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Abstract: In this paper, we introduce higher-order harmonic numbers and derive their relevant
properties and generating functions by using an umbral-type method. We discuss the link with recent
works on the subject, and show that the combinations of umbral and other techniques (such as the
Laplace and other types of integral transforms) yield a very efficient tool to explore the properties of
these numbers.
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1. Introduction

The properties of many families of special numbers have been profitably studied by the use
of methods tracing back to the umbral calculus [1]. Within this context, the definition of the
associated polynomials naturally emerges as umbral Newton binomial convolutions (see “The
Bernoulli Polynomials §4.2.2” in Reference [1]). The formalism is extremely powerful, and has allowed
for the extension of the method to generalized forms of special numbers ([2,3]). The use of umbral
techniques has been recently employed in the study of harmonic numbers, whose relationship to
Bernoulli numbers has been pointed out in Reference [4]. In this paper, we will extend the use of
umbral methods to the case of higher-order harmonic numbers.

In a number of previous papers ([5–7]), different problems concerning harmonic numbers and
the relevant generating functions have been touched. The already mentioned use of the umbral-like
formalism has allowed for the framing of the theory of harmonic numbers within an algebraic context.
Some of the points raised in ([5–7]) have been reconsidered, made rigorous, and generalized by means
of different technical frameworks in successive research ([8–15]).

The present investigation concerns the application of the method foreseen in ([5–7]) to generalized
forms of harmonic numbers, such as (We use the notation mhn instead of H(m)

n recommended in
Reference [4] for continuity with previous papers, where it has been adopted to avoid confusion with
higher-order Hermite polynomials):

mhn =
n

∑
r=1

1
rm , n ≥ 1,

mh0 = 0,

(1)
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namely, “higher-order harmonic numbers” satisfying the property:

mhn+1 = mhn +
1

(n + 1)m , (2)

whose associated series is provided by the limit lim
n→∞ mhn, m > 1 is, unlike the ordinary harmonic

numbers (m = 1), not diverging.
It can be argued that for negative m values, the Harmonic numbers reduce to a finite sum of

integers, expressible in terms of Bernoulli numbers, as discussed in the concluding part of the paper
(Remark 3). In the following, we will derive a number of apparently new properties and the relevant
consequences.

As an introductory example, we provide the following:

Example 1. We consider the second-order harmonic numbers (m = 2) and write

2hn =
∫ 1

0

1− xn

x− 1
ln(x) dx, ∀n ∈ N, (3)

which is obtained after setting

1
r2 =

∫ ∞

0
e−srs ds (4)

by noting that

2hn =
∫ ∞

0

e−s(n+1) − e−s

e−s − 1
s ds, (5)

and then by changing the variable of integration.
It is worth stressing that the integral representation allows for the extension of harmonic numbers to

non-integer values of the index. The second-order harmonic numbers interpolates between the integer and real
values of the index, as shown in the plot given in Figure 1, where it is pointed out that the asymptotic limit of the

second-order harmonic numbers is
π2

6
.
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Figure 1. 2hx vs x and lim
x→∞ 2hx =

π2

6
.

The relevant extension to negative real indices will be considered later in the article.
Let us first consider the generating function associated with the second-order harmonic numbers,

which can be cast in the form of an umbral exponential series, as follows.
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Definition 1. We introduce

2 he(t) := 1 +
∞

∑
n=1

tn

n!
(2hn) = e2 ĥtξ0, (6)

where 2ĥ is an umbral-like operator acting on the vaccum ξ0, such that (see [10] for a complete treatment of the
umbral method):

2ĥnξ0 := ξn = 2hn, n > 0,

2ĥ0ξ0 = 1 6= 2h0 = 0
(7)

and
2ĥν

2ĥµξ0 = 2ĥν+µξ0, ∀ν, µ ∈ R. (8)

(The action of the operator 2ĥ should be defined as explained in Reference [10]—namely, as the action
of a shift operator on its vacuum, such as here ξ0, in the following more rigorous way):

2ĥ := e∂z ,

2ĥµ ξ0 = eµ∂z ξz

∣∣∣
z=0

= ξz+µ

∣∣
z=0 =

∫ 1

0

1− xz+µ

x− 1
ln(x) dx

∣∣∣∣
z=0

=
∫ 1

0

1− xµ

x− 1
ln(x) dx.)

Proposition 1. ∀m ∈ N,

2 he(t, m) := ∂m
t 2 he(t) = 2hm +

∞

∑
n=1

tn

n!
(2hn+m) . (9)

Proof. From Equations (6) and (7) it follows that, ∀m ∈ N,

2 he(t, m) = ∂m
t 2 he(t) = ∂m

t e2 ĥtξ0 = 2ĥme2 ĥtξ0 = 2hm +
∞

∑
n=1

tn

n!
(2hn+m) .

Corollary 1. Limiting ourselves to the first derivative only, it appears evident that the generating function (6)
satisfies the identity {

∂t 2 he(t) = 2 he(t) + f2(t),

2 he(0) = 1
, (10)

where

f2(t) =
∞

∑
n=1

tn

(n + 1)(n + 1)!
=

1
t

∫ t

0

es − s− 1
s

ds = −Ein(−t) + t
t

,

Ein(z) =
∫ z

0

1− e−ζ

ζ
dζ.

(11)

Observation 1. The problem of specifying the generating function of second-order harmonic numbers is reduced
to the solution of the first-order differential Equation (10). The solution writes

2 he(t) = et

(
1 +

∞

∑
n=1

1
(n + 1)2

(
1− e−ten(t)

))
, (12)

where

en(x) =
n

∑
r=0

xr

r!
(13)
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are the truncated exponential polynomials [16]. They belong to the family of Appél type polynomials [13] and
are defined through the operational identity [17,18]:

en(x) =
1

1− ∂x

xn

n!
. (14)

Corollary 2. We can further elaborate on the previous identities (Equations (13) and (14)), and set

∞

∑
n=1

en(t)
(n + 1)2 = Q2(t),

Q2(t) =
1

1− ∂t
f2(t).

(15)

Furthermore, since
∞

∑
n=1

1
(n + 1)2 =

π2

6
− 1, (16)

we end up with

2 he(t) = et Σ2(t),

Σ2(t) =
π2

6
−Q2(t) e−t.

(17)

This new result can be viewed as an extension of the generating function for the first-order harmonic
numbers derived by Gosper (see below) [19].

It is furthermore evident that the formalism allows the straightforward derivation of other
identities, such as

Lemma 1. ∀t ∈ R
∞

∑
n=1

tn

n!
(2hn+m) = et

m

∑
s=0

(
m
s

)
Σ(s)

2 (t)− 2hm, (18)

where the upper index (s) denotes a s-order derivative and is a direct consequence of the identity in Equation (9).

The extension to higher-order harmonic numbers with m > 2 follows the same logical
steps—namely, the derivation of the associated Cauchy problem.

Corollary 3. Let ∀t ∈ R, ∀p ∈ N : p > 1,

fp(t) =
∞

∑
n=1

tn

(n + 1)p−1 (n + 1)!
(19)

and  ∂t

(
p he(t)

)
= p he(t) + fp(t)

p he(0) = 1
, (20)

a Cauchy problem. Then, we can write the solution as:

p he(t) = et

(
1 +

∞

∑
n=1

1
(n + 1)p

(
1− e−ten(t)

))
(21)

or

p he(t) = et Σp(t), (22)
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with

Σp(t) = ζ (p)−Qp(t)e−t,

ζ (p) =
∞

∑
n=1

1
np ,

Qp(t) =
∞

∑
n=1

1
(n + 1)p en(t) =

1
1− ∂t

fp(t).

(23)

The case p = 1 should be treated separately, because the sum on the right-hand side of Equation (21)
apparently diverges.

Observation 2. It is accordingly worth noting that, since

f1(t) =
∞

∑
n=1

tn

(n + 1)!
=

1
t
(et − t− 1), (24)

we find

1 he(t) = et
(

1 +
∫ t

0

1− (τ + 1) e−τ

τ
dτ

)
= et Σ1(t),

Σ1(t) = e−t + Ein(t),
(25)

which is a restatement of the Gosper derivation of the generating function of first-order harmonic numbers.

Further comments on the role played by the functions Σp(t) will be provided in the final section
of the paper.

We conclude this introductory section with the inclusion of a further identity.

Definition 2. Here, we introduce higher-order harmonic number umbral polynomials (for m = 1, see Definition
5 in Reference [7]):

mhn(x) := (x + m ĥ)nξ0 = xn +
n

∑
s=1

(
n
s

)
xn−s

mhs,

mh0(x) = 1.

(26)

The mhn(x) are introduced in umbral form in complete analogy with those associated with the
Bernoulli polynomials. They belong to the Sheffer family, and the relevant properties can be studied
by means of the techniques discussed in Reference [17].

It has already been noted that (see Equation (31) in Reference [7])

1hn(−1) = (−1)n
(

1− 1
n

)
, (27)

which coincides with an analogous identity derived with Mathematica in Reference [20] and, within
the present framework from the recurrence

1hn+1(x) = (x + 1) 1hn(x) +
n

∑
s=1

(
n
s

)
1

(s + 1)
xn−s = (x + 1) 1hn(x) + n

∫ 1

0
dy
∫ y

0
(x + z)n−1dz. (28)

Analogous results can be derived for the higher-order case, as in

2hn(−1) = (−1)n
(

1− 1hn

n

)
, (29)
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and can be further generalized.

2. Harmonic Numbers and Integral Transforms

The identities we have dealt with in the previous section can be further generalized if the umbral
procedure is merged with other techniques, involving things such as methods of an operational nature.

Proposition 2. We note that an extension of identities of the type reported in Equation (9) is provided by
the sum

∞

∑
n=0

tn

n!
nm

phn = et
m

∑
k=0

{
m
k

}
tk

k

∑
s=0

(
k
s

)
Σ(k)

p (t), (30)

where

{
n
k

}
are Stirling numbers of the second kind, namely

{
n
k

}
=

1
k!

k

∑
j=0

(−1)k−j jn
(

k
j

)
. (31)

Proof. The result in Equation (30) was obtained by merging the umbral formalism with identities of
an operational nature. By noting that (see, e.g., Equation (18) in Reference [21] and Equation (1) in [22],
and for a more general use of these numbers, see [23–25])

(x∂x)
n =

n

∑
k=0

{
n
k

}
xk∂k

x, (32)

and that if the following sum
∞

∑
n=0

(tnan) = σ(t) (33)

does exist, then the following relation holds true

∞

∑
n=0

nm (tnan) = (t∂t)
m

∞

∑
n=0

(tnan) = (t∂t)
m σ(t) =

m

∑
k=0

{
m
k

}
tkσ(k)(t). (34)

The result contained in Equation (30) is, therefore, a consequence of Equations (9) and (34).

Furthermore, we noticed that by combining the umbral, Laplace transform, and integral
representation methods, we could make further progress.

Example 2. Let us therefore note that (see Corollary 1 in [7])

1
1− 1ĥ t

ξ0 =
∞

∑
r=1

1hr tr + 1, | t |< 1. (35)

The use of the Laplace transform allowed us to write the left-hand side of Equation (35) in the form of

1
1− 1ĥ t

ξ0 =
∫ ∞

0
e−ses 1 ĥ tds ξ0, (36)

which, on account of Equation (25), allows the conclusion controlla se l’eq e’ la 25
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1 +
∞

∑
n=1

tn (1hn) = 1− ln(1− t)
1− t

= 1 +
Li1(t)
1− t

, |t| < 1,

Lim(x) =
∞

∑
r=1

xr

rm ≡ Polylogarithm.
(37)

The same procedure applied to higher-order harmonic numbers yields the generating functions:

∞

∑
r=1

mhrtr + 1 = 1 +
Lim(t)
1− t

, | t |< 1, (38)

already known for the case m = 2.

The following example further underscores the versatility of the procedure we have proposed.
We will indeed show that the use of the Gaussian identity

eb2
=

1√
π

∫ ∞

−∞
e−ξ2+2bξdξ (39)

can be exploited to infer further identities on the properties of harmonic numbers.

Example 3. Now, we consider the following generating function

2 he2(t) := 1 +
∞

∑
n=1

tn

n!
(2h2 n) . (40)

According to our formalism, the corresponding r.h.s. can be written as

2 he2(t) = e(2 ĥ2)tξ0, (41)

which, on account of the identity (39), can be written as

2 he2(t) =
1√
π

∫ +∞

−∞
e−s2+2 s

√
t 2 ĥds ξ0. (42)

The derivation of the sum in Equation (40) is therefore reduced to the evaluation of the following integral

2 he2(t) =
1√
π

∫ +∞

−∞
e−s2

(
π2

6
e2 s
√

t −Q2(2 s
√

t)
)

ds =
π2

6
et − q2(t), (43)

with

q2(t) =
1√
π

∞

∑
n=1

1
(n + 1)2

∫ +∞

−∞
e−s2

en

(
2 s
√

t
)

ds. (44)

3. Final Comments

Before concluding this paper, we show that the umbral formalism we have employed can be
pushed even further to infer new properties of the harmonic numbers. To emphasise this point, we
start from certain identities established in Reference [20] by the use of the Mathematica code, SIGMA.



Mathematics 2019, 7, 577 8 of 12

Among the examples discussed in Equation (18) in Reference [20], we pick out the following two:

1)
n

∑
r=1

(
n
r

)
(−1)r

r
= −1hn,

2)
n

∑
r=1

(
n
r

)
(−1)r

r 1hr = −2hn

. (45)

We can transform the left-hand side of Equations (45) in a Newton binomial by an appropriate
definition of umbra.

Case 1

Regarding the first, we define the operator [7]:

κ̂rψ0 =
1
r

, r > 0,

κ̂0ψ0 = 1,
(46)

thus casting the first of Equation (45) in the form (see Equation (32) in Reference [7]):

1hn = 1− (1− κ̂)nψ0, (47)

which can be exploited to once more derive the Gosper generating function. By multiplying both sides
of Equation (47) by tn

n! , and then by summing up on the index n, we obtain:

∞

∑
n=0

tn

n! 1hn = et
(

1− e−κ̂t
)

. (48)

Keeping the m-th derivative with respect to both sides of Equation (48) yields:

∞

∑
n=0

tn

n! 1hn+m = et
m

∑
r=0

(
m
r

)
∂r

t φ(t), (49)

where

φ(t) = 1− e−κ̂tψ0,

∂r
t φ(t) = − (−κ̂)r e−κ̂tψ0 = −

∞

∑
s=0

(−1)s+rκ̂s+r

s!
tsψ0 =


−∑∞

s=0
(−1)s+r

s!(s + r)
ts, r > 0,

−∑∞
r=1
−tr

r!r
, r = 0.

(50)

Case 2

An analogous procedure can be exploited to handle the second:

µ̂rη0 = 1hr

r
(51)

which allows for the derivation of the following identity

∞

∑
n=0

tn

n! 2hn+m = et
m

∑
r=0

(
m
r

)
∂r

t 2φ(t), (52)
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with

2φ(t) = 1− e−µ̂ tη0,

∂r
t 2φ(t) =


−∑∞

s=0
(−1)s+r

s!(s + r) 1hs+r ts, r > 0,

−∑∞
r=1

(−t)r
1hr

r!r
, r = 0.

(53)

Remark 1. Let us now use the obvious identity (which holds for all operators):

1n = [(1− µ̂) + µ̂]n η0. (54)

Expanding the Newton binomial, we find

[(1− µ̂) + µ̂]n η0 =
n

∑
r=0

(
n
r

)
µ̂n−r

r

∑
s=0

(
r
s

)
(−1)sµ̂sη0 =

=

(
n−1

∑
r=0

(
n
r

) r

∑
s=1

(
r
s

)
(−1)sµ̂n+s−r +

n−1

∑
r=0

(
n
r

)
µ̂n−r +

n

∑
s=1

(
n
s

)
(−1)sµ̂s + 1

)
η0.

(55)

Remark 2. Choosing, for example, the first operator (46) and the property κ̂rκ̂sψ0 = κ̂s+rψ0 =
1

s + r
, we can

finally elaborate (54) to get (see [24]):

n

∑
r=1

(
n
r

)
1
r
= −

n

∑
k=1

(
n
k

) k

∑
r=1

(
k
r

)
(−1)r 1

n + r− k
, (56)

while when repeating the procedure with the realization (51), we end up with

n

∑
r=1

(
n
r

)
1hr

r
= −

n

∑
k=1

(
n
k

) k

∑
r=1

(−1)r
(

k
r

)
1hn+r−k
n + r− k

. (57)

According to Reference [6] (see Equation (2)), it might also beconvenient to use the following
umbral definition for the inverse of an integer.

Definition 3. We introduce the umbral operator

ânγ0 :=
1

n + 1
, ∀n ∈ N. (58)

Proposition 3. ∀n ∈ N (see Equation 1 in [6])

1
n + 1

=
n

∑
s=0

(
n
s

)
(−1)s 1

s + 1
. (59)

Proof. It can be proved by induction that from (For n = 2 we find â2γ0 =
(
1− 2â + â2) γ0, according

to the prescription in Equation (58), we get

1
2 + 1

= 1− 2
1

1 + 1
+

1
2 + 1

;

for n = 3, â3γ0 =
(
1− 3â + 3â2 − â3) γ0, we get

1
4
= 1− 3

1
1 + 1

+ 3
1

2 + 1
− 1

3 + 1
.)
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ânγ0 = (1− â)n γ0. (60)

Furthermore, by using the obvious relation

ânγ0 = [1− (1− â)]n γ0 =
n

∑
s=0

(
n
s

)
(−1)s (1− â)s , (61)

we end up with Equation (59).

We consider now the square of harmonic numbers, [1hn]
2.

Definition 4. We introduce the umbral operator

1ĥn
(2) (2)ξ0 := h̃n ξ̃0 = [1hn]

2 , ∀n ∈ N. (62)

Definition 5. The umbral operator (62) can be exploited to define the formal series:

1h(2) e(t) := ẽ(t) = 1 +
∞

∑
n=1

tn

n!
h̃n ξ̃0 = eh̃ t ξ̃0, (63)

specifying the associated generating function.

The derivation of Equation (63), according to the previously foreseen method, reduces to the solution
of a first-order differential Equation, as it has been shown in the following example.

Example 4. By noting that

h̃n+1ξ̃0 = [1hn]
2 + 2 1hn

n + 1
+

1
(n + 1)2 , (64)

and that
∂t ẽ(t) = h̃ eh̃ t ξ̃0, (65)

we easily find

∂t ẽ(t) = ẽ(t)− 1 +
2
t

∞

∑
n=0

tn+1

(n + 1)!

(
1hn+1 −

1
n + 1

)
+

∞

∑
n=0

tn

(n + 1) (n + 1)!
(66)

or

∂t ẽ(t) = ẽ(t) +
2
t
(1he(t)− t− 1)− 1

t

∫ t

0

es − s− 1
s

ds (67)

which can be solved by the use of the same technique as before, made only slightly more complicated
by the non-homogeneous term. The Equation can be straightforwardly solved, and the relevant solution,
for ẽ(0) = 1, reads

ẽ(t) = et (1 + χ(t)) , (68)

where

χ(t) =
∫ t

0
e−sβ(s) ds,

β(t) =
2
t
(1he(t)− t− 1)− f2(t).

(69)

Remark 3. In the introductory section we mentioned the link between harmonic and Bernoulli numbers, and
they have been paradigmatic examples of applications of umbral methods. Regarding the finite sum of power of
integers, we find, for example (according to Chapter 6 in Reference [4]),
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n

∑
r=0

rm = (−m)hn =
1

m + 1

[
(b̂ + n + 1)m+1 − b̂m+1

]
θ0, (70)

where
b̂rθ0 = Br (71)

is the umbral operator which provides Bernoulli numbers Br.

Proposition 4. The use of Equation (70) yields the generating function:

∞

∑
m=0

(−m)hn zm+1

m!
=

z
ez − 1

(e(n+1)z − 1), ∀z ∈ R :| z |< 2π. (72)

Proof. ∀z ∈ R :| z |< 2π

∞

∑
m=0

(−m)hn zm+1

m!
=

∞

∑
m=0

[
(b̂ + n + 1)m+1 − b̂m+1

]
zm+1

(m + 1)!
θ0 =

(
e(b̂+n+1)z − eb̂z

)
θ0 =

=
(

e(n+1)z − 1
)

eb̂zθ0 =
(

e(n+1)z − 1
) ∞

∑
r=0

zr

r!
b̂rθ0 =

=
(

e(n+1)z − 1
)

eb̂zθ0 =
(

e(n+1)z − 1
) ∞

∑
r=0

zr

r!
Br

which, by taking into account that the generating function of Bernoulli numbers is

∞

∑
r=0

zr

r!
Br =

z
ez − 1

(73)

yields the statement in Equation (72).

In this paper, we have provided a hint of the possible interplay between the theory of harmonic
numbers and operational methods (be they of umbral ordinary nature). Further progress will be
presented in future investigations.
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