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Abstract:Expression detection plays a vital role to determine the patient’s con-
dition in healthcare systems. It helps the monitoring teams to respond swiftly
in case of emergency. Due to the lack of suitable methods, results are often
compromised in an unconstrained environment because of pose, scale, occlu-
sion and illuminationvariations in the image of the face of the patient. A novel
patch-based multiple local binary patterns (LBP) feature extraction technique
is proposed for analyzing human behavior using facial expression recognition.
It consists of three-patch [TPLBP] and four-patch LBPs [FPLBP] based fea-
ture engineering respectively. Image representation is encoded from local patch
statistics using these descriptors. TPLBP and FPLBP capture information that
is encoded to find likenesses between adjacent patches of pixels by using short
bit strings contrary to pixel-based methods. Coded images are transformed
into the frequency domain using a discrete cosine transform (DCT). Most
discriminant features extracted from coded DCT images are combined to
generate a feature vector. Support vector machine (SVM), k-nearest neigh-
bor (KNN), and Naïve Bayes (NB) are used for the classification of facial
expressions using selected features. Extensive experimentation is performed
to analyze human behavior by considering standard extended Cohn Kanade
(CK+) and Oulu–CASIA datasets. Results demonstrate that the proposed
methodology outperforms the other techniques used for comparison.
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1 Introduction

In the last two decades, excessive research has been done in the field of facial expression
recognition (FER). Facial expression is the most expressive way of communication among humans
and is generally categorized into seven basic expression types named anger, disgust, fear, happiness,
sad, surprise, and neutral [1]. Human behavior detection through recognition of expressions plays
a very important role in human-computer interaction and has attracted much attention in the
areas of surveillance, healthcare, forensics, missing individual identification, crime investigation,
interactive games, intelligent transportation and many other applications [2]. Facial expression
recognition is a problem related to pattern recognition and computer vision, where a two-
dimensional image of the face is acquired to extract the features for classification. Thorough
research has been carried out in recent years and several techniques have been proposed to achieve
better performance. These techniques usually produce good results in a constrained environment.
Though the task to identify expressions from images captured in an unconstrained environment is
still challenging due to the presence of variations in resolution and illumination in certain datasets.
The proposed method contains the ability to deal with such images that resemble real-world
images in terms of these factors to estimate the expression adequately.

In facial expression recognition, the main step is the feature extraction from still images or
video frames to obtain the appearance-based and geometric-based variations that map to a target
facial expression [3]. This paper investigates the use of multiple LBPs [TPLBP, FPLBP] in facial
expression recognition. Coded images are obtained after the extraction of features using TPLBP
and FPLBP. In the next step, these features are converted into the frequency domain using DCT.
The most discriminative features are computed to analyze emotions from both forms of coded
DCT images to obtain a fused feature vector. SVM, K-NN and NB classifiers are used to classify
the emotions from publicly available databases namely, CK+ [4–10] and Oulu–CASIA [11–13].
The proposed technique gives better performance in terms of accuracy and robustness than the
techniques presented in the literature survey.

This research paper is categorized into five sections. Section 2 briefly describes the relevant
literature review. The proposed technique is presented in Section 3. Section 4 describes the
experimental results and discussion. Finally, Section 5 presents the conclusion and future work.

2 Related Work

Texture-based and appearance-based descriptors are popular and these are extensively used
for multi-scale facial expressions such as principal component analysis (PCA) to reduce dimen-
sionality, linear discriminate analysis (LDA) for feature selection, and local binary patterns
(LBP) [14,15]. LBP [16–19] is a successful feature extraction technique for emotion recognition
and other image processing applications. LBP is calculated for each pixel in an image by involving
the neighbors around that pixel. It provides binary numbers using 8 neighbors and a threshold
is applied on these eight values corresponding to the central pixel. The binary values are used to
generate histograms representing the appearance-based regions. Many LBP variations have been
investigated in the previous related work to resolve the issues of illumination, multi-scale, and
high dimension variations in FER. Automatic emotion recognition is investigated in [20,21] using
the weber local descriptor (WLD) technique for frontal and spontaneous images and implemented
in the e-healthcare environment. The WLD histogram features are computed using the Fisher
Discriminate Ratio (FDR). These features are classified through a support vector machine (SVM).
The WLD-based system gives better performance using the JAFFE and Cohn Kanade Databases.
Guo et al. [22] proposed an enhanced deep learning hybrid CNN-BiLSTM (EJH-CNN-BiLSTM)
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algorithm to detect pain intensity using facial expression. The fine-tuned VGG-Face pre-trainer
is used as a feature extraction tool by considering the balanced UNBC-McMaster Shoulder Pain
Archive Database principle. Principal Component Analysis was applied to reduce dimensionality
and enhance efficiency. The algorithm is used to estimate four various stages of pain. The
results explored that the algorithm is the potential tool in medical diagnostics for automatic
pain detection.

A novel algorithm called online sequential extreme learning machine and spherical clustering
(OSELM-SC) is proposed by Muhammad et al. [23]. In this approach, different techniques are
applied to original face images. This includes the Voila–Jones detector for face detection and
cropping and histogram equalization for illumination variations. Features are extracted by applying
the curvelet transform to every region of the face image. Then the statistical features are extracted
through mean, standard deviation, and entropy. The features are classified through the proposed
algorithm OSELM. The best performance is achieved in the case of frontal and spontaneous
images. A new facial decomposition technique named IntraFace (IF) algorithm is presented that
uses landmarks to compute regions of interest (ROI). Texture, shape-based LTP, HOG, LBP, and
CLBP features are extracted and classified through SVM. The better performance based on the
recognition rate is achieved with this technique than other decomposition-based techniques. The
appearance-based and geometric-based features are extracted by computing local face regions and
then combined [24]. The LBP and normalized central moments (NCM) are used as features. The
proposed technique compares the local region-based and grid-based holistic representation. The
local region-based method performs better than grid-based representation after applying the SVM
classifier on the features. The histogram of oriented gradients (HOG) and the most discriminant
discrete cosine transform (DCT) features are extracted in [25]. The proposed system is accurate
and reliable in handling illumination variation and multi-scale (resolution variance) problems.
The system achieved better performance in the case of MMI and CK+ datasets images feature
classified with KNN, Sequential Minimal Optimization (SMO), and Random Forest (RF). Donia
et al. [26] proposed a new framework DSAE , which is based on Deep Sparse Network that
automatically recognizes the expressions. This technique is only feature-based in which the Active
Appearance Model (AAM), Principle Component Analysis (PCA), and Histogram of Oriented
Gradients (HOG) features are extracted. The output features are used as input to Deep Sparse
Coding Network, Deep Sparse Auto Encoder (DSAE) which gives the better performance consid-
ering the accuracy. Weber’s local binary image cosine transform (WLBI-CT) has been proposed
in [27]. This technique investigates the multi-orientation and multi-scale face images. The frequency
components of images are computed through local binary descriptors (LBP) and Weber local
descriptors (WLD). The WLD and LBP generate face image features that are obtained through
DCT with orientation and without orientation, respectively. Then an evaluation is done using
these feature vectors with different classifiers including Naïve Bayes classifier (NB), Sequential
Minimal Optimization (SMO), Multilayer Perceptron (MLP), K-nearest neighbors (KNN), and
Classification Tree. The main aim of the research is to recognize the basic emotions [28]. Microsoft
Kinect is used for 3D face modeling, which models the face using 121 specific points and arranges
them based on face points. And plot it in coordinates by the Kinect Device. The six Action Units
are used to describe the emotions presented by the FACS System and are used as features that are
classified through KNN and MLP. Min Guo et al. proposed an algorithm K-ELBP by integrating
Extended Binary Local Pattern (ELBP) and Karhunen–Loeve Transform (KLT) [29]. The ELBP
is used for uniform patterns and removed the others. KLT is used to reduce the dimensionality.
The K-ELBP histograms are obtained from the segmented blocks. The multi SVM classifier is
applied to a combined histogram to find accurate expressions. A salient geometric feature-based



2126 CMC, 2021, vol.67, no.2

framework is presented by Ekman et al. [29] for the automatic FER system. The elastic bunch
graph matching (EBGM) algorithm and Kanade Lucas Tomaci (KLT) tracker are used to create
and track facial points and feature points initialization, respectively. Three different geometric-
based points, line, and triangle features are extracted from generated tracked facial point results.
The line and triangle discriminant features are extracted through the Extreme Learning Machine
(ELM) and AdaBoost. SVM is used to classify the selected features. The line and triangle-based
features are computed when the features are selected while the point-based features are computed
directly. The best performance is obtained using multiple datasets. To improve the power of
learning deep features, a novel island loss technique is implemented for convolutional network
CNN [30]. The island loss technique with CNN (IL-CNN) outperforms the baseline CNN. It
is used to reduce the intraclass variations that happen due to head position changes, occlusions
and illumination variations. The IL-CNN outperforms the other techniques while using the CK+
dataset for a class of seven expressions and the Oulu–CASIA dataset. For the enhancement of
the services of healthcare in smart cities, the FER technique [30] is proposed to extract the sub-
bands by applying the “band let” transform to the face image. The weighted center-symmetric
local binary pattern (CS-LBP) is implemented for every sub-band in the image in a block-wise
manner. The feature vector is formed by combining CS-LBP histograms.

The most dominant features are extracted and classified by Support Vector Machine (SVM)
and Gaussian Mixture Model. The performance of the technique is better in the case of JAFFE
and CK datasets [30]. A novel FER system is proposed with a support vector machine (FERS)
by Bargshady et al. [31]. The faces are detected from the image by combining self-quotient
image (SQI) filter and Haar-like features. The SQI filter is used to overcome the light variations.
The features are computed using the angular radial transforms (ART), discrete cosine transform
(DCT), and the Gabor filter (GF) from the faces. The support vector machine (SVM) classifies
the features and gives the best performance in terms of recognition rate for training and testing
the patterns. “Simultaneous feature and dictionary learning” (SFDL) technique is proposed for
sets of face images. In each training and testing set, the images were captured with different
illumination and pose variations. SFDL method is implemented for the raw face pixels that
learned the features and dictionaries. In stage one of the learning procedure, the facial image
sets are manipulated together. The deep SFDL (D-SFDL) method is proposed for non-linear
face samples of image-sets, by learning both class-specific dictionaries and hierarchical non-linear
transformations. A shallow module is executed to extract the most discriminant information
from the global and local regions to learn the low-level features. Then a part-based module is
constructed to extract and learn dynamic local region information related to facial expressions.
The long-short term memory (LSTM) and gated recurrent unit (GRU) layers are used to learn
long-term dependencies. The extensive experiments show that the proposed technique gives better
performance in the case of CK+ and Oulu–CASIA datasets.

3 Proposed Patch Based Multiple Descriptors Technique

The proposed technique describes novel patch-based multiple LBP descriptors using TPLBP
and FPLBP. Image representation is computed from local patch values through these descriptors
and encodes the properties of the local micro-texture around every pixel using short binary strings.
Three patch LBP and four patches LBP [31] are implemented that encode the most discriminate
types of local texture-based information. This technique consists of four steps. In the first step,
faces are detected and cropped to overcome the multi-scale variations in the preprocessing step
using the Viola–Jones algorithm described in Section 3.1. The feature engineering and fusion
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step introduces texture-based features. It helps in face detection through multiple LBP-based
techniques. The discriminative features are extracted through DCT and fusion is performed. The
feature vector is formed by fusing the selected features in Section 3.2. Finally, the classification
step identifies the expression type. The experimental results for each data set are discussed in
Section 3.3. The architecture of the proposed patch-based multiple descriptors technique is shown
in Fig. 1.

Input Image

Face Detection  
& Cropping 
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Jones Algorithm

Discrete 
Cosine 

Transform
(DCT)

1. Support vector machine
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3. Sequential Minimal
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Feature Engineering & Fusion

ClassificationPre-Processing

Figure 1: Architecture of the proposed patch-based multiple descriptors technique

3.1 Preprocessing
The input images are preprocessed using the Viola Jones algorithm to detect and crop the face

from the entire image as shown in Fig. 2. The faces are converted to grayscale if the images are
already in RGB form. The pre-processing is performed due to the variance in the resolution of
the images that uniformly maps all the data into 384×288 for CK+ and 65×65 for Oulu–CASIA
datasets. The features are extracted and encoded in the feature engineering and fusion step.

(a) (b)

Figure 2: (a) Input image (b) face detection using Viola Jones algorithm
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3.2 Feature Engineering and Fusion
This section includes a description of three patch LBP and four patch LBP (TPLBP, FPLBP)

feature extraction mechanism, and encoding process that are performed on pre-processed images.

3.2.1 Three Patch LBP (TPLBP) Coding
TPLBP and FPLBP work like the simple local binary pattern (LBP) [19] technique but are

extended and developed to introduce a patch-based version. Three patch pixel values are compared
with each other to produce a single value and assign it to every pixel in the image to form a
TPLBP coded image. A w×w patch positioned at the central pixel is computed for every pixel in
the input face image. The S extra patches are allocated consistently around a central patch in a
circle denoted by radius r and the central patch is compared with each z pair of patches values.
The single bit value is defined, based on the two patches values that is closer to the middle patch
thus resulting in S bits per pixel code. The following formula is executed for every pixel in the
image to produce three-patch LBP coding.

TPLBPr,S,w,z(p)=
S∑
i=1

f
(
d

(
Yi,Yp

)− d
(
Yi+Zmod S,Yp

))
2i (1)

In Eq. (1), Yp denotes the central patch and the two patches are denoted by Yi and Yi+Zmod S
along the ring. To calculate the distance between any two patches, the d(p1, p2) is used (e.g., the
gray level differences between p1 and p2 is L2 norm). The function f is formulated as:

f (y)=
{
1 if y≥ t

1 if y< t

}
(2)

For uniform regions some stability is provided using t value in Eq. (2) (e.g., t = 0.01). The
processing speed is increased by obtaining the patches through nearest-neighbor sampling instead
of interpolating their values.

A coded image is produced by encoding the input image similar to the CSLBP descriptor [24].
The coded image is split into a grid of non-overlapping regions and for every region, the his-
togram is computed that measures the frequency of every binary value. Unit length is produced
by normalizing each histogram region; their values are truncated at 0.2 and normalized to unit
length again. A single vector is formed by concatenating these histograms generated for an image.

3.2.2 Four Patch LBP Coding
In four patched LBP, the two circles of the radii r1 and r2 are positioned on the central pixel

for every pixel in the input image. S extra patches of size w×w are split out around each circle
consistently. In the internal circle, two central patches are compared with the two center patches
in the external circle that is located z patches apart from each other in the circle. By comparing
the two pairs, the one with higher similarity is used to define one bit in every pixel’s value. S/2
center symmetric pairs for S extra patches along every circle are used for the computing the binary
coded length [14]. By executing the two-step process, the coded image is computed. The following
equation computes FPLBP coded image.

FBLBPr1r2s,w,z (p)=
s/2∑
i=1

f (d
(
Y1i,Y2,i+zmod S

)− d
(
Y1,i+s/2,Y2,i+ s

2+zmod S
)
)2i (3)
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a, b) Original images of the CK+ and Oulu–CASIA dataset (c, d) TPLBP coded
images of the CK+ and Oulu–CASIA dataset (e, f) FPLBP coded image of the CK+ and
Oulu–CASIA dataset

3.2.3 Discrete Cosine Transform (DCT)
DCT is a technique which describes an image as a sum of sinusoids or just like sinusoidal

waves of varying magnitudes and frequencies. For feature extraction, DCT-2 technique is imple-
mented in the proposed approach. Two-dimensional (2-D) DCT is applied on an input image that
converts it into DCT coefficients of the same matrix as the input image. The most significant
information is stored in just a few coefficients on the top left corner of the transform output
called low frequencies. These are extracted in a zigzag manner and high frequencies are discarded
as shown in Figs. 3c, 3d. Due to this reason, the DCT is often used in image compression
applications. For example, in JPEG, for an X × Y input image, the DCT is computed by the
following equation:

F (x,y)= 1√
AB

α (x) α (y)
A−1∑
u=0

B−1∑
v=0

f (u, v)cos
(

(2u+ 1)xπ
2A

)
cos

(
(2v+ 1)yπ

2B

)
(4)

x= 0, 1, . . . ,A and y= 0, 1, . . . ,B
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where f(u, v) function denotes the image intensity while F(x, y) function denotes the computed
DCT coefficients in a 2D matrix form.

3.2.4 Feature Fusion
The TPLBP and FPLBP codes are generated and features are extracted through DCT, sepa-

rately from each of these methods in the feature engineering phase. The features are also fused to
construct a feature vector in a zigzag manner. The zigzag function takes a matrix and a certain
number of features such as 64 (8× 8) as an input and returns a one-dimensional array consisting
of the results of zigzag scans. For example, it stores, the value of the first pixel and flows in the
right and down direction until the 8 x 8 matrix is complete as shown in Figs. 4d, 4h. The same
process is repeated for all the images that are coded through TPLBP and FPLBP respectively to
form a concatenated feature vector of 128 values (64 and 64 for each image) as shown in Tab. 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: (a, e) Original images of CK+ and Oulu–CASIA dataset (b, f) TPLBP coded images
of original image (c, g) DCT output Image of coded images (d, h) Feature extraction in zigzag
manner from DCT output image

3.3 Classification
The features are encoded and extracted in the feature engineering section followed by the

feature fusion section, separately to form the feature vector of each dataset. SVM, KNN and
SMO classifiers [31] are used to classify facial expressions using selected features.

4 Experimental Results and Discussion

Experiments have been performed on two different facial expression datasets the extended
Cohn–Kanade (CK+) and partial Oulu–CASIA dataset. The detail of datasets is given in Tab. 2.
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Execution of the proposed technique has been assessed using performance measures such as
precision, recall, accuracy, specificity, sensitivity, and F-score. To determine the efficiency of the
proposed technique, the comparison has been performed with the existing methods based on the
included datasets.

Table 1: Concatenated feature vector record

Images TPLBP+DCT FBLBP+DCT Expression labels

Image 1 64 (8× 8) features 64 (8× 8) features 1
Image 2 64 (8× 8) features 64 (8× 8) features 2
Image 3 64 (8× 8) features 64 (8× 8) features 3
Image 4 64 (8× 8) features 64 (8× 8) features 4
Image 5 64 (8× 8) features 64 (8× 8) features 5
Image 6 64 (8× 8) features 64 (8× 8) features 6

Table 2: Specifications of facial expression datasets

Database Expressions No. of
subjects

No. of
sequences

Gray/color Resolution Type

CK+ Six basic
expressions

18 540 image
sequences

Mostly grey 384× 288 Posed, spontaneous
smiles

Oulu–CASIA Six basic
expressions

20 7200 image
sequences

Mostly grey 65× 65 Posed, illumination
variant

4.1 Experiments on Extended Cohn Kanade (CK+) Dataset
Initially, experiments are performed on the CK+ dataset according to the descriptions men-

tioned in Tab. 3 and the distribution of the images from dataset is shown in Tab. 4. Fig. 5 shows
the performance of multiple classifiers such as SVM, KNN, and SMO using CK+ dataset.

Table 3: Contents of facial expression datasets

Feature set Three patch and four patch LBP

Classifiers LBP features extraction and encoding using discrete cosine transform
1. Support vector machine
2. K-nearest neighbor
3. Sequential minimal optimization

Tab. 5 shows the recognition rate of linear kernel SVM classifier. Values in bold indicate the
best recognition cases for each class of the CK+ dataset. The recognition rate is high but anger
is misclassified as disgust and happy.

Tab. 6 shows the recognition rate when KNN classifier is used. The recognition rate is good
but anger and disgust are confused with fear and disgust is misclassified as happy.
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Table 4: Number of CK+ images per expression

Expressions Number of Images

Anger 90
Disgust 90
Fear 90
Happy 90
Sad 90
Surprise 90

Figure 5: Performance metric values using CK+ dataset for multiple classifiers

Table 5: Confusion matrix for linear kernel SVM classifier using CK+ database

Expressions Anger Disgust Fear Happy Sad Surprise

Anger 38 1 0 1 0 0
Disgust 0 47 0 0 0 0
Fear 0 0 32 0 0 0
Happy 0 0 1 35 0 0
Sad 0 0 0 0 32 0
Surprise 0 0 1 0 0 28

Tab. 7 shows the recognition rate in the case of SMO classifier. The recognition rate is high,
but anger is confused with sad while disgust and sad are misclassified as anger.

A comparison of the results of different techniques presented in literature work along with
the proposed technique using the CK+ dataset is presented in Tab. 8. A histogram of oriented
features is generated along the discrete cosine transform. The hybrid technique has performed
better when images with multi-scale and illumination variations are used. The face images are used
to obtain local binary pattern (LBP) and weber local descriptor (WLD) features along with feature
extraction mechanism based on DCT to perform classification. It is observed that the technique
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is not robust to noise. Tab. 8 shows the performance of the proposed system is comparable with
other relevant techniques and the results describe the effectiveness of the proposed technique.

Table 6: Confusion matrix for KNN classifier using CK+ database

Anger Disgust Fear Happy Sad Surprise

Anger 43 1 0 0 0 0
Disgust 0 23 0 0 0 0
Fear 2 1 39 0 0 2
Happy 0 4 0 30 0 0
Sad 0 0 1 0 35 0
Surprise 0 0 0 0 0 35

Table 7: Confusion matrix for SMO classifier using CK+ database

Anger Disgust Fear Happy Sad Surprise

Anger 32 3 1 1 5 0
Disgust 0 48 0 0 0 0
Fear 0 0 29 0 0 0
Happy 0 0 0 33 0 0
Sad 3 0 1 0 35 0
Surprise 0 0 0 0 0 25

Table 8: Comparison of proposed technique with existing techniques using CK+ dataset

Database Technique No. of classes Accuracy (%)

CK+ WLD [SVM] [1] 7 99.28
Hybrid (HOG & DCT) [KNN, SMO, MLP] [5] 6 99.60
AAM, HOG, PCA [DSAE] [6] 6 95.79
WLBI-CT 99.30
[SMO, NB, KNN, MLP, classification trees] [7] 6 99.30
EBGM and KLT [SVM] [9] 6 97.80
Proposed technique 6 99.40

4.2 Experiments on Oulu–CASIA Dataset
The performance of the proposed technique is also evaluated on the subset of Oulu–CASIA

dataset. The dataset consists of two camera types named NIR (near to infrared) and VL (visible
light) to produce image sequences. The images are also captured in different illumination situations
including dark, strong, and weak light with these cameras. The main dataset contains the image
sequences of 80 different persons. Data of 20 persons is obtained from VL camera with occlusion
(with glasses) and without occlusion (without glasses), separately. Image sequences having dark,
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strong and weak light for each of 20 persons are combined in both cases, with occlusion and
without occlusion for each expression, separately.

4.2.1 Experiments on Oulu–CASIA with Occlusion
The experiments are evaluated on a combination of dark, strong, and weak illumination

having frontal and spontaneous images with glasses. Fig. 6 shows the average accuracy, sensitivity,
specificity, precision, recall and F-score, using multiple classifiers such as SVM, KNN and SMO.

Figure 6: Performance of multiple classifiers using Oulu–CASIA dataset with occlusion

Tab. 9 shows the recognition rate of linear kernel SVM classifier using Oulu–CASIA dataset
with occlusion. The recognition rate is good but disgust is misclassified as anger while happiness
and surprise are confused with fear.

Table 9: Confusion matrix for linear kernel SVM using Oulu–CASIA with occlusion dataset

Anger Disgust Fear Happy Sad Surprise

Anger 115 2 1 0 1 0
Disgust 0 119 0 0 0 0
Fear 0 0 110 4 0 2
Happy 0 0 1 132 0 0
Sad 1 1 0 2 120 0
Surprise 0 0 0 0 0 109

Tab. 10 shows the recognition rate in the case of the KNN classifier. Bold values indicate the
best recognition rate of Oulu–CASIA with occlusion dataset. The recognition rate is accurate, but
disgust misclassifies with fear and happiness while fear is confused with the surprise factor.
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Table 10: Confusion matrix for KNN classifier using Oulu–CASIA with occlusion dataset

Anger Disgust Fear Happy Sad Surprise

Anger 113 0 0 0 0 0
Disgust 0 115 0 0 0 0
Fear 0 3 123 0 0 0
Happy 0 2 0 126 0 1
Sad 0 0 1 0 127 0
Surprise 0 0 7 0 0 118

Tab. 11 shows the recognition results of SMO classifier using Oulu–CASIA with occlusion
dataset. The confusion matrix indicated that disgust is confused with anger and sad while fear is
classified as surprise. Sad is also confused with anger, disgust and fear.

Table 11: Confusion matrix for SMO classifier using Oulu–CASIA with occlusion dataset

Anger Disgust Fear Happy Sad Surprise

Anger 110 2 0 0 3 0
Disgust 1 119 2 0 3 0
Fear 0 0 121 0 2 4
Happy 0 0 0 126 0 0
Sad 0 2 1 0 132 0
Surprise 0 0 0 0 0 103

4.2.2 Experiments on Oulu–CASIAWithout Occlusion
The experiments are performed on the dark, strong, and weak illumination frontal and

spontaneous images having faces without glasses and combined as one dataset. Fig. 7 shows the
average accuracy, sensitivity, specificity, precision, recall, and F-score using multiple classifiers.

Figure 7: Performance of multiple classifiers using Oulu–CASIA without occlusion dataset
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Tab. 12 shows the results of linear kernel SVM classifier using Oulu–CASIA without occlu-
sion dataset. The recognition rate shows that anger is confused with disgust.

Table 12: Confusion matrix for linear kernel SVM using Oulu–CASIA without occlusion dataset

Anger Disgust Fear Happy Sad Surprise

Anger 126 0 0 0 0 0
Disgust 6 113 0 0 0 0
Fear 0 0 121 0 0 5
Happy 0 0 0 117 0 0
Sad 2 1 0 0 114 0
Surprise 3 0 0 0 0 112

Tab. 13 describes the results obtained by employing the KNN classifier using Oulu–CASIA
dataset without occlusion.

Table 13: Confusion matrix for KNN classifier using Oulu–CASIA without occlusion dataset

Anger Disgust Fear Happy Sad Surprise

Anger 117 1 0 0 1 0
Disgust 4 115 0 0 0 0
Fear 0 0 114 0 1 1
Happy 0 0 0 133 0 0
Sad 0 0 1 0 123 0
Surprise 0 0 0 0 0 109

The results obtained by employing SMO classifier using Oulu–CASIA without occlusion
dataset are listed in Tab. 14. The values reveal that disgust is confused with fear and happiness.

Table 14: Confusion matrix for SMO classifier using Oulu–CASIA without occlusion dataset

Anger Disgust Fear Happy Sad Surprise

Anger 113 0 0 0 0 0
Disgust 0 115 0 0 0 0
Fear 0 3 123 0 0 0
Happy 0 2 0 110 0 1
Sad 0 0 1 0 127 0
Surprise 0 0 7 0 0 118

The average recognition rate of the proposed technique is compared with existing methods
using the same Oulu–CASIA dataset. IL-CNN technique is often used to reduce the intra-class
variations. The performance and accuracy are low with the IL-CNN technique as compared to the
proposed technique. The long-short term memory (LSTM) and gated recurrent unit (GRU) layers
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are used to learn long-term dependencies. Tab. 15 shows that the performance of the proposed
system is better than other techniques.

Table 15: Comparison of proposed technique with existing using Oulu–CASIA dataset

Database Technique No. of classes Accuracy (%)

Oulu–CASIA LBP-TOP [SVM] [22] 6 NIR-STRONG= 79.40
NIR-WEAK= 73.03
NIR-DARK= 76.03
VL-STRONG= 79.40
VL-WEAK= 74.53
VL-DARK= 58.80

Multi-task global-local
network (MGLN) [30]

6 MGLN-LSTM= 90.4

MGLN-GRU= 90.4
Proposed technique 6 NIR—with Occlusion= 99.4

NIR—Without Occlusion= 99.2

5 Conclusion and Future Work

A novel patch-based multiple LBP descriptors techniques namely three patch local binary pat-
terns (TPLBP) and four patch local binary patterns (FPLBP) have been proposed. The proposed
system exploits the feature extraction ability of TPLBP and FPLBP along with DCT to overcome
the issues of illumination, scale variations, high dimensions, noisy images, and higher computa-
tional complexity of texture-based features. Multiple classifiers are used to classify standard CK+
and Oulu–CASIA datasets with posed, spontaneous emotions, illumination variant and multi-scale
face images. The proposed technique can obtain a high-performance rate, which is relatively tough
in situations with variations in angles and noise. The performance can be further improved to
manage these factors using some pre-processing techniques along with TPLBP and FPLBP.
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