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Abstract: Climate change poses significant challenges to agricultural productivity, making the

efficient management of water resources essential for sustainable crop production. The assessment

of plant water status is crucial for understanding plant physiological responses to water stress and

optimizing water management practices in agriculture. Proximal and remote sensing techniques

have emerged as powerful tools for the non-destructive, efficient, and spatially extensive monitoring

of plant water status. This review aims to examine the recent advancements in proximal and remote

sensing methodologies utilized for assessing the water status, consumption, and irrigation needs of

fruit tree crops. Several proximal sensing tools have proved useful in the continuous estimation of

tree water status but have strong limitations in terms of spatial variability. On the contrary, remote

sensing technologies, although less precise in terms of water status estimates, can easily cover from

medium to large areas with drone or satellite images. The integration of proximal and remote sensing

would definitely improve plant water status assessment, resulting in higher accuracy by integrating

temporal and spatial scales. This paper consists of three parts: the first part covers current plant-based

proximal sensing tools, the second part covers remote sensing techniques, and the third part includes

an update on the on the combined use of the two methodologies.

Keywords: proximal sensors; irrigation scheduling; precision irrigation; internet of things; UAV;

satellite; vegetation index

1. Introduction

The world’s sustainable supply of water resources has become a critically important
issue in the context of recent environmental and agricultural challenges. Agriculture, as one
of the main water-consuming sectors, plays a crucial role in the responsible management
of global water resources [1–4]. Climate change-induced temperature rises impact water
availability through increased evapotranspiration and subsequent alterations in rainfall and
river flows, increasing the frequency and intensity of heatwaves and drought events [5–7].
Therefore, understanding plant responses to water availability in order to increase their
water use efficiency is becoming more and more urgent [8].

For irrigation scheduling, monitoring environmental parameters to calculate crop
evapotranspiration (ETc) has been one of the most widely used methods. It is obtained by
considering a reference evapotranspiration (ET0) and crop coefficients (Kc). The ETc can
easily be estimated following the FAO-56 method described by Allen et al. (1998) [9–11].
Nevertheless, different studies have highlighted that this method might overestimate the
irrigation needed for the optimal yield and consequently diminish orchard water use
efficiency [12,13], because it does not take into account the actual plant water status (PWS).
In recent years, soil-based systems have been developed by using soil water potential or
volumetric water content principles [14]. This includes the use of precision instruments such
as tensiometers [15,16], soil psychrometers [17,18], continuous and real-time sensors [19,20],
and remote sensing techniques [21,22] capable of measuring soil moisture.
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However, soil-based methods could be significantly influenced by different variables
such as the soil texture, and soil moisture level indirectly influences the PWS rather than
measuring it directly on the plant [23]. Furthermore, we should point out that the plant is
the intermediate component in the soil–plant–atmosphere continuum, and its water status
is directly affected by changes in its leaf water content and leaf and stem water poten-
tial [10,24–26]. For these reasons, recently, the focus has shifted to the direct assessment
of PWS.

Traditional systems for the plant-based monitoring of PWS include measurement
of the stem (Ψstem) and leaf (Ψleaf) water potential using Scholander’s pressure chamber.
This represents the most common method of measuring plant water potential, used as an
accurate indicator of fruit trees’ water status [27,28]. However, assessing water potential
using a pressure chamber is an invasive and labor-intensive procedure, requiring a skilled
operator to consistently apply and release pressure to the chamber containing the leaf sam-
ple, and the operator must meticulously determine the pressure at which water emerges
from the leaf petiole [29]. In addition, it could also be influenced by the osmotic component,
i.e., a lower water potential may indicate lower hydration or a higher concentration of
solutes, thus decreasing the osmotic potential and consequently the water potential [30].
Leaf relative water content (RWC) could also be considered a valid method for estimat-
ing PWS [31,32]. RWC quantifies the amount of water within leaf tissues relative to the
maximum amount of water the leaf tissues can retain when fully hydrated. In addition,
with respect to stem and leaf water potential, it takes into account some physiological
phenomena such as osmotic adjustment. This is one of the mechanisms that plants use
to maintain cell hydration. Consequently, the RWC remains relatively high even under
water stress conditions, inducing improved cellular hydration and enhancing the ability
of the plant to survive under severe water stress conditions [9,26,33]. Despite the po-
tential reliability and relative easiness of RWC as a method for assessing PWS, similarly
to determining the water potential with a pressure chamber, it is an invasive and very
time-consuming method, mainly due to the need to obtain and weigh fully saturated and
dry samples [34]. An alternative conventional method to assess plant water status can be
the measurement of gas exchange (e.g., stomatal conductance—gs), since it is well known
that stomatal opening and closing depends on PWS, with responses differing from crop to
crop [35,36]. Similar to the previous methods, these techniques are also time-consuming
and require the use of expensive instruments (e.g., porometer). Other useful approaches for
PWS assessment may involve indirect estimation methods such as the leaf turgor [29] and
thickness [37], sap flow [38,39], stem [40,41], and fruit diameter [42]. Nonetheless, these
measurements require high precision that is only achievable with the use of sensors and
other precision technologies.

In recent years, the focus has moved to two new approaches for irrigation management.
The first involves the use of large-scale imagery from above using instruments such as
drones (UAVs) and satellites (remote sensing). The second involves the use of plant-based
ground sensors to obtain more accurate data (proximal sensing) [26]. The main advantage of
ground-based sensors is that they may provide continuous and real-time PWS indications,
as opposed to traditional methods. The possibility of having real-time estimates of PWS
and consumption greatly facilitates the grower’s decision to act at the right time with
the right irrigation volume. Having precise information about the timing and volume of
irrigation would allow action only when necessary, avoiding waste and thus significantly
increasing water use efficiency. Consequently, there would be a positive impact in terms of
sustainability from both economic and environmental perspectives.

Last-generation sensors allow accessing data directly from home via cloud, easing the
farm workload. These kinds of systems belong to Internet of Things (IoTs) technologies [43].
IoTs technology mainly focuses on providing many small, interconnected devices using
WSN (Wireless Sensor Network) technology [44]. With the help of WSN technologies,
growers will be able to consult weather conditions, soil conditions, and plant physiological
parameters collected from their farm, thus obtaining an efficient decision support system
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(DSS) [45]. An evaluation issue may arise due to potential small errors introduced by the
installation of sensors in sample plants. These errors could be associated with different
variables, including the soil texture, soil chemical composition, presence of pathogens,
etc. Remote sensing technologies, on the other hand, by providing images of entire plot
areas, allow us to have data from different types of optical sensors (RGB, multispectral,
thermal, hyperspectral, etc.) to assess spatial variability in terms of the health, nutrient, and
water status of trees and soil [46]. The combined use of proximal and remote sensing could
provide more complete and precise information on PWS since, with proximal sensors, we
have accurate, continuous real-time data concerning individual plants, while data from
UAVs or satellites may expand the information throughout the field [47]. In other words,
there is a higher level of accuracy because of the possibility of integrating information at
the temporal (proximal sensing) and spatial (remote sensing) scales. To do this clearly,
appropriate models have to be developed, and exploiting machine learning techniques
seems the best way to go [44,48].

On this basis, this review aims to gather state-of-the-art updates covering the use
of proximal sensors, remote sensing, and the combined use of both techniques to assess
the water status, consumption, and requirements of fruit tree crops. More specifically,
we reviewed stem-, leaf-, and fruit-mounted sensors, the use of satellites and UAVs with
multispectral, thermal, and hyperspectral sensing devices, and their combined use. In
detail, this review provides an extensive overview of various proximal and remote sensors,
elucidating their respective advantages, disadvantages, and practical applications. Each
sensor type is carefully evaluated, offering insights into their specific capabilities and
limitations when employed for assessing water status, consumption, and requirements
in fruit tree crops. Following this comprehensive evaluation, this review will conclude
by outlining future perspectives. Based on the insights from the analysis, this review
will propose hypotheses regarding the development of efficient systems that integrate
both proximal and remote sensing techniques. Ultimately, these hypotheses will foster
exploration of novel approaches and methodologies for enhancing the assessment of the
water status, consumption, and requirements of fruit tree crops.

2. Proximal Sensing

2.1. Leaf-Mounted Sensors

2.1.1. Leaf Patch Clamp Pressure Probe

The force exerted by water toward the cell walls of plant cells is known as leaf turgor
pressure. This force is closely dependent on the water status of various parts of the plant,
most notably the leaf [49]. When the plant is well-hydrated, the water inside the leaf cells
tends to exert adequate pressure toward the walls. Conversely, when the plant begins to
dehydrate, the cells will start losing turgor pressure and the leaf will tend to wilt [10,50].
The loss of turgor pressure is directly related to stomatal closure and a decrease in the
transpiration rate [51]. Hence, leaf water status can be assessed by measuring the amount
and rate of turgor pressure loss at solar noon (when the transpiration rate is highest) and
the duration required for its restoration in the afternoon [52].

Early attempts to measure cell turgor include that of Green and Stanton who, in 1967,
used, in Nitella axillaris cells, a small capillary fused at the end with the other resembling
the tip of a syringe needle. This capillary contained a gas in order to act as a micromanome-
ter [53]. A Nitella internodal cell was inserted into the open end. The ability of the cell to
compress the gas within the capillary allows its turgor pressure to be measured directly.
The first prototype of a leaf turgor pressure probe was developed by Zimmermann et al.
in 1969 [54]. This consisted of a pressure screw connected to a silicon membrane in turn
connected to a pressure transducer. This device allowed instantaneous data to be taken or
recorded. Although this system was widely used and improved over time [55–57], it did
not allow continuous, real-time data acquisition. In 2008, Zimmermann et al. developed
leaf patch clamp pressure (LPCP) probes (Yara International, Oslo, Sweden), capable of
continuous, non-destructive, real-time monitoring of leaf turgor pressure (Figure 1) [29].
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The sensor was validated in Tetrastigma vonierianum plants grown in greenhouses [29]. The
probe is composed of two metal magnetic pads. One of the pads incorporates a pressure-
sensing chip. These magnets are strategically positioned on both the adaxial and abaxial
sides of a leaf, ensuring that the pressure chip maintains close contact with the leaf surface.
The distance between the magnets above and below the clamped leaf patch can be adjusted
by regulating the separation between the two magnets, depending on the thickness and
rigidity of the leaf. The sensors are connected by wire to a radio transmitter that sends the
output directly to a gateway located in the field. After that, the output is transmitted to a
server via a general packet radio service (GPRS) system. The data can be accessed via a
cloud platform.

tt
tt

 

ff

Figure 1. LPCP probe mounted in an olive leaf.

The sensor output (Pp) varies with the distance between the two magnets and is
inversely proportional to the turgor pressure (Pc). For example, as the Pc decreases in re-
sponse to daytime stomatal opening, the Pp gradually increases. Conversely, when stomata
close at night, causing an increase in the Pc, the Pp gradually decreases [9,58]. Nevertheless,
in olive (Olea europaea L.), it has been observed that, as water stress increases, Pp values
tend to drop causing a semi-inversion of the curve under moderate stress situations, and a
complete inversion at severe stress conditions [58–61]. Moreover, the output signal may
vary with the tree height [29]. In addition, leaving the probe in the same leaf for too long
could cause depigmentation of the sensor area due to a loss of chlorophyll, causing altered
measurements as a result [26]. Specifically, data from the electrical output of the sensor
were coupled with actual leaf turgor pressure data determined by the method developed
by Zimmermann et al. in 1969 (described previously) [54]. A validation process was carried
out over a wide range of turgor pressures (0–100 kPa), thus considering a full hydration
status of the plant up to severe water stress. In the following years, LPCP sensors have been
tested in various horticultural crops, such as in grapevine (Vitis vinifera L.) [62], grapefruit
(Citrus x paradisi Macfad.) [62,63], nectarine (Prunus persica L.) [64,65], persimmon (Dyospiros
kaki L.) [66,67], clementine (Citrus clementina Tanaka) [66], and olive [58–61,68–70]. In olive,
they have been extensively tested with excellent results, indicating great reliability of the
sensors for both ecophysiological studies and irrigation scheduling. Sghaier et al. [71]
utilized these probes to study the effect of three irrigation levels on the water relations of
young ‘Koroneiki’ and ‘Picholine’ olive trees, demonstrating the suitability of the sensors
to monitor plant physiological and biological mechanisms [71]. In 2016, Padilla-Díaz et al.
established an irrigation plan using such sensors to monitor the PWS in a hedgerow ‘Arbe-
quina’ olive orchard. In detail, the authors found that the relation between the output trend
and the tree water stress levels is robust for olive trees of different ages under a wide range
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of growing conditions [60]. To identify actual water stress thresholds, recent studies have
suggested monitoring other plant organs as well by combining the use of LPCP probes with
other sensors and instruments. Rodriguez-Dominguez studied the sensitivity of olive leaf
turgor to the air vapor pressure deficit (VPD), finding strong relationships. Moreover, the
authors normalized their Pp data with the VPD values in order to predict the diurnal max
stomatal conductance (gs,max) measured with an open flow gas exchange system (IRGA
Li-6400; LI-COR Biosciences, Lincoln, NE, USA) in olive trees grown in a hedgerow orchard.
The sensors were proven to be highly reliable in predicting gs,max. In nectarine, Scalisi et al.
tested the combined use of LPCP probes and fruit gauges, demonstrating the suitability
of a dual-organ sensing approach for the improved prediction of tree water status [64].
In 2020, Scalisi also confirmed the effectiveness of these two sensors when used together
for detecting plant water stress in two olive cultivars (‘Nocellara del Belice’ and ‘Olivo di
Mandanici’). In the same trial, the authors also demonstrated the suitability of the probes
to predict stomatal conductance and stem water potential [68].

Barriga et al. have developed a new expert system based on machine learning (ML)
techniques together with an IoT infrastructure based on continuous measurements of leaf
turgor pressure, providing very important information for irrigation scheduling [72]. The
study shows that the ML models and the developed algorithm are valid for sweet orange
(Citrus sinensis (L.) Osbeck cv. Navelina), while subsequent studies should test these models
on other orange varieties and other citrus species, like lemon or tangerines (Barriga et al.,
2022). Another model was proposed by Palomo et al. based on ML techniques to classify
olive (Olea europaea L.) trees (cv. Arbequina) into three distinct levels of water stress by
analyzing daily data trends [73].

2.1.2. Leaf Water Meter

A recent non-invasive leaf-mounted sensor developed and made commercially avail-
able to assess plant water status is the leaf water meter (LWM; Pastella Factory S.R.L.S.,
Verona, Italy). This optical sensor was developed in 2022 by Brunetti et al. [74] and is
based on the photon attenuation during the passage of light at specific wavelengths (about
1450 nm) through the leaf, the signal intensity of which is related to the leaf water content.
The LWM is composed of three plastic wires connected to a controller equipped with
additional sensors (soil moisture sensor, temperature, relative humidity, and PPFD) and a
LoRa module to transmit data via radio frequencies. The main sensor consists of a plastic
clamp with a pair of LEDs and photodiodes inside, to be placed in the abaxial and adaxial
parts of the leaf, respectively. The two pairs (LEDs and photodiodes) operate at two specific
wavelengths, producing an electrical (analog) signal that correlates with the leaf water
content. Specifically, one LED is set at 1450 nm (SWIR) and the other at 890 nm (NIR). The
first is directly related to water status assessment [75,76], while the second is mainly linked
to dry matter [74]. Also, in this case, the data are transmitted (through a LoRa module) to
a gateway located in the field that sends the data directly to an internet server. The data
are accessible in a cloud. The acquired data express the leaf dehydration level (DL). These
need to be normalized by the feature scaling method (min-max normalization) to have
comparable data between sensors.

This sensor was first tested by Brunetti et al. in 2022 in woody crops with different
morphologies and biological characteristics (Citrus limon L., Olea europaea L., Acer platanoides
L., and Arbutus unedo L.). A strong correlation was found between the DL and both the
Ψstem and, especially, the leaf RWC (R2 = 0.73 and R2 = 0.84, respectively). The significance
of estimating the RWC lies in the ability to bypass leaf osmotic regulation phenomena,
providing more accurate data regarding the plant’s actual hydration status [33]. Hence, the
results of the first test demonstrated that the LWM can be a reliable and non-destructive
alternative sensor for the continuous and real-time assessment of leaf water status in
woody crops. Nevertheless, no other study employing the LWM has been conducted
to date that confirms the sensor’s reliability. Therefore, its official validation on other
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economically significant fruit tree species (e.g., apple, pear, peach, grapevine, etc.) under
various agro-environmental conditions is still pending.

2.1.3. Leaf Thickness Sensors

The relationship between leaf thickness and plant water status has been known for a
long time. Basically, changes in leaf thickness are the result of water exchanges between
the plant or the atmosphere and the leaf [77]. The leaf thickness undergoes changes not
only due to oscillations in leaf water content, but also in response to various physiological
and environmental mechanisms [78]. For instance, the leaf thickness exhibits diurnal-
nocturnal cycles: in well-irrigated plants, the leaf thickness remains relatively constant
during nighttime, decreasing throughout the day until reaching the minimum peak at solar
noon [77,79]. Furthermore, leaf thickness shows a negative correlation with the VPD and
light [80,81]. Thus, environmental factors influence leaf thickness changes by affecting the
transpiration process [82,83].

The first studies were carried out in 1922 by Bachmann [84], followed by Meidner
(1952) [77]. The latter was the first to use a gear micrometer to measure changes in leaf
thickness continuously. He also observed a strong correlation between leaf thickness
and leaf water content. In 1987, Búrquez used a spring-loaded gear-wheel micrometer in
different herbaceous crops, finding strong correlations between leaf thickness and RWC
(R2 = 0.96–0.99) [81]. However, these instruments were found to be impractical and unable
to make automatic and continuous measurements. In subsequent years other less bulky
and more accurate devices were developed, mainly based on the principle of a differential
transformer, i.e., linear variable displacement transducers (LVDTs) [85–87]. Seelig et al.
designed an efficient irrigation scheduling method on cowpea using a miniaturized leaf
thickness sensor consisting of electrical distance transducers [79]. Sharon and Bravdo con-
ducted a comparison of irrigation scheduling methods, including continuous leaf thickness
monitoring and four conventional drip irrigation regimes based on schedules and water
depletion [87]. The results showed that the sensor-based drip irrigation treatment achieved
the highest yield and exhibited the greatest water use efficiency for ‘Oroblanco’ grapefruit.

In 2017, Afzal et al. integrated leaf capacitance and leaf thickness measurements into
a single sensor to investigate whether the combination of the two measurements can be
used as an indicator of PWS [83]. In detail, the sensor consists of a clamp with two sensing
units, one capable of measuring leaf thickness and the other capacitance. The thickness is
measured by a pair of magnets, and based on their distance, measurements of leaf thickness
(which depends on leaf turgor) can be obtained. A PCB is connected to the sensors via
wires, and through a transmission module, it sends data to an internet-connected central
unit. In summary, it is a kind of combination of LPCP probes and LMCS. The device was
tested on tomato plants. From initial results, it was observed that changes in leaf thickness
reflect the leaf transpiration rate, while capacitance is strongly related to the light period
and photosynthesis. Thus, capacitance can be a reliable indirect measure of PWS through
the water–photosynthesis relationship. Despite its reliability and simplicity, there are no
studies on this sensor being applied in fruit crops. Indeed, variations in leaf thickness
and capacitance may differ from one species to another and environmental variables may
strongly influence sensor data. Hence, further studies are needed to validate the sensor.
Currently, the sensor is not commercially available.

2.1.4. Leaf-Mounted Capacitance Sensor (LMCS)

In 2023, Talheimer developed the leaf-mounted capacitance sensor (LMCS) (Figure 2) [88].
This is a very low-cost sensor that is able to continuously measure a signal that follows the
patterns of leaf transpiration and solar irradiance. The sensor is based on the approach
of sensing leaf transpiration flow by forcing water vapor to condense in the leaf blade,
whose temperature is below the atmospheric dew point [89]. The condensation process
is driven by a declining temperature gradient, resulting from the decreasing temperature
across the sunlit leaf and the underneath sensor plate. The sensor is based on a capacitive



Horticulturae 2024, 10, 516 7 of 36

principle and incorporates a photodiode as a light sensor. Simultaneously and continuously
measuring incident light and leaf transpiration enables a qualitative assessment of the PWS.
This estimation involves comparing the pattern of plant transpiration with the fluctuation
in solar irradiance, which acts as its main driving force [90]. The sensor consists of a circular
printed circuit board (PCB) and a photodiode. The circular PCB represents a capacitance
sensor that can provide different outputs (in pF) depending on the vapor deposition in the
lower leaf lamina. For this reason, the circular PCB has to be placed in contact with the
lower leaf blade (Figure 2B). The sensors are then connected to a battery-powered Arduino-
based microcontroller. Capacitance and irradiance data are transmitted via LoRaWan to
an internet-connected gateway. Thus, the data can be accessed via a cloud. An additional
strength of this device is its low cost due to its simple components. The use of the principle
of capacitance to estimate leaf transpiration was studied by Afzal et al. in 2017 [91].

tt
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Figure 2. LMCS sensors mounted in fig (A), olive (B), and orange (C) leaves.

The sensor was first tested in 2023 in several perennial species: grapevine, persimmon,
walnut (Junglans regia L.), olive, and apple (Malus domestica Borkh.). For instance, grapevine
leaves revealed a signal indicating severe water stress under drought conditions, and
a restoration of conditions (curve rise) after rainfall events and irrigation. Carella et al.
(unpublished data) correlated the capacitance output of an LMCS with VPD data in fig
(Ficus carica L.), finding a similar relationship to that between transpiration and the VPD
which is already well-documented in the literature. Specifically, the relationship follows
a hysteretic pattern due to the lag time of the stomatal response [92–94]. In detail, the
capacitance increases more and more slowly as the VPD increases, until it reaches an
asymptote where the capacitance becomes stable. In contrast, an inverse pattern was
observed in the afternoon, in which, as the VPD decreases, the capacitance decreases more
and more rapidly, until an asymptote is reached, indicating a transpiration stop. Clauser
tested the LMC sensor in apple (cv Rosy Glow Pink Lady®), relating it to other technologies
that measured soil moisture [95]. The results showed that this sensor allows for monitoring
tree water status to define whether the lack of soil moisture is really a problem for the plant.

Since there are no other trials that use an LMCS, further validation studies of the sensor,
e.g., by appropriate machine learning techniques, are needed to predict leaf transpiration
and to evaluate the performance of the sensor under different climatic and physiological
conditions of the tree. Furthermore, additional field testing will be essential to validate the
sensor’s long-term reliability and determine the most effective methods for integrating it
into smart irrigation strategies across various crops and environmental conditions, with
specific attention to crop performance and water use.

2.1.5. Continuous Thermal Sensing

Temperature is closely related to the PWS, since the physical principle behind changes
in canopy temperature depends on the transpiration flow. Indeed, the closure of stomata
caused by water deficit causes a reduction in leaf transpiration, consequently leading to an
increase in leaf temperature [96]. Unfortunately, relying exclusively on leaf temperature
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(Tc) may have several limitations due to the significant impact of environmental variables,
including the wind speed, radiation, air humidity, and air temperature [97]. Therefore, it
becomes imperative to normalize the data with other parameters (e.g., air temperature or a
constantly heated thermocouple) or calculate vegetation indices to acquire thermal data
that can be readily associated with plant physiological information, such as the crop water
stress index (CWSI) [98,99]. Thermal sensors can be classified into contact and non-contact
sensors. Among the contact sensors, the most widely used are thermal resistance sensors
and the better-known thermocouples. The non-contact ones, on the other hand, are based
on temperature measurement by infrared sensors or thermal imaging cameras [99].

A thermal resistance sensor is a temperature sensor consisting of a known resistance
that varies with temperature, such as platinum resistance temperature measurement [99].
A thermal resistance sensor (LT-1T) was used to validate a system based on estimating
plant water status using thermal images [100,101]. In 2012, Atherton et al. [102] developed
a microsensor able to continuously and real-time monitor leaf temperature, in order to
estimate leaf water content. The device is composed of a thin-film resistive heater and two
thin-film thermocouple (TFTC) temperature sensors molded on a 10 µm-thick polyimide
substrate. The sensor measures the leaf thermal resistance. The resistive heater generates a
thermal gradient that changes in response to the overall thermal resistance of any sample
in contact with the device. The resulting thermal gradient is measured as a temperature
difference (∆T) between the two TFTC sensors. The results achieved showed a strong posi-
tive linear correlation between the ∆T and leaf RWC. Despite its reliability and potential,
the sensor has never been tested in horticultural crops or commercialized. Additional
studies are necessary to establish specific thresholds for detecting water stress, to improve
the sensitivity of the sensor and minimize its impact on plant health, possibly through
design refinement or parameter adjustment. In addition, the effectiveness of the sensor
under different environmental conditions needs to be thoroughly investigated to ensure
reliable operation in various agricultural settings. In this regard, a thermocouple works
as a transducer that converts thermal energy into electrical energy, and it is constructed
by connecting wires made from different metals to create a junction. When the temper-
ature at the junction changes, voltage is generated. The fundamental principle behind
thermocouples is the Seebeck effect, which states that if dissimilar metals are joined at a
point, they produce a small measurable voltage when the temperature at the connection
point changes [103,104]. The magnitude of the voltage is determined by the extent of the
temperature change and the characteristics of the metals. To date, thermocouples are used
in validation operations for other techniques for estimating PWS by thermal sensing. For
instance, Pou et al. utilized thermocouples for the validation of thermal indices for water
status assessment in grapevine [105]. Costa et al. developed models to estimate water
and heat fluxes in grapevine using leaf-mounted thermocouples and thermal imaging
techniques [106].

In 2017, Dhillon et al. developed a continuous leaf monitoring system to assess plant
water status by combining low-cost thermal infrared thermometers and environmental
sensors [107]. The authors found a negative linear relationship between the ∆T (Tleaf − Tair)
and stem water potential. Moreover, the combination of sensors provided enough data
to accurately calculate the CWSI. The method was successfully tested in almond (Prunus
amygdalus Batsch) and walnut (Juglans regia L.) [108]. Despite the demonstrated accuracy of
the measurements, for a definitive validation of the system, studies on different crops and
evaluation of the system performance under different conditions are needed to fully assess
its potential as an irrigation scheduling tool.

2.1.6. Further New Sensors (Microsensors)

The emerging wearable electronics industry has shown promising results in various
applications, although it is in its early stages in agriculture. The flexibility of wearable
sensors allows their easy positioning close to specific plant organs and portions, facilitating
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continuous and accurate monitoring. This capability helps in early plant stress detection
and reduces plant productivity loss [109,110].

In addition to those already described, other interesting leaf-mounted sensors for PWS
estimation have been developed in the past two years. In 2024, Peng et al. built a wearable
and capacitive sensor for the real-time and precise monitoring of leaf water content. It
was tested in golden pothos (Epipremnum aureum Lindl. and Andre) leaves [111]. The
microsensor consisted of two wearable electrodes. The leaf must be placed between the
two electrodes. Due to the excellent flexibility of the electrodes, the device can be used in
a multitude of leaf types. The authors found that the leaf capacitance value is positively
correlated with the leaf moisture content, and the results were similar to those found with
conventional rigid electrodes [91,112]. Despite the results achieved and the high potential
of the sensor, several problems remain to be solved. For example, attention needs to be paid
to the leaf integrity when monitoring physiological information, which could be influenced
by wearable electrodes. In addition, as the sensor has been tested for only a few days,
it will be necessary to test it under open-field conditions and evaluate the timing of its
measurement reliability. Im et al. built a flexible polyimide (PI)-based sensor, that is also
based on the capacitance principle [113]. This microsensor proved useful for estimating
the transpiration flux of tobacco plants grown in growth chamber conditions. Also in this
case, although the sensor has demonstrated accuracy in its growth chamber measurements
and is lightweight, it still requires testing under open-field conditions, particularly on fruit
trees, to assess its consistency and durability.

2.2. Stem-Mounted Sensors

2.2.1. Stem Dendrometers

The plant water status can also be estimated by measuring diameter changes in
different organs such as the stem, branches, and fruits [26]. Regarding the stem diameter
variations (SDV), C3 plants follow a precise mechanism depending on the transpiration
flow. In the early morning, as transpiration begins, the xylem water potential starts to
decrease [114]. This tension extends from the foliage to the other organs of the plant, leading
to the loss of water stored overnight [115]. Consequently, the plant responds to atmospheric
water demand at a time when the root uptake is not fully active, acquiring water from
other organs such as fruits, branches, and the trunk and causing daily fluctuations in their
diameter [116,117]. In trees, the trunk’s contribution to water transfer is significant [118].
Thus, a reduction in diameter occurs due to this transpiration water withdrawal from
xylem and phloem vessels [119]. During the evening and night, the water potential is
restored, and the trunk returns to its volume or increases, depending on the amount of
carbohydrates gained during the day [120]. The fluctuation amplitude depends on the
elastic properties of the tissues [117], the difference in osmotic pressure between the bark
and xylem [121], the diffusive properties of water in the phloem [122], and the growth rate
of the trunk [117].

From measuring changes in stem diameter, several SDV-derived indicators can be
taken into account to assess PWS, e.g., the trend of maximum and minimum daily growth,
daily growth, stem growth rate (SGR), and maximum daily shrinkage (MDS) [9,123]. The
two last indicators are the most widely used [114].

The first prototype dendrometer (dendrograph) was built in 1883 by Böhmerle [124].
The use of automated dendrometers, on the other hand, has occurred since the second half
of the 20th century [9,125,126]. Nowadays, the most commonly used dendrometers are
optical types (infrared distance sensor [127]), electronic point dendrometers [128,129], and
strain gauges with linear variable differential transformers (LVDTs). The majority of authors
have used LVDT-type sensors, mainly because they are easy-to-use and low-cost [9].

Naor and Cohen utilized LVDT dendrometers to study the sensitivity and variability of
the maximum daily shrinkage, midday stem water potential, and daily transpiration rate in
response to withholding irrigation from field-grown drip-irrigated ‘Golden delicious’ apple
trees [130]. The authors observed that both the MDS and Ψstem exhibit higher sensitivity to
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variations in the soil water availability compared to the daily transpiration rate (determined
using a ‘Class A’ evaporation pan). Moreover, the MDS was more responsive than the Ψstem

to changes in the soil water availability. This may be explained by the non-linear relation-
ship between the Ψstem and MDS [130,131]. However, they found that the MDS showed a
higher variability than the Ψstem. In particular, the MDS’s variability increased with the
water stress. Therefore, the authors concluded that more measures than just the Ψstem and
MDS need to be integrated. Additionally, establishing an irrigation scheduling threshold
based on MDS measurements is likely to be more complex because thresholds may vary
from one apple commercial plot to another due to changes in parameters influencing trunk
bark thickness, such as the tree age and rootstock. More recently, Wheeler et al. utilized
stem dendrometers to determine the tree water status of high-density apple orchards [132].
They aimed to enhance the precision of irrigation scheduling by correlating continuous data
obtained from stem dendrometers with the Ψstem and atmospheric evaporative demand.
On the other hand, in peach trees (Prunus persica L.), Conejero et al. showed that using
dendrometers alone and calculating the MDS is sufficient for irrigation scheduling [133].
These results were confirmed by Mirás-Avalos et al. [134] and De la Rosa [135] in 2017
and 2016. In almond, on the other hand, the stem growth rate (SGR) was found to be
more reliable than the MDS for assessing water status [136]. In pear (Pyrus communis L.),
the MDS was found to be a good indicator of water stress, due to the quick response to
environmental conditions [137]. On the contrary, Blanco and Kalcsits found that, despite
the MDS detecting water stress earlier, it did not increase in the same proportion as the
Ψstem when it was lower than −1.4 MPa [138]. In a table olive orchard, Corell et al. showed
that both the TGR and MDS were found to be reliable indicators to detect mild water stress,
even though they were less reliable than the Ψstem [139]. In cherry (Prunus avium L.), the
MDS was less precise than the Ψstem but more sensitive and responsive to water stress,
making it useful in situations where even a slight water deficit could impact the vegetative
growth, fruit development, and yield [140]. In grapevine, the MDS and TGR were found to
be unsuitable to predict water stress after veraison [141]. Finally, it can be stated that, while
the measurement of the trunk diameter to assess the PWS can prove reliable depending on
the crop, phenological stage, and water stress level and is easy to apply, it does not provide
comprehensive information regarding the leaf and fruit water status [9,26].

2.2.2. Microtensiometers

The stem water potential (Ψstem) is considered one of the main indicators for assessing
plant water status. However, as indicated previously, the most reliable method to measure
the Ψstem has been the pressure chamber method, which is labor-intensive and time con-
suming. Fortunately, in recent years, devices that can measure the Ψstem continuously and
in real-time are being developed. Recently, people at Cornell University together with the
FloraPulse (FloraPulse Co., Davis, CA, USA, www.florapulse.com) company developed an
electro-mechanical system-based microtensiometer which can be embedded in the trunk
and is capable of measuring water potential continuously. This sensor was first described
by Pagay et al. in 2014 [142]. In 2019, Black et al. published a detailed description of the
sensor with its physical principle, also adding improvements [143]. The sensor is based
on the tensiometer principle, i.e., an instrument able to monitor the water potential of an
external matrix (xylem) by balancing an internal volume of water, where the hydrostatic
pressure is considered the negative counterpart of the external water potential [144,145]. In
brief, the microtensiometer combines two common sensing circuits: a strain gauge and a
thermometer. The thermometer is made of a serpentine thin film platinum resistance (PRT),
which changes its resistance with the temperature. The strain gauge consists of four poly-
crystalline silicon resistors (piezoresistors) in a Wheatstone bridge configuration placed on
a diaphragm, and its resistances vary with the strain. Below the strain gauge, a 3 µm-deep
cavity is etched with a diaphragm and a water reservoir [143]. Also in this case, data can
be transmitted either via a wireless system or downloaded from a datalogger. The sensor
is capable of continuously monitoring the trunk water potential (Ψtrunk), thus providing

www.florapulse.com
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another tree water status indicator [142,146]. Although, in early studies, it was thought that
the sensor directly measured the Ψstem, Pagay et al. showed that, in grapevine, there were
differences between the Ψstem measured with the pressure chamber and the Ψtrunk [144].
Specifically, the Ψtrunk was generally higher than the Ψstem measured at the same time. The
authors deduced that this difference is mainly due to hydraulic resistances between the
trunk and leaves. Zucchini et al. also noticed this difference between the Ψtrunk and Ψstem in
olive trees [147]. In particular, they observed that, in 32 out of 33 measurements, the Ψstem

data obtained using the pressure chamber were lower than the Ψtrunk, with a maximum
difference of 1.15 MPa. On the other hand, in almond [146] and nectarine [148], the Ψtrunk
and Ψstem were found to be quite similar. Due to such differences, new thresholds of water
stress need to be established using Ψtrunk.

The microtensiometer was first field tested on two grapevine cultivars, Shiraz and
Cabernet Sauvignon [144]. The author characterized the seasonal and diurnal dynamics of
the Ψtrunk and compared these values with the Ψstem and Ψleaf measured with the pressure
chamber. He found that the Ψtrunk correlated better with the Ψstem than with the Ψleaf.
Moreover, he showed that the relationship between the Ψtrunk and Ψstem is stronger under
low VPD than under high VPD conditions. In details, under high VPD conditions, the
Ψtrunk consistently declined below the Ψstem around mid-afternoon, followed by a recovery
observed by early evening. The author concluded that the microtensiometer provided good
measurement reliability and several studies will be needed to establish irrigation thresholds.

Blanco and Kalcsits tested the microtensiometer in pear by relating the Ψtrunk and
Ψstem measured with pressure chamber and found strong correlations, concluding that
microtensiometers provide an accurate continuous method for measuring the water poten-
tial in trees throughout the growing season, even under diverse environmental conditions
and variations in soil water content [149]. In 2023, Blanco and Kalcsits again published the
results of 2 years of monitoring a pear orchard [138]. The authors found a strong correlation
between the Ψstem and Ψtrunk (R2 = 0.88), and variations in trunk diameter (measured
with a LVDT dendrometer) followed changes in the Ψtrunk mainly at the beginning of the
irrigation season. Once again, the sensor demonstrated high reliability for continuous PWS
assessment. Kisekka et al. compared and evaluated data recorded on almond leaves with a
Scholander chamber, microtensiometers, and osmotic cells for continuous measurement of
the Ψstem [150]. The excellent results confirmed the potential of these sensors in facilitating
irrigation scheduling.

Nieto et al. studied the relationship between the Ψtrunk and fruit growth rate and
managed to determine irrigation thresholds in apple trees [151]. In detail, through logistic
regression analysis between the Ψtrunk and fruit growth rate (in terms of fruit weight), the
authors identified the critical value of approximately −0.97 MPa, which corresponded to
the irrigation intervention threshold in that ecosystem. Satisfactory results regarding the
suitability of microtensiometers to assess PWS were also obtained in nectarine [148] and
almond [146,152] orchards.

Despite its reliability, the usefulness of the data, and its ease of installation, the sensor
still needs to be validated at wider ranges of plant hydration given that so far it has been
tested down to about −3.5 MPa (as also indicated on the FloraPulse website). Indeed, in
species such as olive, especially in areas characterized by water scarcity, it is important
to have a reliable sensor also at Ψstem values below −3.5 MPa [69,153]. Also, at least for
strict determinations of tree water status, a 20–30-min time lag of the microtensiometer
readings compared to actual Ψstem values has been observed, which must be taken into
account, especially when daily curves are being studied. Additionally, there are still no
studies where the microtensiometer has been employed for more than two consecutive
years. Finally, the high cost of the sensor may represent a limiting factor for many growers
and agricultural areas.
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2.2.3. Sap Flow Sensors

The transpiration flow is closely dependent on the PWS, as the latter influences stom-
atal opening and thus gas exchange between the plant and the atmosphere. Nevertheless, in
parallel with PWS, the transpiration (and thus sap flow) can be affected by environmental
factors (VPD) [154]. The transpiration rates of whole trees can be assessed by sap flow
methods that quantify the rate at which sap rises through the stems [155]. Such methods
are collected on the dedicated working group web page of the International Society for
Horticultural Science (ISHS) (https://www.ishs.org/sap-flow/ishs-working-group-sap-
flow-online-resources, accessed on 12 May 2024), and recently Noun et al. published a
review on plant-based methodologies and approaches for estimating the plant water status
of horticulture crops in which there is an exhaustive update on methods for measuring
sap flow [10]. In addition, there is SAPFLUXNET (https://sapfluxnet.creaf.cat/, accessed
on 12 May 2024), a global database maintained by the Centre for Ecological Research
and Forestry Applications (CREAF) (Barcelona, Spain), which aims to advance scientific
understanding of the ecological factors that determine plant transpiration and drought
responses worldwide [156]. One of the main advantages of sap flow sensors is that they are
easily automated for continuous measurements [10].

Sap flow can be defined in terms of the sap flow rate (g or L h−1 or equivalent) or
sap flux density (sap flow rate per sapwood area) [157]. Flo et al. split the methods
into four groups depending on their physical principle [157]: (1) dissipation [158,159],
(2) pulse [88,160–166], (3) field [167], and (4) balance [38,168]. Such methods are briefly
described in the following table (Table 1):

Table 1. A list of the main techniques for measuring sap flow, with brief descriptions.

Method Brief Description References

(1) Dissipation
It measures heat dissipation from a heated probe inserted in the
sapwood compared to a non-heated reference probe

Thermal dissipation TD
The upper probe is constantly heated, and the measured
temperature difference decreases with increasing sap flow density

[158]

Transient thermal dissipation TTD
It works under transient conditions by introducing a relatively
short heating and cooling cycle

[159]

(2) Pulse
It applies heat intermittently and monitor changes in sapwood
temperature induced by thermal convection and conduction

Compensation heat pulse CHP

A heater probe is inserted into the xylem between two temperature
sensors. By measuring the time, it takes for the heat pulse to travel
via convection to the midpoint, the velocity of the pulse
is determined

[160]

Heat ratio HR

It employs a brief heat pulse to trace water movement, and by
analyzing the heat ratio between two symmetrical temperature
sensors, the magnitude and direction of water flow can
be determined

[161]

Cohen’s heat pulse T-max

It uses a single temperature sensor located downstream of the
heater probe. The sap flow rate is calculated from the time it takes
the downstream temperature sensor to register the maximum
temperature rise

[162]

Calibrated average gradient CAG

Useful for calculating low sap velocities from sap flow records
obtained with the standard CHP method, but the temperature
differences between the readings of the two temperature probes are
averaged (∆Ta) over a certain period of time.

[163]

Sapflow+ SF+
It uses a four-needle sensor to measure heat velocity in the entire
density range of natural sap flow and allows simultaneous
estimation of stem water content

[164]

https://www.ishs.org/sap-flow/ishs-working-group-sap-flow-online-resources
https://www.ishs.org/sap-flow/ishs-working-group-sap-flow-online-resources
https://sapfluxnet.creaf.cat/
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Table 1. Cont.

Method Brief Description References

Single probe heat pulse SPHP
It uses a single-probe sensor based on the fundamental
conduction−convection principles of heat transport in sapwood

[165]

Dual heat pulse Dual
It combines two heat-pulse methods: The HR, effective for low and
reverse flows, and CHP, suitable for moderate to high flows, within
a single set of sensor probes

[166]

Ratio heat pulse TmRatio
It uses the ratio of temperature maxima on downstream and
side probes

[88]

(3) Field
It measures the shape variations of a continuous heat field within
the sapwood by utilizing tangential and axial probes

Heat field deformation HFD
It uses a sensor composed of one needle-like heater inserted in the
sapwood and three temperature sensors placed above, below and
at the side of the heater

[167]

(4) Balance It measures the energy balance through a heated wood section

Stem heat balance SHB
It involves employing a sensor with a flexible heater, typically
several centimeters wide, encircling the stem and protected by
layers of insulating and weather-resistant materials

[38]

Trunk heat balance THB

It consists of three to five stainless steel metal plates inserted in
parallel into the sapwood, spaced two centimeters apart, covering
the entire sapwood depth. This configuration allows for the
integration of sap flow across the sapwood.

[168]

Sap flow sensors based on the principle of thermal dissipation have been widely
used in the literature [156]. Their popularity likely stems from their reliability, simplicity,
and cost-effectiveness, as well as the ease of construction of handmade probes [169]. In
1985, Granier developed a thermal sensor consisting of two needle-shaped probes inserted
radially into the sapwood [158]. One of these probes is heated at constant power, while
the other serves as a temperature reference. In detail, a thermocouple (copper-constantan)
is placed in the middle of the heating resistor, and an aluminum sheath covers the entire
system to equalize the temperature. The second probe, positioned in the trunk below the
previous one, contains an identical thermocouple mounted in opposition to that of the
heating element. The system then permits measurement of the temperature difference (∆T)
between the two probes [170]. The author also found experimentally that the volumetric
sap flow density (u, cm3 cm−2 s−1) is related to the temperature (T) by the following
relationship (calibrated for different woody crops):

u = 0.119 × K1.231 (1)

In which:

K =
∆Tmax − ∆T

∆T
(2)

where ∆Tmax represents the maximum temperature value (when u = 0, i.e., during the
night) and ∆T is the temperature difference between the two probes. In addition, the total
sap flow (F, cm3 s−1) can be calculated from the sap flow density using the formula:

F = u × Asw (3)

In which Asw is the cross-sectional area of the sapwood (cm2) [170].
The latter estimate (F) can be used for appropriate precision irrigation management

since it is possible to estimate the actual volume of water transpired by the tree in the unit
of time. The sensor was initially validated on forest species [158,170], but over the years
it has been widely used in fruit crops. However, considering the high sensitivity of sap
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flow to weather conditions, sap flow sensors often require calibration in the field [171] and,
therefore, it is highly recommended to use them in conjunction with other sensors, such
as LPCP probes and/or fruit gauges [9,25,26]. Fuchs et al. performed recalibration and
comparison tests between TD and HFD methods [172]. The results showed that TD probes
tend to underestimate the flux density by 23–45% with Granier’s original calibration. The
accuracy improves by performing species-specific recalibration. In contrast, HFD sensors
overestimate flux by up to 11%. Under low and medium sap flow conditions, the HFD
method underestimates the flux by 0.8%, thus demonstrating high accuracy. The authors
concluded that both HFD and TDP sensors require new species-specific calibrations to
improve their measurement accuracy. Furthermore, sap flow systems are currently not
affordable for a significant portion of the agricultural community.

Despite these issues, sap flow has been used as an indicator for water stress in several
cases. On apple trees, Nadezhdina used a sap flow index estimated by the heat pulse
velocity (HPV) method that proved sensitive to water stress, with a strong correlation with
the pre-dawn Ψleaf (R2 = 0.96) [167]. Hernandez-Santana et al. [173] correlated sap flow
data with the gas exchange in olive trees. They found that stomatal conductance (gs) and
net photosynthesis (An) can be readily estimated from sap flow. Ferrara et al. used sap flow
meters with the thermal dissipation method to evaluate the influence of the water deficit
on the water use efficiency and water productivity in olive trees (cv. Arbosana) cultivated
in an adult super-high-density orchard [174]. In orange (Citrus sinensis Osbeck), Cohen’s
heat pulse (Tmax) sap flow was successfully used to identify water stress conditions [175].
In cherry, the joint use of sap flow sensors and dendrometers (MDS) represented a suitable
system for irrigation scheduling [176]. Marino et al. included continuous TD probes in a
multiple plant-based sensing system to detect mild water stress in olive [58]. The authors
concluded that sap flow probes are not as useful as LPCPs and fruit gauges for detecting
water stress in olive because they are strongly influenced by VPD. However, they can
provide a useful quantitative indication of transpired water.

2.2.4. Thermocouple Psychrometer

An additional non-invasive method to monitor the water status of a plant through
water potential is using thermocouple psychrometers. These instruments allow for deter-
mining the Ψleaf or Ψstem. The principle is based on the Seebeck effect, which consists of
a complete electrical circuit formed by two dissimilar metals forming a thermocouple. If
the measuring and reference junctions of the circuit are at different temperatures, a voltage
difference, which depends on the temperature difference between the junctions, will be
generated by a flowing current [98]. In thermocouple psychrometry, the relative humidity
of the air around the sensing junction is crucial because it affects the temperature difference
between the wet sensing junction and the dry reference junction [177]. To directly calcu-
late the water potential from the measurements, the instrument needs to be empirically
calibrated using solutions of known water potential [178]. This method started to be used
around the 50s. Initially, psychrometry was only used in the laboratory because it required
accurate temperature control. Over time, advancements in new projects and electronic
instrumentation have provided the capability to perform on-site measurements quickly
and non-destructively. There are currently three types of psychrometers: non-equilibrium,
isopiestic, and dew point psychrometers [179]. Nowadays, the most used psychrometer
is the PSY1 Stem Psychrometer built by Dixon and Tyree and currently produced by ICT
International (Armidale, NSW, Australia) [180]. The PSY1 Stem Psychrometer consists
of two soldered chromel-constantan thermocouples connected in series inside a chrome-
plated brass chamber that forms a large thermal insulating mass. Inside the chamber, one
thermocouple is in contact with the stem sample and the other simultaneously measures
the chamber air temperature and, after a Peltier cooling pulse, the wet bulb depression. A
third copper-constantan soldered thermocouple is located inside the sample chamber body
to measure the temperature of the instrument for temperature compensation purposes.
The use of the PSY1 Stem Psychrometer has proven to be reliable for monitoring the water
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potential, after validation with other techniques, including the Scholander pressure cham-
ber [181,182]. Kokkotos et al. used the PSY1 Stem Psychrometer to evaluate the variation in
water potential in response to alternate fruit bearing [183]. In this study, the instrument was
calibrated with a NaCl solution, and the water potential data were acquired every 30 min.
In another study carried out in olive [184], water potential measurements were taken every
20 min, and the purpose was to evaluate how the hydraulic conductance changes in plants
under water deficit. The PSY1 Stem Psychrometer was also used on grapevine to evaluate
the plant response to a 6-week drought experiment [185]. In conclusion, the use of the PSY1
Stem Psychrometer has proved to be a very valid method for the continuous measurement
of stem water potential [186]. Despite the sensor’s reliability, the main disadvantages can
be related to the need for calibration with standard solutions, difficult installation, and high
cost [186].

2.2.5. TreeTalker®

The TreeTalker® is a continuous real-time system that was developed by Valentini et al.
(Figure 3) to measure water transport in trees, radial trunk growth, spectral characteristics of
leaves, and microclimatic parameters using artificial intelligence [127,187]. The instrument
consists of a microcontroller with an ATMega 328 processor chip connected with different
sensors designed for the measurement of plant physiological variables. The TreeTalker®

includes a reference and a heated probe (Murata Electronics, Nagaokakyo, Kyoto, Japan) to
measure the sap flow rate through the heat pulse method; a capacitive sensor to measure
trunk moisture content; a 12-spectral-band spectrometer (AS7262 for visible and AS7263 for
near infrared band—AMS, Premstaetten, Austria) centered at the wavelengths of 450, 500,
550, 570, 600, 610, 650, 680, 730,760, 810, and 860 nm to measure the multispectral signature
of light transmitted through the canopy; a MMA8451Q thermohygrometer (Silicon labs,
Austin, TX, USA) to measure air temperature and relative humidity; an infrared distance
sensor (SHARP, Osaka, Japan) to measure tree trunk radial growth; a Si7006 accelerometer
(NXP/Freescale, Austin, TX, USA) to measure accelerations along a 3D coordinate system
used to detect tree movements. The TreeTalker® has mainly been used in forestry but could
potentially be used in fruit trees [188–190]. This device could be valuable for assessing both
plant water status and consumption. Specifically, integrated sap flow probes can provide
data on transpired water, while the infrared resistance sensor, capacitive trunk moisture
sensor, and spectroradiometer can offer a good indication of the PWS. Such comprehensive
information can be of great advantage for irrigation management. On the contrary, it
requires a validation with PWS main references (RWC, Ψstem). To date, no experimental
trials with TreeTalker® on assessing the plant water status and consumption and irrigation
management of fruit trees have been conducted.
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Figure 3. TreeTalker® mounted on an olive trunk.
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2.3. Fruit-Mounted Sensors

Fruit Gauges

Fruit growth parameters can be a reliable indicator of PWS [191]. The total volume of
the fruit is determined by the balance of water inflow and outflow through the phloem and
xylem, along with atmospheric exchanges that occur through the exocarp [26]. Such water
flows into and out of the fruit are determined from the water potential gradient differences
between the plant and the fruit [191,192]. Similar to what happens in the trunk, water
exchanges cause diametric fluctuations during the day. Furthermore, due to the composi-
tion of fruit tissues (relatively high water content compared to wood tissues), they exhibit
greater sensitivity in diametric variation to changes in water potential gradients compared
to the trunk. This increased sensitivity allows for timely measurements, which are useful in
preventing adverse effects on fruit growth and final yields. Daily diametric fluctuations are
due to the imbalance between the inflow and outflow. Indeed, during the midday hours,
the fruit transpiration rate is higher than the xylem inflow (outflow > inflow), causing fruit
shrinkage [193]. During the evening and night, water potential is restored, and the fruit
returns to its original volume or expands thanks to the accumulation of carbohydrates
during the day [193–195].

Since the second half of the 1900s, several studies have reported the use of devices
to monitor fruit diameter [196–200]. Most of the sensors developed are LVDTs (strain
gauges) connected to a plunger that makes direct contact with the peel, usually mounted in
a metal frame [199]. The first rudimentary LVDT device for the continuous monitoring of
fruit diameter was designed by Tukey in 1964 [196]. In 1984, Higgs and Jones devised an
accurate system for the continuous measuring of fruit diametric fluctuations [197]. In 1998,
Link improved the sensor by making it more flexible and suitable for greater thickness
ranges [200]. Despite the accuracy and reliability of these sensors, they were relatively
expensive and, considering the number of sensors required to be used in the field, non-
sustainable for a farm [26]. In 2007, Morandi et al. constructed a low-cost sensor consisting
of a linear potentiometer connected to a plunger that must be kept in contact with the peel
and a stainless-steel frame (Figure 4) [199]. The gauge is adjustable and can be used with
fruits of various sizes, from olive [68] to mango (Mangifera indica L.) [193]. To date, it is the
most widely used type of fruit gauge in studies of fruit growth dynamics in response to
external factors, including changes in PWS [65,69,201–203]. In 2016, Thalheimer built a fruit
diameter monitoring sensor with low-cost optoelectronic components and with a flexible
two-color tape for movement detection by the optoelectronic sensor [198]. However, while
this sensor may prove useful for monitoring the active growth of the fruit, it does not seem
suitable for assessing PWS because it is only able to detect fruit enlargements and it does
not react to shrinkage. The latest sensor built for monitoring fruit growth was presented by
Peppi et al. in 2023 [204]. It is part of a low-cost multi-channel sensor-node architecture
capable of transmitting data with a low-power LoRa transmission system. The sensor
structure consists of two solid arms bound together at one end with a bolt. The plier is held
in place by a spring, while a reference voltage-supplied potentiometer is located within the
fulcrum of the plier and rigidly connected to one of the two arms of the clamp. This seems
to be a more stable sensor on the fruit and more suitable for IoT systems. However, it still
needs to be validated in fruit crops.
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Figure 4. LVDT fruit gauges mounted in loquat (A), orange (B), mango (C), olive (D), and peach
(E) fruit.
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Fruit gauges have been abundantly used to understand the physiological dynamics
of fruit water exchanges, i.e., to study the relative contribution of xylem, phloem, and
transpiration flows to fruit growth and understand the water relationships between a fruit,
plant, and environment at different fruit development stages. These mechanisms were
studied in peach [194], apricot (Prunus armeniaca L.) [205], kiwifruit (Actinidia deliciosa
Chev.) [206], sweet cherry [207], and pear [208]. Carella et al. used fruit gauges to test
the effect of the vapor pressure deficit (VPD) on the fruit relative growth rate (RGR), by
comparing data of peach, mango, loquat (Eriobotrya japonica Lindl.), olive, and orange [209].

Several studies have investigated the suitability of the continuous monitoring of fruit
growth to promptly detect when the fruit starts to be affected by water deficit in order to
establish the moment to apply irrigation water. Boini et al. [210] monitored fruit growth
to detect the onset of water stress in ‘Imperal Gala’ apples by correlating various growth
parameters (fruit net daily growth, midday AGR, maximum AGR, minimum AGR, and
fruit daily shrinkage) with the Ψstem. The results showed that the fruit daily growth rate
(g day−1) is the index that better correlates with the Ψstem, thus having the potential to
be used as a reference in apple irrigation scheduling. In addition, the authors were able
to define the threshold indicating the onset of moderate water stress in terms of the fruit
daily growth rate (from 1.2 to 1.3 g day−1). Khosravi et al. carried out a three-year study
using fruit gauges to assess abnormalities in the fruit growth of ‘Frantoio’ olive trees
due to several factors including tree water status. The purpose of the study was also
to find the best way to analyze data with different statistical models [211]. Marino et al.
used fruit gauges in conjunction with sap flow probes and leaf turgor pressure sensors
(LPCP probes) [58]. The authors showed that the joint use of these three sensors can
provide a comprehensive indication of olive trees’ water status. For instance, the two olive
cultivars studied showed different response behaviors to a water deficit: one manifested it
in pronounced changes in its leaf turgor and fruit RGR, and the other significantly reduced
its sap flow and reached very low values of leaf turgor pressure. In nectarine, Scalisi et al.
demonstrated the suitability of a dual-organ sensing approach by using fruit gauges with
LPCP probes to determine irrigation timing by assessing which organ and sensor exhibited
the strongest correlation with the Ψstem [64]. Ultimately, it was found that a combination of
both approaches proved most effective in determining irrigation timing. In 2020, Scalisi
et al. replicated the experiment with olive trees and similarly concluded that a combination
of leaf and fruit sensing proved most effective in determining irrigation timing [68].

Although monitoring the fruit diameter may be important to identify when fruits
are adversely affected by water deficit (fruit is the strongest sink organ), these data alone
may not be enough for a complete analysis, as its growth dynamics may be influenced by
other factors like the crop load and mainly phenological stage [64]. In most stone fruits,
water exchanges between the fruit and the plant or the atmosphere are at their lowest
during pit hardening, while transpiration rate peaks during cell enlargement [212]. Having
information from multiple organs simultaneously, such as the leaves and xylem, can be
valuable for assessing the physiological behavior of the entire plant system across the stages
of fruit development. Therefore, it would be necessary to use this sensor in combination
with others, for example, sap flow and LPCP sensors, as previously shown.

3. Remote Sensing

Investigating the spatial and temporal variability in the field is one of the primary
goals of precision irrigation. Ground-based measurements, although reliable, continuous
in time, and accurate, provide a spot indication of the whole-field water status. Remote
sensing techniques, although generally unable to monitor variability over time, are meant
to overcome this spatial limitation of proximal measurements [45,213,214]. Remote sensors
are capable of acquiring images containing information of different types and covering
a wide area. In order to understand what type of sensor to use, one must be clear about
the variable to be analyzed. Generally, remote sensors that are capable of measuring data
reflected or transmitted by crops are used. This is because different components of the
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canopy structure are capable of reflecting energy at different wavelengths depending on the
molecules in the tissues. The spectral bands used in precision farming include ultraviolet
(UV; 300–400 nm), visible (VIS; 400–700 nm), near infrared (NIR; 700–1400 nm), shortwave
infrared (SWIR; 1400–3000 nm), and thermal infrared (TIR; 3000–25,000 nm) [46,215]. These
spectral bands allow the calculation of vegetation indices (VI) that are useful in assessing
plant physiological parameters, e.g., the normalized difference vegetation index (NDVI),
crop water stress index (CWSI), normalized difference red edge index (NDRE), normal-
ized difference water index (NDWI), etc. In this regard, remote sensors include optical
cameras that are distinguished by various factors such as the type of operation to carry
out, type of acquisition, and number of spectral bands [46]. In precision irrigation, thermal,
multispectral, and hyperspectral sensors can provide accurate PWS information [6]. The
main platforms used in remote sensing are satellites and unmanned aircraft systems (UAS,
drones). Generally, satellites can provide a large amount of information since they can
cover huge areas, but with a relatively low resolution [216]. Drones, on the other hand,
manage to cope with the resolution problem since they can fly at closer distances (40–120 m
above the ground) [217–220]. Nevertheless, with the growing prevalence of free satellite
data sources such as MODIS, Landsat, Sentinel, and Gaofen, commercial satellite imagery
resolutions continue to improve both spatially (WorldView) and temporally (Planet). This
improvement is attributed to cost reductions in small satellite systems [221,222].

The following paragraphs briefly describe the main remote sensing techniques for
assessing the field water status (FWS) in woody fruit crops by using thermal, multispectral,
and hyperspectral sensors.

3.1. Thermal Sensing

Plant temperature has been a longstanding indicator of water availability [96]. In
the last three decades, thermal infrared (TIR) cameras have proven to be effective tools
for estimating leaf and canopy temperature (Tc), which has been recognized as a rapid,
reliable, and non-destructive indicator of transpiration and PWS [223,224]. Plants tend
to regulate their temperature by transpiring through the stomata, thereby balancing the
energy fluxes within and outside the canopy [6,225]. When the plant undergoes stress,
the transpiration rate decreases, leading to an increase in the Tc. This increase in the Tc

may serve as an indicator for detecting plant water stress [46,225]. However, the Tc alone
may not be sufficient, as it is influenced by various factors, mainly the air temperature
(Tair). Several authors have often decided to normalize the canopy temperature with the
air temperature (Tc − Tair) before correlating it with the main indicators of PWS (Ψstem,
RWC, gs, etc.. . .) [66,226,227]. In 1981, Jackson et al. [96] developed the crop water stress
index (CWSI), derived from the energy balance equation. In detail, the complete formula
for CWSI is the following [98]:

CWSI =
(Tc − Tair)− (Tc − Tair)LL

(Tc − Tair)UL − (Tc − Tair)LL
(4)

where (Tc − Tair)LL is the lower limit of the difference between Tc and Tair, corresponding
to a fully transpiring canopy. (Tc − Tair)UL is the upper limit, corresponding to a non-
transpiring canopy. (Tc − Tair)LL is also defined as non-water stress baseline (NWSB),
established through the relationship between Tc − Tair and VPD; whereas (Tc − Tair)UL
corresponds to the relationship between the Tc − Tair and VPD of a non-transpiring canopy.
Conventionally, the (Tc − Tair)UL is obtained from the intercept of the equation used to
calculate the NWSB corrected for air temperature, according to the methodology proposed
by Idso et al. in 1981 [98,228]. In 1999, Jones simplified the equation as follows [229]:

CWSI =
Tc − Twet

Tdry − Twet
(5)
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In which Tc is the actual canopy temperature obtained by thermal photo, and Tdry
and Twet are the references representing the non-transpiring leaf (or canopy) temperature
and a fully transpiring leaf (or canopy) temperature, respectively. The CWSI ranges
from 0 (fully hydrated plant) to 1 (fully stressed plant). One of the most debated issues
concerns the methodology to establish Tdry and Twet references. To date, several methods
have been studied. One may involve a theoretical (or analytical) approach, determining
the CWSI and references via the balance equation at the canopy surface. However, this
method requires the use of several environmental parameters (for more details see Jackson
et al. [230] and Agam et al. [231]). An alternative approach involves the use of a wet artificial
reference surface (WARS) [232,233] as Twet, while Tdry can be estimated empirically as
Tair + 5 ◦C [234]. Nevertheless, the accuracy of this method could be significantly affected
by the material of the WARS, which should have similar leaf emissivity [6,235]. Apolo-
Apolo et al. built paper-based hemispheric surfaces that were placed in a 3D-printed plastic
structure that continuously allows water storage [236]. Another common approach involves
using leaves sprayed with water and detergent 30 s before measuring the leaf temperature as
wet references. For the dry reference, the leaf is covered with petroleum jelly at least 30 min
before the measurement to artificially close the stomata and inhibit transpiration [225].
Finally, a frequently used approach in recent studies involves extrapolating the temperature
of the pure canopy from the entire thermal image through image analysis, aiming to obtain
the temperature distribution histogram of the pure canopy. Twet corresponded to the
average temperature of the 0.5% values on the left side of the histogram, whereas Tdry to
the average temperature of the 0.5% values on the right side [237–241]. The latter approach
has proven reliable in different species such as nectarines [237], grapevine [242], plums
(Prunus domestica L.) [243], and olive [241].

Image analysis is necessary to extract temperature values. The main methods for
canopy extraction consist of selecting a region of interest (ROI), temperature threshold, and
binary mask [244]. A ROI containing a single leaf or an area of leaves is identified in the
thermal image either through manual or automatic delineation of an area mainly covered
by leaves within the central portion of the thermal image [105]. ROI selection is rarely used
for canopy segmentation in thermal imaging obtained by UAVs. This is largely due to the
presence of significant ground background pixels in UAV-obtained thermal images, which
makes it difficult to accurately isolate the canopy pixels. Temperature thresholding con-
sists of distinguishing the soil and canopy pixels using a bimodal histogram showing two
temperature peaks attributed to the soil and canopy [245]. Thus, temperature thresholding
can be easily determined from the temperature frequency histogram of thermal imaging.
Although most pure canopy pixels can be extracted, the temperature threshold has shown
a lack of suitability for distinguishing canopies under severe water stress, because the Tc

is higher than that of well-watered canopies and is likely to be improperly discarded as
soil pixels [244]. This could lead to subsequent errors in the calculation of the mean canopy
temperature and CWSI. Finally, for the binary mask technique, it is necessary to capture
thermal and RGB images simultaneously. The binary mask is created by interactively
determining the threshold values for the color components in the visible (RGB) images. The
visible images are then processed to segment the canopy pixels according to color charac-
teristics [246]. Afterwards, the segmented RGB image and the thermal image are perfectly
overlaid to determine the temperature of the selected areas. Great care must be taken at
this stage since a slight misalignment of the images will cause the soil background to be
included in the thermal image, leading to errors in the calculation of the average canopy
temperature (a problem that can be solved by a temperature thresholding operation).

In practice, CWSI from remote sensing has proved useful for estimating PWS in
terms of both water potential (Ψstem and Ψleaf) and gas exchange (gs) in woody fruit crops.
Strong correlations have been shown in multiple crops, such as grapevine [105,238,247],
olive [231,248–250], almond [251], plum [243], peach [237,245,252], apple [253], cherry [223],
pear [227], and citrus [228,254,255], among others. In 2023, Mortazavi et al. developed
a predictive model for determining the Ψstem in almond and pistachio using vegetation
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indices obtained from aerial images through a machine learning approach [256]. Employing
the random forest (RF) algorithm, which demonstrated higher accuracy (88% for pistachio,
89% for almond), they found that the CWSI played a more significant role in predicting the
Ψstem in both crops.

Thermal imaging techniques can be applied with images from both unmanned aerial
vehicles (UAVs) and satellites. Although thermal satellite imagery is mainly used to study
climate change, due to the ease of access to low-resolution imagery, Landsat and Sentinel-2
have been frequently used in agriculture for CWSI calculation [257]. Jamshidi et al. [254]
used both Landsat and Sentinel-2 data to assess the CWSI in citrus. The authors found
strong correlations by comparing the CWSI calculated from satellite data and in situ CWSI
obtained from UAV thermal imagery.

In summary, remote thermal sensing has proven to be a reliable method on from
medium to large scales for assessing the water status of fruit trees. However, despite
the strong and significant relationships between thermal indices and direct ground-based
measurements, there are varying ranges of CWSI values, depending primarily on the
methodology applied for calculating the different indices. Furthermore, it would be
beneficial to develop models not only for individual species but also for different cultivars.

3.2. Multispectral Sensing

Reflectance data in the different bands can provide direct or indirect indications of
PWS. The reflectance spectrum of water can be identified in the infrared region as there
are overtone bands of OH bonds at about 760, 970, 1450, and 1940 nm (regions of the NIR
and SWIR, respectively) [258,259]. Multispectral cameras are sensors that can commonly
provide data in five or six spectral regions, usually included in the VIS, rededge, and
NIR bands. Since multispectral cameras mounted in drones or satellites generally do not
go beyond NIR, crop water status is often assessed by indices that provide an indirect
estimate [260]. Chlorophyll or nitrogen content may prove useful indirect indicators of
PWS. Therefore, indices have been developed that are calculated in the reflectance band
of these molecules, i.e., in the VIS, rededge, and NIR regions [221,261]. The index that has
been most widely used in fruit crops is the NDVI, calculated by considering the rededge
and NIR reflectance [262]:

NDVI =
NIR − RED
NIR + RED

(6)

When biotic or abiotic stress phenomena begin to occur, the reflectance of the NIR
tends to decrease. In contrast, the reflectance of the RED increases. NDVI values range
from −1 to +1. Negative values refer to soil properties, and positive to vegetation [263].
Numerous works have investigated the use of the NDVI to assess PWS. For instance,
Ballester et al. [264] examined the effectiveness of multiple xanthophyll, chlorophyll, and
structure-sensitive spectral indices from UAVs for identifying water stress within a com-
mercial orchard that included five different species (apricot, almond, peach, orange, and
lemon). The authors showed that the NDVI and photochemical reflectance index (PRI;
a further VI calculated in the VIS region) were the indices that best correlated with the
Ψstem (R2 = 0.61 and 0.65, respectively), whereas, for analyzing within single species, peach
and ‘Garrigue’ almond were found to be the most suitable species for the prediction of
both the Ψstem and gs from NDVI data (R2 = 0.72 and 0.74 for Ψstem and R2 = 0.75 and 0.71
for gs, respectively). In olive, Caruso et al. [265] demonstrated that the NDVI can be a
reliable indicator of tree water stress. In grapevine, several works confirm that the NDVI
can be a good indicator of PWS [266–269]. Other vegetation indices commonly used for
PWS assessment, and which have been shown to be reliable, are the green normalized
difference vegetation index (GNDVI), modified soil adjusted vegetation index (MSAVI),
optimized soil adjusted vegetation index (OSAVI), green index (GI), normalized differ-
enced rededge index (NDRE), enhanced vegetation index (EVI), simple ratio index (SR),
and water index (WI) [6,268,270–273]. Zúñiga Espinoza successfully used the green nor-
malized difference vegetation index (GNDVI; a further VI calculated as the ratio between



Horticulturae 2024, 10, 516 21 of 36

the difference of NIR and Green bands and the sum of NIR and Green bands) for estimating
the gs in grapevine [261]. Stagakis found strong relationships between the PRI and Ψstem

in orange [274]. In 2023, Fasiolo et al. introduced a novel method to assess the effects of
different water regimes on the water potential, vegetation indices, and canopy geometric
data in grapevine [275]. This approach combined geometric measurements gathered by
a mobile robot with multispectral data obtained from a UAV, as well as traditional mea-
surements like Ψstem and Ψpd (pre-dawn stem water potential). In detail, 60 vegetation
indices were accurately calculated using the projected area of the vineyard point cloud as a
mask. Among them, three vegetation indices were identified that correlated best with the
Ψstem: the green difference vegetation index (GDVI; R2 = 0.90), perpendicular vegetation
index (PVI; R2 = 0.90), and triangular greenness index (TGI; R2 = 0.87). In addition, they
observed that the canopy volume and area projected onto the ground were affected by the
water status, as were measurements of the Ψstem and Ψpd. Their scientific contribution
involved integrating multispectral data from UAVs with ground-based data from a robot,
enabling the extraction of spectral information exclusively from plants while excluding
non-canopy surfaces.

Also in 2023, Longo-Minnolo et al. developed a new combined approach based on the
use of multispectral imagery from UAVs and statistical models to determine the water status
of an orange orchard (cv. Tarocco Sciara) during different phenological stages, compared
with the traditional Ψstem [276]. The results first indicate that significant correlations with
the Ψstem were found for 9 of the 14 calculated vegetation indices: atmospherically resistant
vegetation index (ARVI), EVI, MSAVI, NDRE, NDVI, OSAVI, renormalized difference
vegetation index (RDVI), soil adjusted vegetation index (SAVI), and SR. Second, the use of
statistical methods such as stepwise linear regression and principal component regression
(PCR) with all bands and vegetation indices allows for more reliable Ψstem estimates. Both
methods have comparable performances, with PCR showing slightly lower errors.

Satellite multispectral imaging provides different information with respect to drones.
Satellites can provide images at a wider multispectral range. Sentinel-2 [277,278] and
Landsat 8 [279], for example, are capable of obtaining information on the spectral bands of
VIS, NIR, SWIR, and thermal infrared (TIR) [6]. Other satellites used for the water status
of fruit crops are Landsat 7 [280], WorldView-2 [281,282], and MODIS [283]. In pear, Van
Beek [281] successfully estimated the Ψstem through WorldView-2 multispectral imagery. In
recent years, the Planet [284] platform has been developed, which uses a wide network of
satellites (including PlanetScope, SkySat and RapidEye, Landsat 8, and Sentinel-2) to collect
images and data from around the world. These satellites constantly capture information
about the Earth’s surface, giving users access to recent and historical images [285]. For
example, Helman et al. used planet satellite images to monitor grapevine Ψstem [285]. In
olive, Garofalo et al. [286] developed a machine learning algorithm to predict the Ψstem

using Planet.
Since the spectral bands of water are the NIR and SWIR bands, with the use of satellites,

indices can be calculated for direct estimation of PWS, such as the moisture stress index
(MSI) [283] and the better-known normalized difference water index (NDWI) [287]. For
instance, Rodríguez-Fernández found strong relationships between the Ψstem and NDWI
(R2 = 0.67) in grapevine [288]. Also in olive, the NDWI proved to be a reliable predictor of
water potential [270].

Multispectral methods may prove useful for PWS assessment, albeit often indirectly
(especially with sensors lacking the SWIR band). Moreover, it could be argued that handling
this extensive amount of data and conducting image analysis requires specialized skills.
Knowledge of GIS-based software for geographic data visualization, management, and
analysis is crucial. Furthermore, the acquisition and management of these tools can be
expensive, particularly when working with high-resolution imagery. This limitation may
restrict access to such technologies for certain growers. Environmental conditions could
also significantly affect the measurements. The reflection and refraction of sunlight on the
Earth’s surface can vary depending on environmental conditions, such as the presence of
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fog, clouds, atmospheric dust, or humidity. These phenomena can affect the quantity and
quality of the reflected light recorded by multispectral sensors, compromising the accuracy
of the measurements [6]. Nevertheless, optimistic future prospects for multispectral remote
sensing in PWS monitoring exist. The growing accessibility of this system, refinement of
vegetation indices, and advancements in artificial intelligence may lead to the development
of new models and ready-to-use systems for efficient irrigation management.

3.3. Hyperspectral

In recent years a rapid advancement in spectroscopic and imaging technologies has oc-
curred. In this regard, hyperspectral remote sensing imaging (HRS) has emerged as an effi-
cient nondestructive technique to monitor several plant physiological parameters [289,290].
Multispectral imaging involves capturing spectral signals in specific bands, covering a
wide spectral range from tens to hundreds of nanometers. Hyperspectral imaging, on the
other hand, captures spectral signals in a sequence of continuous channels with a narrow
spectral bandwidth, usually less than 10 nm. This capability allows hyperspectral imaging
to capture detailed spectral features of targets that might be overlooked by multispectral
imaging [291,292]. Besides cameras, spectrometers are also used in HRS. A spectrometer
analyzes the spectral signatures of ground features in the sensor’s field of view by exam-
ining the spectral characteristics of light radiation and separating the incoming energy
into various wavelengths. Unlike optical, multispectral, and hyperspectral cameras that
capture multiple bands of the electromagnetic spectrum and offer continuous gridded pixel
area coverage, a spectrometer provides coverage in single pixel footprints determined by
its field of view. Nevertheless, its high spectral resolution makes it a viable alternative to
multispectral sensors [293]. Both hyperspectral cameras and spectrometers are mounted
on UAVs during remote sensing measurements. In addition, hyperspectral sensors are also
mounted on some satellites. However, few studies have been carried out with satellite re-
mote sensing. Moreover, compared to the large number of satellite-mounted multispectral
sensors, there are fewer with hyperspectral sensors. These include EO-1 Hyperion (the
most widely used in agriculture), Tian-Gong-1, PRISMA, and PROBA-CHRIS [235,292].
For future perspective, the European Space Agency (ESA) is developing the Copernicus
Hyperspectral Imaging Mission for the Environment (CHIME). This will carry a unique
infrared spectrometer in the visible and shortwave bands to provide routine hyperspec-
tral observations to support new and improved services for the sustainable management
of agriculture and biodiversity, as well as the characterization of soil properties. The
mission will complement Copernicus Sentinel-2 for applications such as land cover map-
ping (https://www.esa.int/ESA_Multimedia/Missions/CHIME/(result_type)/images,
accessed on 12 May 2024) [294].

Various vegetation indices based mainly on NIR and SWIR bands (950–970, 1150–1260,
1450, 1950, and 2250 nm) can be determined from the hyperspectral sensors, such as
the NDWI, water index (WI), and water band index (WBI), among others [6,295,296].
Specifically, the NDWI is calculated as the ratio between the difference in reflectance at
approximately 860 nm and the reflectance at approximately 1240 nm bands, divided by
their sum. Meanwhile, the WI is determined by the ratio of reflectance at 970 nm to the
reflectance at 900 nm. Finally, the WBI is calculated as the ratio of reflectance at 900 nm to
the reflectance at 970 nm.

In addition, despite its recognizable higher precision, hyperspectral TIR remote sensing
has still received little attention to date [235,297].

Hyperspectral sensors have been used in several studies for PWS assessment. In citrus,
Zarco-Tejada, with a UAV-mounted micro-hyperspectral imager, was able to estimate the gs

and Ψstem by vegetation indices calculated in the VIS-NIR band (NDVI, TCARI, PRI, etc.. . .)
and chlorophyll fluorescence indices [298]. Several works on PWS estimation by hyper-
spectral images have been carried out on grapevine [269,295,299]. Matese et al. conducted
the first evaluation of a UAV hyperspectral dataset on the entire vine ecosystem, using nar-
rowband VIS and multivariate PLS regressions [300]. This study included assessments of

https://www.esa.int/ESA_Multimedia/Missions/CHIME/(result_type)/images
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water status and vegetative parameters (such as total and lateral leaf area, pruning weight),
as well as pomological and quality parameters. In 2023, Vasquez et al. used a machine
learning approach to predict grapevine Ψstem from UAV-based hyperspectral imagery in
the NIR-SWIR range at different phenological stages [301]. Again, an RF model was used
to model the data and 10-fold cross-validation was used for evaluation. The authors were
able to develop a predictive model of the Ψstem with RMSE = 0.12 MPa. Exhaustive results
were also found on apple [302], cherry [303], and almond [304] trees.

An important consideration about hyperspectral sensing in general is the relatively
high cost. Currently, due to their technological complexity, hyperspectral sensors are less
affordable than multispectral sensors. Additionally, a higher level of expertise is required
to handle and interpret hyperspectral data [292].

4. Combined Approaches of Proximal and Remote Sensing

The joint use of proximal and remote sensing technologies could provide more com-
prehensive information on orchard water status and facilitate the acquisition of irrigation
needs in terms of timing and volumes. Field water availability may depend on several
factors, e.g., the soil texture [305], chemical, and physical properties [306], leaf area [307],
presence of cover crops [308], field microclimate [309], etc.

Data from remote sensing could provide useful insights into spatial variability by
allowing adequate field mapping. In this way, it would be possible to strategically place
proximal sensors according to the distinct zones of the field. In addition, during the
irrigation season, the continuous acquisition of data from proximal sensors could expand
throughout the orchard by developing appropriate predictive models from vegetation
indices obtained via UAVs or satellites. The result would be the expansion of information
in time and space. For these reasons, the combination of the two approaches (proximal
and remote) may prove to be an efficient and sustainable system for irrigation scheduling,
greatly increasing water savings. Yet, as of now, affording a comprehensive system that
integrates data from both proximal and remote sensors remains economically challenging
for a significant portion of the agricultural community. For this reason, new low-cost sensors
are continually being developed and validated, in part due to the simplicity of setting
up affordable electronic systems and in part to the advancement of validation techniques
such as machine learning. Furthermore, the UAV industry is making rapid progress
towards producing miniaturized and cost-effective devices. Similarly, the accessibility and
affordability of various satellite platforms could facilitate the retrieval of remote data.

To date, there is not a large number of studies combining remote and proximal sensing.
Caruso et al. evaluated the combined use of multispectral data from UAVs with data from
soil electrical conductivity sensors in order to identify homogeneous zone in a high-density
irrigated olive orchard [265]. The authors found that the impact of various irrigation
strategies on tree performance and water use efficiency (WUE) is location-dependent
within the orchard, and tree vigor emerges as a primary factor influencing the ultimate fruit
yield when the soil water availability is optimal. Matese et al. combined ground-based
infrared thermography and thermal imaging from UAVs [310]. The results showed that
CWSI values obtained from both remote and proximal sensors serve as useful indicators
for evaluating the spatial variability in crop water status in Mediterranean vineyards.
In almond, Gonzalez-Dugo et al. related the actual transpiration measured with heat-
pulse sap flow probes with the CWSI, calculated using an empirical non-water stress
baseline [311]. The relationship obtained between the CWSI and relative transpiration was
high (R2 = 0.69), demonstrating the effectiveness of the combined use of sap flow probes
with airborne thermal imaging. To further confirm their combined use, a relationship
between the CWSI and transpiration calculated from the sap flow output was also found
on ‘Tonda Romana’ hazelnut (Corylus avellana L.) by Pasqualotto et al. [312]. No further
coupling studies were found between remote sensing techniques and the proximal sensors
mentioned above.
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5. Conclusions

The management of irrigation water in orchards has become a crucial issue. Today,
thanks to the techniques mentioned in this review, it is possible to develop an efficient and
sustainable irrigation plan. As shown above, several types of sensors can prove useful
in estimating PWS, but the future challenge lies in being able to find the appropriate
combination for the crop type, soil, and climate. The integration of remote and plant-
based proximal sensing techniques can effectively provide large-scale (time and space)
information for the efficient monitoring of orchard water availability. However, few studies
have investigated the combination of both techniques.

Developing appropriate protocols for efficient and sustainable irrigation management
remains a primary research goal. Artificial intelligence may be an effective tool for the
integration of different sensors, leading to new machine learning algorithms that can easily
make system automation possible. Another challenge lies in the choice of sensors to be
combined. An efficient and sustainable precision irrigation system should incorporate
sensors that not only provide qualitative information about irrigation timing, but also offer
quantitative data on plant water usage. One hypothesis is to combine sensors that provide
direct information on water status (e.g., microtensiometers, psychrometers) with sensors
that can monitor the response of various plant organs to different hydration levels (e.g.,
leaf turgor sensors and fruit gauges), and finally, those that can provide information on
actual water consumption (e.g., sap flow sensors, leaf transpiration sensors).

Furthermore, integrating proximal systems with remote sensing can offer comprehen-
sive information for more precise and efficient irrigation management, thereby minimizing
water waste, meeting plant requirements, and maintaining good yields. Moreover, such
accurate information would more easily enable an increasingly punctual irrigation system
within orchards, which would lead to significant water savings, increased profits, and
improved environmental sustainability. In addition to system precision, economic factors
must also be considered. Nowadays, thanks to the more affordable prices of electronic
components along with continuously evolving artificial intelligence tools, obtaining sensors
and models that overcome the high costs associated with precision systems may become
possible. Therefore, improving existing systems that have high potential but also high costs
(e.g., microtensiometers, sap flow sensors) and making them accessible to a wide range
of producers could be an immediate challenge. Regarding remote sensing systems, the
prices of drones and satellite imagery are progressively decreasing, and such expenses can
represent an investment to significantly increase profits.

This review provides updates on both proximal and remote sensing methodologies,
encompassing established techniques like LPCP probes, fruit gauges, and sap flow probes
as well as emerging technologies like microtensiometers, and potentially reliable and
user-friendly options such as LWM and LMCP. In particular, the affordability of the latter
is emphasized, as it would make it easily accessible to farmers. It is crucial to note the
ongoing evolution of remote sensing methodologies, facilitated by the growing accessibility
of instruments like UAVs, satellite platforms, and nanotechnologies. The final challenge
launched by this review is to encourage researchers to investigate these techniques further
and develop appropriate protocols that could make these methodologies increasingly
accurate, reliable, and low-cost.
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