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Abstract
Preference-approval structures combine preference rankings and approval voting for 
declaring opinions over a set of alternatives. In this paper, we propose a new proce-
dure for clustering alternatives in order to reduce the complexity of the preference-
approval space and provide a more accessible interpretation of data. To that end, 
we present a new family of pseudometrics on the set of alternatives that take into 
account voters’ preferences via preference-approvals. To obtain clusters, we use the 
Ranked k-medoids (RKM) partitioning algorithm, which takes as input the simi-
larities between pairs of alternatives based on the proposed pseudometrics. Finally, 
using non-metric multidimensional scaling, clusters are represented in 2-dimen-
sional space.
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1  Introduction

Preference-approvals are preference structures for declaring opinions over a set 
of alternatives. They combine decision makers’ preference orderings and clas-
sify the alternatives as either acceptable or unacceptable (see Brams 2008, Chap-
ter  3, Brams and Sanver 2009 and Sanver 2010). Thus, in preference-approval 
structures, voters should declare which alternatives are acceptable and rank-order 
them. Additionally, voters may either rank-order unacceptable alternatives or 
avoid displaying their preferences about them, as in fallback voting (Brams and 
Sanver 2009), by showing indifference between these alternatives.

Preference-approval structures have been studied from various perspectives, 
with a significant focus on exploring their basic properties (Dong et  al. 2021) 
and achieving consensus in group decision making (GDM) (Erdamar et al. 2014; 
Liang et al. 2018; Barokas and Sprumont 2022). In particular, Barokas (2022a) 
introduced a social choice rule known as majority approval and compared it to 
other social choice rules. Additionally, Barokas (2022b) developed an axiomatic 
approach to allocation rules that are mathematically equivalent to preference-
approvals but different from the voting rules.

A study conducted by Kruger and Sanver (2021) investigated preference-
approvals and identified that there could be issues with reconciling ranking infor-
mation and approval information in the method. In fact, they demonstrated that 
aggregating preference-approvals by decomposing the rankings and approvals 
could be dictatorial, indicating that the preferences of a single individual or a 
small group of individuals may excessively influence the resulting decision. Fur-
thermore, Liu et al. (2023) proposed a model for Multi-Criteria Group Decision 
Making problems using the Preference Approval Structure approach, considering 
the Partial Information of Linguistic Terms to increase consistency between the 
preference-approvals and multi-criteria assessments.

Nevertheless, little effort has been devoted to developing clustering algo-
rithms that deal with preference-approvals. The clustering task deals with clas-
sifying objects in homogeneous clusters, such that objects in a cluster have a 
higher degree of similarity than they do with items from other clusters. (see Jain 
et al. 1999 and Everitt et al. 2011). To the best of our knowledge, the only pro-
posal applying clustering algorithms to preference-approval structures is found in 
Albano et al. (2023). They introduced a family of distances between preference-
approvals and used a simple hierarchical clustering algorithm to find homogene-
ous groups of individuals. However, the possibility of clustering alternatives in 
preference-approvals has not yet been addressed. The goal of this paper is to fill 
this gap by demonstrating that identifying homogeneous groups of alternatives 
can be beneficial in reducing the complexity of the preference-approval space and 
making the data easier to interpret. Indeed, developing a method for clustering 
alternatives based on preference-approvals has several practical implications that 
can benefit decision-makers in a variety of settings by enabling them to identify 
potential trade-offs and conflicts between different policy options. For instance, 
clustering alternatives could be helpful for identifying groups of politicians that 
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are most similar in terms of voters’ preferences when evaluating candidates in an 
election. This data can help political campaigns determine which groups of vot-
ers to target with their message. Furthermore, clustering alternatives can be used 
to identify outliers, which are politicians who are not similar to others, and their 
presence can be interpreted as an indication of heterogeneous opinions among 
voters.

Another potential application of clustering algorithms for preference-approv-
als is in the context of online product recommendations. Online retailers often 
use recommendation algorithms to suggest products to their customers based on 
their previous purchases and browsing history. However, the complexity of the 
preference-approval space could be a limit for these algorithms since it can make 
it difficult to identify meaningful patterns and make accurate recommendations. 
Therefore, by applying clustering algorithms to the preference-approval data, 
retailers can more effectively group products based on their similarity, leading to 
more accurate and relevant customer recommendations.

Although the literature on clustering algorithms applied to preference order-
ings is rich, it is not straightforward to transfer it directly to the preference-
approval framework because preference-approvals are more complex structures. 
Clustering approaches for preference rankings can be applied to both individuals 
and alternatives. Most commonly used methods for clustering individuals involve 
an algorithmic model, such as hierarchical clustering, or an approach that aims to 
optimize a badness-of-fit function, such as K-means, PCA, MDS, or fuzzy clus-
tering. Further details on these methods can be found in Heiser and D’Ambrosio 
(2013, pp. 19–31).

Despite being less studied, the task of clustering alternatives rather than individu-
als in preference rankings is undoubtedly relevant. Marden (1996) defined a distance 
between two alternatives as the squared Euclidean distance of the ranks assigned to 
them. Thus, objects will be close if the voters give them similar ranks. Finally, they 
applied a simple hierarchical clustering to find meaningful groups. Sciandra et  al. 
(2020) proposed a projection pursuit-based clustering method to simultaneously 
identify clusters of both individuals and alternatives in preference rankings.

Similarly to the task of clustering alternatives in preference rankings, 
González del Pozo et al. (2017) focused on clustering alternatives in ordered quali-
tative scales. They designed an agglomerative hierarchical clustering algorithm, 
relying on the concept of ordinal proximity measure, to cluster nine US presidential 
candidates. The degree of consensus is measured by the proximity of all pairs of 
individual appraisals over the evaluated alternatives.

In this work, we introduce a new family of pseudometrics on the set of alterna-
tives taking into account voters’ opinions on these alternatives through preference-
approvals. To obtain clusters, we apply an order-invariant partitioning algorithm, 
known as Ranked k-medoids (RKM), see Zadegan et  al. (2013), taking the simi-
larities as input among pairs of alternatives based on the proposed pseudometrics. 
Finally, clusters are represented in 2-dimensional space using non-metric multidi-
mensional scaling. This paper is an extended version of the paper presented at the 
51st Scientific Meeting of the Italian Statistical Society in June, 2022 (Albano et al. 
2022).
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The paper is organized as follows. Section 2 is devoted to introducing basic nota-
tion and concepts we use throughout the article. Section 3 contains our proposal for 
clustering alternatives. Section 4 includes some case studies in order to emphasize 
the advantage of reducing the complexity of the preference-approval space. Finally, 
Sect. 5 concludes the paper with some remarks.

2 � Preliminaries

Let X = {x1,… , xn} represent a finite set of alternatives, with n ≥ 2 . A full and tran-
sitive binary relation on X is a weak order (or complete preorder). While, a linear 
order on X is an antisymmetric weak order on X.

The set of weak and linear orders on X is denoted by W(X)and L(X) , respectively. 
Given R ∈ W(X) , we represent the asymmetric and symmetric components of R 
with ≻ and ∼ , respectively: xi ≻ xj if not xj R xi , and xi ∼ xj if xi R xj and xj R xi.

Given a set Y, with P(Y) we denote its power set, i.e., I ∈ P(Y) ⇔ I ⊆ Y  . In turn, 
with #Y  we denote the cardinality of Y.

2.1 � Preference‑approvals

Consider a scenario in which a group of voters V = {v1,… , vm} , with m ≥ 2 have to 
declare their preferences on a set of alternatives X = {x1,… , xn} , with n ≥ 2.

By splitting X into A, the set of acceptable alternatives, and U = X ⧵ A , the set of 
unacceptable alternatives, where A and U can both be the empty set, we assume that 
each voter uses a weak order to rank the options in X and additionally determines 
whether each option is acceptable or unacceptable.

We also make the following consistency assumption: given two alternatives xi and 
xj , if xj is acceptable and xi is ranked above xj , then xi should be acceptable as well.

Definition 1  A preference-approval on X is a pair (R,A) ∈ W(X) × P(X) satisfying 
the following condition:

With R(X) we denote the set of preference-approvals on X.
A profile is a vector of preference-approvals 

[
(R1,A1),… , (Rm,Am)

]
∈ R(X)m , 

where (Rk,Ak) is the preference-approval of the voter vk ∈ V .

Remark 1  If (R,A) ∈ R(X) , then the following conditions are satisfied: 

1.	 ∀xi, xj ∈ X
[
(xi ∈ A and xj ∈ U) ⇒ xi ≻ xj

]
.

2.	 ∀xi, xj ∈ X
[
(xi R xj and xi ∈ U) ⇒ xj ∈ U

]
.

Example 1  Consider the preference-approval (R,A) ∈ R({x1, x2, x3, x4}) represented by

∀xi, xj ∈ X
[
(xi R xj and xj ∈ A) ⇒ xi ∈ A

]
.
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x1

x2 x3
x4

The alternatives above the line are acceptable, i.e., A = {x1} , and those below the 
line are unacceptable, i.e., U = {x2, x3, x4} . This means that alternatives in the upper 
rows are preferred to those in the lower rows, and alternatives in the same row are 
indifferent.

The number of approvals, linear orders, weak orders, and preference-approvals 
when the number of alternatives is n = 2, 3,… , 10 are listed in Table 1. The total 
number of approvals (subsets of X) and linear orders is widely known to be 2n! 
and n! , respectively. While, according to Good (1975) and Bailey (1998), there are 
n!(log2 e)n+1∕2 weak orders. Finally, the last column of Table  1 shows the exact 
number of preference-approvals (these data come from Albano et al. 2023).

Table  1 provides a comprehensive overview of the number of possible prefer-
ences and rankings that can be generated for a given number of alternatives. It 
allows to gain a better understanding of the combinatorial explosion that occurs 
as the number of alternatives increases. Indeed, the complexity of the preference-
approval space poses a significant challenge in developing algorithms or models for 
preference aggregation and prediction.

2.2 � A pseudometric on preferences

Positions are easily assigned to alternatives in linear orders: given R ∈ L(X) , 
the position of each alternative xi ∈ X in R is defined through the mapping 
PR ∶ X ⟶ {1,… , n} that gives the first choice a score of 1, the second alternative a 
score of 2, and so on.

Table 1   Number of approvals, 
linear orders, weak orders and 
preference-approvals

n Approvals Linear orders Weak orders Preference-approvals

2 4 2 3 8
3 8 6 13 44
4 16 24 75 308
5 32 120 541 2612
6 64 720 4683 25,988
7 128 5040 47,293 296,564
8 256 40,320 545,835 3,816,548
9 512 362,880 7,087,261 54,667,412
10 1024 3,628,800 102,247,563 862,440,068
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In weak orders, the positions of the alternatives can be assigned in a variety of 
ways. One of them, employed by García-Lapresta and Pérez-Román (2011) is based 
on Smith (1973), Black (1976), and Cook and Seiford (1982). Given R ∈ W(X) , the 
position of xi ∈ X in R is determined by the mapping PR ∶ X ⟶ [1, n] defined as

that is, the position of xi in R is determined by subtracting the number of alterna-
tives to which xi is strictly preferred (i.e., they appear after xi in R) from n, the total 
number of alternatives. This value is then adjusted by subtracting half the number 
of alternatives that are tied with xi (i.e., are indifferent to xi ). The resulting positions 
can be used to compare the rankings of alternatives across different weak orders. 
From Eq. (1), we introduce a pseudometric on the set of alternatives that measures 
the difference between the positions of two alternatives in a weak order.

Proposition 1  Given R ∈ W(X) , the mapping dP ∶ X × X ⟶ ℝ defined as

is a pseudometric on X, i.e., it satisfies the following conditions for all xi, xj, xk ∈ X : 

1.	 dP(xi, xj) ≥ 0.

2.	 dP(xi, xi) = 0.
3.	 dP(xi, xj) = dP(xj, xi).

4.	 dP(xi, xj) ≤ dP(xi, xk) + dP(xk, xj).

Additionally, it is satisfied dP(xi, xj) = 0 ⇔ xi ∼ xj , for all xi, xj ∈ X.
Obviously, if R ∈ L(X) , then dP is a metric, i.e., dP(xi, xj) = 0 ⇔ xi = xj , for all 

xi, xj ∈ X . Note that dP(xi, xj) ∈ {0, 1,… , n − 1} for all xi, xj ∈ X.

2.3 � A pseudometric on approvals

Given A ⊆ X , the indicator function (or characteristic function) of A, 
IA ∶ X ⟶ {0, 1} , is defined as

From Eq. (3), we now introduce a pseudometric on the set of alternatives that meas-
ures the difference between the membership of two alternatives in a set.

Proposition 2  Given A ⊆ X , the mapping dA ∶ X × X ⟶ ℝ defined as

(1)PR(xi) = n − #
{
xk ∈ X ∣ xi ≻ xk

}
−

1

2
⋅ #

{
xk ∈ X ⧵ {xi} ∣ xi ∼ xk

}
,

(2)dP(xi, xj) = |PR(xi) − PR(xj)|

(3)IA(xi) =

{
1, if xi ∈ A,

0, if xi ∈ X ⧵ A.
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is a pseudometric on X, i.e., it satisfies the following conditions for all xi, xj, xk ∈ X : 

1.	 dA(xi, xj) ≥ 0.
2.	 dA(xi, xi) = 0.
3.	 dA(xi, xj) = dA(xj, xi).

4.	 dA(xi, xj) ≤ dA(xi, xk) + dA(xk, xj).

Additionally, it is satisfied dA(xi, xj) = 0 ⇔

[
xi, xj ∈ A or xi, xj ∉ A

]
 , for all 

xi, xj ∈ X.
Note that dA(xi, xj) ∈ {0, 1} for all xi, xj ∈ X.

Remark 2  Every preference-approval (R,A) ∈ R(X) can be codified in terms of 
PR(xi) (Eq. 1) and IA(xi) (Eq. 3) as follows:

For instance, in Example 1, (R,A) is codified as (1, 2.5, 2.5, 4)& (1, 0, 0, 0).

3 � The proposal

Given a profile 
[
(R1,A1),… , (Rm,Am)

]
∈ R(X)m and two alternatives xi, xj ∈ X , we 

now present two indices that quantify the distance between these items in terms of 
preference and approvals, respectively, for each voter vk ∈ V  . They are based on the 
pseudometrics introduced in Eqs. (2) and (4).

3.1 � Preference discordances

The preference-discordance between xi and xj for the voter vk ∈ V  is defined as

Note that pk
ij
∈ [0, 1].

Remark 3  Note that if a voter expresses a linear order R ∈ L(X) , then: (i) there will 
not be any pair of different alternatives whose preference-discordance is 0 and (ii) 
there will be only one pair of alternatives whose preference-discordance is maxi-
mum, equal to 1:

(4)dA(xi, xj) = |IA(xi) − IA(xj)|

(5)
[
PR(x1),PR(x2),… ,PR(xn)

]
&
[
IA(x1), IA(x2),… , IA(xn)

]
.

(6)pk
ij
=

1

n − 1
⋅ |PRk

(xi) − PRk
(xj)|.
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On the contrary, if a voter expresses a weak order that is not a linear order 
R� ∈

[
W(X) ⧵ L(X)

]
 , and indifference between different alternatives happens, then: i) 

there will exist at least a pair of different alternatives whose preference-discordance 
is 0; ii) no pair of alternatives produces a preference-discordance equal to 1:

Remark 4  Note that, pk
ij
 is decreasing as the total number of alternatives, n, increases. 

Figure 1 plots the preference-discordance pk
ij
(xi, xk) as a function of n, where xi, xj 

are two adjacent alternatives for the k-th voter.
The total number of different alternatives, n, determines the expressivity of vot-

ers. Two alternatives xi, xj ∈ X that are adjacent are considered more similar in a 
large order than in a small one. For example, consider the universe of weak orders 
for n = 4 : xi and xj are adjacent in 40 out of the 75 possible scenarios, about 53% . 
On the contrary, when the number of alternatives doubles, n = 8 , the number of 
weak orders in which xi and xj are adjacent drops to 170,440 out of 545,835, approx-
imately 31% . As n increases, the percentage of scenarios in which xi and xj are adja-
cent decreases, and so does the average distance between them.

Finally, the average preference-discordance, p̄ij , summarizes the average dissimi-
larity between two alternatives according to the whole set of voters:

R ∈ L(X) ⇒

{
pk
ij
≠ 0 for all xi, xj ∈ X, xi ≠ xj,

∃! xi, xj ∈ X pk
ij
= 1.

R� ∈
[
W(X) ⧵ L(X)

]
⇒

{
∃ xi, xj ∈ X, xi ≠ xj, pk

ij
= 0,

pk
ij
≠ 1 for all xi, xj ∈ X.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
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8
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Fig. 1   Preference-discordance of two adjacent alternatives by n 
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3.2 � Approval discordances

The approval-discordance between xi and xj for the voter vk ∈ V  is defined as

where ak
ij
∈ {0, 1}.

Unlike pk
ij
 , the approval-discordance is not influenced by the number of alterna-

tives whose acceptability is established. Considering all possible approvals of n 
alternatives, the percentage of approval vectors in which xi and xj receive the same 
rating remains constant as n varies.

Finally, the average approval-discordance, āij , summarizes the average dissimi-
larity between two alternatives according to the whole set of approvals:

3.3 � Global discordances

In order to define an overall measure of discordance between each pair of alter-
natives, we consider the family of weighted means, h ∶ [0, 1] × [0, 1] ⟶ [0, 1] , 
defined as

where � ∈ [0, 1].
Taking into account the preference and approval discordances introduced in 

Eqs. (6), (7), (8) and (9), respectively, and the family of weighted means defined 
in Eq. (10), we now introduce a global measure of discordance between pairs of 
alternatives.

Definition 2  Given a profile 
[
(R1,A1),… , (Rm,Am)

]
∈ R(X)m and � ∈ [0, 1] , the 

mapping �� ∶ X × X ⟶ [0, 1] is defined as

Proposition 3  Given a profile 
[
(R1,A1),… , (Rm,Am)

]
∈ R(X)m , the mapping �� is a 

pseudometric on X for every � ∈ [0, 1] . We say that �� is the pseudometric associ-
ated with �.

(7)p̄ij =
1

m

m∑

k=1

pk
ij
.

(8)ak
ij
= |IAk

(xi) − IAk
(xj)|,

(9)āij =
1

m

m∑

k=1

ak
ij
.

(10)h(x, y) = � ⋅ x + (1 − �) ⋅ y,

(11)𝛿𝜆(xi, xj) =
1

m
⋅

m∑

k=1

(
𝜆 ⋅ pk

ij
+ (1 − 𝜆) ⋅ ak

ij

)
= 𝜆 ⋅ p̄ij + (1 − 𝜆) ⋅ āij.
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Proof  Taking into account Propositions 1 and 2, it is obvious that �� satis-
fies the following conditions for all xi, xj ∈ X : ��(xi, xj) ≥ 0 , ��(xi, xi) = 0 and 
��(xi, xj) = ��(xj, xi) . Finally, �� satisfies the triangle inequality being a convex com-
bination of pseudometrics. 	�  ◻

Figure 2 shows how �� varies as a function of p̄ij and āij for � = 0.1, 0.5, 0.9.
In Fig. 2a, � is set to 0.5. Thus, p̄ij and āij have the same weight in determining the 

final distance ��(xi, xj) . As a result, the corresponding heatmap is symmetrical with 
respect to the secondary diagonal, and �� increases diagonally from bottom to top 
and from left to right.
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Fig. 2   Heatmaps ��
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On the contrary, � = 0.1 Fig. 2a and � = 0.9 (Fig. 2)c correspond to two unbal-
anced settings. Giving much more importance to approvals, � = 0.1 Fig. 2a, causes 
the bottom area of the graph to contain lower distances, �� grows much more notice-
ably vertically rather than horizontally. Finally, in Fig. 2c, �� is dominated by the 
preference-discordance. The lesser distances are found on the left side of the graph, 
and �� expands horizontally significantly more than vertically.

The choice of � as a weighting parameter in metrics for preference-approvals has 
been the subject of debate in other scientific articles (Erdamar et  al. 2014; Dong 
et al. 2021; Albano et al. 2023). There is not a � value that is always the best choice 
for preference-approvals problems. Generally, as the relative importance of the two 
types of information is unknown, a recommended value of � is 0.5, which assigns 
equal importance to both the ranking and approval components.

3.4 � Clustering procedure and visualization

In this paper, we use the algorithm Ranked k-medoids (RKM) (see Zadegan et al. 
2013) to find clusters but we highlight that our pseudometrics can be used jointly 
with any distance-based clustering algorithm.

The RKM technique employs a function that assigns a rank to alternatives based 
on how similar they are to each other, with the more similar alternatives receiving a 
lower rank. In other words, rank (xi, xj) = l shows that xj is the l-th similar alterna-
tive to xi among n alternatives in the dataset. Sorting the similarity values between 
xi and other items in the dataset allows one to determine the ranks of the remaining 
objects in relation to an item like xi . A rank matrix is also expressed by the rank 
function K = [kij] , where rank (xi, xj) = kij for all xi, xj ∈ X.

Note that, due to the fact that two items are rarely at the same rank as one another, 
K is not always symmetric. Thus, K is an n × n matrix that shows the hostility rela-
tionship among alternatives in the dataset.

The hostility value (hv) of a particular object, xi , within a collection of alterna-
tives, G, is introduced in order to identify the medoids. The hostility value, hv i , of xi 
within the set G is defined as:

Starting from the similarities among pairs of objects based on ��(xi, xj) , the RKM 
algorithm firstly calculates K matrix and selects the medoids randomly. Then, for 
each medoid, select the group of the most similar objects to each medoid, using 
the sorted index matrix, and calculate the hostility values of every object in those 
groups using Eq. (12). Afterwards, select the object with the highest hostility value 
as the new medoid and move one of the medoids placed in the same group. Finally, 
iterate the process and assign each object to the most similar medoid.

This algorithm requires the number of clusters to be specified before. However, 
some methods, such as the Silhouette Coefficient, can be used to estimate the opti-
mal number of clusters in our data.

(12)hv i =
∑

xi∈G

kij.
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The RKM method is particularly suitable in our case since it analyzes a ranking 
of dissimilarities, which makes the results order-invariant, meaning that data trans-
formations that preserve the original order of the data have no impact on clusters.

In order to represent the resulting clusters in a 2-dimensional space, the multidi-
mensional scaling (MDS) is employed. This class of methods attempts to express an 
observable proximity or distance matrix by a simple geometrical model or map so 
that the greater the perceived distance between two alternatives, the more apart the 
points representing them in the final geometrical model are.

Such models estimate q-dimensional coordinate values to represent n alternatives 
of a distance matrix. They optimize a chosen goodness of fit index, how closely the 
predicted distances approximate the observed ones. A number of optimization strat-
egies, when combined with a variety of goodness of fit indices, result in a variety of 
MDS algorithms (Hothorn and Everitt 2006).

In this paper, given the nature of the objects, the Non-metric Multidimensional 
Scaling is employed. This method constructs fitted distances in the same rank order 
as the original distance, thus preserving the rank order of the proximities. Algo-
rithms for accomplishing this are described in Kruskal (1964). The required coordi-
nates for a given set of disparities are found by minimizing a function called Stress 
based on the squared differences between the observed proximities and the derived 
disparities. The process iterates until a suitably chosen convergence condition is 
satisfied.

4 � Case studies

This section shows how the proposed metric can be used to perform cluster analysis 
on real data.

4.1 � Eurobarometer dataset

Eurobarometer is a collection of cross-country public opinion surveys conducted on 
the authority of the European Commission and other European Union (EU) insti-
tutions since 1973. These surveys address a variety of topics pertaining to the EU 
and its member countries. Specifically, the data used in this paper come from sur-
vey question QA7 named “Public opinion in the European Union”.1 Voters, divided 
up by country, were asked to indicate which of the values listed in Table 2 the EU 
meant the most to them.

As a result, data are stored in Table 11, which has 15 columns (each indicating 
an object of X = {x1,… , x15} ) and 27 rows (one row for each EU member country). 
The table’s generic cell ij displays the total number of votes that the i-th country 
gives in favor of the j-th alternative.

The original table is transformed into a set of preference-approvals to perform 
the analysis. Following Albano et al. (2023), the alternatives are ranked in order of 

1  https://​europa.​eu/​eurob​arome​ter/​surve​ys/​detail/​2553.

https://europa.eu/eurobarometer/surveys/detail/2553


1 3

Clustering alternatives in preference‑approvals via novel…

popularity, from the most to the least voted, and approvals are derived by approving 
the alternatives that obtained a higher number of votes than the national average. For 
instance, Table 3 displays the votes cast in Italy (Table 11 contains the votes cast in 
all countries).

Following Eq. (5) and considering that the average vote in Italy is 18.53, the votes 
in Italy are converted into a preference-approval as:

that can be visualized as follows

(4, 9.5, 6, 13, 1, 8, 3, 2, 9.5, 11.5, 11.5, 14, 15, 7, 5)& (1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1)

Table 2   Values in the EU Alternatives Names

x
1

Peace
x
2

Economic prosperity
x
3

Democracy
x
4

Social protection
x
5

Freedom to travel, study and work 
anywhere in the EU

x
6

Cultural diversity
x
7

Stronger say in the world
x
8

Euro
x
9

Unemployment
x
10

Bureaucracy
x
11

Waste of money
x
12

Loss of our cultural identity
x
13

More crime
x
14

Not enough control at external borders
x
15

Quality of life of future generations

Table 3   Votes in Italy

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

Italy 24 13 19 11 43 15 27 32 13 12 12 10 9 16 22
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x5
x8
x7
x1
x15
x3

x14
x6

x2 x9
x10 x11

x4
x12
x13

In Fig.  3, the 15 alternatives are arranged on the preference-approval plane. 
The location of each alternative in this 2-dimensional space is identified by its 
ExpectedRank (i.e., the average rank over the whole set of voters) and by its Rel-
ativeApproval, i.e., the relative frequency of voters who considered it acceptable.

The preference-approval plane provides a summary of the evaluations of voters on 
average. In particular, it reveals that all voters consider “Freedom of movement” the 

Peace

Economic.prosperity

Democracy

Social.protection

Freedom.of.movement

Cultural.diversity
Stronger.say

Euro

Unemployment

Bureaucracy

Money.waste

Loss.identity
More.crime

No.border.control

Future.life.quality

0.00

0.25

0.50

0.75

1.00

5 10

ExpectedRank

R
el
at
iv
eA

pp
ro
va

l

Fig. 3   Preference-approval plane, Eurobarometer
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best alternative: it is unanimously approved and always placed first in the preference-
approvals; its RelativeApproval and its ExpectedRank are equal to 1. The other alter-
natives tend to lie in a straight line with a negative angular coefficient. The further we 
move away from the point (1,  1), the worse the corresponding alternatives obtained 
average ratings.

Note that the preference-approval plane aids the interpretation of clusters once they 
have been estimated. However, it should not be considered a tool to identify clusters 
since the distance between points in the preference-approval plane does not necessarily 
reflect the pseudometric in Eq. (11). Alternatives having similar average ranking posi-
tions and approvals may show discordance among the voters.

Example 2  To further clarify this concept, let us consider (R
1
,A

1
), (R

2
,A

2
) ∈

R({x
1
, x

2
, x

3
, x

4
}) the following preference-approvals:

(R1, A1) ≡

x1
x2

x3
x4

(R2, A2) ≡

x4
x2

x3
x1

For each alternative xi ∈ X , the ExpectedRank, expected approval and �0.5 dis-
tance matrix are reported in Tables 4 and 5.

Note that x1 and x4 have the same RelativeApproval and ExpectedRank, thus 
identical coordinates in the preference-approval plane, but show maximum dis-
cordance over the voters, i.e., �0.5(x1, x4) = 1 . In fact, they are placed at the oppo-
site extremes in both preference-approvals. Therefore, the preference-approval 

Table 4   ExpectedRank and 
RelativeApproval

Alternative ExpectedRank Rela-
tiveAp-
proval

x
1

2.5 0.5
x
2

2 1
x
3

3 0
x
4

2.5 0.5

Table 5   Distances �
0.5 x

1
x
2

x
3

x
4

x
1

0
x
2

0.5 0
x
3

0.5 0.67 0
x
4

1 0.5 0.5 0
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plane is intended to be an interpretative tool to visualize average judgments and 
interpret clusters once they have been estimated. At the same time, it is not appro-
priate to identify clusters since it does not reflect similarities among elements.

Figure 4 shows the clusters estimated by the RKM algorithm, where the cen-
tral medoid for each cluster is highlighted through the dimension of the point. We 
investigate the effect of the � parameter on the output, by setting � = 0.1, 0.5, 0.9 . 
In this way, we are able to study three scenarios: � = 0.5 , which corresponds to 
giving the same importance to approvals and preferences, and � = 0.1, 0.9 , which 
corresponds to the opposite unbalanced situations.

Peace

Economic.prosperity
Democracy

Social.protection

Freedom.of.movement

Cultural.diversity

Stronger.say

Euro

Unemployment

Bureaucracy

Money.waste
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More.crime

No.border.control

Future.life.quality

−0.25

0.00

0.25

−0.25 0.00 0.25 0.50
Dim.1

D
im
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RKM 1 2

λ = 0.1 Stress = 6.88

(a) λ = 0.1, Stress=6.88
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(b) λ = 0.5, Stress=6.63
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(c) λ = 0.9, Stress=6.43

Fig. 4   Graphical representation of RKM clusters
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We also show the Stress values in each scenario to assess the goodness of the 
graphical representation obtained with the MDS. Note that the position of the 
points in the new space found by MDS depends on the value of � . If the param-
eter, � varies, the graphical representation does as well.

In general, the Stress coefficient varies between 6.88 and 6.43, showing a good 
adaptation that tends to improve slightly as � increases. The optimal number of clus-
ters, chosen through the Silhouette criterion, is two independently from the � value.

When � = 0.1, 0.5 , the clusters found are the same, but the degree of separation 
between them clearly changes. In fact, the two clusters exhibit a higher separation 
index2 under � = 0.1 , i.e., assigning much more weight to the approvals than under 
� = 0.5 . Thus, a clear division is obtained between frequently accepted and not 
accepted alternatives. The two clusters become closer as � reaches 0.5. In this exam-
ple, there are clearly two different types of alternatives: those referring to negative 
aspects (“Bureaucracy”, “Unemployment”, “Money waste”, etc.) and those referring 
to positive aspects (“Freedom”,“Democracy”, etc.). For this reason, a voter with a 
bad opinion about the EU will prefer the former and vice versa. Indeed, the two 
clusters are robust and remain unchanged for small and moderate values of � . In this 
sense, clusters also provide a measure of the consistency of voters’ judgment when 
alternatives can be divided into natural groups. In this instance, when � = 0.1, 0.5 , 
the identified clusters split options related to negative attributes from those related 
to positive qualities. If the clusters were a mixture of good and bad options, it would 
imply low consistency among the judges.

Note that the proximity between points in the two-dimensional space discovered 
by the MDS (Fig. 4a–c) reflects the similarities based on �� , between the alternatives 
over the voters. Thus, the position of the elements in this new space addresses the 
cluster interpretation.

Indeed, although in the preference-approval plane (see Fig.  3),“Money waste” 
is closer to the alternatives belonging to Cluster 1, its position in the MDS space 
reveals that actually, it is part of Cluster 2.

Figure 4c displays clusters under � = 0.9 , i.e., unbalanced towards preferences. In 
this case, Cluster 1 isolates the three alternatives frequently placed in the first posi-
tions (see the preference-approval plane Fig.  3), namely: “Freedom”,“Peace” and 
“Euro”.

To better understand how these can be used, consider a policymaker seeking to 
design a campaign to improve the EU’s public image. By analyzing the clusters and 
the responses within each cluster, the policymaker can tailor the campaign message 
to better resonate with the target audience. For instance, the campaign could empha-
size the positive aspects of the EU, such as “Freedom of movement”, “Peace” and 
“Democracy”, to appeal to those with a positive view of the EU. Conversely, the 
campaign could address negative aspects, such as “Bureaucracy”, “Money waste” 
and “Loss of our cultural identity” to appeal to those with a negative view of the EU. 
As a matter of fact, the clusters can inform policymakers and political parties about 
the values and concerns that are most important to voters in different countries. This 
allows a geographical type analysis to describe EU preferences.

2  Based on the distances for every point to the closest point not in the same cluster.
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Table  6 displays the average ranking positions and the average approval rat-
ings given by each country to the alternatives in the two clusters (identified using 
� = 0.5 ). As an example, let’s consider Belgium’s rankings and approval ratings for 
Cluster 1 and Cluster 2. In Cluster 1, the alternatives {x1, x2, x3, x5, x6, x7, x8, x15} 
received the following ranking positions (3,  8,  7,  1,  6,  4,  2,  9). The approval rat-
ings for these alternatives are: (1, 0, 0, 1, 1, 1, 1, 0). Therefore, the average rank-
ing for Cluster 1 alternatives is 5 and the average approval rating is 0.62. On the 
other hand, for Cluster 2, the alternatives {x4, x9, x10, x11, x12, x13, x14} received the 
following ranking positions (12,  15,  11,  5,  13,  14,  10) . The approval ratings for 

Table 6   Average ranking position and approval rating for items in Cluster 1 and Cluster 2 for each coun-
try

Country Cluster 1 Cluster 2

Average rankings Average approv-
als

Average rankings Average 
approv-
als

Belgium 5.00 0.62 11.43 0.14
Bulgaria 5.00 0.50 10.86 0.00
Czech Rep 5.88 0.75 10.14 0.29
Denmark 5.12 0.75 11.00 0.14
Germany 5.38 0.75 11.00 0.14
Estonia 5.62 0.62 9.86 0.14
Ireland 4.38 1.00 11.86 0.00
Greece 6.38 0.62 9.71 0.14
Spain 4.62 0.75 11.57 0.00
France 5.88 0.50 10.29 0.29
Croatia 4.25 1.00 12.00 0.00
Italy 4.75 0.75 11.43 0.00
Cyprus 6.38 0.50 9.43 0.29
Latvia 5.38 0.75 11.00 0.00
Lithuania 5.00 0.62 10.71 0.00
Luxembourg 5.50 0.62 10.57 0.00
Hungary 4.75 0.75 11.29 0.14
Malta 4.50 0.88 11.86 0.00
Netherlands 4.75 0.88 11.57 0.14
Austria 6.75 0.38 8.86 0.43
Poland 4.88 0.75 11.00 0.00
Portugal 4.38 0.88 11.43 0.00
Romania 4.38 0.62 11.14 0.00
Slovenia 4.38 0.88 11.71 0.00
Slovakia 7.12 0.50 8.43 0.43
Finland 5.88 0.50 10.00 0.14
Sweden 6.00 0.50 10.14 0.29
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these alternatives are (0, 0, 0, 1, 0, 0, 0). The average ranking for Cluster 2 is 11.43, 
while the average approval rating is only 0.14. This indicates that Belgium prefers 
the alternatives in Cluster 1.

Table 6 shows that Cluster 1 exhibited overall better ranking positions and higher 
approval ratings compared to Cluster 2, indicating more positive evaluations of its 
alternatives. However, it should be noted that some countries, such as Austria and 
Slovakia, assign better ranking positions and higher approval than the other coun-
tries to Cluster 2 items, which could indicate that negative aspects of the EU, such 
as “No border control” and “Money waste”, may be of particular concern to people 
in these countries. Thus, they may require more targeted and nuanced messaging 
that addresses specific concerns or criticisms that they have about the EU. Under-
standing these specific concerns can help policymakers craft messages that resonate 
with these groups and ultimately improve their overall perception of the EU. In this 
sense, these two countries can be considered outliers compared to the rest of the EU 
countries.

On the other hand, countries such as Croatia, Ireland, Portugal, and Slovenia 
assign particularly high approval ratings and good ranking positions to alternatives 
in Cluster 1. This could indicate that positive aspects of the EU, such as “Freedom 
of movement” and “Peace”, may resonate exceptionally well with the people of 
these countries.

Furthermore, the clusters can identify potential areas of disagreement or conflict 
among EU member countries. Policymakers can address these differences and find 
common ground by understanding the values and concerns that are most important 
to voters in different countries. For example, countries with significantly different 
ratings between clusters, such as Austria, which gave the highest rating in Cluster 2, 
and Slovakia, which gave the highest rating in Cluster 1, may have opposing ideolo-
gies and concerns that could lead to conflicts. In contrast, countries with comparable 
ratings across clusters, like Finland and Sweden, might have more common values 
and issues, making cooperation easier.

Table 7   Lines of action

Alternatives Names

x
1

Searching for life and planets that could support life
x
2

Searching for raw materials and natural resources that could be used on Earth
x
3

Conducting basic scientific research to increase knowledge and understanding of space
x
4

Developing technologies that could be adapted for uses other than space exploration
x
5

Monitoring asteroids and other objects that could potentially hit the Earth
x
6

Monitoring key parts of the Earth’s climate system
x
7

Sending human astronauts to explore the Moon
x
8

Sending human astronauts to explore Mars
x
9

Conducting scientific research on how space travel affects human health
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Overall, the clusters identified through the Eurobarometer dataset have practical 
applications for policymakers, political parties, and anyone interested in understand-
ing public opinion within the EU.

4.2 � Pew Research Center dataset

The Pew Research Center is a research institute that specializes in data-driven social 
science research, including public opinion surveys, demographic studies, content 
analysis, and more.

In this analysis, the survey “American Trends Panel Wave 33”3 is considered. 
Data in this report is drawn from the panel wave conducted from March 27 to April 
9, 2018, to collect the opinions of United States citizens regarding the space agency 
NASA.

In this analysis, we focus specifically on a query in which a total of 2 541 
respondents were asked to assess how much priority NASA should give to a list 
of nine lines of action, listed in Table 7. Individuals employed the linguistic terms 
from the qualitative scale in Table 8 to accomplish this.

In order to remove neutral answers, the respondents giving at least a “No 
answer” responses were excluded, i.e., about 3% of the total sample size. Further-
more, for each respondent, alternatives were arranged into a preference-approval. 
The two linguistic terms l1 and l2 were used to indicate an acceptable alternative. 
An example is provided in Table 9.

The respondent v10 preference-approval (see Eq. 5) is

that can be visualized as follows

(7.5, 3.5, 1.5, 1.5, 7.5, 5, 7.5, 7.5, 3.5)& (0, 1, 1, 1, 0, 0, 0, 0, 1)

Table 8   Linguistic terms Linguistic term

l
1

Top priority
l
2

Important but lower priority
l
3

Not too important
l
4

Should not be done
l
5

No answer

Table 9   Pew Research Center 
example

Respondent x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

v
10

l
4

l
2

l
1

l
1

l
4

l
3

l
4

l
4

l
2

3  https://​www.​pewre​search.​org/​scien​ce/​datas​et/​ameri​can-​trends-​panel-​wave-​33/.

https://www.pewresearch.org/science/dataset/american-trends-panel-wave-33/
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x3 x4
x2 x9

x6
x1 x5 x7 x8

Here, approvals are generated directly by the voters through linguistic terms so 
that each voter can define all alternatives as acceptable or vice versa.

Figure 5 shows the nine alternatives on the preference-approval plane.
In this example, the RelativeApproval of each item ranges between 55 and 

95%, meaning that each alternative has been considered as acceptable by more 
than half of the individuals. Therefore, although the alternatives may be regarded 
as acceptable by voters on average, less urgent alternatives, such as exploration of 
other planets and satellites (Moon and Mars) and more urgent alternatives, such 
as earth monitoring (Climate and Asteroids), can be identified.

The clusters estimated by the RKM algorithm are shown in Fig. 6. As in the 
previous example, three different values of � = 0.1, 0.5, 0.9 are used. For each 
scenario, the clusters, medoids and Stress values reached by the MDS are illus-
trated for graphical representation.
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Fig. 5   Preference-approval plane, Pew Research Center
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In general, the stress coefficient varies between 2.43 and 1.8, showing an excel-
lent adaptation that tends to improve as � increases. The optimal number of clusters, 
chosen through the Silhouette criterion, turns out to be two independently from the 
� value.
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Fig. 6   Graphical representation of RKM clusters

Table 10   Comparison 
of two Clusters Based 
on ExpectedRank, 
RelativeApproval, and average 
distance

Average Expect-
edRank

Average Relative-
Approval

Average 
within 
distance

Cluster 1 4.46 0.86 0.19
Cluster 2 6.08 0.66 0.20
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The effect of the parameter � on cluster building is visible. Setting � = 0.1 results 
in Cluster 1 including only the two alternatives related to space exploration (Moon 
and Mars), which have the lowest RelativeApproval (see Fig.  5). Voters strongly 
tend to attribute the same approvals to these two alternatives.

Increasing the value of � = 0.5 causes Cluster 1 to enlarge by including the 
alternative “Searching life”. Finally, giving much more weight to the rankings, 
i.e. � = 0.9 , results in Cluster 1 also including the alternative Searching natural 
resources. In this way, Cluster 1 contains the four alternatives that are most fre-
quently placed in the last positions in voters’ preference-approvals.

To use the clusters obtained in the Pew Research Center dataset in practice, 
one could identify which lines of action have similar approval profiles and use 
this information to inform policymakers. For instance, in this case study, we can 
state that the fact that the three alternatives x1 (Search for life and planets that 
could support life) x2 (Explore the Moon) and x3 (Explore Mars) belong to the 
same cluster will suggest that policies focused on one of these areas will also 
receive the consent of voters who have a preference for the alternatives linked 
to it. Therefore, solutions shared by the three lines could significantly reduce 
the economic resources otherwise necessary for interventions on the individual 
dimensions. Moreover, by clustering the lines of action based on preference-
approval profiles, policymakers can gain insights into the relationships between 
different policy options and the values and priorities of the electorate. These 
insights can inform the development of policies that align more closely with pub-
lic sentiment and are, therefore, more likely to be successful. Table 10 shows the 
average ExpectedRank, RelativeApproval and within distance of the altenatives 
in the two clusters, identified using � = 0.5.

The table shows that Cluster 1 alternatives have a higher average RelativeAp-
proval (0.86) and a better average ExpectedRank (4.46) than Cluster 2. This means 
that, on average, individuals were more supportive of Cluster 1’s than Cluster 2’s 
activities. Furthermore, the average within-cluster distance is the same in both 
groups even though only three action lines are in the second cluster {x1, x7, x8} and 
six action lines {x2, x3, x4, x5, x6, x9} belong to the first cluster. From a practical point 
of view, this means that investments in terms of time, money, and human resources 
aimed at one or more lines of action in Cluster 1 are likely succeed in attracting 
the support of all those who have expressed a preference for one or more of these 
actions, appealing a wider range of citizens as a result. Therefore, the action lines in 
Cluster 1 shall have a higher priority than those in Cluster 2.

It is worth noting that, in contrast to the first case study, the preference-
approvals in this study were obtained using a different method. Instead of ranking 
the alternatives in order of popularity and approving those that received a higher 
number of votes than the national average, individuals employed a qualitative 
scale consisting of five linguistic terms to indicate their level of approval for each 
alternative. Consequently, due to the qualitative nature of this scale, there were 
significantly more approved alternatives in this study than in the first case study. 
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As a result, the ranking of alternatives played a more critical role in evaluating 
the distance between alternatives, and the impact of � on the clustering process is 
more pronounced.

5 � Concluding remarks

Preference-approvals structures are gaining increasing attention in social choice as 
they allow decision-makers to describe their preferences using more flexible and 
intuitive ordinal information. In this paper, we propose a new method for clustering 
alternatives in preference-approvals. First, we introduce a family of pseudometrics, 
�� , able to quantify the distance between alternatives based on two main compo-
nents: the preference-discordance pij and the approval-discordance aij , and on the � 
parameter, which regulates the weight to give to each component.

To obtain clusters, we apply the Ranked k-medoids partitioning algorithm, taking 
as input the similarities among pairs of alternatives based on the proposed pseudo-
metrics. Finally, clusters are represented in 2-dimensional space using Non-Metric 
Multidimensional Scaling.

Through two applications to real data, we demonstrate how our algorithm allows 
dividing a heterogeneous population of alternatives into homogeneous groups, 
reducing the complexity of the preference-approval space and providing a more 
accessible interpretation of data. We also show the effect of the � parameter on clus-
ter identification and visualization.

Future research should consider using the proposed clustering method to collapse 
categories in the context of multiple-choice models. Moreover, it will be important 
that future research investigate a method to identify simultaneous clusters of both 
individuals and alternatives in the preference-approval framework, extracting help-
ful information in a low-dimensional subspace. In the future, we will certainly con-
sider any relevant alternatives that may arise in the context of preference-approval 
clustering and include a comparison with them.

Appendix

See Table 11.
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Table 11   Votes in the EU
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Belgium 32 22 23 14 52 24 27 42 7 18 25 12 11 19 20
Bulgaria 17 15 17 10 57 20 18 11 7 14 14 17 9 12 24
Czech Republic 33 30 31 8 66 18 32 17 2 37 28 18 7 20 30
Denmark 50 31 35 15 56 27 32 15 4 32 13 11 10 20 22
Germany 51 25 37 12 61 36 31 46 7 33 29 11 20 26 21
Estonia 30 19 28 13 76 29 18 50 2 34 19 19 4 19 22
Ireland 30 28 22 15 57 25 26 35 4 12 5 7 5 8 25
Greece 45 14 25 18 66 35 45 48 30 17 20 28 23 36 19
Spain 16 22 18 14 47 24 20 27 6 16 11 3 3 9 15
France 37 10 19 12 46 31 20 37 9 18 30 14 8 24 15
Croatia 26 27 23 20 55 24 26 23 4 11 12 18 9 13 39
Italy 24 13 19 11 43 15 27 32 13 12 12 10 9 16 22
Cyprus 38 20 26 24 67 36 26 45 31 21 22 24 35 36 25
Latvia 24 22 16 15 60 20 10 31 6 19 17 14 4 12 25
Lithuania 33 17 20 18 75 32 25 18 3 18 20 13 4 17 31
Luxembourg 46 23 34 17 61 36 22 51 6 26 27 12 18 26 22
Hungary 21 18 23 13 48 24 20 15 6 15 8 10 10 20 26
Malta 22 29 27 21 56 24 34 31 3 16 10 16 5 17 32
Netherlands 53 41 28 10 67 30 37 47 3 31 17 11 9 17 33
Austria 39 25 30 25 58 26 32 50 24 34 37 25 31 38 26
Poland 26 19 29 10 47 16 23 10 5 12 12 11 7 11 29
Portugal 19 27 24 18 57 27 32 44 6 6 7 7 6 16 22
Romania 23 19 21 14 45 16 16 23 9 15 14 18 15 16 21
Slovenia 36 25 27 16 54 27 20 47 5 18 15 13 15 16 24
Slovakia 28 20 16 10 64 21 28 44 12 28 33 20 22 38 19
Finland 32 18 24 6 67 27 21 54 3 35 24 11 11 22 18
Sweden 46 19 34 12 67 25 44 14 4 40 29 10 17 23 19
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