺
uωuΞuΦuU +Φ⊺

ϑΞ
⊺
ϑωϑΞϑΦϑΘ

)
d∂Ω+

=

∫
Ω

(
Φ⊺

uq +Φ⊺
ϑm

)
dΩ+

∫
∂Ωl

Ä
Φ⊺

u N +Φ⊺
ϑ M
ä
d∂Ω+

+

∫
∂Ωc

Ä
Φ⊺

uΞ
⊺
uωuΞuΦu u+Φ⊺

ϑΞ
⊺
ϑωϑΞϑΦϑ ϑ

ä
d∂Ω,

(34)

which may be written in compact form asÄ
K0 + K0 +K1 +K2 + K1 +R

ä
X = FD + F L (35)

where X = {U , Θ}⊺ is the vector collecting the unknown coefficients of the Ritz series

expansion, K0, K1, K2, K0, K1 are the stiffness matrices in which the subscripts 1,2

refer to the geometric non-linear terms and the over-bar refers to the prescribed initial

imperfections, while R is the matrix originating from the enforcement of the BCs thorough

a penalty approach. On the right hand-side, the vectors FD and F L collect the discrete

terms associated with the external loads. Details on the matrices appearing in Eq.(35) are

given in Appendix B.

To solve the non-linear problem given in Eq.(35), an incremental-iterative procedure

is employed. It is important to observe that the local stiffness of the laminate layers, and

thus all the matrices on the left hand-side of Eq.(35), except R, are affected by the damage
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level ω[H (X)]. The vector ω[H (X)], which collects the damage indices, plays the role

of an internal state vector that depends on the loading/solution history H (X). As a

consequence, the incremental form of Eq.(35) may be expressed as

R∆X +∆
îÄ
K0 + K0 +K1 +K2 + K1

ä
X
ó
= ∆FD +∆F L (36)

with

∆
îÄ
K0 + K0 +K1 +K2 + K1

ä
X
ó
= (Kt,geo +Kt,dmg)∆X, (37)

where ∆ (◦) is the incremental operator, Kt,geo is the tangent stiffness matrix contribution

related to the geometric non-linearity and the initial imperfections, whilst Kt,dmg is the

tangent stiffness matrix contribution related to the damage evolution. Further details

about such matrices are reported in Appendix C.

In this study, the non-linear damage evolution problem is solved employing an incremental-

iterative Newton-Raphson scheme in displacement control. Once the solution at a given

load step is obtained, a load increment is enforced, and the Newton-Raphson iteration is

started, triggering the non-linear evolution of the internal damage variables; the process

is arrested when the residual is reduced below a preset tolerance, so that a subsequent

increment, if of interest, may be applied.

A relevant practical aspect is worth mentioning before describing the results of the

proposed framework. Convergence issues are common and well-known in material models

that exhibit softening and stiffness degradation. To alleviate such computational difficul-

ties, in this work a viscous regularization scheme is adopted as suggested in Ref. [45]. The

following evolution equation is then introduced

ω̇v
i =

1

β
(ωi − ωv

i ) (38)

where β is a viscous parameter and ωv
i denotes the regularized damaged variable for the

i -th damage mode, computed as follow

ωv
i |n =

∆τ

β +∆τ
ωi|n +

β

β + τ
ωv
i |n−1, (39)

where τ is the time/load parameter, the subscripts n − 1 and n refer to two successive

time/load steps, with ∆τ denoting the increment between them. It is demonstrated that

15



using the viscous regularization scheme improves the rate of convergence without signifi-

cantly compromising the results accuracy if the viscosity parameter β is small with respect

to ∆τ .

3 Computational results

In this section, the developed computational framework is first validated through a con-

vergence analysis and a comparison with available literature data. Then some analyses are

performed for both classical and VAT laminates, considering both small and moderately

large strains. The model proposed in Section 2 has been implemented using MATLAB® [46].

For all the performed analyses, the strain-softening parameter αi = 2 and the viscous

parameter β = 0.001 have been selected for each damage index.

3.1 Method validation

The proposed model has been validated first by assessing its convergence with respect to

the order of the polynomial expansions in the Ritz approximation given in Eq.(30). Then,

two test cases have been analyzed, the first involving a plate that undergoes three-point

bending loading in small strains and the second considering a plate subjected to a uni-axial

in-plane compression and experiencing non-linear strains in the von Kármán sense.

The first analyzed case considers the rectangular composite straight-fibers plate schemat-

ically represented in Fig.(4), with sides of length 2a = 60mm and 2b = 25mm, thickness

h = 1.8mm. The unidirectional laminate is made up of M10 carbon/epoxy layers, whose

material properties are listed in Tab.1, with [0]10 laminate lay-up. The boundary condi-

tions for the three-point bending test are defined so that, on the short edges, the rotation

ϑ1 and the in-plane displacements are free whilst the other degrees of freedom are fully

constrained, whereas the longest edges are completely free.

The analysis has been performed in displacement control by increasing, at each step, the

applied displacement ∆u3 of all the points of the center segment of the plate and employing

a Newton-Raphson scheme. In the approximation of the generalized displacements given

in Eqs.(31-32), the order of the adopted polynomial expansions was the same for all the

kinematic variables, i.e. Mχ = Nχ = p. The convergence of the solution with respect to

the degree of the polynomial expansion has been assessed by studying the total reaction
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Figure 4: Schematic representation of three-point bending test.

Elastic property Value Strength property Value

E1 [GPa] 105.00 XT [MPa] 1400.0
E2 [GPa] 8.57 XC [MPa] 930.0
G23 = G13 [GPa] 3.05 YT [MPa] 47.0
G12 [GPa] 4.39 YC [MPa] 60.3
ν12 0.34 SL [MPa] 53.0

Table 1: Material properties of straight fiber lamina [47].

force along the x3 direction at the supports and the displacement of the central point of

the plate which is shown in Fig.(5a).

The analysis shows that, for the considered case, convergence is quickly achieved in the

initial linear part of the response, whilst a relatively high number of polynomial expansion

terms, up to the order p = 30, are needed to accurately represent the response in proximity

of failure, as could be reasonably expected considering the localization of damage. The

converged results, corresponding to p = 30 , were then compared with experimental and

FE results [34]. The analysis using the Ritz method with p = 30 has total of 4500 degrees

of freedom (DOFs), whilst the FE results have been obtained using 2000 S8R elements with

49266 DOFs. As it can be observed in Fig.(5b), even if the proposed model underestimates

the maximum load, it provides good agreement with the experimental test measurements.

The second analyzed case considers a quadrilateral quasi-isotropic composite plate with

sides of length 2a = 2b = 250mm and thickness h = 6mm subjected to uni-axial in-plane

compression load along the x1 direction, as schematically represented in Fig.(6).

The laminate is assembled from carbon/epoxy layers whose material properties are

listed in Tab. 2, whilst its stacking sequence is [0/90/45/ − 45]S . Also in this case a
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Figure 5: Three-point bending test of the unidirectional laminate response in terms
of reaction force of supports vs transverse displacement at the center of the plate. (a)
Convergence analysis and (b) comparison between the present model, experimental
and FE results.
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Figure 6: Schematic representation of the compressive test.
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Elastic property Value Strength property Value

E1 [GPa] 181.00 XT [MPa] 1500.0
E2 [GPa] 10.27 XC [MPa] 1200.0
Gij [GPa] 7.17 YT [MPa] 40.0
ν12 0.34 YC [MPa] 176.0

SL [MPa] 68.0

Table 2: Material properties of straight fiber lamina for compressive test, where
Gij = G23 = G13 = G12.

convergence analysis has been first performed. To promote the plate lateral deflection

before buckling, an initial imperfection is introduced as a bi-sinusoidal prescribed deflection

with amplitude 0.005h. The boundary conditions used in this analysis are reported in Table

3.

Fig.(7) shows the results of the convergence analysis in terms of transverse displace-

ment of the plate’s mid-plane center point versus the axial load value. The transverse

displacement is normalized with respect to the plate thickness, whilst the axial load is

normalized with respect to the critical buckling load [48]. In this case, results obtained

with p = 22 do not significantly differ from those obtained with p = 18. Therefore, to

perform faster analyses, the polynomial degree p = 18, which gives a total of 1620 DOFs,

was used for the subsequent geometrically non-linear analyses involving comparable load

cases. For validation purposes, Fig.(7) shows results from three different ABAQUS analyses,

which are obtained using meshes of 20 × 20, 30 × 30 and 50 × 50 elements, respectively.

For each mesh, S4R element type is considered, which gives a total of 2646, 5766 and

15606 DOFs, respectively. The FE results have been obtained employing an orthotropic

damage model and adopting the built-in ABAQUS localization mitigation strategy, based on

the crack-band theory. However, it is observed that, even adopting such scheme, the FE

results show a relative scatter, which is consistent with several literature sources, see e.g.

Ref. [49], which report that energy regularization strategies based on the crack band theory

may partially lose objectivity for complex loading cases. It is also shown that, compared to

the FE/ABAQUS results, the curves obtained by the proposed Ritz method exhibit reduced

scatter and appear to converge with increasing polynomial order approximation.
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Edge u1 u2 u3 ϑ1 ϑ2

x2 = −b, x1 ∈ [−a, a] F C C C F
x1 = +a, x2 ∈ (−b, b] F F C F C
x2 = +b, x1 ∈ (−a, a] F F C C F
x1 = −a, x2 ∈ [−b, b] C F C F C

Table 3: Boundary condition used for the convergence study of quasi-isotropic lam-
inated. F=Free and C=Clamped.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5
p=10

p=14

p=18

p=22

Abaqus 20x20

Abaqus 30x30

Abaqus 50x50

No damage

Figure 7: Convergence study of quasi-isotropic laminate under in-plane compressive
load. Results obtained with the Ritz method are compared with FE/ABAQUS results
for different discretizations.
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3.2 Damage analysis of VAT laminates

After validation, the developed method has been applied to the analysis of VAT composite

plates. VAT laminae are manufactured so that the reinforcing fibers follow curved paths,

thus exhibiting varying angles with respect to structural reference directions. Such fiber

paths can be described by specifying suitable laws for the fiber orientation θ. In this study,

referring to Fig.(8), the following law is used

θ = θ0 +
θArB − θBrA
rB − rA

+ |r|θB − θA
rB − rA

(40)

where θ0 is the angle between the baseline and the axis x1, θA and θB measure the angle of

the fibers at the points A and B, whilst rA and rB are the distances of these points from the

projection O′ of the plate center on the baseline. Following the notation used in Ref. [9], the

point A is assumed to be coincident with the plate center point projection O′ and rB = 2a,

so that the law describing the fiber path of a lamina can be denoted as θ0+ ⟨θA|θB⟩. In the

application of the developed Ritz scheme to VAT laminates, the stiffness contributions are

computed considering the local variation of the materials properties induced by the local

fibers orientation.
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Figure 8: Geometric description of VAT lamina for fiber orientation definition.

The first test considers a VAT composite plate with stacking sequence [0+⟨0|−90⟩/0+
⟨90|0⟩/0]S under tensile loading. The material properties for each lamina with respect to

the fiber and transverse directions are given again in Table 2. The plate has sides of size

2a = 2b = 250mm and thickness h = 6.25mm.
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Fig.(9) shows the response in terms of force vs displacement along the x1 direction.

As expected, after the load reaches a maximum level, it suddenly drops while the damage

level in each ply rises. Referring to Fig.(9), four points of interest along the loading curve

are highlighted: point A identifies the initiation of damage; point B corresponds to the

maximum load; points C and D describe the post-failure load drop.

The contour plots of the relevant damage indexes corresponding to the four highlighted

points are reported in Fig.(10), which describes how damage evolves through the thickness

during the loading process. It is worth noting that only the results for the first three plies

are shown, considering the symmetry of the laminate. At point A, matrix tension damage

initiates in the first two plies, whereas the 0◦ ply is still undamaged. When the maximum

load is attained, at point B, damage has spread through the thickness in all the laminae.

Next, in proximity of the sudden load drop, damage still evolves in all the plies, as can be

seen for point C, before eventually reaching the maximum level at point D.
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Figure 9: Force vs displacement results for VAT laminate under tensile load.

After considering a VAT laminated plate in tension, for which a small strains implemen-

tation has been employed, some VAT laminates under compression loading are analyzed,
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Figure 10: Damage contour plots for 3 plies of a VAT laminate laminate under tensile
test at points of interest.

activating the presence of moderate strains in the von Kármán sense.

Square plates with sides of size a = b = 250mm are considered. Four lay-ups, namely

[90±⟨0|75⟩]3S , [0±⟨0|15⟩]3S , [0±⟨0|45⟩]3S , [0±⟨45|0⟩]3S are investigated. They consist of 12

constant thickness plies, each 0.27mm thick. The material properties for each orthotropic
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layer, along the fibers and transverse directions, are summarised in Table 2. The panels are

loaded by uniform axial displacement imposed along the edges parallel to the x2 axis and an

initial prescribed lateral bi-sinusoidal deflection of amplitude 0.005h has been introduced,

where h indicates the plate thickness. Simply-supported boundary conditions are assumed

for all the edges, with free in-plane displacements allowed along the unloaded edges, as

reported in Fig.(11).
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Figure 11: Schematic representation of the VAT composite under compressive load.

Fig.(12) shows the comparison in terms of in-plane force versus plate center deflection

for different VAT plate stacking sequences. The force has been normalized with respect to

the critical buckling load of a quasi-isotropic laminate of the same size while the transverse

displacement has been normalized with respect to the laminate thickness.

The results show that, as expected, the presence of damage affects the mechanical

response of the plate, identifying a maximum load after which the bearing capability of

the plate is noticeably degraded. Such results may be useful for identifying the operational

limits of different lay-ups, thus providing valuable insights to the designer.

4 Discussion

In this section, some remarks about the potential, limitations and future developments of

the method are discussed.

The formulation provides meaningful insights about the damage initiation, evolution

and failure of composite laminates, including VAT configurations, at a relatively moderate

computational cost in terms of number of DOFs. The tool may be valuable for identifying

the operational limits of structural components in damage-tolerant approaches, since the
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Figure 12: Comparison of post-buckling results in terms of force vs transverse dis-
placement with and without the damage model activated for different VAT layups
under in plane-load.
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preliminary design stage. Moreover, it simplifies the data preparation stage of the analysis,

as it frees the user from the need of preparing a suitable mesh for capturing the features

of the VAT plates, which may require a noticeable amount of time and attention. In

the present model, only the polynomial order must be selected according to the features

of the underlying problem. The obtained results have shown an appreciable qualitative

consistency with available literature data and with finite element computations. However,

some aspects deserve further analysis and provide input for further studies.

First, the behavior of the method with respect to damage localization issues and con-

tingent dependency of the macro structural response on the order of the Ritz polynomial

expansion should be further investigated. This analysis would be the counterpart of the

investigations on spurious mesh dependency in FE models, which gave rise to either local

or non-local approaches for ensuring the objectivity of the computational response with

respect to mesh refinements, such as the crack-band theory [50] or non-local integral mod-

els [51]. From this point of view, the performed analyses have shown the convergence of the

results towards a well defined response; in a certain sense, the Ritz approximation shows

the features of non-local approaches, being the integration extended over all the analysis

domain, so that some damage smearing naturally occurs.

The above aspects have been considered in performing the proposed test cases. How-

ever, their deeper analysis is left for further investigations. Other relevant aspects, in this

context, are related to the resolution afforded by the proposed approach and to the assess-

ment of the possible presence of spurious effects as those related, for example, to Gibbs

effects.

From a more physical point of view, the model could be extended considering other

damage mechanisms such as inter-laminar delamination or impact induced damage. De-

lamination could be modelled by using layer-wise displacement approximations along the

thickness, hybrid variational statements [52], and cohesive inter-laminar traction-separation

laws [53,54]. These tools would provide a direct representation of the displacement jumps

between contiguous layers and their relation with the inter-laminar damage up to complete

decohesion. Impact-induced damage could be investigated employing suitable contact me-

chanics laws for representing the localized mechanical effects of impacts in conjunction with

the incremental scheme proposed here, to track the ensuing damage evolution [55].

Eventually, the model could be extended to account for generally large strains, over-

coming the von Kármán assumption. This would provide the basis for analyzing cases
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involving highly non-linear deformation patterns, relevant for the study of soft materials,

which are attracting ever increasing attention.

5 Conclusions

A non-linear Ritz approach for the analysis damage initiation and evolution up to failure

of VAT composite plates under progressive loading has been developed, implemented and

tested. The present study has detailed the formulation of the method, which addresses

both geometrical non-linearity, in the form of moderate von Kármán strains, and material

non-linearity, in the form of material degradation, modeled as softening in the framework

of continuum damage mechanics. A set of tests has successfully validated the implemented

model against available literature data, provided either by FE or experimental results.

Some original analyses have been reported for the post-buckling analysis of composite

VAT laminated plates in presence of damage. The reported tests confirm the potential of

the method; few directions of further investigation have been identified and discussed.
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A Ritz discrete operators

The discrete Ritz operators appearing in Eq.(33) are given by

BpU = DpΦu

BnU = DnΦu

BpΘ = DpΦϑ

BiΘ = Φϑ

B̄nlU = [Dp ⊗ w]DnΦu

BnlU = [Dp ⊗ (Φu3U)]DnΦu

(41)
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B Governing equation matrices

The matrices appearing in Eq.(35) have the following expressions

K0 =

∫
Ω

ÄB⊺
pUABpU +B⊺

nUAsBnU

ä Ä
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pΘBB̄nlU 0
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0 0
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(42)
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C Tangent stiffness matrix contributions

The tangent stiffness matrix contribution Kt,geo, related to the geometric non-linearity in

Eq.(37), is computed as

Kt,geo = K1t + K1t +K2t +KG, (43)

where the matrices K1t, K2t, K1t and KG are defined as

K1t =

∫
Ω

ÄB⊺
pUABnlU +B⊺

nlUABpU

ä
B⊺

nlUBBpΘ

B⊺
pΘBBnlU 0

 dΩ,

K1t =

∫
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)
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0 0

 dΩ,
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∫
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B⊺
nlUABnlU 0
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 dΩ, KG =

∫
Ω

B⊺
nU
ËNBnU 0

0 0

 dΩ,

(44)

where ËN =

N11 N12 0

N12 N22 0

0 0 0

 . (45)

The tangent stiffness matrix contribution Kt,dmg, related to the damage evolution in

Eq.(37), is computed as

Kt,dmg = K0D +K12D. (46)

The terms K0D and K12D are more specifically related to the damage-induced evolution of

the small-strains contributionK0 to the stiffness matrix and to the contribution originating

from the geometric non-linearity respectively.

Regarding the first term, from Eq.(37) ones can write

∆ (K0X) = K0∆X +∆K0X. (47)
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The second term of the right hand-side in Eq.(47) can be written as

∆K0X = ∆

K11
0 K12

0

K21
0 K22

0

{
U

Θ

}
. (48)

The detailed computation is developed only for the first term K11
0 of the matrix appearing

in Eq.(48), being the computation of the other terms similar. One may write

∆
(
K11

0

)
U = ∆

ï∫
Ω

Ä
B⊺

pUABpU +B⊺
nUAsBnU

ä
dΩ

ò
U (49)

and then, noting that, in the present formulation, the second term within the integral sign

does not depend on damage, recalling Eq.(20)

∆
(
K11

0

)
U =

∫
Ω

∑
i,k

∫ hk
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pU∆

(
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∫
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∂ωv
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∂ωv
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∂ωi
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∂ep
∂X

∆XBpUUdx3dΩ

(50)

where the derivation chain rule has been applied and the summation is intended for i ∈
{ft, fc,mt,mc} and k ∈ [1, Nply]. The derivatives involved in Eq.(50) may be computed

as
∂ωv

i

∂ωi
=

∆τ

β +∆τ
,

∂ωi

∂ei,eq
=

αi

αi − 1

Ç
e0i,eq
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å
,
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∂ep

=
¶
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∂e22

∂ei,eq
∂e12

,
©

∂ep
∂X

∆X = BpU∆U + x3BpΘ∆Θ+BnlU∆U .

(51)

Noting that the product of Eqs.(51) results in a scalar, this block is conveniently moved at
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the end of the integral as follows∫
Ω
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i,k
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where

ζ(αi, β,∆τ) =
∆τ

β +∆τ

αi

αi − 1

Ç
e0i,eq
e2i,eq

å
∂ei,eq
∂ep

. (53)

Repeating the same procedures for all the elements of the matrix K0, the final expression

of the matrix K0D is obtained as

K0D = K0 +

∫
Ω
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∗ (BpU +BnlU ) B⊺
pUB

∗BpΘ
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where
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∑
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The same procedure is repeated for computing the tangent stiffness terms related to the
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material degradation in the non-linear geometry matrix contributions, which leads to

K12D = K1D +K2D (56)

where K1D is given by
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and
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in which
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