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Open quantum rotors: Connecting correlations and physical currents
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We consider a finite one-dimensional chain of quantum rotors interacting with a set of thermal baths at
different temperatures. When the interaction between the rotors is made chiral, such a system behaves as
an autonomous thermal motor, converting heat currents into nonvanishing rotational ones. Such a dynamical
response is strongly pronounced in the range of the Hamiltonian parameters for which the ground state of the
system in the thermodynamic limit exhibits a quantum phase transition. Such working points are associated with
large quantum coherence and multipartite quantum correlations within the state of the system. This suggests that
the optimal operating regime of such a quantum autonomous motor is one of maximal quantumness.
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I. INTRODUCTION

There is a growing, cross-disciplinary interest in the un-
derstanding of the way quantum features affect the laws of
thermodynamics [1–5] and explore the limits to thermal ma-
chines operating at the nanoscale [6–12]. While, so far, the
focus of such investigations has been primarily put on simple
quantum systems involving only a few degrees of freedom, the
assessment of the thermodynamic performance of quantum
many-body systems as working media of potential quantum
motors have recently started to receive attention [13–18].

Autonomous thermal motors are of particular interests for
the thermodynamics of both classical [19–24] and quantum
processes [25–31]. Such devices are able to convert thermal
currents into motion, and thus possibly work. Their most
salient feature is that they can operate without the intervention
of an external agent that changes their Hamiltonian, making
their design ideal for application purposes. Autonomous quan-
tum refrigerators have a similar task, cooling down a reservoir
at the expenses of heath currents [32–34].

Recent work has shown that collective phenomena such as
synchronization and classical phase transitions can enhance
the dynamic and thermodynamic performances in systems of
interacting molecular motors [35–37], of interacting work-to-
work transducers [38–40], in a 2D system of classical rotors
driven out of equilibrium by a temperature gradient [41], or in
an out-of-equilibrium Frenkel-Kontorova model undergoing a
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commensurate-incommensurate phase transition [24]. These
are a fascinating phenomena arising from the collective be-
havior in a many-body system [42], which divide the phases of
matter characterized by different properties depending on the
external conditions. This phenomenon also applies to quan-
tum systems, where quantum fluctuations—rather than ther-
mal ones—can trigger quantum phase transitions (QPTs) [43].
At a quantum critical point, the ground state of the system de-
velops singular behavior, typically accompanied by the clos-
ing of the energy gap [43] with the first excited state and di-
verging quantum correlations [44–46], among other features.

The study of autonomous thermal motors and refrigerators
based on quantum many-body effects could thus potentially
allow for the identification of possible performance enhance-
ments stemming from collective quantum phenomena such as
a QPT. In this paper, we investigate the thermodynamics of
an autonomous system in proximity of a QPT. We consider
a finite-size one-dimensional chiral clock model (CCM) con-
sisting of interacting quantum rotors. In the thermodynamic
limit of infinitely many constituents, this model exhibits a
well-characterized QPT [47–50]. A dimer of quantum rotors
with chiral interaction has been shown to give rise to a ro-
tational current, when connected to two baths at different
temperatures, as a result of the lack of thermal equilibrium
and owing to the broken rotational symmetry [30]. In the
multicomponent system considered here, we find that such
a dynamical response is maximal for values of the Hamilto-
nian parameters that result in a QPT in the thermodynamic
limit. Although the rotational current turns out to always be
finite, such a phenomenon is reminiscent of the diverging
response to a change in an external thermodynamic force in
systems at equilibrium in proximity of a phase transition,
a phenomenon whose onset we are able to witness despite
the finiteness of the system that we address. Furthermore
we elucidate the relation between quantum correlations and
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thermodynamic currents in the considered CCM. While the
unveiled phenomenology does not imply necessarily a causal
link between the emergence of mechanical currents and the
onset of many-body criticality, the interplay between these
effects is suggestive of a strong role played by collective
phenomena on the performance of heat-to-mechanical current
conversion in such autonomous device. We emphasize that in
this paper we only study the rotational currents of the rotors
and the heat currents exchanged with the baths. The problem
of work extraction entails the conversion of rotational motion
into linear motion, a problem of technological interest, but of
difficult implementation in the microscopic realm.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the basics of the CCM. In Sec. III, we
consider the interaction of the rotors with independent ther-
mal baths with staggered temperatures. We characterize the
nonequilibrium steady state (NESS) of the model by looking
at the tunneling and thermal currents. In Sec. IV, we connect
the particle currents at the steady state with the correlations
established within the clock model. Finally, in Sec. V, we
summarize the main findings reported in the article.

II. CHIRAL CLOCK MODEL: QUANTUM PHASE
TRANSITION IN THE ISOLATED SYSTEM

Let us start by considering the ZNs CCM for M quan-
tum rotors [30,47–52], i.e., M quantum systems with Ns

discrete energy levels. Each individual rotor can be seen
as a spin-(Ns − 1)/2 or as particles occupying the Ns ver-
texes of a regular polygon. We call {| jk〉} the orthogonal
basis of the Hilbert space of the kth rotor, with jk =
0, . . . , Ns − 1 denoting the Ns directions along which the
angular momentum can point (or vertices of the polygon)
and | jk + Ns〉 = | jk〉. The CCM is then described by the
Hamiltonian

Hccm = − f
M∑

k=1

(σk + σ
†
k ) − (1 − f )

M∑
k=1

(μkμ
†
k+1eiϕk + H.c.),

(1)

where f is the control parameter that accounts for the relative
weight between the free and interaction terms, and ϕk the
so-called chiral phases. We assume periodic boundary con-
ditions, so that μM+1 = μ1. Here the local operators μk and
σk for the kth rotor, are defined, in the vertex basis introduced
above, as

μk =

⎡
⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 υ 0 · · · 0
0 0 υ2 · · · 0

0 0 0 . . . 0
0 0 0 0 υNs−1

⎤
⎥⎥⎥⎥⎦,

σk =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

0 0 0 0 . . . 0
0 0 0 0 · · · 1
1 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

FIG. 1. Schematic representation of the CCM with periodic
boundary conditions, interacting with thermal reservoirs with
staggered temperatures T1 and T2, and chiral nearest-neighbor inter-
actions with phases ϕk . In this illustration one of the individual rotors,
or clocks, is depicted by a polygon whose vertices correspond to its
internal levels | jk〉 (for Ns = 3), which are coupled with an interac-
tion strength f [cf. Eq. (1)]. In the classical picture, a mechanical (or
rotational) current corresponds to the steady state directed rotation of
a particle hopping between the Ns vertices of the polygon.

with υ = ei2π/Ns . The first term of the Hamiltonian encodes
the dynamics of the individual rotors and gives rise to tun-
neling currents between their internal levels (cf. Fig. 1). For
a particle at the vertices of a regular polygon, the tunneling
currents can be visualised as describing the hopping of the
single system between such vertices induced by the rotor
internal Hamiltonian. The second term in the Hamiltonian
encodes the interaction between nearest neighbors.

The model possesses a global ZNs symmetry and, clas-
sically, presents two phase transitions in 2D [53]. The
interaction potential breaks a specific rotational symmetry
when ϕk �= qπ/Ns (q ∈ Z) in a dimer (M = 2) Refs. [30],
while on a lattice model with periodic boundary conditions the
same broken symmetry arises when a staggered phase is con-
sidered [41]. This is a necessary condition for the emergence
of the rotational (particle) currents, as we will also see in the
following (cf. Sec. III A). In this context, the order parameter
of the model is the total magnetization m = ∑

k (μk + μ
†
k )/M.

From now on, we will focus on the minimal configuration
allowing for nonzero currents, namely the case of Ns = 3.
It should be noted that, our model is similar to the one
investigated in Ref. [50] where the role of σ and μ was
interchanged. There, it was argued that the phase transition
experimentally found in a one–dimensional chain of trapped
alkali-metal atoms [54] belongs to the universality class of
the Z3 chiral clock model considered here. In Refs. [49,50],
the structure of the phase diagram of the CCM with Ns = 3
and homogeneous chiral phase ϕk = ϕ was investigated in
detail, showing that for small values of ϕ there is a direct
transition from the ordered ( f � 1/2) to a disordered phase
( f � 1/2). For large chirality (ϕ > π/6), the two phases
are separated by an incommensurate phase. In Appendix A,
we provide a brief summary of the symmetry-breaking QPT
taking place in the ground state of Hccm, while we refer to
Refs. [49,50] for a thorough inspection of the model’s critical
features.
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III. OPEN SYSTEM DYNAMICS: CORRELATIONS VS
CURRENTS

We are interested in exploring the physics of the CCM
when interacting with thermal baths. In particular, we consider
the case in which each rotor is in contact with an independent
thermal reservoir and partition our system in two sub-lattices
consisting of even (e) and odd (o) rotors, respectively. The
inverse temperature of the two sub-lattices is set to be βe and
βo, respectively, and we will assume βe �= βo, in general, thus
realizing a staggered-temperature configuration (cf. Fig. 1 for
a schematic illustration). As it will be shown later on in this
section, the temperature difference gives rise to thermally
driven mechanical currents in the system that are sustained
asymptotically in time. The system thus evolves towards a
nonequilibrium steady state (NESS), whose properties we
now aim at characterizing.

We describe the open system dynamics via the lo-
cal Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) master
equation

ρ̇ = −i[Hccm, ρ] +
M∑

k=1

Dk (ρ), (3)

with local dissipators

Dk[•] =
∑
j, j′

W (k)
j, j′

[
L(k)

j, j′ • L(k),†
j, j′ − 1

2

{
L(k),†

j, j′ L(k)
j, j′ , •

}]
. (4)

defined in terms of the jump operators L(k)
j, j′ = | j〉〈 j′| with

| j〉 = | j1, . . . , jM〉 with jk = 0, · · · , Ns − 1. Each of the
local dissipators L(k)

j, j′ induces an incoherent transition be-

tween states | j〉 and | j′〉, weighted by the rate W (k)
j, j′ , where

only the spin of the kth rotor is rotated, that is, | j〉 ≡
| j1, . . . , jk, . . . , jM〉 → | j′〉 ≡ | j1, . . . , jk ± 1, . . . , jM〉.

The transition rates Wj, j′ from | j′〉 to | j〉 fulfill the local
detailed balance

W (k)
j, j′/W (k)

j′, j = eβk (Ej′−Ej ), (5)

where Ej = 〈 j|Hccm| j〉. The energies Ej entering the local
detailed balance condition Eq. (5) are not eigenvalues of
the total system Hamiltonian Hccm as a consequence of the
choice of local basis {| jk〉} defining the jump operators, see,
for instance, Refs. [46,55]. For the transition rates, we take
W (k)

j, j′ = γk (Ej′ − Ej ) with

γk (ω) = g|ω|
1 − e−βk |ω| ζ (ω) and ζ (ω) =

{
eβkω ω � 0,

1 ω > 0,

(6)

so as to match the corresponding expression for a generic
bosonic bath with global detailed balance [56], and where
g is a microscopic rate. Before proceeding further, a note is
in order. As it is well known, local master equations can be
problematic from a thermodynamic point of view [57,58].
However, it should be noted that this conclusion has been
recently challenged by a stream of works [34,59–61] pointing
towards a reconciliation of local master equation and thermo-
dynamics. In particular, it has been shown that the local master
equation is not, in general, at odds with the second law of
thermodynamics as far as the proper expression for the heat

currents is considered. In the specific case under study, we
can split the Hamiltonian in its diagonal and nondiagonal part
in the {| j〉} basis as Hccm = HD + HND, which allows us to
introduce the individual energy currents

Q̇D,k = tr(ρD∗
k [HD]), Q̇ND,k = tr(ρD∗

k [HND]), (7)

whereD∗
k is the dual ofDk . In the steady state ρ̇ = 0, and us-

ing the adjoint master equation of (3), one obtains the energy
conservation condition, that reads

dt 〈Hccm〉 = 0 =
∑

k

Q̇D,k + Q̇ND,k . (8)

It is useful to remark that the standard definition of heat
flux when dealing with a local master equation would read
Q̇k = tr(ρD∗

k [Hccm]) = Q̇D,k + Q̇ND,k . Unfortunately, using
Q̇k leads in general to violations of the second law of ther-
modynamics (cf. Ref. [57] for an example). However, it is
the weighted sum of Q̇D,k’s that enters the second law of
thermodynamics and gives a positive entropy production rate
�̇ = dS/dt − ∑

k βkQ̇D,k � 0, consistently with the second
law [34], and one should really focus on the individual cur-
rents. Equation (3) can be derived starting from a microscopic
model for the baths, the system, and the interaction Hamil-
tonian. At such microscopic level, energy conservation holds
for the total Hamiltonian (baths, system, bath–system interac-
tion). Eq. (8) expresses energy conservation for the system
alone, when its dynamic has already been coarse-grained.
Thus by interpreting the first term on the right-hand side of
such equation as the heat current flowing into the system from
the baths [34], we can conclude that the nondiagonal term
is the residue energy flowing into/from the system because
of the mismatch between the eigenbasis of the Hamiltonian
and the chosen system-bath interaction described by the jump
operators Lj, j′ . Furthermore, in another consistent thermody-
namic interpretation Q̇ND,k can be associated to a work rate
within a microscopic collisional model framework [61]. For
further details on this construction, we refer the interested
reader to Ref. [34]. An alternative approach to the thermody-
namic consistency of the local master equations is discussed,
e.g., in Ref. [62].

A. NESS of the GKLS master equation and particle currents

From the numerical diagonalization of the Lioville super-
operator on the right-hand-side of the GKLS master equation,
we obtain the unique steady state ρSS of the CCM interacting
with independent thermal baths. Such state is in general a
NESS, however its nature is determined by the choice of
parameters of the model. Note that, although the ground state
of Hccm displays a QPT, such abrupt transition is blurred in
this open quantum system setting. In order to quantify the
nonequilibrium nature of the steady state we turn to look at
quantum particle currents in the system.

The definition of quantum particle currents in general is a
non trivial task. A formal characterisation has been carried
out in Ref. [30] where the authors also investigate a CCM
with M = 2 rotors. For a classical particle hopping on a graph,
one can readily define the probability current between any two
vertices on the graph which reads

Jj→ j′ = Wj′ j p j − Wj j′ p j′ , (9)
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where p j is the instantaneous probability of finding the par-
ticle at vertex j, and Wj j′ is the transition rate from j′ to
j. In Ref. [30], the quantum analog of this classical current
was defined as the sum of the tunneling and thermal current
operators, namely,

J tun
j→ j′ = i(x jHccmx j′ − x j′Hccmx j ), (10)

J th
j→ j′ = 1

2

∑
k,j,j′

W (k)
j,j′

[{
x j, L(k),†

j,j′ x j′L
(k)
j,j′

} − {
x′

j, L(k),†
j,j′ x jL

(k)
j,j′

}]
,

(11)

where x j = | j〉〈 j| is the projector onto a generic state | j〉,
L(k)
j,j′ = |j〉〈j′| is the jump operator for the kth rotor between

states |j〉 and |j′〉 which is weighted by the thermal rate of the
kth bath, and the sum runs over all the possible transitions be-
tween pair of states of the system and over all the baths. Note
that in Eq. (11), we have introduced the summation indices
j and j′ in order to distinguish them from the indices j and
j′ denoting the initial and final states of the transition under
consideration. Note that the thermal current reduces to the
classical probability current (9) in the classical limit. Recall
that we consider jump operators L(k)

j, j′ where only the spin

of the kth rotor is rotated, namely, L(k)
j, j′ = | j〉〈 j′| with | j〉 ≡

| j1, . . . jk . . . , jM〉 → | j′〉 ≡ | j1, . . . jk ± 1 . . . , jM〉. We will
thus refer to the overall rotational (or mechanical) current of
the kth rotor as given by the sum of the two contributions
stemming from Eqs. (10) and (11).

Before proceeding further, we shall discuss the general
properties of these NESS currents. In order to simplify the
notation, in the following, we will omit the subscript j → j′
in the steady state currents 〈J tun,th

j→ j′ 〉, as in the NESS the rota-
tional currents of the kth rotor are independent of the specific
initial and final position considered. We consider staggered
chiral phases ϕk = (−1)kϕ, which, as discussed below, give
homogeneous currents within each of the two sublattices. For
ϕ = qπ/Ns (q ∈ Z), the currents vanish, 〈J tun〉k = 〈J th〉k = 0,
for each individual rotor k = 1, . . . , M, ∀ f and regardless of
the temperature difference among sub-lattices �T = 1/βo −
1/βe. The choice ϕk = (−1)kϕ makes the system rotationally
asymmetric, which is a prerequisite for directed rotational
currents to arise [41]. Symmetry is restored when ϕ = qπ/Ns,
and thus the currents vanish. While other symmetry-breaking
choices for the chiral phases are possible, the staggered setup
makes the properties within each of the two sublattices homo-
geneous.

In addition, 〈J tun〉k �= 0 if ϕ �= qπ/Ns and f �= 0, 1, and
〈J tun〉T = ∑M

k=1〈J tun〉k = 0 when �T = 0. In a similar fash-
ion, the thermal current fulfills 〈J th〉T = ∑

k〈J th〉k �= 0 for
ϕ �= qπ/Ns and f �= 1, while 〈J th〉T = 0 for �T = 0. Thus a
nonvanishing temperature gradient �T �= 0 is necessary for
a net motor effect with nonvanishing 〈J tun〉T and 〈J th〉T to
arise. Figure 2 shows the individual steady state currents as
a function of f and ϕ for each of the individual rotors (at even
or odd sites) in a CCM with M = 6, Ns = 3, βe = 1, βo = 1.1,
and g = 0.2, which already reveal a nontrivial behavior. The
choice of staggered temperatures and chiral phases gives equal
currents within each sublattice. A similar behavior is found
for different parameter combinations. Inspection of Fig. 2

FIG. 2. Behavior of the NESS tunneling and thermal currents
〈J tun

0→1〉k and 〈J th
0→1〉k for each rotor (at even or odd site) in a chain with

M = 6 and Ns = 3. (a) and (b) [(c) and (d)] illustrate such currents as
functions of f [ϕ with ϕk = (−1)kϕ] for βe = 1 and βo = 1.1 with
g = 0.2. (a) and (b) have been obtained taking fixed staggered chiral
phases ϕk = (−1)kπ/2. The insets show the behavior of currents in
the region close to f = 0. Note that 〈J tun

0→1〉 = 0, while 〈J th
0→1〉 �= 0

for f = 0. (c) and (d) are for f = 1/2, and ϕk = (−1)kϕ. Here, the
currents display a 2π/Ns periodicity in ϕ. (e) and (f) show the net
current for each of the rotors (even or odd) as a function of f and ϕ,
respectively. We refer to the body of the paper for further details, and
to Fig. 3 for the behavior of the total currents.

suggests that the maximum of |〈J tun〉k| is reached at f ≈ 0.45,
which is very close to the value f ≈ 0.46 at which a QPT
occurs in the ground state of the CCM at thermodynamic
limit [cf. Appendix A]. However, the thermal current 〈J th〉k

is maximized for a slightly smaller value of f . Also, the
insets in Figs. 2(a) and 2(b) show that, in the classical limit
f = 0, the tunneling current is vanishing in both sublattices,
while the rotors exhibit the same nonzero thermal rotational
frequency. Note that, in spite of the opposite sign of ther-
mal and tunneling currents for each rotor, the net current is
nonzero in general, as shown in Fig. 2(e) and (f), which show
〈J tun〉k + 〈J th〉k against f and φ, respectively. Although not
explicitly shown, the mean square value of the thermal current
has a maximum at f ≈ 1/2 while the analogous quantity for
the tunneling current gets the value of ≈2 f 2/3 independently
of ϕ. This value suggests that all clock states are equally
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FIG. 3. Total NESS currents 〈J tun〉T and 〈J th〉T for M = 4 and
M = 6 rotors and βe = 1, βo = 1.1 with g = 0.2. (a) and (b) are for
ϕk = (−1)kπ/2, while (c) and (d) are for f = 1/2.

populated at the NESS.1 However, as shown in Sec. IV, such
state is not a maximally mixed one as it brings about coher-
ence and nontrivial correlations among the individual rotors.

Figure 3 illustrates the total currents 〈J tun,th〉T for the same
parameters as Fig. 2 for M = 4 and 6 rotors and �T �= 0. Note
that for fixed M the total thermal current is larger than the
tunneling one. Furthermore, for the two sizes here considered,
〈J th〉T is almost constant for increasing number of rotors,
while 〈J tun〉T decreases its value suggesting that for large
M the total tunneling current will be negligible with respect
to the thermal one. Hence, in the thermodynamic limit, one
should expect 〈J th〉T + 〈J tun〉T ≈ 〈J th〉T .

We now turn our attention to the steady state heat currents,
as given by Eqs. (7). Here the heat currents are positive
when flowing from the bath(s) to the system. The results,
for two different sets of system parameters, are shown in
Fig. 4. As previously done, we have chosen the even sub-
lattice to be in contact with the hot bath. We observe that,
for a small temperature gradient, the diagonal heat currents
are both negative. This can be understood as follows. First,
the first law—written in the form

∑
k (Q̇D,k + Q̇ND,k ) = 0—is

valid. Second, we recall that the nondiagonal heat current Q̇ND

corresponds, within the framework of the collisional model,
to the work done or produced when switching on and off the
interaction of the system with the colliding particles making
up the environment [34,61]. Thus the situation in Fig. 4 where
Q̇D,k < 0 for all rotors is compensated by a large and positive∑

k Q̇ND,k , corresponding to a net amount of work done on the

1This can be seen from the tunneling current for the first rotor,
J tun

0→1 = i f [|1〉〈0| − |1〉〈0|] ⊗ I2,...,M . Hence, (J tun
0→1)2 = f 2[|0〉〈0| +

|1〉〈1|] ⊗ I2,...,M , so that 〈(J tun
0→1)2〉 = Tr[(J tun

0→1)2ρ] = f 2(Tr[ρ] −∑Ns
j=2〈 j|ρ| j〉) with ρ the NESS. If ρ populates equally each of the

Ns states, then 〈(J tun
0→1)2〉 = 2 f 2/Ns.

FIG. 4. Diagonal (a) and nondiagonal (b) heat currents, Q̇D,m and
Q̇ND = ∑

k Q̇ND,k , as defined by Eq. (7), respectively, as a function
of f for the NESS of the CCM with M = 4 rotors and staggered
chiral phases ϕk = (−1)kπ/2 and temperatures. We have taken βo =
1.1, g = 0.2, and βe = 0.2 and 1, as specified in the legend of
the figure. In (a), we show the heat currents for each sub-lattice,
namely, even and odd rotors. For βe = 1, Q̇D < 0 for both sub-
lattices, which implies a large nondiagonal heat current. Note that∑

k (Q̇D,k + Q̇ND,k ) = 0.

system that is then dissipated in both the cold and hot baths.
One can understand this result also noticing that, when f > 0
the Hamiltonian in Eq. (1) is not diagonal in the basis | j〉. Thus
Eq. (3) will introduce coherence in the steady state, resulting
in a nonzero nondiagonal heat current, as given by the second
line of Eq. (7).

For a larger temperature gradient, and one of the two tem-
peratures relatively high, the heath currents exhibits a more
classical behavior with a net diagonal current from the hot to
the cold baths and a reduced nondiagonal heat current.

In the ground state of the system (1), the thermally driven
current 〈J th〉k vanishes for any f : at T = 0, there is no heat
current to sustain the rotational motion. However, the tunnel-
ing current 〈J tun〉k may in principle be nonvanishing in the
ground state: Eq. (10) is indeed the discrete counterpart of
the Schrödinger probability current, as discussed in Ref. [30].
We find nevertheless that also 〈J tun〉k vanishes in the ground
state of (1) for any f . In Appendix B, we consider the rotated
model of (1) with σ → μ and μ → σ , and interestingly find
that the 〈J tun〉k shown a critical-like behavior in the ground
state, being nonzero for f � fc.

IV. CONNECTING CURRENTS TO COLLECTIVE
INFORMATION THEORETIC QUANTITIES

The connection between the location, in parameter space,
of the quantum critical point of the CCM and that of the
optimal particle currents is suggestive of a potential role of
collective quantum phenomena in the establishment of the
nonequilibrium features of the system. In this section, we
explore such suggestion further by making use of a toolbox
of information theoretic figures of merit that have been used,
in the past, to explore the interplay between quantum critical
phenomena and nonclassicality [46,63,64]. In doing so, we
unveil the intrinsically collective nature of the features that
have been highlighted in our analysis so far.

Quantitatively, we will consider the von Neumann entropy
of a subsystem A of a compound A ∪ B, which is defined as

SA = −Tr[ρA ln ρA], (12)
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where ρA = TrB[ρ] denotes the partial trace over B. Another
relevant measure is the negativity NA [65], which is able to
quantify entanglement and is given by

NA =
∑
λn<0

|λn|, (13)

where ρTA = ∑
n λn|n〉〈n| is the spectral decomposition of the

partially transposed state with respect to subsystem A. The
total amount of correlations (classical and quantum) shared
between the bipartitions A and B can be quantified using on
the mutual information

I (A : B) = SA + SB − SA∪B, (14)

where SA∪B is the von Neumann entropy of the state of the
whole compound. In addition, we shall compute the coherence
of the system state using the L1 norm [66]

C(ρ) =
∑
i �= j

|ρi, j |, (15)

where ρi, j are the density matrix entries in the clock-state ba-
sis. Finally, we will use the quantifier of multipartite quantum
correlations provided by the so-called global quantum discord
[46,63]

G(ρ) = min
�k

{
S(ρ||�(ρ)) −

M∑
i=1

S(ρi||�i(ρi ))

}
, (16)

where ρi denotes the reduced state of the ith rotor, �(ρ) =∑
j �

jρ� j is a projector operator acting on the global state,
and �i(ρi ) the corresponding projector acting on the single-
rotor states. Following Ref. [63], we choose � j = R| j〉〈 j|R†

with R = ⊗M
i=1Ri(θ i ) a collection of single-particle rotation

operators, while the operator acting on the ith rotor reads

Ri(θi ) = eiθi·�, (17)

where θi = (θi,1, θi,2, . . . , θi,na ) is a vector of na angles, and
� = (�1,�2, . . . , �na ) is a vector of generators of rotations
for the single rotor. We have considered the na = 8 Gell-Mann
3 × 3 matrices as generators of rotations. The minimum in
Eq. (16) is obtained by varying the set of angles {θi}, i =
1, . . . , M, through an annealing algorithm.

These instruments are all very informative of the quantum
critical features of the ground-state QPT [44,45] in the CCM
(cf. Appendix A). Here however we are mainly interested
in the NESS properties. In such an open quantum system,
critical features become blurred or disappear altogether. This
might lead one to naively think that no connection could be
established. Yet, the interplay between temperature gradient
between sub-lattices, currents, and correlations reveal a rich
phenomenology. Figure 5 shows the behavior of these quan-
tities for different parameters. Contrary to the CCM ground
state, these quantities show a smooth dependence on f , which
suggests that it is not in partition-dependent quantities that a
behavior reminiscent of a critical one should be sought. How-
ever, it is interesting to observe that both SA and I (A : B) have
an inflexion point in the region where we expect the critical
value of f to occur, which indicates a qualitative change in
trend taking place around f � 0.46. On the other hand, the
global quantum discord shows the nonclassical nature of the
state of the NESS away from f = 0, 1, which correlates with

FIG. 5. Information measures of the NESS for M = 4 rotors as a
function of the control parameter f . (a)–(d) show the von Neumann
entropy SA, mutual information I (A : B), coherence C and global
discord, respectively, with A denoting the first half of the chain,
namely, rotors 1 and 2. Different points (and colors) correspond to
distinct values of the staggered chiral phase, such that ϕk = (−1)kϕ,
and local temperature βe, while g = 0.2 and βo = 1.1. See main text
for further details.

the amount of coherence C. However, while the coherence for
the chiral model is maximum at f � 0.46, the global discord
peaks at a slightly smaller value of f , likely as a result of
finite-size effects that are manifested differently in C and
the global discord, the latter being, in general, a non linear
function of the elements of the density matrix. This should
be compared with Figs. 2(a) and 2(b) and Figs. 3(a) and 3(b),
which show a similar behavior for the tunneling and thermal
currents. This suggests that the degree of nonclassicality of
the state of the system, as characterized by the coherence
and the global discord, might play an important role for the
out-of-equilibrium CCM to work as a thermal machine, thus
converting heat currents into mechanical currents.

Note however, that although ρSS contains coherence for
f �= 0, 1, its maximum value is significantly smaller than in
the ground-state where C ∝ NM

s for f > fc [cf. Fig. 8(d)].
Similar behavior is observed for other choices of ϕ, also for
ϕ = qπ/Ns with q ∈ Z. In addition, all these quantities inherit
the periodicity 2π/Ns in the phase ϕ. Finally, we stress that
NA = 0 ∀ f , ϕ, in contrast to the ground-state negativity (cf.
Appendix A).

The observed behavior of the mutual information cor-
relates with that of the total current 〈J th + J tun〉T ≈ 〈J th〉T

[cf. Figs. 3(b) and 5(b)]. Building on this observation, we
investigate the thermal susceptibility of the total current
〈�J th〉T /�T with that of the mutual information, �I (A :
B)/�T when �T → 0, where 〈�J th〉T ≡ 〈J th(�T )〉T −
〈J th(�T = 0)〉T denotes the increment in the total current
between 0 < |�T | � 1 and �T = 0 (equal temperatures
for both sub-lattices), and equivalently for the mutual in-
formation. Note that since 〈J th(�T = 0)〉T = 0, it follows
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FIG. 6. Mutual information and current susceptibilities, �I (A :
B)/�T , 〈�J th〉T /�T as a function of the control parameter for
M = 4 rotors and ϕk = (−1)kπ/2. (a) and (b) correspond to βe = 1
and βe = 0.5, respectively, such that βo = 1/(Te + �T ) with �T =
10−3, and g = 0.2. The current susceptibility is multiplied by a factor
10 for a better representation. Both quantities feature a qualitatively
similar behavior.

〈�J th〉T /�T = 〈J th(�T )〉T /�T . In order to illustrate this
susceptibility, we fix βe = 1/Te and change βo = 1/(Te +
�T ) for |�T | � 1. In Fig. 6, we show two examples of the
mutual information and current susceptibility for �T = 0.001
and different Te, for a fixed ϕk = (−1)kπ/2. Both susceptibil-
ities feature a qualitative similar behavior, as well as for other
choices of the parameters. We stress however that for different
choices of ϕ (or βo) one may revert their relative sign. In ad-
dition, one should note that the total current vanishes for ϕ =
qπ/Ns with q ∈ Z, while the mutual information does not.

V. CONCLUSIONS

We have addressed the link between the emergence of
NESS currents in a chiral few-body interacting-clock model
and critical features of the corresponding model at the ther-
modynamic limit: The response of the system, in terms of
currents, is maximum at the working point where a QPT is
predicted to occur. This is also well captured by the behav-
ior of genuinely multipartite information theoretic quantities,
such as global quantum discord, and provides strong numer-
ical evidences of the possible role that collective quantum
phenomena play in the nonequilibrium response of this inter-
esting interacting model. Such link will be explored further
in future works through the investigation of possible effects
in work-extraction games aimed at achieving ergotropic per-
formance from the thermal-to-mechanical current-conversion
process that we have addressed here.

Furthermore, the investigation of the dynamical properties
of the ground state of the model (1) and its variations is an
interesting open question. In particular we find that tunneling
currents can arise in a rotated version of (1) with a finite
number of rotors. Whether such currents persist in the ther-
modynamic limit and exhibit a critical behavior are questions
worthy of future studies.

ACKNOWLEDGMENTS

A.I. gratefully acknowledges the financial support of
The Faculty of Science and Technology at Aarhus Univer-
sity through a Sabbatical scholarship and the hospitality of
the Quantum Technology group, the Centre for Theoretical

Atomic, Molecular and Optical Physics and the School of
Mathematics and Physics, during his stay at Queen’s Univer-
sity Belfast. A.B. acknowledges the hospitality of the Institute
for Theoretical Physics and the “Nonequilibrium quantum dy-
namics” group at Universität Stuttgart, where part of this work
was carried out. R.P. and M.P. acknowledge the support by
the SFI-DfE Investigator Programme (Grant No. 15/IA/2864)
the Eropean Union’s Horizon 2020 FET-Open project Su-
perQuLAN (899354) and TEQ (766900). M.P. acknowledges
support by the Leverhulme Trust Research Project Grant
UltraQuTe (Grant No. RGP-2018-266), the Royal Society
Wolfson Fellowship (RSWF/R3/183013), the UK EPSRC
(Grant No. EP/T028424/1) and the Department for the
Economy Northern Ireland under the US-Ireland R&D Part-
nership Programme. A.B. also acknowledges support from
H2020 through the MSCA IF pERFEcTO (Grant Agreement
No. nr. 795782) and from the DeutscheForschungsgemein-
schaft (DFG, German Research Foundation) Project No. BR
5221/4-1.

APPENDIX A: CRITICAL GROUND STATE FEATURES IN
THE CHIRAL CLOCK MODEL

As already noted, the CCM exhibits a ZNs symmetry.
In order to exploit this symmetry, it is handy to remap
the Hamiltonian as σ → μ and μ → σ (as in Ref. [50]),
so that the operator

U =
M∏

k=1

μ
†
k, (A1)

allows us to split the Hilbert space in Ns subspaces. The
ground state is contained in the subspace with eigenvalue 1.
In the case of Ns = 3, the operator reads as U = �0�

†
0 +

υ�1�
†
1 + υ2�2�

†
2, where �n denotes the projector on the

corresponding subspace. One can use this symmetry to reduce
the dimension of the Hilbert space. In particular,

H0
ccm = �0Hccm�

†
0 (A2)

FIG. 7. (a) Binder cumulant B for the ground state of the CCM
with Ns = 3 for different system sizes (from M = 4 to 10 rotors)
as function of f and with ϕk = π/8 (solid lines) and staggered
chiral phase ϕk = (−1)kπ/8 (dashed lines). The vertical dotted line
indicates the critical value fc where the QPT takes place, reported
in Ref. [50]. (b) shows a zoom close to the region where Binder
cumulants intersect (close to fc). For homogeneous chiral phase, the
crossing approaches the reported value fc. The intersections in B for
staggered chiral phases suggests that location of fc is shifted to a
slightly larger value.
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FIG. 8. Quantum information measures of the ground state of the CCM with periodic boundary conditions and staggered chiral phase ϕk =
(−1)kπ/2 for M = 4 and 6 rotors, which unveil the QPT taking place in the system. From left to right, von Neumann entropy SA, negativity
NA, mutual information I (A : B), coherence C (rescaled over the total Hilbert space dimension NM

s ), and global discord G, respectively. The
system is split in half, so the partition A includes the first M/2 rotors, namely, rotors 1 and 2 for M = 4 and 1, 2 3 for M = 6.

contains the ground state ∀ f with a well defined symmetry.
For f < fc, the ground state becomes Ns-fold degenerate.
In Ref. [50], the ground-state energy critical exponents of
the Hccm were investigated. For completeness, here we just
provide a brief summary of the critical features of such a
model. In particular, note that the ground-state order param-
eter m = 1

M

∑M
k=1(μk + μ

†
k ) within the �0 subspace is given

by

〈ϕ( f )|m|ϕ( f )〉 ≡ 0 ∀ f , (A3)

where |ϕ( f )〉 denotes the ground state of H0
ccm. As customary

in symmetry-breaking phase transitions, one needs to resort to
m2 and m4, which clearly reveal the symmetry-broken phase
for f < fc (and thus the QPT). Moreover, the location of the
QPT can be witnessed by looking at the energy gap � or
Binder cumulant B [67]. The energy gap between the ground
and first excited state closes at fc following the universal
scaling law [43]

� ∼ | f − fc|zν . (A4)

where zν are critical exponents of the QPT. The Binder cumu-
lant is defined as [67]

B = 1

2

(
3 − 〈m4〉

〈m2〉2

)
(A5)

where 〈m4〉 and 〈m2〉 are evaluated over the ground state, i.e.,
〈ϕ( f )|m2|ϕ( f )〉 and 〈ϕ( f )|m4|ϕ( f )〉. This quantity has been
proven very useful to locate the critical point fc (see for exam-
ple Refs. [68,69]). Applying finite-size scaling arguments, B
is expected to become size independent at fc. Hence, the QPT
takes place at the value of f at which the Binder cumulant
B for different system sizes M intersect, although finite-size
corrections still yield small deviations to the size-independent
intersections. In Fig. 7 we show the resulting Binder cumulant
B for the ground state of the CCM for Ns = 3 for the case of a
staggered and homogeneous chiral phase ϕk = (−1)kπ/8 and
ϕk = π/8, respectively. The location of the QPT, i.e. fc, for
the homogeneous chiral phase is consistent with the reported
value in Ref. [50], fc = 0.46267 which is indicated by a
dotted vertical line, while fc appears to be shifted to a slightly
larger value for a staggered chiral phase. The signatures of the
QPT are already evident even for the considered system sizes
M � 10.

In addition, in Fig. 8 we show the quantum information
measures on the CCM ground-state as a function of the control
parameter f , namely, von Neumann entropy SA, negativity NA,

coherence C, mutual information I (A : B) and global quantum
discord G. The system is split in half, so that A refers to the
first two rotors for M = 4. All the quantities indicate a QPT
taking place at f ≈ 0.46 [50]. Compare these ground-state
results with those discussed in the main text for the NESS. It
is worth noting that the nonchiral model ϕk = 0 has a critical
field fc = 1/2 [50], thus the chirality lowers the value of the
field required to achieve the disordered phase, as one would
expect.

APPENDIX B: TUNNELING CURRENT IN A ROTATED
CCM MODEL

As commented in the main text, while the ground-state
properties of the CCM model remain unaltered upon the
rotation σ → μ and μ → σ , the tunneling current becomes
remarkably different. Note that the definition of the tunneling
current J tun( j → j′) given in Eq. (10) is independent of the
specific choice of the Hamiltonian. In particular, for

H̃ccm = − f
M∑

k=1

(μk + μ+
k ) − (1 − f )

M∑
k=1

(σkσ
†
k+1eiϕk + H.c.),

(B1)

with staggered chiral phases ϕk = (−1)kϕ, the tunneling cur-
rent in its ground state is non zero. Moreover, the behavior of
J tun resembles that of a critical quantity across a phase tran-
sition. The resulting tunneling current for a parity-preserving
ground state is plotted in Fig. 9 for M from 4 to 12 rotors,
which indicate a sharp transition around the QPT.

FIG. 9. (a) Tunneling current for the odd rotors 〈J tun〉 in the
ground state of the CCM H̃ccm, given in Eq. (B1), with ϕk =
(−1)kπ/2 and as a function of f . The tunneling current for even
rotors is reversed in sign, i.e., −〈J tun〉. (b) shows a zoom closer to
the transition point to signal the sharper behavior of 〈J tun〉 as M
increases.
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