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Abstract: CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as
CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic
lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical
breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest
cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting
in advantageous monotherapy. To this aim, in the present work, we identified compound 645656
with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual
screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the
large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed
to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target
mechanism of action was investigated through the correlation between the antiproliferative activity
data and the target proteins’ (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics
Simulation confirmed the high stability of the most effective selected compound 645656 in complex
with both PARP-1 and CDK-1.

Keywords: breast cancer; CDK-1; PARP-1; olaparib; dinaciclib; multitarget mechanism; DRUDIT;
NCI database

1. Introduction

Breast Cancer (BC) is one the most common cancers in women worldwide (exclud-
ing nonmelanoma skin cancers), causing about 40,000 deaths per year [1–3]. BCs can
be categorized in three major BC subtypes: hormone receptor positive/ERBB2 negative
(HR+/ERBB2−) [4,5], ERBB2 positive (ERBB2+) [6,7], and triple-negative (TN) [8–10].

Approximately 5–10% of BC cases follow a Mendelian (autosomal dominant) inheri-
tance pattern, while 15/20% of cases are familial, among which at least 30% are attributed
to germline mutations in the BRCA1 and BRCA2 genes [11].

From a medical point of view, for nonmetastatic BC, eradicating tumors from the
breast and regional lymph nodes and preventing metastatic recurrence through surgical
resection represent the main goals of therapy.

Systemic treatments may be preoperative (neoadjuvant), postoperative (adjuvant), or
both. The BC subtype guides the standard systemic therapy administered, which consists of
endocrine therapy (tamoxifen [12–14], letrozole [15–18], anastrozole [19], exemestane [20,21]) for
all HR+ tumors, trastuzumab-based ERBB2-directed antibody therapy plus chemotherapy
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for all ERBB2+ tumors [9] (such cyclophosphamide [22,23], paclitaxel [22,24,25], docetaxel [24],
carboplatin [26–28]), and classical chemotherapy alone for triple-negative breast cancer
(capecitabine [29–31], eribulin [32,33], vinorelbine [34,35], gemcitabine [36,37], talazoparib [38]).

On the other hand, for Metastatic Breast Cancer (MBC), therapeutic goals are prolong-
ing life and symptom palliation with available agents [39,40]; however, there is currently
no “gold standard” in this setting and chemotherapy for MBC (including TN and negative
for estrogen and progesterone receptors) has become increasingly complex.

From this point of view, complementing existing therapies with adjuvant agents able
to interact with targets different from estrogen and progesterone receptors could represent
a key alternative in the MBC scenario. Indeed, to date, several clinical investigation studies
have been focused on drugs acting against targets that are overexpressed in BC cells, among
which, particular interest is committed to CDK-1 and PARP-1.

PARP-1 is one of the main participants in DNA repair, playing a key role in terms
of Base Excision Repair (BER) and DNA Single-Strand Break (SSB) repair [41]; thereby
emerging as an attractive target in anti-cancer drug discovery projects.

In particular, BC cells have been reported to be significantly reliant on DNA repair
pathways and are therefore susceptible to DNA-damage response inhibition [42]. Indeed,
preclinical data have revealed that BRCA1/2-mutant cancer cells are sensitive to PARP-1
inhibition due to their dependence on PARP-1 activity for DNA (base excision) repair and,
subsequently, survival [43–51].

CDK-1, which is crucial in centrosome regulation, can form a complex with CyclinB1
and control entry into mitosis [52–54], enhance chromosome condensation, and nuclear
envelope breakdown [54–56]. Previous research found that CyclinB1 and CDK-1 are highly
expressed in BC cells and are associated with patients’ overall survival [57–65]

In this light, dinaciclib (MK-7965, formerly SCH727965) and olaparib (Lynparza®), CDK-
1 and PARP-1 inhibitors, respectively, are two of the most potent small molecules with nM
IC50 values in vitro (Figure 1).
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Figure 1. 2D chemical structure of olaparib and dinaciclib.

Olaparib has been the first PARP inhibitor with reported positive results from a
phase III trial in metastatic HER2-negative BC with germline BRCA1/2-mutation (see
ClinicalTrials.gov Identifier: NCT02000622) [66,67]. In January 2018, it was licensed by the
U.S Food and Drug Administration (FDA) for the treatment of patients with germline BRCA-
mutated HER2-negative MBC who have previously received chemotherapy. Furthermore,
olaparib demonstrated its efficacy in combination with Paclitaxel in a phase I/II randomized
multicenter study in patients with Metastatic Triple-Negative Breast Cancer (MTNBC, see
ClinicalTrials.gov Identifier: NCT00707707) [68].

Nowadays, different clinical studies are beginning to assess and confirm the use of ola-
parib in MBC (see ClinicalTrials.gov Identifiers: NCT03742245, NCT05629429, NCT05033756,
NCT05340413, NCT03344965 [69]).

From another point of view, a randomized multicenter Phase II trial investigated
the efficacy and safety of dinaciclib in patients with previously treated advanced BC (see
ClinicalTrials.gov Identifier: NCT00732810) [70–72].
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In summary, BC cells harbor defects in DNA double-strand break repair and, therefore,
are hypersensitive to PARP inhibition, while CDK-1 is necessary in BRCA1-mediated S
phase checkpoint activation, in cell proliferation, and is overexpressed in BC cells.

In this view, the combined inhibition of CDK1 and PARP-1 in BC treatment resulted in
dramatically reduced cell growth [73].

In support of this, recently, Turdo et al. demonstrated that olaparib in combination
with dinaciclib reduced the growth rate of Triple-Negative Breast Cancer (TNBC) BRCA
mutated cells, sparing normal breast cells [74].

Considering that polytherapy presents several disadvantages (such as patient com-
pliance reduction, risk of adverse drug interactions) over monotherapy, here we propose
an in silico mixed ligand/structure-based design of the first-in-class CDK-1/PARP-1 dual
inhibitors as anti-BC agents.

In particular, we report an innovative in silico hybrid and hierarchical virtual screening
to identify new CDK-1 and PARP-1 dual target inhibitors. The use of an in-house ligand-
based Biotarget Predictor Tool (BPT) allowed us to fast screen a large database of active
molecules, which were further investigated through structure-based studies.

2. Results and Discussion

As depicted in Figure 2, the workflow of the in silico protocol proposed in this work
consisted of both classical and innovative ligand and structure-based techniques. This hier-
archical multistep procedure was applied to identify new promising dual-target modulators
of CDK-1 and PARP-1 with a possible implication in the therapy of BC.
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treatment of breast cancer.

In detail, in the first phase of the protocol, the well-established molecular descriptor-
based Biotarget Predictor Tool (BPT), developed by us and available online in the DRUDIT
web-platform (DRUg DIscovery Tools, open access web service, www.drudit.com, accessed
on 19 July 2023) [75], was applied. Subsequently, structure-based studies of molecular
docking were integrated with a new in-house correlation approach to gain more insight
into the binding mode and the mechanism of action of the selected hits [76,77]; as a last step,
Molecular Dynamic Simulations (MDS) were conducted for the best ranked dual inhibitor
on both target protein 3D structures.

www.drudit.com
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In the next sections, the various steps of the protocol are described in detail.

2.1. Ligand-Based Studies
2.1.1. Ligand-Based Template Building

The BPT tool applied in the first step of the in silico protocol is a ligand-based protocol
capable of predicting the affinity of inputting small molecules against the desired target/s,
virtualized in the DRUDIT web-platform by means of an appropriate process of molecular
descriptor calculation and manipulation (for further detail see refs. [75,76,78,79]). Thus,
by following the procedure described in the literature [75], a preliminary phase of ligand-
based template building for the targets of interest (CDK-1 and PARP-1) was carried out, as
reported below.

Two large databases of CDK-1 and PARP-1 known modulators were downloaded
from the BindingDB [80], a reliable web-accessible source of experimentally determined
protein-ligand binding affinities, where the Ki, Kd, IC50, EC50 values, and the corresponding
target information for thousands of active molecules are available. In detail, a cut-off of
activity IC50 < 100 nM was fixed to select the most active inhibitors (databases are accessible
in Supplementary Materials, Database S1).

The two sets of inhibitors were then docked in the corresponding target X-ray struc-
tures, retrieved from the RCSB Protein Data Bank (RCSB PDB) [81,82] (PDB codes 6GU6 [83]
and 7KK4 [84], for CDK-1 and PARP-1, respectively). The 3D best docked poses of each lig-
and “frozen” into the protein binding site were downloaded and submitted to a molecular
descriptor calculation performed through our MOLDESTO software (MOlecular DEScrip-
tors TOols) [75]. This yielded more than 1000 molecular descriptors (3D, 2D, and 1D)
for each of the input structures. This preliminary docking allowed us to perform a finer
calculation of 3D molecular descriptors, which were calculated for the best tridimensional
orientation of the ligand into the protein binding site.

The resulting two compounds vs. molecular descriptor matrices (Supplementary
Materials, Matrices S1 and S2) were converted into two sequences of value couples for each
molecular descriptor (mean and standard deviation) which constituted the two molecular
descriptor-based target templates [75].

2.1.2. Biotarget Predictor Tool—Multitarget Mode

Once the target templates were built and integrated into the DRUDIT servers, the first
ligand-based phase of the proposed protocol was focused on the virtual screening of a large
structure database of small molecules. In this study, the National Cancer Institute (NCI)
database, including about 38,910 compounds analyzed by the National Cancer Institute in
in vitro antiproliferative assays against 60 cancer cell lines (NCI60) [85,86], was selected.

In details, the compounds were uploaded to the DRUDIT web service and processed
with the BPT tool (default parameters were used, as reported in [87]), whose output matrix
reported the predicted affinity of input structures weighted by the Drudit Affinity Score
values (DAS, a parameter ranging in the range 0/1, low/high affinity) for the selected
biological targets (Supplementary Materials, Matrix S3). Furthermore, as the main aim of
the study was the identification of new dual CDK-1/PARP-1, the multitarget mode was
applied by computing the “multitarget score” (MScore) parameter, defined by the equation:

Multitarget Score = DASCDK-1 × DASPARP-1 (1)

where DASCDK-1 and DASPARP-1 represent the DAS score for CDK-1 and PARP-1 molecu-
lar descriptor-based templates, respectively. The multitarget score allowed for selecting
structures with optimal activity against both targets: the higher the two DAS scores, the
higher was the MScore, thus, the higher the probability for the small molecule to inhibit
both targets.

The analyzed compounds were ranked according to this parameter and the MScore
computed by applying Equation (1) to the DAS scores of the two reference compounds
(DASCDK-1(dinaciclib) × DASPARP-1(olaparib)) was selected as threshold value (0.737872): the
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290 best ranked structures (Supplementary Materials, Matrix S4) were thus selected to
conduct further in silico investigations.

2.2. Structure-Based Studies: Molecular Docking Analysis

In the second phase of the protocol, we evaluated, by means of two sequential molecu-
lar docking studies, the effective capability of the selected small molecules to insert deeply
into the protein’s binding pockets and their ability to interact with key amino acids of the
active sites.

A brief description of the selected targets and their binding sites is reported below.
From a structure point of view, inactive monomeric CDK-1 adopts a classical bi-lobal

protein kinase fold with a smaller N-terminal lobe linked through a hinge to a larger C-
terminal fold [88]. Inactivity depends on the inappropriate disposition of the activation
segment (residues 146–173), the P loop (Gly-rich phosphate binding sequence, residues
11–17), and the C-helix (residues 47–57) [83]. Figure 3a shows the 3D X-ray structure of the
inactive monomer of CDK-1 (PDB code 6GU6 [83]).
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The ATP binding site (Figure 3b) is composed of an adenine pocket, characterized by
a hydrogen bond recognition motif and a hydrophobic portion occupied by the nucleotide
base. Regarding the nucleoside hydrogen bond recognition site, the backbone N-H of
Leu83 forms hydrogen bonds with the adenine and the Glu81 backbone carbonyl with
the substituted amine. The triphosphate portion of ATP binds among residues 142–148
and 30–36. Critical to the hydrolytic functionality of this region are residues Asp145 and
Lys33 [89,90].

Of particular interest is the role of Phe80, which may function as a hydrophobic gate
enabling the entering of the catalytic portion of the ATP site in a highly regulated manner.

Additionally, Thr84 is on the solvent accessible surface and its carbonyl is near the N-H
and carbonyl of Leu83, forming, in the absence of ligands, favorable electrostatic attractions
for the formation of a hydrogen-bonded network of solvents [83,89,90].

On the other hand, PARP-1 is structurally divided in three domains: the N-terminal
DNA-binding domain (with three Zinc finger) [91], the central auto-modification domain
(with specific glutamate and lysine residues as acceptors of ADP-ribose moieties) [92], and
the C-terminal catalytic domain, which utilizes nicotinamide adenine dinucleotide (NAD+)
as a substrate to construct polymers of ADP-ribose on histones. The catalytic domain is
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composed of two subdomains, the helical subdomain and the ART subdomain, essential
for forming poly ADP-ribose polymer [93,94].

Figure 4a shows the PARP-1 catalytic domain, highlighting the main residues Gln759,
Glu763, Asp766, Asn767, Gly863, Tyr896, Ala898, Ser904, and Tyr907 (highly responsible for the
stability of the binding pocket), Gly863 and Ser904 (which form a hydrogen bond network
with the nicotinamide moiety), Glu988 (catalytically important residue), Asp770 and Arg878

(critical in stabilizing the adenosine portion of the substrate NAD+), and Tyr907 (which
forms a planar surface) [95–97] (Figure 4b).
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As described in detail below, the first phase of the structure-based studies consisted
of a Docking Virtual Screening Workflow (DVSW), a protocol available in the Maestro
suite, including three subphases of semi-flexible docking analysis with increasing levels
of accuracy.

In the second step of the molecular docking studies, an Induced Fit Docking (IFD) was
performed for the best ranked compounds emerged from XP docking to evaluate, with an
even higher reliability and accuracy, their capability to fit into the target binding sites.

2.2.1. Docking Virtual Screening Workflow (DVSW)

In the first structure-based phase, DVSW from the Maestro suite was applied. The
protocol, as described in the Material and Methods (Section 3), includes three consecutive
steps: High-Throughput Virtual Screening (HTVS), Standard Precision (SP) docking, and
Extra Precision (XP) docking, from less to the more accurate. The 290 selected molecules
were filtered by keeping 50% of the best docked compounds at the end of each step.

Thus, docking grids were centered on the PARP-1 and CDK-1 binding pockets, includ-
ing all the key amino acid residues. Figure 5a,b shows the 3D binding sites of PARP-1 in
complex with olaparib (PDB code 7KK4 [84]) and CDK-1 in complex with dinaciclib (PDB
code 6GU6 [83]), respectively.
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The last of the three consecutive DVSW steps, the XP docking, kept the 35 best docked
compounds for PARP-1 (PDB code 7KK4 [84]) and the 33 best docked compounds for CDK-
1 (PDB code 6GU6 [83]), whose docking scores are given in Table 1. From the analysis of the
docking studies results, it was possible to appreciate that eight compounds (645656, 670757,
697678, 711806, 717843, 732508, 733301, and 733303, 2D structures in Figure 6) emerged as
the best docked compounds against both PARP-1 and CDK-1.

Table 1. Docking scores of the structures that emerged from the DVSW; compounds 645656, 670757,
697678, 711806, 717843, 732508, 733301, and 733303, kept in both the DVSWs, are labeled in bold.

PARP-1 CDK-1

CPD Docking Score CPD Docking Score

olaparib −13.933 717838 −10.697

694470 −11.395 dinaciclib −9.832

697767 −10.552 670757 −9.095

694113 −10.323 717843 −8.676

724117 −10.197 720565 −8.666

744227 −10.02 699250 −8.660

299589 −9.618 766478 −8.573

694962 −9.395 733301 −8.463

690659 −9.263 642635 −8.455

673321 −8.778 733303 −8.395

711806 −8.749 681700 −8.176

701592 −8.681 732508 −8.093

761910 −8.632 697678 −8.008

711066 −8.485 646922 −7.865

697678 −8.424 711806 −7.796

692427 −8.323 653022 −7.557
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Table 1. Cont.

PARP-1 CDK-1

CPD Docking Score CPD Docking Score

688537 −8.305 645814 −7.525

733301 −8.272 710858 −7.448

717309 −8.223 655350 −7.425

636785 −8.189 670532 −7.415

697763 −8.170 706028 −7.311

717843 −8.118 645656 −7.300

707442 −8.056 766294 −7.254

169874 −8.035 652810 −7.037

760217 −8.009 655349 −6.990

645656 −7.985 692634 −6.886

665325 −7.929 732491 −6.870

668266 −7.856 711803 −6.811

670757 −7.821 657350 −6.805

705935 −7.777 665314 −6.551

733303 −7.743 677945 −6.525

724350 −7.737 645614 −6.466

665712 −7.722 699238 −6.389

745813 −7.716 751166 −6.342

732508 −7.691 - -

654632 −7.685 - -
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Table 1 shows the docking scores of the filtered structures and the reference ligands
olaparib and dinaciclib, highlighting compounds presented in both rankings.

These interesting results prompted us to further evaluate the binding mode of the
eight compounds into the target protein catalytic sites by means of Induced Fit Docking
(IFD) studies.

2.2.2. Induced Fit Docking (IFD)

Induced Fit Docking (IFD) studies were performed on both PARP-1 (PDB code
7KK4 [84]) and CDK-1 (PDB code 6GU6 [83]).

Table 2 shows the IFD scores of the selected eight structures and the reference ligands
dinaciclib and olaparib.

Table 2. IFD scores of the eight selected structures against both CDK-1 (PDB code 6GU6 [83]) and
PARP-1 (PDB code 7KK4 [84]).

CDK-1 (PDB Code 6GU6) PARP-1 (PDB Code 7KK4)

Title IFD Score Title IFD Score

dinaciclib −620.868 olaparib −751.917

733301 −619.486 733303 −750.076

733303 −618.721 733301 −748.649

697678 −617.850 697678 −748.335

732508 −617.331 732508 −748.010

645656 −617.083 645656 −747.542

711806 −616.539 711806 −746.817

670757 −616.136 670757 −746.191

717843 −614.408 717843 −744.721

By analyzing the obtained IFD score range, we confirmed the capability of all of them
to efficaciously interact with both targets, with IFD scores comparable to the reference
ligands (Table 2).

Furthermore, this ability was confirmed by a detailed analysis of the key interactions
formed by each compound with both protein binding sites.

In this view, Tables 3 and 4 provide an overview of the amino acids, located at 4 Å,
involved in the binding with compounds 645656, 670757, 697678, 711806, 717843, 732508,
733301, 733303, and the two reference compounds both on PARP-1 and CDK-1, respectively.

Table 3. Overview of the amino acids involved in the binding of the selected compounds 645656,
670757, 697678, 711806, 717843, 732508, 733301, 733303, and olaparib in the binding site of PARP-1 at
4 Å proximity.

Title olaparib 645656 670757 697678 711806 717843 732508 733301 733303

PARP-1 binding site

Y689 X *

E763 X X

D766 X X * X X X X X X X *

N767 X X X X

L769 X X

D770 X X X X X X

W861 X X X X X X * X



Int. J. Mol. Sci. 2023, 24, 13769 10 of 23

Table 3. Cont.

Title olaparib 645656 670757 697678 711806 717843 732508 733301 733303

H862 X X * X X X § X § X
§ X X X X

G863 X * X * X X * X * X * X * X * X * X X *

S864 X X X * X X X X

R865 X § X X

N868 X X X X X

I872 X X X X

G876 X

L877 X X X

R878 X X X * X * X X X

I879 X X X X X X

A880 X X X X X * X * X

P881 X X

Y889 X * X X X X X § X § X

M890 X X X

F891 X

G892 X X X X

K893 X X X X

G894 X X X X X * X X

I895 X X X X

Y896 X * X § X X X X X X X X §

F897 X X X X X X X X X

A898 X X X X X X X X X

K903 X X X X X X § X X X

S904 X * X X * X * X X * X X * X *

Y907 X § X § X § X § X § X § X § X * X § X § X

H909 X X X

L984

N987 X

E988 X X X X X X X X X

Tot. 24 21 20 22 22 22 24 23 21

* H-bonds; § Pi-Pi stacking.
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Table 4. Overview of the amino acids involved in the binding of the selected compounds 645656,
670757, 697678, 711806, 717843, 732508, 733301, 733303, and dinaciclib in the binding site of CDK-1 at
4 Å proximity.

Title dinaciclib 645656 670757 697678 711806 717843 732508 733301 733303

CDK-1 binding site

I10 X X X X X X X X X

G11 X X X X X X X X X

E12 X X X X X X X X X *

G13 X X X X X X X X X

T14 X * X X X

Y15 X X

V18 X X X X X X X X X

K20 X *

A31 X X X X X X X X X

K33 X X X X X X * X * X § X §

V64 X X X X X X X X X

F80 X X X X X § X X X X

E81 X X X X * X X * X X X

F82 X X X X X X X X X

L83 X * X * X X * X * X * X * X * X * X * X * X * X * X *

T84 X X X X * X X X X X

M85 X X X X X X X X X

D86 X # X * X X X X X X X

K88 X

K89 X # X X * X § X X X X X * X

K130 X X

E132 X X * X X X X X * X X *

N133 X X X

L135 X X X X X X X X X

A145 X X X X X X X X X

D146 X * X * X X * X X * X

Tot. 23 22 21 20 21 24 23 20 23

* H-bonds; # Salt bridges; § Pi-Pi stacking.

As shown in Table 3, all the selected derivatives formed a total number of interactions
comparable to the already approved PARP-1 inhibitor olaparib (in the range of 20–24 vs.
24 interactions for olaparib).

In detail, all compounds were involved in stabilizing interactions with key residues
of the binding pocket (Tyr689, Glu763, Asp766, Asn767, Leu769, Trp861, His862, Gly863, Ser864,
Arg865, Asn868, Ile872, Gly876, Leu877, Ile879, Ala880, Pro881, Tyr889, Met890, Phe891, Gly892,
Lys893, Gly894, Ile895, Tyr896, Phe897, Ala898, Lys903, Ser904, Tyr907, His909, Leu984, and
Asn987), but also with the catalytically important residue Glu988 and residues critically
involved in stabilizing the adenosine portion of the substrate NAD+, Asp770 and Arg878.

Essential requirements, presented by highly active known inhibitors of PARP-1, are
met by the selected compounds: Pi-Pi stacking interactions with Tyr907 were formed by
six of the eight compounds, among which 645656 and 711806 stabilized the pose by means
of a double Pi-Pi stacking bonds network; Tyr689, Asp766, Trp861, His862, Gly863, Ser864,
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Arg878, Ala880, Tyr889, Gly894, Ser904, and Glu988 act as H-bond donors or acceptors for all
compounds. Particularly recurrent are H-bonds with a Gly863 backbone and Ser904 side
chain; hydrophobic interactions with Ala898 and Glu988 are periodic in all compounds.

Table 4 denotes that the eight compounds formed a total number of interactions
comparable to the already approved CDK-1 inhibitor dinaciclib (in the range of 19–24 vs.
23 interactions for dinaciclib).

All compounds can interact with CDK-1 ATP binding site crucial amino acids such as
Ile10, Gly11, Glu12, Gly13, Val18, Ala31, Lys33, Val64, Phe80, Glu81, Phe82, Leu83, Thr84, Met85,
Asp86, Lys89, Glu132, Leu135, and Asp145. Among the listed residues, Asp145 and Lys33

are critical to the hydrolytic functionality, Leu83 and Glu81 are essential in the H-bond’s
formation with the adenine and can stabilize the selected compounds through 1/2 H-bonds,
Phe80 acts as a hydrophobic gate, Ile10, Gly11, Glu12, Gly13, Val18, Ala31, Val64, Phe82, Met85,
Asp86, Lys89, Glu132, and Leu135 are involved in the connection between the surface of
the ATP binding domain and the cyclin binding domain, and Thr84 is essential in the
formation of favorable electrostatic attraction. Compounds 645656, 670757, 711806, 717843,
732508, and 733303 can stabilize the pose through an additional H-bond with Asp146, as
for dinaciclib, and 645656 forms also extra interactions with Tyr15 and Lys88, while Thr14,
Lys20, Lys130, and Asn133 can interact with few of the eight compounds.

2.3. Correlation Analysis between Antiproliferative Activity and CDK-1/PARP-1 Expression across
NCI60 Panel

To further investigate the putative dual-target mechanism of action of the selected
compounds, an additional correlation analysis between drug activity and protein expression
data, which we recently proposed and applied [76,77], was conducted.

Supposing that the correlation between the antiproliferative activity data and the
target protein’s expression pattern could allow us to presume a mechanism of action for
input structures, we collected experimental data for the screened ligands and the targets of
interest from the NCI database.

The NCI60 Human Tumor Cell Lines Screen is a best-known project based on the
large-scale screening of chemical compounds and cancer cell phenotypes, consisting of
standardized assays performed on approximately sixty cancer cell lines belonging to
nine different subpanels (leukemia, non-small-cell lung, colon, central nervous system,
melanoma, ovarian, renal, prostate, and breast cancer cells) characterized at genomic,
transcriptomic, and proteomic levels.

In detail, we downloaded three different data sets: antiproliferative activity data
(expressed as GI50 values) of the eight ligands and expression pattern data for 60 different
human tumor cell lines for both CDK-1 and PARP-1 that includes 16 and 8 experiments,
respectively. The rationale behind this approach is that if the antiproliferative activity of
a molecule is well linked to the protein expression pattern (high/low antiproliferative
effect in a cancer cell line with high/low expression of target protein), it is likely that the
modulation of that target is responsible for the ligand antiproliferative activity.

Data Normalization and Matching

Collected NCI data, derived from different types of experiments, are heterogeneous
and characterized by various measurement units. Therefore, a normalization process was
necessary, for both the antiproliferative activity and protein expression pattern data, to
make them homogeneous and comparable.

In detail, we obtained the molecular target expression pattern values (EPi) and the
antiproliferative activity values (GI50,i) against the 60 tumoral cell lines and their mean
values (µP and µG, respectively). The deviation of each EPi from µP and of each GI50,i from
µG, normalized against the highest absolute value (M-GI50,i and M-EPi), was computed
to obtain Normalized Expression Pattern values (NEPi) and Normalized Antiproliferative
activity values (NGI50,i).
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Finally, normalized data were matched according with Formula (2) (δi) and a fitting
score (Φ) was computed for both CDK-1 and PARP-1 by applying the Formula (3):

δi = NEPi × NGI50,i (2)

Φ = Σδi (3)

Figure 7 explains the workflow for the assessment of the correlation between the
antiproliferative activity values and the expression patterns, from the normalization data
process to the data normalized matching.
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Figure 7. Workflow for the assessment of the correlation between the antiproliferative activity values
(expressed as GI50s) and expression patterns (Eps) on NCI60 cancer cell lines χi.

A matching score value ϕ (0/60, lowest/highest values), which expressed the correla-
tion between protein expression pattern and chemosensitivity, was assigned to each structure.

Normalized data are available in Supplementary Materials as Matrices S5–S7.
For each structure, we took into consideration the maximum matching value for both

CDK-1 and PARP-1; then, the mean value was computed (Table 5).
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Table 5. Collection of the correlation between protein expression pattern (EPs) and antiproliferative
activity (GI50s) data both for CDK-1 and PARP-1 and mean values for the eight small molecules
selected as potential dual target (CDK-1 and PARP-1) modulators.

PDB Code 6GU6 (CDK-1) 7KK4 (PARP-1)
Mean Matching

Title Matching Matching

645656 39 41 40

697678 39 30 35

733301 37 33 35

711806 34 33 34

717843 35 33 34

732508 32 31 32

733303 34 25 30

670757 25 28 27

dinaciclib 36 - -

Olaparib - 40 -

Among all, compound 645656 showed the highest Mean Matching score value. By
analyzing its 2D structure, a benzimidazole moiety is found to constitute the small molecule
central core, which represents an attractive structural class due to its relatively low molecu-
lar weight and high intrinsic potency [98,99]. Thus, compound 645656 was selected as the
most interesting compound to be analyzed with Molecular Dynamic Simulations.

2.4. Molecular Dynamic Simulations

Molecular Dynamic Simulations were performed to gain insight into the structural
features of 645656/CDK-1 (PDB code 6GU6 [83]) and 645656/PARP-1 (PDB code 7KK4 [84])
complexes, analyzing the mutual conformational changes between 645656 and proteins in
a 100 ns timescale.

As shown in Figure 8, Induced Fit Docking studies show that compound 645656 can
adopt itself into both PARP-1 and CDK-1 binding sites, interacting with key residues in
each case. In detail, the benzimidazole ring could interact, through its nitrogen atoms, with
the side chain of His862 and the backbone of Asp766, forming two hydrogen bonds, while
naphthalene moiety stabilizes the ligand by two Pi-Pi staking interactions with the phenyl
ring of Tyr907 at the PARP-1 catalytic site (Figure 8a). Simultaneously, the two nitrogen
benzimidazole atoms form two hydrogen bonds with the -NH2 side chain of Gln132 and the
backbone of Asp86, while the hydroxydril group of 645656 interacts with Asp146 through a
third hydrogen bond at the CDK-1 binding site (Figure 8b).

The MDS trajectories provide key information on the stability and relationship of
various molecular interactions on the complexes through their Root Mean Square Devia-
tion (RMSD).

The RMSD was calculated for the simulation trajectory of 100 ns for the ligand and
protein. It was intended to measure the average change in the displacement of the backbone.

Compound 645656 achieved an acceptable stability inside both the binding sites,
confirming a potential dual-target inhibition activity. Indeed, as depicted in Figure 9a,b
(variation in the ligand and CDK-1/PARP-1 RMSDs across the first 20 ns simulation time),
the RMSD values for both proteins and ligand are within the acceptable range of 1-3Å,
confirming the stability of the complex. RMSDs for reference complexes, olaparib/PARP-
1 and dinaciclib/CDK-1, have been also calculated and are available in Supplementary
Materials, Figures S9 and S15.
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MDS studies also depict plots of protein–ligand contacts and explains the interaction
fraction of the protein residue with the ligand, which explains how much (%) of the simula-
tion time of the specific interaction is maintained between ligand and receptors complexes.
Figure 10a,c shows protein–ligand contacts for 645656/PARP-1 and 645656/CDK-1, respec-
tively. Concerning the 645656/PARP-1 complex, Glu763, Asn766, His862, Arg878, Tyr896, and
Tyr907 showed the highest interaction fractions, among which Arg878 ranged from 1 to 1.2.
On the other hand, the 645656/CDK-1 complex preserved good interaction fractions with
Ala31, Lys33, Asp86, Gln132, Leu135, and Ala145.
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complex; (b) schematic of detailed ligand atom interactions with PARP-1 residues; hydrogen bonds are
labeled in violet, while Pi-Pi stackings are in green; (c) protein-ligand interactions examination across
the simulation time for 645656/CDK-1 complex; (d) schematic of detailed ligand atom interactions
with CDK-1 residues; hydrogen bonds are labeled in violet.

Furthermore, Figure 10b,d reports a detailed schematic diagram of protein–ligand
interactions that occur more than 30% of the MD simulation time.

The response was further studied in terms of protein and ligand binding energy,
demonstrating a high stability across the simulation time and reaching a plateau (time-
energy graphs for both complexes are depicted in Figure 11a,b). Energy vs. Time plots were
investigated also for reference ligands, which reached a plateau after 30 ns of simulations
(time-energy graphs for both reference complexes, olaparib/PARP-1 and dinaciclib/CDK-1,
are depicted in Supplementary Materials, Figures S14 and S20).
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Figure 11. (a) Molecular dynamics simulation for compound 645656 in complex with 7KK4, graph of
energy variation during the first 30 ns of the simulation time; (b) molecular dynamics simulation
for compound 645656 in complex with 6GU6, graph of energy variation during the first 20 ns of the
simulation time.

Protein Root Main Square Fluctuation (RMSF, Supplementary Materials, Figures
S1, S5, S10 and S16), Ligand RMSF (Supplementary Materials, Figures S2, S6, S11 and
S17), Ligand RMSD (Supplementary Materials, Figures S3, S7, S12 and S18), Radius of
Gyration (rGyr, Supplementary Materials, Figures S4, S8, S13 and S19), and Binding Free
Energy (Supplementary Materials, Table S1) have been computed for all four complexes
(645656/CDK-1, 645656/PARP-1, olaparib/PARP-1, and dinaciclib/CDK-1).

3. Materials and Methods
3.1. Ligand-Based Studies

The web service DRUDIT (www.drudit.com, accessed on 19 July 2023) operates on
four servers, each of which can perform more than ten jobs simultaneously, running several
software modules implemented in C and JAVA on MacOS Mojave. The Biotarget Finder
Module was used in a multitarget mode to screen the large NCI database of active small
molecules as CDK-1 and PARP-1 inhibitors in breast cancer treatment [75].

Biotarget Predictor Tool (BPT)

The tool provides prediction of the binding affinity between candidate molecules
and the specified biological target. Templates of CDK-1 and PARP-1 were created using
two sets of well-known protein inhibitors. Molecular docking studies were performed at
both the CDK-1 and PARP-1 binding sites to freeze ligands into the pockets. Molecular
descriptors were calculated through MOLDESTO. The two built molecular descriptor target
templates were implemented in DRUDIT and the default DRUDIT parameters (N = 500,
Z = 50, G = a) were used [75,87]. In accordance with the first phase of the in silico workflow,
the NCI database was uploaded to DRUDIT and submitted to the Biotarget Predictor in
a multitarget mode. The output results were obtained as a DAS (Drudit Affinity Score)
value for each structure, reflecting the binding affinity of compounds against both CDK-1
(DASCDK-1) and PARP-1 (DASPARP-1).

3.2. Structure-Based Studies

The preparation process of ligands and proteins used for in silico studies was per-
formed as detailed below:

3.2.1. Ligand Preparation

The ligands for docking were prepared using the LigPrep tool from the Schrödinger
Maestro Suite [100]. For each ligand, all possible tautomers and stereoisomers were gener-
ated for a pH of 7.0 ± 0.4, using default setting, through the Epik ionization method [101].
Consequently, the integrated Optimized Potentials for Liquid Simulations (OPLS 2005)
force field was used to minimize the energy status of the ligands [102].

www.drudit.com
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3.2.2. Protein Preparations

The crystal structures of CDK-1 and PARP-1 (PDB codes 6GU6 [83], 7KK4 [84], re-
spectively,) were downloaded from the Protein Data Bank [81,82] and prepared using the
Protein Preparation Wizard in the Schrödinger software with default settings [103]. In
detail, bond orders, including the Het group, were assigned hydrogen atoms all water
molecules were deleted, and protonation of the heteroatom states was carried out using the
Epik-tool (with the pH set at biologically relevant values, i.e., at 7.0 ± 0.4). The H-bond
network was then optimized. The structures were finally subjected to a restrained energy
minimization step (RMSD of the atom displacement for terminating the minimization was
0.3 Å) using the OPLS 2005 force field [102].

3.2.3. Docking Validation

Molecular Docking studies were executed and scored using the Glide module from
the Schrödinger Suite. The receptor grids were obtained through assignment of the original
ligands (dinaciclib and olaparib for PDB codes 6GU6 [83] and 7KK4 [84], respectively)
as the centroid of the grid boxes. Extra Precision (XP) mode, as scoring function, was
used to dock the generated 3D conformers into the receptor model. The post-docking
minimization step was performed with a total of 5 poses for each ligand conformer and a
maximum of 2 docking poses were generated per ligand conformer. The proposed docking
procedure was able to re-dock the original ligands within the receptor-binding pockets
with RMSD < 0.51 Å.

3.2.4. Docking Virtual Screening Workflow (DVSW)

The Virtual Screening Workflow was used to screen the DRUDIT-selected compounds
against CDK-1 and PARP-1 (PDB codes 6GU6 [83] and 7KK4 [84], respectively). The full
workflow includes Glide docking at the three accuracy levels. The first stage performed
HTVS docking and 50% of ligands were retained to pass to the next stage, which performed
SP docking. Again, 50% of the survivors of this stage were passed on to the third stage,
which performed XP docking.

3.2.5. Induced Fit Docking

Induced Fit Docking simulation was performed using the Induced Fit Docking (IFD)
application, an accurate and robust Schrödinger technology that accounts for both lig-
and and receptor flexibility [104,105]. Schrödinger’s IFD-validated protocol was applied
using CDK-1 and PARP-1 proteins from the PDB (PDB codes 6GU6 [83] and 7KK4 [84],
respectively), previously refined by the Protein Preparation module. The IFD score (IFD
score = 1.0 Glide Gscore + 0.05 Prime Energy), which includes protein–ligand interaction
energy and system total energy, was calculated and used to rank the IFD poses.

3.2.6. Molecular Dynamic Simulation

Molecular Dynamics Simulations were performed using Desmond software to con-
firm the binding stability and strength of 645656/CDK-1 (PDB code 6GU6 [83]) and
645656/PARP-1 (PDB code 7KK4 [84]) complexes. The constant-temperature–constant-
pressure ensemble (NPT) allowed to control both temperature and pressure. The unit cell
vectors are allowed to change and pressure is controlled by adjusting volume. System
Temperature and Pressure were set at 300 K and 1.01325 bar, respectively, Systems energy
was minimized for 1000 steps before a production run of 20 ns for both complexes. The
results were analyzed in terms of protein and ligand time-lapse binding energy, RMSD,
and protein–ligand contact.

4. Conclusions

In accordance with their crucial role in the cell cycle and DNA repair and their over-
expression in cancer cells, CDK-1 and PARP-1 were demonstrated to be key targets in
BC progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors are effective in
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causing cell death in BC but not in normal cells through a selective synthetic lethality
mechanism; the treatment with mixed therapy by means of CDK-1 and PARP-1 inhibitors
resulted in a radical cell growth reduction.

However, the advantages/disadvantages balance is greater for monotherapy, which
allows for an improvement in patient compliance, a reduction in the risk of adverse
drug interactions, and easier identification of the desired therapeutic effect and possible
undesirable reactions. In this view, here we proposed an in silico mixed ligand/structure-
based design of the first-in-class CDK-1/PARP-1 dual inhibitors as anti-BC agents.

In detail, we identified through a combined structure and ligand-based virtual screen-
ing compound 645656—already known in the literature for its antibacterial activity [106]—as
a potential CDK-1 and PARP-1 inhibitor, acting with a dual-target inhibition mechanism,
as a potential effective monotherapy in BC.

The Biotarget Predictor Tool was used to screen the large NCI database in a multitarget
mode to select only compounds with the best simultaneous affinity against both CDK-1 and
PARP-1. The 290 best-scored structures were further analyzed with hierarchical docking
studies consisted of High-Throughput Virtual Screening (HTVS), Standard Precision (SP)
docking, Extra Precision (XP) docking, and Induced Fit Docking (IFD), allowing us to
screen the eight best ranked ligands for successive analysis.

In particular, the putative dual-target mechanism of action was investigated through
the correlation between the antiproliferative activity data and the expression pattern of the
target proteins (CDK-1 and PARP-1). Among all the eight screened structures, compound
645656 showed the highest matching value. Therefore, we decided to perform a further
structure-based analysis by means of Molecular Dynamic Simulation.

The Root Mean Square Deviation (RMSD), protein–ligand interaction fractions, and
protein–ligand binding energy examination demonstrated the high stability of both 645656/
PARP-1 and 645656/CDK-1 complexes, confirming the ability of compound 645656 to
interact with the target’s binding sites with a potential dual-target inhibition mode of action.
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//www.mdpi.com/article/10.3390/ijms241813769/s1.
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