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Abstract: Magnesium (Mg) plays a key role in infections. However, its role in coronavirus dis-
ease 2019 (COVID-19) is still underexplored, particularly in long-term sequelae. The aim of the
present study was to examine the prognostic value of serum Mg levels in older people affected
by COVID-19. Patients were divided into those with serum Mg levels ≤1.96 vs. >1.96 mg/dL,
according to the Youden index. A total of 260 participants (mean age 65 years, 53.8% males) had
valid Mg measurements. Serum Mg had a good accuracy in predicting in-hospital mortality (area
under the curve = 0.83; 95%CI: 0.74–0.91). Low serum Mg at admission significantly predicted
in-hospital death (HR = 1.29; 95% CI: 1.03–2.68) after adjusting for several confounders. A value of
Mg ≤ 1.96 mg/dL was associated with a longer mean length of stay compared to those with a
serum Mg > 1.96 (15.2 vs. 12.7 days). Low serum Mg was associated with a higher incidence of long
COVID symptomatology (OR = 2.14; 95% CI: 1.30–4.31), particularly post-traumatic stress disorder
(OR = 2.00; 95% CI: 1.24–16.40). In conclusion, low serum Mg levels were significant predictors of
mortality, length of stay, and onset of long COVID symptoms, indicating that measuring serum Mg
in COVID-19 may be helpful in the prediction of complications related to the disease.
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1. Introduction

Magnesium (Mg) is the most frequent divalent cation present intracellularly in the
human body and the second most common intracellular ion after potassium [1]. Mg is
essential for numerous cellular processes because it is a cofactor of over 600 intracellular
enzymatic reactions [2]. Magnesium is essential for energy production, oxidative phos-
phorylation, glycolysis, protein synthesis, and nucleic acid synthesis and stability [3,4].
Magnesium modulates muscle contraction, normal heart rhythm and neuron excitability, as
it is necessary for the transport of other ions across cellular membranes [5]. This essential
ion is involved in all ATP-dependent biochemical processes as part of the activated MgATP
complex, as well as in RNA expression, DNA synthesis, muscular and neural cellular
signaling, glucose metabolism and blood pressure control [6,7].

Low serum Mg concentrations, rather common in the Western world, are frequently ob-
served in older people, because of poor intake in the diet, some comorbidities
(e.g., diabetes), and polypharmacy [8–11]. Older adults, together with a higher frequency
of Mg deficiency, suffer alterations to the immune system that make them more susceptible
to infections and their complications [12]. This includes the increased risk of major compli-
cations and especially mortality, which has been observed in SARS-CoV-2 infection [13].

Low Mg levels play an important role in several chronic diseases affecting older
people, including respiratory conditions, such as chronic obstructive pulmonary disease
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(COPD) and asthma [14,15]. A former retrospective study reported that serum Mg was
an independent predictor of frequent readmissions for acute COPD exacerbations [16].
More recently, a study showed that low Mg status was predictive of the risk of bacterial
pneumonia in old age [17]. Furthermore, other studies indicated that low serum Mg levels
were present in asthmatic patients [18], and that Mg supplementation may be useful in the
treatment of acute asthma [19]. This is based on the evidence that bronchial hyperreactivity
is inversely proportional to the serum level of this cation [20,21].

Mg plays a role in the immune system, in both innate and acquired immune response,
being involved as a cofactor for immunoglobulin (Ig) synthesis, C3 convertase, immune
cell adherence, antibody-dependent cytolysis, IgM lymphocyte binding, macrophage re-
sponse to lymphokines, and T helper–B cell adherence [22]. A recent study showed that
altered Mg status seems to have a prognostic role in older people affected by bacterial
pneumonia [17]. Of interest, both hypomagnesemia and hypermagnesemia were associated
with an increased short-term mortality rate compared to normal values of serum Mg in
these patients with community acquired pneumonia [17]. Vitamin D, which seems to play
a key role in the immune response [23], requires an adequate level of Mg for its proper
transport and activation [5,24,25]. Thus, a Mg deficiency can exacerbate susceptibility to
infections, including COVID-19, by reducing the availability or adequate functional levels
of vitamin D.

Recently, some works explored the possible role of Mg in COVID-19 to predict the
prognosis in these patients [26–30]. However, no study so far has examined the role of Mg
for long COVID prediction, an increasing entity with limited therapeutical options [31].
The present study, exploring the prognostic value of serum Mg in patients with COVID-19,
follows one of the original aims of the COMEPA study, which was to explore possible
prognostic factors for COVID-19 complications during or after hospitalization based on
our real-life experience [32]. Validated markers capable of predicting the variable trajectory
of the disease from completely asymptomatic to mild, moderate or several clinical manifes-
tation and rapidly progressive forms that can lead to multiorgan failure and death have
not yet fully identified. In fact, although several proposed prognostic models have been
reported, most of them are of poor quality [33], highlighting the need to continue research
on useful tools with this specific aim.

In consideration of the role of Mg in the most frequent respiratory diseases, including
infections, and due to the lack of literature in this regard, the purpose of our study was to
examine the prognostic value of serum Mg in patients affected by COVID-19, in terms of
in-hospital mortality, length of stay, and the occurrence of long COVID.

2. Materials and Methods
2.1. Study Population

All patients aged ≥18 years hospitalized in the internal medicine or geriatrics wards
from the 1st of September 2020 at the University Hospital ‘p. Giaccone’ in Palermo, Italy
with a diagnosis of SARS-CoV-2 infection confirmed by the observation of SARS-CoV-2
nucleic acid on a nasopharyngeal swab by means of RT-PCR were enrolled [32]. No other
inclusion criteria were considered to better represent a real-life scenario. The study was
approved by the Local Ethical Committee during the session of the 28th of April 2021
(protocol number 04/2021). For hygiene reasons, the informed consent to participate in the
study was collected orally and reported in the medical records.

2.2. Exposure: Serum Mg Levels

Serum Mg levels at the baseline were measured in the first four days of the hospital
admission, including measurements at the emergency department. The values of serum
Mg assessed during hospitalization were also recorded and the maximum value during the
hospital stay was used as covariate for the analyses. The normal range of our laboratory
for serum Mg was 1.7 to 2.5 mg/dL.
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2.3. Outcomes

The primary outcome was mortality during hospital stay. This information was col-
lected using dates of death according to the clinical records and death certificates. As
secondary outcomes, we considered the length of stay in hospital and the incidence of long
COVID symptomatology. In October 2021, the World Health Organization (WHO) defined
long COVID as “a condition that occurs in individuals with a history of probable or confirmed
SARS-CoV-2 infection, usually 3 months from the onset of COVID-19 with symptoms that last
for at least 2 months and cannot be explained by an alternative diagnosis”. [34] Accordingly, the
presence of long COVID was assessed after a median of 17 months (range: 13–22) from hos-
pital discharge through phone calls similar to other works using the same approach [35–38].
We considered as signs or symptoms of long COVID those indicated in recent systematic
reviews [35–38], i.e., neurological, respiratory, mobility impairment, heart, digestive, skin,
or general signs and symptoms that can be attributable to COVID-19 infection. All of the
questions were posed as yes/no questions by phone. Psychiatric conditions were assessed
using the Post-traumatic Stress Disorder (PTSD) Checklist (PCL)-5 [39] and the Hospital
Anxiety and Depression Scale (HADS) for detecting anxiety and depression [40].

2.4. Covariates

Among the parameters that were collected in the COVID-19 Palermo (COMEPA)
study [32], for the aim of the present study, we used the information potentially affecting
the association between serum Mg levels and the outcomes of interest, i.e., age, gender,
smoking status (actual vs. previous or never), and alcohol abuse (yes vs. no). Among
laboratory measurements, we considered creatinine clearance according to the Modification
of Diet in Renal Disease (MDRD) formula, hemoglobin, serum parameters of inflammation
(white blood cells, C reactive protein (CRP), interleukin (IL)-6, procalcitonin), parame-
ters of arterial blood gas exchange expressed as partial pressure of oxygen/fraction of
inspired oxygen (PaO2/FiO2) ratio (with a value below 150 indicative of acute respiratory
failure) [41], serum 25 hydroxyvitamin D (25OHD), hepatic function, fasting plasma glu-
cose, sodium, potassium, and albumin. The presence and the severity of comorbidi-
ties were investigated using the Cumulative Illness Rating Scale (CIRS) [42] that esti-
mates the severity of pathology in each of 13 systems, with a grade from 0 to 4 (severity
index: CIRS-SI).

2.5. Statistical Analyses

All patient records and information were anonymized and de-identified prior to the
analyses. We selected the cut-off value of 1.96 mg/dL of serum Mg since it was the best in
terms of sensitivity and specificity (Youden’s index) [43] for testing the prediction of our
primary outcome. Data on continuous variables were normally distributed according to the
Kolmogorov–Smirnov test and then reported as means and standard deviation (SD) values
for quantitative measures and percentages for the categorical variables, by serum Mg status.
Levene’s test was used to test the homoscedasticity of variances and, if its assumption was
violated, Welch’s ANOVA was used. p values were calculated using Student’s t-test for
continuous variables and the Mantel–Haenszel chi-square test for categorical ones.

The accuracy of serum Mg in predicting in-hospital mortality during follow-up was
calculated in terms of area under the curve (AUC) with its 95% confidence intervals (CIs).
The association between serum Mg at baseline being less or more than 1.96 mg/dL and
in-hospital mortality was assessed using Cox’s regression analysis, adjusted for potential
confounders that were introduced in the model if they did differ between low and high
serum Mg levels (p-value < 0.05) or if they were associated with in-hospital death using
a p-value threshold of 0.10. Collinearity among factors was analyzed using a variance
inflation factor (VIF) of two as a reason for exclusion. The results, considering participants
with serum Mg over 1.96 mg/dL as a reference, were reported as hazard ratios (HRs) with
their 95% confidence interval (CI). Data regarding long COVID were reported using an
adjusted logistic regression and reported as odds ratios (ORs) with their 95% CI.
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All analyses were performed using the SPSS 26.0 for Windows (SPSS Inc., Chicago, IL,
USA) and STATA 14.0. All statistical tests were two-tailed and statistical significance was
assumed for a p-value < 0.05.

3. Results

Among 530 patients initially included in the COMEPA study, 270 were excluded:
250 had not any serum Mg measurement in the first four days from admission and
the other 20 did not register any of the outcomes of interest. Consequently, a total of
260 participants (mean age 65.4 ± 15.4, range: 21–96 years; 53.8% men) were included in
the analyses. The mean serum Mg level was 2.07 ± 0.23 mg/dL (range: 1.32–2.50), with
26 patients (10.0%) reporting hypomagnesemia identified as a value <1.85 mg/dL. In cases
of hypomagnesemia, the patients were supplemented using intravenous Mg sulfate, with
the dose depending on the severity of hypomagnesemia until the normalization of Mg
serum concentrations. No one reported hypermagnesemia (serum Mg > 2.5 mg/dL).

Table 1 shows the baseline characteristics according to the serum Mg levels. The
74 patients with a value less than 1.96 mg/dl were significantly older (p = 0.01), but
they did not differ in terms of the percentage of males or in their smoking prevalence or
alcohol abuse, compared to their counterparts with higher serum Mg levels. Among the
laboratory parameters assessed, patients with low serum Mg levels displayed significantly
lower hemoglobin and albumin levels, but they did not differ in any of the inflammatory
parameters investigated (Table 1). Finally, patients with low serum Mg levels reported a
significantly lower prevalence of any COVID-19 symptomatology, but a higher severity of
medical conditions, according to the CIRS-SI.

Table 1. Descriptive baseline characteristics by Mg status at admission: the COMEPA study.

Parameter Serum Mg > 1.96 mg/dL (n = 186) Serum Mg ≤ 1.96 mg/dL (n = 74) p-Value

Demographics

Age (years) 63.9 (15.7) 69.1 (13.4) 0.01
Males (%) 51.6 59.5 0.27
Current smoking (%) 12.1 9.8 0.80
Alcohol abuse (%) 6.1 10.4 0.34

Laboratory parameters (1–4 days)

Creatinine clearance (mL/min) 91.7 (32.0) 87.8 (45.5) 0.50
Hemoglobin (g/dL) 13.1 (1.9) 11.6 (2.2) <0.0001
White blood cells (units/µL) 7940 (4214) 7212 (3264) 0.14
CRP (mg/mL) 51.2 (48.9) 60.0 (64.6) 0.31
IL-6 (pg/mL) 36.4 (71.0) 59.8 (136.1) 0.19
Procalcitonin (ng/mL) 0.82 (6.84) 0.43 (1.26) 0.68
PaO2/FiO2 ratio 324 (104) 344 (142) 0.29
Serum 25OHD (ng/mL) 24 (19) 23 (14) 0.78
AST (U/L) 31 (25) 26 (15) 0.21
ALT (U/L) 37 (46) 25 (19) 0.003
Fasting plasma glucose (mg/dL) 131 (62) 141 (71) 0.29
Na (mmol/L) 139 (4) 139 (4) 0.88
Ca++ (mmol/L) 8.94 (0.93) 8.95 (0.63) 0.99
K (mg/dL) 4.38 (0.67) 4.43 (0.58) 0.10
Albumin (g/L) 3.57 (0.51) 3.36 (0.47) 0.002

Clinical data

Any COVID-19 symptomatology (%) 82.3 63.0 0.002
CIRS-SI 1.41 (1.42) 2.74 (1.81) <0.0001

AST: aspartate aminotransferase; ALT; alanine transaminase; Ca: calcium; CIRS-SI: Cumulative Illness Rating
Scale-Severity Index; COMEPA: COVID-19 Palermo; COVID-19: coronavirus-19 disease; CRP: C-reactive protein;
IL-6: interleukin-6; K: potassium; Na: sodium; PaO2/FiO2: partial pressure of oxygen/fraction of inspired oxygen;
25OHD: 25 hydroxyvitamin D.

As shown in Figure 1, a model including serum Mg, adjusted for age and sex, had a
good accuracy in predicting in-hospital mortality (AUC = 0.83; 95% CI: 0.74–0.91; p < 0.0001).
A value of serum Mg = 1.96 during the first four days of hospitalization had a good sensitivity
(75%) and a modest specificity (58%) in predicting mortality during hospital stay.
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Figure 1. Accuracy of serum Mg at admission in predicting in-hospital mortality.

Low serum Mg at admission significantly predicted in-hospital death (HR = 1.29;
95% CI: 1.03–2.68) after adjusting for age, sex, comorbidities, renal function, presence of
respiratory failure, CRP, hemoglobin, and maximum Mg serum levels during hospitaliza-
tion (Figure 2). A value of Mg ≤ 1.96 was associated with a longer mean length of stay
compared to those with a serum Mg > 1.96 (15.2 vs. 12.7 days; p = 0.048).
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Finally, we investigated the association between low serum Mg levels and the presence
of long COVID among 95 patients with available data. Among all the signs and symp-
toms investigated, low serum Mg was associated with a higher incidence of overall long
COVID symptomatology (OR = 2.14; 95% CI: 1.30–4.31), particularly PTSD (OR = 2.00;
95% CI: 1.24–16.40), whilst no significant association was found for the other single long
COVID signs/symptoms investigated in our questionnaire.
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4. Discussion

Our study including 260 participants hospitalized for COVID-19 indicates the impor-
tant role of Mg in the prognosis of these patients. Patients with lower serum Mg levels, in
fact, had an increased risk not only of in-hospital mortality, but also a longer length of stay
and higher incidence of long COVID symptomatology, with this study being, to the best of
our knowledge, the first to confirm these significant associations.

In our study, at hospital admission the prevalence of patients with hypomagnesemia
was high, i.e., 10%. Patients with lower serum Mg levels reported some baseline charac-
teristics that could increase the risk of mortality, including older age, significantly lower
hemoglobin and albumin levels, and a higher comorbidity and severity of medical con-
ditions. However, after adjusting for all these parameters, the association between lower
serum Mg and in-hospital mortality remained statistically significant, indicating an inde-
pendent role of Mg in poor prognosis among patients hospitalized for COVID-19. Previous
studies have reported the prognostic importance of low serum Mg in COVID-19. Of interest,
in a large North American population, it was reported that the infection risk for COVID-19
of the populations distributed in low-Mg areas was higher than those introducing a higher
intake of dietary Mg [44]. Moreover, other studies reported an important role of Mg in
the prognosis of patients affected by COVID-19. For example, Guerrero-Romero et al.
analyzed 1064 patients with COVID-19, showing a significant association between serum
magnesium-calcium ratio and mortality in severe forms of the disease [27]. Similarly, a
retrospective cohort study analyzing 390 hospitalized patients with COVID-19 showed
that reduced kidney function and lower serum Mg levels were associated with increased
mortality in obese patients affected by COVID-19 [30]. In addition, Zeng et al. performed a
retrospective study, analyzing 306 patients with COVID-19 for their whole blood levels of
essential minerals, including Mg, and found that severe cases showed significantly lower
levels of Mg than mild and moderate cases [29]. All these reported findings, associated
with the results of our study, indicates that Mg might play a key role in maintaining proper
immune, vascular and lung function. This strongly supports the hypothesis on which
several studies have been based, that serum Mg status may influence susceptibility and
response to SARS-CoV-2 infection [5].

As mentioned, our study confirmed the significant prognostic value in COVID-19
patients already reported in previous studies [26–30]. There are several mechanisms that
may help to explain the link between a low Mg status and an increased risk of severe forms
of the disease and mortality. COVID-19 is now considered a potential systematic disease
due to the possibility not only of leading to acute respiratory distress syndrome requiring
hyperoxic ventilation, but also of impacting other organs and systems, comprising the
cardiovascular, hepatic, intestinal, renal and nervous systems [45]. Older adults are more
susceptible to severe illness, ICU admission, and mortality from COVID-19 [46]. This
trend has been confirmed since the beginning of the pandemic and it is particularly high
in older adults with multimorbidity. Although the ultimate mechanisms of COVID-19
clinical manifestations and mortality are not completely clear, the cytokine storm seems
to contribute significantly to the pathogenesis of the most severe manifestations of the
disease [45]. Cytokine storm refers to the overproduction of soluble markers of inflam-
mation that maintain an aberrant response of systemic inflammation. It seems that the
collateral damage caused by the excessive production of inflammatory mediators, in an
attempt to eliminate the pathogen, may be more damaging than the pathogen itself. In-
deed, this exuberant inflammatory response may initially be appropriate to control the
infection, but if uncontrolled and persistent, it can fuel the multi-organ dysfunction that
may follow, increasing the risk of mortality. The cascade of inflammatory mediators during
cytokine storm includes immunoactive molecules, e.g., interferon, chemokines, interleukins,
TNF-alpha, and colony-stimulating factors [47].

There is extensive evidence in experimental investigations [48–51] as well as in ob-
servational studies in humans [52–57] confirming that a low Mg status is associated with
a state of chronic inflammation with increased inflammatory markers, particularly IL-6,
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TNF-alpha, and the complex IL-33/ST2. Furthermore, some studies have reported anti-
inflammatory actions of Mg supplementation and suppression of cytokine release [58,59].
A meta-analysis including eight RCTs reported a significant reduction in serum CRP after
Mg supplementation, which was independent of Mg dosage or the length of follow-up [60].
A well-known action of Mg is its antagonistic effects on calcium channels [61,62]. Indeed,
Mg is considered a natural calcium blocker, similar to those of chemical synthesis [63].
Interestingly, calcium channel blocking effects of Mg can lead to the suppression of NF-kB,
IL-6, and CRP [59], which may limit systemic inflammation.

Patients with severe forms of COVID-19 may need ICU admission. Remarkably, up
to 60% of critically ill patients in the ICU have some degree of Mg deficiency [64,65],
which makes them more susceptible to potentially fatal effects, also associated with the
consequent hypokalemia and hypocalcemia. Perhaps the lack of attention to paid Mg in
COVID-19 may be due to the fact that it is not routinely measured in most databases and
studies [66]. In addition, serum concentrations that are clinically available represent only
1% of the total body Mg and do not accurately reflect the whole Mg status, being this ion
predominantly intracellular [9].

Thus, the preceding Mg deficiency associated with conditions that favor a detrimental
course of COVID-19, including age, diabetes, hypertension [6,9,15] and the Mg deficiency
frequently observed in critically ill patients [64,65], can contribute to exacerbate the inflam-
matory response induced by SARS-CoV-2, which in turn can determine an increased Mg
consumption, resulting in a further reduction in its intracellular levels, maintaining and
propagating an uncontrolled inflammatory response.

The evidence that COVID-19 pneumonia and multi-organ dysfunction has a vascular
basis is robust [67,68]. The vascular endothelium is crucial in the maintenance of home-
ostasis and the control of fibrinolysis, inflammation, vasomotion, oxidative stress, vascular
permeability and structure. All of these functions acting in concert regulate many of the
defense mechanisms against external noxae, but they can also contribute to disease at
different levels when the usual homeostatic functions are overwhelmed and turn against
the host, as has been reported in COVID-19 [69]. There is also convincing evidence that
Mg has antithrombotic effects [70], while low Mg concentrations have been associated
with endothelial dysfunction [71,72]. A systematic review and meta-analysis of RCTs
exploring the effects of Mg supplementation on vascular function showed that oral Mg
supplementation significantly improved flow-mediated dilation in studies lasting longer
than 6 months, including healthy people, older than 50 years, or with BMI greater than
25 kg/m2 [73]. Hence, it is possible that a chronic Mg deficiency, common in older adults [9],
may generate a favorable environment for SARS-CoV-2 to promote thrombosis [66], a fun-
damental characteristic of COVID-19.

It is widely known that Mg plays a role in the immune system, in both innate and ac-
quired immune response [22], and this effect is probably of importance in COVID-19, often
characterized by a decreased immune response. In fact, Mg is a cofactor for the synthesis of
immunoglobulins (Ig), as well as for C3 convertase, antibody-dependent cytolysis, immune
cell adherence, macrophage response to lymphokines, IgM lymphocyte binding, and T
helper–B cell adherence [22,74]. Mg induces the reduction in proinflammatory molecule
release, such as P, by controlling nuclear factor kappa-light-chain-enhancer of activated B
cell NF-kB activity [75]. In addition, Mg affects acquired immunity by regulating lympho-
cyte development and proliferation [76]. There is evidence that experimental animals fed
Mg-deficient diets showed altered polymorphonuclear cell number and function, as well as
increased phagocytosis [77]. Mast cell proliferation and function are also modified by Mg
deficiency [78]. In addition, Mg deficit has been involved in mast cell-dependent hepatic
fibrosis and steatosis [79]. In addition, Fas-induced B cell apoptosis is a Mg-dependent
process [80]. Other studies have confirmed that Mg-deficient experimental animals exhib-
ited high rates of inflammation and reduced specific immune responses [51,81–83]. The
increased inflammation associated with Mg deficiency in old age [9] has been linked to
several mechanisms, including opening of calcium channels, activation of phagocytic cells,
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activation of N-methyl-d-aspartate (NMDA) receptor and of NF-kB [48]. The best evidence
of the fundamental role of Mg as a second messenger in immunity was the discovery of a
genetic disease, X-linked immunodeficiency with magnesium defect (XMEN), which can
lead to severe and chronic Epstein–Barr virus infections and neoplasia [84–86].

Moreover, due to its vasodilatory, anti-inflammatory and anti-thrombotic effects, the
role of Mg was recently explored in COVID-19 patients [26]. All these effects, in fact,
might contribute to the reduction in the ventilation-perfusion mismatch, which is one
of the most important reasons for hypoxemia in COVID-19, and to the improvement of
oxygenation in these patients [87]. Additionally, because of the emerging role of mastocytes
in driving diffuse alveolar injury in COVID-19 [88], it should be recalled that Mg may
reduce mastocyte degranulation and, subsequently, prevent the release of inflammatory,
pro-thrombotic and fibrotic mediators [89].

We believe that our study adds novel information to the current literature regarding
Mg in COVID-19 debate. Low serum Mg levels not only were associated with a higher
mortality risk during hospitalization and improved the accuracy of the prediction of this
outcome among hospitalized patients, but also predicted a longer length of stay in hospital
and a higher incidence of long COVID. To the best of our knowledge, our study is the first
to show the impact of low serum Mg status for long COVID and, in particular, for PTSD.
Since long COVID may affect more than 50% of the patients previously hospitalized for
COVID-19 [90], our study suggests the need to early identify and correct poor Mg status in
order to help prevent this complication. Of importance, our study suggests that a peculiar
association with psychiatric disorders may exist, confirming the previous literature in
this direction [91].

The findings of our study must be interpreted within its limitations. First, a consistent
part of the initially considered population was not included, since data regarding serum
Mg were not always available. Therefore, a selection bias cannot be ruled out. Second,
long COVID was detected using phone calls and not using other more validated tests,
such as medical records. We have recently had the opportunity to review systematically
and perform a meta-analysis of the incidence and frequency of signs and symptoms
of long COVID according to the definition of the World Health Organization among
120,979 patients from 196 studies, as shown below [90]. In the [Supplementary Table S2
of the article, we report the characteristics of the 196 studies included, comprising the
methods of follow-up assessing the symptomatology for the formulation of long COVID
diagnosis. Among the 196 studies, 51 (26%) used phone calls, 90 (45.9%) used an outpatient
visit, 18 (9.2%) used an online electronic survey, 13 (6.6%) used an in-person interview,
15 (7.7%) used a mixed method, 5 (2.6%) used other methods, and 4 (2%) did not specify
any method. Therefore, about one-quarter of published studies used phone calls, the
method we used in our study. The use of these methods, which in almost half of the cases
did not involve a classic outpatient visit, is understandable due to the conditions of the
pandemic and the measures for containing its spread in accordance with WHO and with
all the health systems worldwide in unique conditions. This was the way to be able to
continue with the investigations. Third, even if we clearly asked if a sign or symptom
could be independent of COVID-19 during the follow-up, we cannot exclude the possibility
that the symptomatology could be attributed to other concurrent issues. It must also be
considered that in clinical practice, only serum Mg assessment is available, which may not
accurately reflect the total body Mg status, with Mg being a prevalently intracellular ion.
Finally, even if highly prevalent in percentage (10%), only 26 patients had hypomagnesemia
at the baseline, making the research of potential risk factors associated with this condition
very difficult.

5. Conclusions

Our study indicates the importance of low serum Mg levels in the prognosis of
COVID-19 complications, not only for predicting mortality and a longer length of stay in
hospital, but also for the prediction of a higher presence of long COVID, even if this latter
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condition was ascertained using phone calls. Therefore, we warmly recommend that serum
Mg be determined in all patients admitted for COVID-19. Further studies involving Mg
supplementation are needed to determine if this intervention can indeed alter the course of
the disease in a selected cohort.
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