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We discuss the role of quantum coherence in the energy �uctuations of open quantum systems. To this aim,
we introduce a protocol, to which we refer to as the end-point-measurement scheme, allowing to de�ne the
statistics of energy changes as a function of energy measurements performed only after the evolution of the
initial state. At the price of an additional uncertainty on the initial energies, this approach prevents the loss of
initial quantum coherences and enables the estimation of their e�ects on energy �uctuations. We demonstrate
our �ndings by running an experiment on the IBM Quantum Experience superconducting qubit platform.

When the size of a physical system is scaled down to the
micro-/nano-scopic domain, �uctuations of relevant quanti-
ties start playing a pivotal role in establishing the energetics
of the system. Such �uctuations obey fundamental relations,
known as �uctuation theorems, that recast the laws of ther-
modynamics in such a new regime. Should the range of ener-
gies involved in a given system bring its dynamics within the
domain of quantum theory, the very nature of energy �uctu-
ations become even more interesting as encompassing both
classical (i.e. thermal) and quantum contributions. The char-
acterization of the latter, and the understanding of how they
conjure with the former to set the dynamics of fundamental
energy transformations, are very stimulating open problems.

One of the key achievements of the �eld of thermody-
namics of quantum processes [1–4] is the identi�cation of
a strategy for the assessment of the energetics stemming
from non-equilibrium quantum dynamics. The so-called
two-point measurement (TPM) protocol [5–8], where the
energy is measured both at the initial and �nal time, has
been introduced to determine the work statistics of a quan-
tum system driven by a time-dependent protocol. However,
in quantum mechanics, measurements condition the evolu-
tion of the measured system [9]. In particular, in TPM an
energy measurement performed before the dynamics takes
place destroys the quantum coherences in the initial state of
the system, forcing it into an energy eigenstate [10, 11]. Such
a loss of coherence is common to interferometric formula-
tions of the TPM protocol, which have been put forward to
ease the inference of the energetics of out-of-equilibrium sys-
tems [12–14].

Recently, much e�ort has been devoted to understand
the role of coherence in quantum thermodynamics [15–25].
In particular in Refs. [15, 16, 20, 26] full counting statis-
tics [27, 28] has been used to study work �uctuations in quan-
tum systems initialized in an arbitrary state, pointing out
that the quantum interference stemming from considering
quantum coherences could lead to negative quasi-probability
work distributions [29].

In this paper, we propose an end-point-measurement (EPM)
protocol to quantify the statistics of energy-change �uctua-

tions in the (possible) presence of quantum coherence in the
initial state of a system. The motivation for such protocol is
two-fold: i) it is directly inspired from the typical quantum
mechanical setup in which a state is prepared, then evolved,
and only at the end measured; and ii) such a protocol re-
moves the need for the �rst projective measurement required
by TPM, thus preventing the collapse of the initial state of
the system onto the energy basis. This is in contrast with
recent proposals such as Ref. [25], where the system has to
be prepared in a mixture of eigenstates of an observable O
that does not commute with the Hamiltonian of the system.
This is equivalent to an experiment measuring O at the ini-
tial time so that in each trajectory the starting point is an
eigenstate ofO. Our proposal is di�erent from this and other
TPM schemes, since we do not use any initial projective mea-
surement and the initial state fully evolves according to its
quantum dynamics. This is the typical situation encountered
when considering the evolution of quantum systems, where
the measurement is performed only at the �nal time – like
during quantum computing algorithms. Thus, analyzing the
di�erences and analogies between our scheme and other ex-
isting protocols helps in comparing the typical measurement
procedures with those in quantum thermodynamics.

Remarkably, we are able to characterize the �uctuations
of energy changes by distinguishing between contributions
stemming from quantum coherences and those resulting
from initial populations, albeit at the cost of a quanti�able
extra uncertainty. These results o�er the possibility to set
coherence-induced quantum e�ects apart from those due to
thermal �uctuations. Renouncing to the initial energy mea-
surement on the system entails a substantive experimental
simpli�cation, thus making such approach an alternative to
the TPM scheme when quantum signatures are considered.
We demonstrate the e�ectiveness of EPM in pinpointing the
role of initial coherences in the statistics of energy �uctua-
tions by performing a series of experiments using the IBM
Quantum Experience (IBMQ) platform. This highlights the
applicability of our scheme for the characterization of the en-
ergetics of quantum computation, a topic which is receiving
growing attention in recent years [30–33].
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Coherence in the energy eigenbasis.– Let us consider
a d-dimensional quantum system S evolving according to
a one-parameter family of completely-positive and trace-
preserving (CPTP) maps Φt : ρi → ρf = Φt[ρi] [34] within
the time interval [ti, tf ]. Here, ρi (ρf ) is the initial (�nal) den-
sity operator of the system. Our derivation can be specialized
to the case of closed systems with time-dependent Hamilto-
nian, where energy �uctuations identify as work, or to open
time-independent ones where only heat-transfer occurs.

Let us thus consider a system S subject to no initial pro-
jective measurement and characterize energy �uctuations
only through a �nal-time measurement. The only energy
measurement of our protocol is performed at the �nal time
tf . This generates the trajectories T ki : ρi → Πk

f with
Πk

f ≡ |Ekf 〉〈Ekf | denoting the projector onto the k-th en-
ergy eigenstates |Ekf 〉 of the Hamiltonian at time tf , i.e.,
H(tf) =

∑
k E

k
f Πk

f . The stochasticity of the outcomes pro-
vided by the EPM protocol, with respect to the initial energies
that S would have if the energy had been measured, makes
∆E ≡ Ef − Ei a random variable.

Dynamically, the initial quantum coherence in the state of
S , written in the energy basis, is accounted for by consider-
ing the probability distribution of the �nal energy due to the
evolved initial state ρi, comprising its coherence. By �xing
the energy of S at tf , there is a probability law weighting the
trajectories T ki , which can be arranged in N groups corre-
sponding to the number of possible energy values at ti. This
is a classical law, interpreted as the uncertainty on the values
of Ei, and thus ∆E. By performing energy measurements
at the �nal time tf , one can embed the e�ects of initial co-
herences into single realizations of the evolution. The uncer-
tainty on Ei re�ects the fact that its values are obtained as if
we were performing a virtual projective measurements, thus
without any state collapse. This entails independence of the
measurements at tf with respect to the initial virtual one.

Suppose the initial state ρi is not diagonal in the energy
basis of S : One can object that there is an observable O on
whose basis ρi is diagonal. However, there is an expected
di�erence between the cases where a) a measurement of O
is done at time ti , then one starts each trajectory from an
eigenstate of O and averages a posteriori over all possible
results of the �rst measurement [25], and b) no measurement
is implemented and the dynamics can show interference in
the energy basis. Such di�erence will be quanti�ed later.

If the energy is not measured at ti, how can we talk about
the initial energies Ei? Such information, and the related
thermodynamic cost, is encoded in ρi, which is such that,
if we decide to measure the energy, we would �nd the ini-
tial energies Ei. One could prepare ρi a large number of
times, and in a fraction of them measure energy to verify
that the eigenvalues E`i ’s of the Hamiltonian at t = ti , i.e.,
H(ti) =

∑
`E

`
i Π`

i , are obtained with the probability as-
signed by ρi [cf. Fig. 1]. At the remaining times one uses
ρi as input for our protocol without measuring energy at ti.
Energy-change distribution and link with �uctuation
relations.– Let us assume a time-dependent Hamiltonian

process and de�ne the probability distribution associated to
∆E by analyzing its properties. At the single-trajectory
level, the density operator after the end-point energy mea-
surement is one of the eigenstates Πk

f of the time-dependent
Hamiltonian H(tf). Such state is achieved with probability

pkf ≡ Tr
(
ρfΠ

k
f

)
= Tr

(
Φtf [ρi]Π

k
f

)
. (1)

Thus, given the change ∆Ek,` ≡ Ekf − E`i in terms of the
eigenvalues of H(t), the probability distribution of ∆E is

Pcoh(∆E) =
∑

k

pkf
∑

`

p`i δ(∆E −∆Ek,`), (2)

where p`i ≡ p(E`i ) = Tr(ρiΠ
`
i ) is the probability of obtain-

ing E`i if an energy measurement was performed on S (ini-
tial virtual measurement). In Eq. (2), the su�x "coh" stands
for "coherence". The joint probability p(E`i , Ekf ) associated
to the stochastic variable ∆Ek,`, such that Pcoh(∆E) =∑
`,k p(E

`
i , E

k
f )δ(∆E −∆Ek,`), can then be written as

p(E`i , E
k
f ) = p`i p

k
f = Tr

(
ρiΠ

`
i

)
Tr
(
Φtf [ρi]Π

k
f

)
≡ p`,kcoh. (3)

As already noticed, the assumption behind Eq. (3) is the sta-
tistical independence of the �nal energy projective measure-
ments and initial virtual one. This comes from the fact that
the initial measurement is not performed and only the statis-
tics related to the initial state preparation is used. The fol-
lowing properties hold:
Property (i) Pcoh(∆E) is such that

∑
k,` p

`,k
coh = 1.

Property (ii) The average energy variation 〈∆E〉Pcoh
≡∫

d∆E Pcoh(∆E)∆E reproduces the average energy
change induced by the CPTP map Φt, that is

〈∆E〉 = Tr(H(tf)ρf)− Tr(H(ti)ρi), (4)

where we have assumed statistical independence between
virtual initial energy measurements and �nal ones [35].
Property (iii) Pcoh(∆E) does not reduce to the TPM proba-
bility distribution for [ρi, H(0)] = 0, i.e., it cannot result from
a �uctuation theorem (FT) protocol in the sense of Ref. [19].

Even by replacing the initial state ρi in Eq. (2) with a state
diagonal in the (initial) energy basis, it is not possible to
recover the conventional energy-change statistics resulting
from the TPM protocol. The latter is recovered only when
the initial state is an energy eigenstate (cf. the Supplementary
Material (SM) accompanying this paper [36]). For an initial
state diagonal in the energy eigenbasis, the discrepancy be-
tween the TPM and EPM joint probabilities is due to classical
uncertainty on the initial state of S , which is retained in our
scheme but is lost in TPM due to the initial energy measure-
ment. As shown in Ref. [36], this agrees with the no-go the-
orem in Ref. [37]. For the same reasons, besides a few excep-
tions, the distribution Pcoh(∆E) may not be convex under a
linear mixture of protocols that only di�er by the initial den-
sity operator ρi [36]. Therefore, given ρi = ζρi,1 +(1−ζ)ρi,2

with ζ ∈ [0, 1], Pcoh(∆E|ρi) cannot in general be expressed



3

Φt

Θ Φt

ρi ρi

ρi

ρi

ρi

ρi
ρi

ρi

Tr(ρiΠℓi )

Tr(Φtf[ρi]Πkf )
Φtf[ρi]

Φtf[$] Tr(Φtf[$]Πkf )

3

�t

� �t

�i �i

�i

�i

�i

�i
�i

�i

�

Tr(�i��i )

Tr(�tf[�i]�kf )
�tf[�i]

�tf[�] Tr(�tf[�]�kf )

FIG. 1. Illustration of our operational protocol for the quanti�ca-
tion of energy �uctuations and the extraction of information about
coherence. An ensemble of identical systems, all prepared in the
same initial state ⇢i, is initially divided in three (in general hetero-
dimensional) subgroups. One subgroup is used to obtain p` =

Tr[⇢i⇧
(`)
i ] via an initial energy measurement. The second subgroup

goes through a dephasing channel that returns the diagonal state in
the energy basis P . Then, P is subject to the dynamical quantum
map �t and used to derive Tr[�t(P)⇧

(k)
f ] (note that also the �rst

subgroup, after the energy measurement, can be used for such pur-
pose). Finally, the third subgroup of systems are those that are not
initially measured but directly subjected to the system dynamics.
These are used to obtain Tr[�t(⇢i)⇧

(k)
f ].

In order to properly single out the e�ect of the initial state
coherence in the energy basis, and clearly separate it from
the e�ects of classical uncertainty, we split the generic initial
state as ⇢i = P +� , where P is diagonal in the energy basis
(it represents the initial energy populations) while � encodes
the coherence contributions and it is such that Tr[�] = 0.
Thus, Eq. (3) can be correspondingly split as

Tr[P⇧
(`)
i ]

⇣
Tr[�[P]⇧

(k)
f ] + Tr[�[�]⇧

(k)
f ]

⌘
⌘ p`p

P
k + p`p

�
k .

(5)
The �rst term, i.e. p`pP

k , encodes information over time on
the classical uncertainty on the initial system populations,
while the second term p`p

�
k takes into account the e�ect of

initial coherence. Thanks to the statistical independence of
the energy outcomes {E

(`)
i } and {E

(k)
f }, these two terms can

be separately analyzed. The term of the joint probability (3)
containing the information on the initial coherence can be
also experimentally determined as illustrated in Fig. 1.

Moreover, before proceeding let us also clarify the con-
nection, and subtle di�erences, with the protocol of Micadei-
Landi-Lutz (MLL) in [23] where the authors study the e�ect
of coherence on heat �uctuations. Given a general initial
state written in terms of its eigenstates, ⇢i =

P
s p(s)|sihs|,

the MLL protocol associates to it the joint probability p`,kMLL ⌘P
s p(s)Tr[|sihs|⇧(`)

i ]Tr[�tf [|sihs|]⇧
(k)
f ]. The latter reduces to

the joint probability of the TPM protocol for an initial state
diagonal in the energy basis and to the joint probability p

(`,k)
coh

of our protocol for any initial pure state. The main di�er-
ence with the operational protocol presented in this work
(see Fig. 1) consists in the fact that in the MLL protocol the

generic initial state ⇢i needs to be evaluated in initially mea-
sured in its eigenbasis and thus expressed as a function of
the set of eigenvectors {|si} diagonalizing ⇢i. Indeed, in or-
der to derive obtain p

(`,k)
MLL, the evolution of the single com-

ponents of the initial statistical ensemble has to be known.
From this perspective, our protocol requires less information
on the system dynamics, but at the cost of an extra uncer-
tainty on the statistics of �E (for further details see also the
SM).

Linear response approximation.– In this paragraph, we fo-
cus on the 1st and 2nd statistical moments of the proposed
�E probability distribution in comparison to other proto-
cols. For what concerns h�Ei, the �rst moment provided
in (4) recovers the expected di�erence of the averaged initial
and �nal Hamiltonian. This holds also for the MLL proto-
col [23], while it is true for the TPM protocol only for initially
diagonal states in the energy basis. while it is true for the
TPM only when the mixture (diagonal operator in the initial
energy basis) resulting from the �rst energy measurement is
considered as the initial state. Instead, concerning the sec-
ond moment h�E2i, which accounts for the �uctuations of
the random variable �E under the linear response approxi-
mation, from the probability distribution of (2) one can get

h�E2i = Tr[H2(ti)⇢i] + Tr[H2(tf)�tf [⇢i]] (6)
� 2 Tr[�tf [⇢i]H(tf)] Tr[⇢iH(ti)].

This result coincides, in general, with the one of the MLL
protocol only for initial pure state and with the TPM proto-
col only for an initial state corresponding to an eigenstate of
H(ti). By implementing the substitution ⇢i = P + � , one
has that in (6) the contribution of the initial state coherence
is included entirely in the second and third term

h�E2i = h�E2iP + Tr[H2(tf)�tf [�]] (7)
� 2 Tr[�tf [�]H(tf)] Tr[PH(ti)],

where h�E2iP is obtained from (6) by replacing ⇢i ! P . It
should be noted that, if the initial state ⇢i is such that P is a
projector, then h�E2iP = h�E2iTPM and all the di�erences
in the second moments are originated by coherence terms in
⇢i. The latter, indeed, are unavoidably destroyed by applying
the TPM protocol.

Characteristic function and physical meaning.– The infor-
mation about all the statistical moments of the energy change
statistics is encoded in the characteristic function G(u) of
Pcoh(�E), generally de�ned as G(u) ⌘ heiu�EiPcoh

=R
d�E eiu�EPcoh(�E), u 2 C. Being the outcomes {E

(k)
f }

of the �nal energy projective measurement statistically inde-
pendent from the initial “virtual outcomes” {E

(`)
i } at t = ti,

the characteristic function equals to

G(u) = Tr[e�iuH(ti)⇢i] Tr[eiuH(tf )�tf [⇢i]]. (8)

From Eq. (8) one can observe that the �uctuations of�E orig-
inate not only from the action of the CPTP map �[⇢] on the
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tainty on the statistics of �E (for further details see also the
SM).

Linear response approximation.– In this paragraph, we fo-
cus on the 1st and 2nd statistical moments of the proposed
�E probability distribution in comparison to other proto-
cols. For what concerns h�Ei, the �rst moment provided
in (4) recovers the expected di�erence of the averaged initial
and �nal Hamiltonian. This holds also for the MLL proto-
col [23], while it is true for the TPM protocol only for initially
diagonal states in the energy basis. while it is true for the
TPM only when the mixture (diagonal operator in the initial
energy basis) resulting from the �rst energy measurement is
considered as the initial state. Instead, concerning the sec-
ond moment h�E2i, which accounts for the �uctuations of
the random variable �E under the linear response approxi-
mation, from the probability distribution of (2) one can get

h�E2i = Tr[H2(ti)⇢i] + Tr[H2(tf)�tf [⇢i]] (6)
� 2 Tr[�tf [⇢i]H(tf)] Tr[⇢iH(ti)].

This result coincides, in general, with the one of the MLL
protocol only for initial pure state and with the TPM proto-
col only for an initial state corresponding to an eigenstate of
H(ti). By implementing the substitution ⇢i = P + � , one
has that in (6) the contribution of the initial state coherence
is included entirely in the second and third term

h�E2i = h�E2iP + Tr[H2(tf)�tf [�]] (7)
� 2 Tr[�tf [�]H(tf)] Tr[PH(ti)],

where h�E2iP is obtained from (6) by replacing ⇢i ! P . It
should be noted that, if the initial state ⇢i is such that P is a
projector, then h�E2iP = h�E2iTPM and all the di�erences
in the second moments are originated by coherence terms in
⇢i. The latter, indeed, are unavoidably destroyed by applying
the TPM protocol.

Characteristic function and physical meaning.– The infor-
mation about all the statistical moments of the energy change
statistics is encoded in the characteristic function G(u) of
Pcoh(�E), generally de�ned as G(u) ⌘ heiu�EiPcoh

=R
d�E eiu�EPcoh(�E), u 2 C. Being the outcomes {E

(k)
f }

of the �nal energy projective measurement statistically inde-
pendent from the initial “virtual outcomes” {E

(`)
i } at t = ti,

the characteristic function equals to

G(u) = Tr[e�iuH(ti)⇢i] Tr[eiuH(tf )�tf [⇢i]]. (8)

From Eq. (8) one can observe that the �uctuations of�E orig-
inate not only from the action of the CPTP map �[⇢] on the

FIG. 1. Protocol for the quanti�cation of energy �uctuations and the
extraction of information about coherence. An ensemble of identi-
cal systems, prepared in the initial state ρi, is divided in three sub-
groups. One is used to obtain p`i = Tr(ρiΠ

`
i ) via an initial energy

measurement. The second goes through a dephasing channel, re-
turning a state P diagonal in the energy basis. This then undergoes
map Φt and is used to determine pkP = Tr(Φtf [P]Πk

f ). The systems
in the third subgroup are not initially measured but subjected to the
dynamics and used to obtain pkf = Tr(Φtf [ρi]Π

k
f ).

as a linear composition of the distributions Pcoh(∆E|ρi,1)
and Pcoh(∆E|ρi,2).

In order to pinpoint the e�ect of coherence in the energy
basis of ρi and separate it from classical uncertainty, we take
ρi = P + χ with P diagonal in the energy basis and χ en-
coding the coherence contributions (Tr(χ) = 0). Then p`,kcoh

in Eq. (3) can be split as p`,kcoh = p`i p
k
f ≡ p`i pkP + p`i p

k
χ with

pkf ≡ pkP + pkχ = Tr(Φtf [P]Πk
f ) + Tr(Φtf [χ]Πk

f ). (5)

The term p`i p
k
P encodes information on classical uncer-

tainty on the initial system populations, while p`i pkχ takes
into account the e�ects of initial coherence. We introduce
pPcoh ≡ p`i p

k
P and, owing to the statistical independence of

outcomes {E`i } and {Ekf }, such terms can be separately an-
alyzed. In particular, the term containing information on the
initial coherence can be determined as illustrated in Fig. 1.

Note that the absence of initial coherences makes the EPM
distribution equal to the product of the marginals of the TPM
distribution [38]. We thus have H(pTPM) ≤ H(pcoh|χ=0),
whereH(p) is the Shannon entropy of a generic distribution
p. This inequality follows from the positivity of mutual in-
formation. However, the same result is not true in general if
initial coherence is present (cf. the case study of a three-level
thermal engine in Ref. [36]).

We now address the di�erences with the protocol in
Ref. [25] – which we label MLL – to study the e�ects of co-
herence. In MLL, an initial state decomposed in terms of its
eigenstates {|s〉} as ρi =

∑
s p

s|s〉〈s|, is associated with the
joint probability p`,kMLL ≡

∑
s p

s|〈s|E`i 〉|2Tr(Φtf [|s〉〈s|]Πk
f ).

This reduces to the joint probability of the TPM protocol for
ρi diagonal in the energy basis, and to the distribution p`,kcoh

of our protocol for initial pure states. However, for a generic
initial state, such correspondences are lost and MLL requires
ρi to be one of its eigenstates, as the construction of p`,kMLL

requires to know the evolution of each component of ρi. The

EPM protocol thus requires less information on the dynam-
ics at the cost of extra uncertainty on the statistics of ∆E (cf.
Ref. [36] for a comparison between EPM, MLL and TPM).
Linear response approximation.–We now further charac-
terize the distribution of energy changes and address its 1st

and 2nd statistical moments. As with MLL, Eq. (4) recovers the
expected di�erence of the averaged initial and �nal Hamilto-
nian. This is true in the TPM scheme only when the initial
state is the mixture resulting from the �rst energy measure-
ment. From Eq. (2) one gets

〈∆E2〉 = 〈∆E2〉P + Tr(H2(tf)Φtf [χ])

− 2 Tr(Φtf [χ]H(tf)) Tr(PH(ti)),
(6)

with 〈∆E2〉P given by assuming ρi → P . Note that Eq. 6 co-
incides with the result of MLL (TPM) only if the initial state
is pure (an eigenstate of H(ti)). Moreover, if P is a projec-
tor, then 〈∆E2〉P = 〈∆E2〉TPM and all the di�erences in
the 2nd moments are due to coherences in ρi. The latter are
unavoidably destroyed in the TPM protocol.
Characteristic function and physical meaning.– The in-
formation about the statistics of the energy-change distri-
bution is encoded in the characteristic function G(u) ≡
〈eiu∆E〉Pcoh

=
∫
d∆E eiu∆EPcoh(∆E) corresponding to

the distribution Pcoh(∆E). As the outcomes {E(k)
f } of the

�nal energy measurement are statistically independent from
the initial virtual ones {E(`)

i }, we have

G(u) = Tr(e−iuH(ti)ρi) Tr(eiuH(tf )Φtf [ρi]), (7)

showing that the �uctuations of ∆E originate both from the
action of map Φt[ρ] on the initial state of S and the uncer-
tainty in its energy at t = ti. We now highlight the devia-
tion of the EPM-inferred statistics from a standard FT [6, 7].
We consider G(iβ), where β is a reference inverse temper-
ature (taken as a free parameter), and introduce the refer-
ence equilibrium states ρth

i(f) ≡ e−βH(ti(f))/Zi(f) with Zi(f) ≡
Tr(e−βH(ti(f))). For ρi = ρth

i + χ we get

〈e−β(∆E−∆F )〉=d
[
Tr
(
ρth

f Φtf [ρ
th
i ]
)

+Tr
(
ρth

f Φtf [χ]
)]
,
(8)

with ∆F the free energy di�erence and d the dimension of
the Hilbert space of S (cf. Ref. [36] for details). Eq. (8) de-
viates from unity, i.e. from a standard �uctuation theorem,
even for unital channels and due to two terms. The �rst,
dTr(ρth

f Φtf [ρ
th
i ]), is the additional uncertainty introduced

by not performing the initial energy measurement and is
present even for χ = 0. The second quanti�es the devia-
tion due to initial quantum coherences and bridges stochastic
thermodynamics and quantum signatures of open dynamics.
Eq. (8) is thus one of the main results of this paper.
Experimental Results.– To illustrate experimentally the
power and versatility of EPM, we make use of the IBMQ plat-
form. In particular, we perform a series of experiments based
on the use of a two-qubit gate, by following the protocol il-
lustrated in Fig. 1 for the extraction of initial coherence con-
tributions.



4

−0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6

Gcoh.
EPM<latexit sha1_base64="OYpe8CqNmIoUTFyVSIKB7c4JUnU=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwFRIRdFkU0Y1QwT6giWEynbRDJ5kwMxHKkJUbf8WNC0Xc+g3u/BsnbRbaeuDC4Zx7ufeeMKVESMf5NioLi0vLK9XV2tr6xuaWub3TFizjCLcQo4x3QygwJQluSSIp7qYcwzikuBOOLgq/84C5ICy5k+MU+zEcJCQiCEotBea+F0M5RJCqqzxQl82b/F55PFaIDe08D8y6YzsTWPPELUkdlGgG5pfXZyiLcSIRhUL0XCeVvoJcEkRxXvMygVOIRnCAe5omMMbCV5M3cutQK30rYlxXIq2J+ntCwViIcRzqzuJoMesV4n9eL5PRma9IkmYSJ2i6KMqoJZlVZGL1CcdI0rEmEHGib7XQEHKIpE6upkNwZ1+eJ+1j23Vs9/ak3jgv46iCPXAAjoALTkEDXIMmaAEEHsEzeAVvxpPxYrwbH9PWilHO7II/MD5/APWVmWw=</latexit><latexit sha1_base64="OYpe8CqNmIoUTFyVSIKB7c4JUnU=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwFRIRdFkU0Y1QwT6giWEynbRDJ5kwMxHKkJUbf8WNC0Xc+g3u/BsnbRbaeuDC4Zx7ufeeMKVESMf5NioLi0vLK9XV2tr6xuaWub3TFizjCLcQo4x3QygwJQluSSIp7qYcwzikuBOOLgq/84C5ICy5k+MU+zEcJCQiCEotBea+F0M5RJCqqzxQl82b/F55PFaIDe08D8y6YzsTWPPELUkdlGgG5pfXZyiLcSIRhUL0XCeVvoJcEkRxXvMygVOIRnCAe5omMMbCV5M3cutQK30rYlxXIq2J+ntCwViIcRzqzuJoMesV4n9eL5PRma9IkmYSJ2i6KMqoJZlVZGL1CcdI0rEmEHGib7XQEHKIpE6upkNwZ1+eJ+1j23Vs9/ak3jgv46iCPXAAjoALTkEDXIMmaAEEHsEzeAVvxpPxYrwbH9PWilHO7II/MD5/APWVmWw=</latexit><latexit sha1_base64="OYpe8CqNmIoUTFyVSIKB7c4JUnU=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwFRIRdFkU0Y1QwT6giWEynbRDJ5kwMxHKkJUbf8WNC0Xc+g3u/BsnbRbaeuDC4Zx7ufeeMKVESMf5NioLi0vLK9XV2tr6xuaWub3TFizjCLcQo4x3QygwJQluSSIp7qYcwzikuBOOLgq/84C5ICy5k+MU+zEcJCQiCEotBea+F0M5RJCqqzxQl82b/F55PFaIDe08D8y6YzsTWPPELUkdlGgG5pfXZyiLcSIRhUL0XCeVvoJcEkRxXvMygVOIRnCAe5omMMbCV5M3cutQK30rYlxXIq2J+ntCwViIcRzqzuJoMesV4n9eL5PRma9IkmYSJ2i6KMqoJZlVZGL1CcdI0rEmEHGib7XQEHKIpE6upkNwZ1+eJ+1j23Vs9/ak3jgv46iCPXAAjoALTkEDXIMmaAEEHsEzeAVvxpPxYrwbH9PWilHO7II/MD5/APWVmWw=</latexit><latexit sha1_base64="OYpe8CqNmIoUTFyVSIKB7c4JUnU=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwFRIRdFkU0Y1QwT6giWEynbRDJ5kwMxHKkJUbf8WNC0Xc+g3u/BsnbRbaeuDC4Zx7ufeeMKVESMf5NioLi0vLK9XV2tr6xuaWub3TFizjCLcQo4x3QygwJQluSSIp7qYcwzikuBOOLgq/84C5ICy5k+MU+zEcJCQiCEotBea+F0M5RJCqqzxQl82b/F55PFaIDe08D8y6YzsTWPPELUkdlGgG5pfXZyiLcSIRhUL0XCeVvoJcEkRxXvMygVOIRnCAe5omMMbCV5M3cutQK30rYlxXIq2J+ntCwViIcRzqzuJoMesV4n9eL5PRma9IkmYSJ2i6KMqoJZlVZGL1CcdI0rEmEHGib7XQEHKIpE6upkNwZ1+eJ+1j23Vs9/ak3jgv46iCPXAAjoALTkEDXIMmaAEEHsEzeAVvxpPxYrwbH9PWilHO7II/MD5/APWVmWw=</latexit>

Gdiag.
EPM<latexit sha1_base64="LhqggBsMn7MCmPOORemT9i6N/mw=">AAACB3icbVDLSsNAFJ3UV62vqEtBgkVwFRIRdFkU0Y1QwT6giWEynbRDZyZhZiKUkJ0bf8WNC0Xc+gvu/BsnbRbaeuDC4Zx7ufeeMKFEKsf5NioLi0vLK9XV2tr6xuaWub3TlnEqEG6hmMaiG0KJKeG4pYiiuJsIDFlIcSccXRR+5wELSWJ+p8YJ9hkccBIRBJWWAnPfY1ANEaTZVR5kl82b/D7zBMv6BA7sPA/MumM7E1jzxC1JHZRoBuaX149RyjBXiEIpe66TKD+DQhFEcV7zUokTiEZwgHuacsiw9LPJH7l1qJW+FcVCF1fWRP09kUEm5ZiFurO4Ws56hfif10tVdOZnhCepwhxNF0UptVRsFaFYfSIwUnSsCUSC6FstNIQCIqWjq+kQ3NmX50n72HYd2709qTfOyziqYA8cgCPgglPQANegCVoAgUfwDF7Bm/FkvBjvxse0tWKUM7vgD4zPH7BDmdE=</latexit><latexit sha1_base64="LhqggBsMn7MCmPOORemT9i6N/mw=">AAACB3icbVDLSsNAFJ3UV62vqEtBgkVwFRIRdFkU0Y1QwT6giWEynbRDZyZhZiKUkJ0bf8WNC0Xc+gvu/BsnbRbaeuDC4Zx7ufeeMKFEKsf5NioLi0vLK9XV2tr6xuaWub3TlnEqEG6hmMaiG0KJKeG4pYiiuJsIDFlIcSccXRR+5wELSWJ+p8YJ9hkccBIRBJWWAnPfY1ANEaTZVR5kl82b/D7zBMv6BA7sPA/MumM7E1jzxC1JHZRoBuaX149RyjBXiEIpe66TKD+DQhFEcV7zUokTiEZwgHuacsiw9LPJH7l1qJW+FcVCF1fWRP09kUEm5ZiFurO4Ws56hfif10tVdOZnhCepwhxNF0UptVRsFaFYfSIwUnSsCUSC6FstNIQCIqWjq+kQ3NmX50n72HYd2709qTfOyziqYA8cgCPgglPQANegCVoAgUfwDF7Bm/FkvBjvxse0tWKUM7vgD4zPH7BDmdE=</latexit><latexit sha1_base64="LhqggBsMn7MCmPOORemT9i6N/mw=">AAACB3icbVDLSsNAFJ3UV62vqEtBgkVwFRIRdFkU0Y1QwT6giWEynbRDZyZhZiKUkJ0bf8WNC0Xc+gvu/BsnbRbaeuDC4Zx7ufeeMKFEKsf5NioLi0vLK9XV2tr6xuaWub3TlnEqEG6hmMaiG0KJKeG4pYiiuJsIDFlIcSccXRR+5wELSWJ+p8YJ9hkccBIRBJWWAnPfY1ANEaTZVR5kl82b/D7zBMv6BA7sPA/MumM7E1jzxC1JHZRoBuaX149RyjBXiEIpe66TKD+DQhFEcV7zUokTiEZwgHuacsiw9LPJH7l1qJW+FcVCF1fWRP09kUEm5ZiFurO4Ws56hfif10tVdOZnhCepwhxNF0UptVRsFaFYfSIwUnSsCUSC6FstNIQCIqWjq+kQ3NmX50n72HYd2709qTfOyziqYA8cgCPgglPQANegCVoAgUfwDF7Bm/FkvBjvxse0tWKUM7vgD4zPH7BDmdE=</latexit><latexit sha1_base64="LhqggBsMn7MCmPOORemT9i6N/mw=">AAACB3icbVDLSsNAFJ3UV62vqEtBgkVwFRIRdFkU0Y1QwT6giWEynbRDZyZhZiKUkJ0bf8WNC0Xc+gvu/BsnbRbaeuDC4Zx7ufeeMKFEKsf5NioLi0vLK9XV2tr6xuaWub3TlnEqEG6hmMaiG0KJKeG4pYiiuJsIDFlIcSccXRR+5wELSWJ+p8YJ9hkccBIRBJWWAnPfY1ANEaTZVR5kl82b/D7zBMv6BA7sPA/MumM7E1jzxC1JHZRoBuaX149RyjBXiEIpe66TKD+DQhFEcV7zUokTiEZwgHuacsiw9LPJH7l1qJW+FcVCF1fWRP09kUEm5ZiFurO4Ws56hfif10tVdOZnhCepwhxNF0UptVRsFaFYfSIwUnSsCUSC6FstNIQCIqWjq+kQ3NmX50n72HYd2709qTfOyziqYA8cgCPgglPQANegCVoAgUfwDF7Bm/FkvBjvxse0tWKUM7vgD4zPH7BDmdE=</latexit>

GEPM
<latexit sha1_base64="OMC5rgTxVn+8pUPIBO9BbsZnKxI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GVRRDdCBfuANoTJdNoOnUzCzEQpMZ/ixoUibv0Sd/6NkzYLrR4YOJxzL/fMCWLOlHacL6u0tLyyulZer2xsbm3v2NXdtooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyUXud+6pVCwSd3oaUy/EI8GGjGBtJN+u9kOsxwTz9Crz08vmTebbNafuzID+ErcgNSjQ9O3P/iAiSUiFJhwr1XOdWHsplpoRTrNKP1E0xmSCR7RnqMAhVV46i56hQ6MM0DCS5gmNZurPjRSHSk3DwEzmQdWil4v/eb1ED8+8lIk40VSQ+aFhwpGOUN4DGjBJieZTQzCRzGRFZIwlJtq0VTEluItf/kvax3XXqbu3J7XGeVFHGfbhAI7AhVNowDU0oQUEHuAJXuDVerSerTfrfT5asoqdPfgF6+MbTj2UAw==</latexit><latexit sha1_base64="OMC5rgTxVn+8pUPIBO9BbsZnKxI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GVRRDdCBfuANoTJdNoOnUzCzEQpMZ/ixoUibv0Sd/6NkzYLrR4YOJxzL/fMCWLOlHacL6u0tLyyulZer2xsbm3v2NXdtooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyUXud+6pVCwSd3oaUy/EI8GGjGBtJN+u9kOsxwTz9Crz08vmTebbNafuzID+ErcgNSjQ9O3P/iAiSUiFJhwr1XOdWHsplpoRTrNKP1E0xmSCR7RnqMAhVV46i56hQ6MM0DCS5gmNZurPjRSHSk3DwEzmQdWil4v/eb1ED8+8lIk40VSQ+aFhwpGOUN4DGjBJieZTQzCRzGRFZIwlJtq0VTEluItf/kvax3XXqbu3J7XGeVFHGfbhAI7AhVNowDU0oQUEHuAJXuDVerSerTfrfT5asoqdPfgF6+MbTj2UAw==</latexit><latexit sha1_base64="OMC5rgTxVn+8pUPIBO9BbsZnKxI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GVRRDdCBfuANoTJdNoOnUzCzEQpMZ/ixoUibv0Sd/6NkzYLrR4YOJxzL/fMCWLOlHacL6u0tLyyulZer2xsbm3v2NXdtooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyUXud+6pVCwSd3oaUy/EI8GGjGBtJN+u9kOsxwTz9Crz08vmTebbNafuzID+ErcgNSjQ9O3P/iAiSUiFJhwr1XOdWHsplpoRTrNKP1E0xmSCR7RnqMAhVV46i56hQ6MM0DCS5gmNZurPjRSHSk3DwEzmQdWil4v/eb1ED8+8lIk40VSQ+aFhwpGOUN4DGjBJieZTQzCRzGRFZIwlJtq0VTEluItf/kvax3XXqbu3J7XGeVFHGfbhAI7AhVNowDU0oQUEHuAJXuDVerSerTfrfT5asoqdPfgF6+MbTj2UAw==</latexit><latexit sha1_base64="OMC5rgTxVn+8pUPIBO9BbsZnKxI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GVRRDdCBfuANoTJdNoOnUzCzEQpMZ/ixoUibv0Sd/6NkzYLrR4YOJxzL/fMCWLOlHacL6u0tLyyulZer2xsbm3v2NXdtooSSWiLRDyS3QArypmgLc00p91YUhwGnHaCyUXud+6pVCwSd3oaUy/EI8GGjGBtJN+u9kOsxwTz9Crz08vmTebbNafuzID+ErcgNSjQ9O3P/iAiSUiFJhwr1XOdWHsplpoRTrNKP1E0xmSCR7RnqMAhVV46i56hQ6MM0DCS5gmNZurPjRSHSk3DwEzmQdWil4v/eb1ED8+8lIk40VSQ+aFhwpGOUN4DGjBJieZTQzCRzGRFZIwlJtq0VTEluItf/kvax3XXqbu3J7XGeVFHGfbhAI7AhVNowDU0oQUEHuAJXuDVerSerTfrfT5asoqdPfgF6+MbTj2UAw==</latexit>

GTPM
<latexit sha1_base64="CQq8RQpe3ESU23HtjKNZpkvRBVU=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIuiy60I1QoS9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zba2srq1vbJa2yts7u3v7duWgreJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJ37nQcqFYtFU08S6kV4KFjICNZG8u1KP8J6RDDPbqZ+1mzcTX276tScGdAycQtShQIN3/7qD2KSRlRowrFSPddJtJdhqRnhdFrup4ommIzxkPYMFTiiystm0afoxCgDFMbSPKHRTP29keFIqUkUmMk8qFr0cvE/r5fq8NLLmEhSTQWZHwpTjnSM8h7QgElKNJ8YgolkJisiIywx0aatsinBXfzyMmmf1Vyn5t6fV+tXRR0lOIJjOAUXLqAOt9CAFhB4hGd4hTfryXqx3q2P+eiKVewcwh9Ynz9lJpQS</latexit><latexit sha1_base64="CQq8RQpe3ESU23HtjKNZpkvRBVU=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIuiy60I1QoS9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zba2srq1vbJa2yts7u3v7duWgreJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJ37nQcqFYtFU08S6kV4KFjICNZG8u1KP8J6RDDPbqZ+1mzcTX276tScGdAycQtShQIN3/7qD2KSRlRowrFSPddJtJdhqRnhdFrup4ommIzxkPYMFTiiystm0afoxCgDFMbSPKHRTP29keFIqUkUmMk8qFr0cvE/r5fq8NLLmEhSTQWZHwpTjnSM8h7QgElKNJ8YgolkJisiIywx0aatsinBXfzyMmmf1Vyn5t6fV+tXRR0lOIJjOAUXLqAOt9CAFhB4hGd4hTfryXqx3q2P+eiKVewcwh9Ynz9lJpQS</latexit><latexit sha1_base64="CQq8RQpe3ESU23HtjKNZpkvRBVU=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIuiy60I1QoS9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zba2srq1vbJa2yts7u3v7duWgreJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJ37nQcqFYtFU08S6kV4KFjICNZG8u1KP8J6RDDPbqZ+1mzcTX276tScGdAycQtShQIN3/7qD2KSRlRowrFSPddJtJdhqRnhdFrup4ommIzxkPYMFTiiystm0afoxCgDFMbSPKHRTP29keFIqUkUmMk8qFr0cvE/r5fq8NLLmEhSTQWZHwpTjnSM8h7QgElKNJ8YgolkJisiIywx0aatsinBXfzyMmmf1Vyn5t6fV+tXRR0lOIJjOAUXLqAOt9CAFhB4hGd4hTfryXqx3q2P+eiKVewcwh9Ynz9lJpQS</latexit><latexit sha1_base64="CQq8RQpe3ESU23HtjKNZpkvRBVU=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIuiy60I1QoS9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zba2srq1vbJa2yts7u3v7duWgreJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJ37nQcqFYtFU08S6kV4KFjICNZG8u1KP8J6RDDPbqZ+1mzcTX276tScGdAycQtShQIN3/7qD2KSRlRowrFSPddJtJdhqRnhdFrup4ommIzxkPYMFTiiystm0afoxCgDFMbSPKHRTP29keFIqUkUmMk8qFr0cvE/r5fq8NLLmEhSTQWZHwpTjnSM8h7QgElKNJ8YgolkJisiIywx0aatsinBXfzyMmmf1Vyn5t6fV+tXRR0lOIJjOAUXLqAOt9CAFhB4hGd4hTfryXqx3q2P+eiKVewcwh9Ynz9lJpQS</latexit>

θn

U(θ0)

U(θ0) U(θn)

qA

qB

classical 
registers

FIG. 2. Top: Circuits implemented in IBMQ. The initial state is pre-
pared by applying two identical single-qubit gates U(θ0) onto |00〉
(we use θ0 = 2 [36]). In TPM, two initial projective measurements
destroy any coherence in the computational basis, while in EPM
such measurements (enclosed in the dashed red box) are absent. We
then implement the controlled gate U(θn), with θn ≡ nπ/10 and
n = 0, . . . , 20, followed by two projective measurements in the
computational basis. The results are stored in four classical registers
to allow the analysis of the energy change statistics. Bottom: Com-
parison of the characteristic functions for EPM and TPM. The lines
show the theoretical predictions, while the points (with their error
bars) the experimental results. Each data point has been obtained
from 2048 experimental runs. The solid red line and circles are re-
lated to the results obtained by applying TPM. The dashed blue line
and squared refer to the EPM characteristic function. Finally, the
dotted magenta line and rhombuses (dot-dashed black line and tri-
angles) show the contribution of the diagonal (o�-diagonal) parts of
the initial state ρi in the computational basis. The inverse (physical)
temperature of the diagonal part of the initial state is β = 0.443/ε
where ε ∼ 5 MHz is the energy gap for the superconducting qubits,
as provided by the IBMQ documentation.

On the IBMQ quantum computer, we implement a two-
qubit circuit with initial (pure) separable state ρi = ρth

i + χ,
where ρth

i = e−β(HA+HB)/Z (with Z = tr[ρth
i ] and inverse

temperature β) is a thermal state of the local Hamiltonian
HA +HB = ε(σ

(A)
z + σ

(B)
z ) of the two qubits (ε ∼ 5MHz is

the energy gap between the logical states of each supercon-
ducting qubit). Here, ρth

i is diagonal in the computational
basis, while χ stands for the initial coherence in this basis.
Such initial state can be easily prepared starting from the de-
fault con�guration of the logical qubit of the IBMQ device by
way of properly designed single-qubit gates (cf. Fig. 2 and
Ref. [36]).

The top panel of Fig. 2 shows the circuit implemented in
the IBMQ. After the initialization, the circuit performs a con-
trolled gate. The di�erence between EPM and TPM is in the

absence of the �rst two projective measurements (red box in
the �gure) for the former. Then, we repeat the experiments
by varying one of the parameters of the controlled gate. It
is worth noticing that, while an “e�ective” Hamiltonian of
the circuit could be obtained by reverse engineering the im-
plemented unitary evolution, the IBMQ does not enable to
directly measure it, as only local measurements of σz (and,
thus, of the qubits local energies) are allowed. Thus, in anal-
ogy with the experiment in Ref. [39], just the statistics of the
local energy �uctuations are taken into account.

In the bottom panel of Fig. 2, we consider the deviation
of 〈e−β(∆E−∆F )〉 from unity when using the EPM protocol.
In the considered case, the free energy variation vanishes.
Thus, we are comparing the characteristic functions, eval-
uated at u = iβ, of EPM and TPM. The Jarzynski identity
GTPM(iβ) = 1, stemming from TPM, is nicely recovered
from the experimental data. This is compared to the con-
tributions in Eq. (8) linked to the diagonal and o�-diagonal
parts of the initial state. For the case investigated here, we
observe a non-negligible contribution from the initial coher-
ence χ of ρi, and a clear discrepancy between the TPM result
and the contribution to the EPM characteristic function de-
pending on the (thermal) diagonal part ρth

i of ρi. As stressed
above, such a discrepancy originates from the additional un-
certainty on the initial energies introduced by our protocol.
Moreover, the statistics of energy changes in Fig. 2 can be
reproduced to a good approximation by looking at just the
�rsts two moments of the EPM (or TPM) distribution [36].
Therefore, an analysis in linear approximation is able to cap-
ture the main features of the energy �uctuations that pertain
to the quantum circuits under scrutiny.
Conclusions.– We have introduced an EPM protocol for
the evaluation of the energy-change �uctuations that takes
into account the presence of quantum coherence in the
initial state of the system. The protocol does not require
information on the dynamics nor special preparations, which
casts it apart from other schemes [25, 40, 41], and solely
relies on the �nal energy measurement. The EPM approach
could be more conducive of experimental validation than the
notoriously challenging TPM one, and could thus enlarge
the range of systems whose energy �uctuations could be
tested. For instance, quantum computing platforms present
a natural arena in which the methods developed in this
work could �nd fruitful applications, as showcased by our
analysis of the IBMQ two-qubit logic circuit. Indeed, the
EPM approach not only allows to account for the e�ect of
the initial coherence but also resemble the way in which
quantum computing algorithms are actually performed,
where only a �nal measurement is present. Furthermore,
the EPM approach may also come in handy for systems with
degenerate energy levels, as in many-body physics. Indeed,
for initial states involving only levels within degenerate
subspaces and a dynamics that leaves the latter invariant, the
TPM scheme would return vanishing energy �uctuations.
In contrast, our EPM would allow for the characterization
of the energy change statistics resulting from the initial
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coherence alone.
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