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Abstract: The present work presents a numerical study of the evaporation of a sessile liquid droplet
deposited on a substrate and subjected to different heating configurations. The physical formulation
accounts for evaporation, the Marangoni effect, conductive transfer in the support, radiative heating,
and diffusion–convection in the droplet itself. The moving interface is solved using the Arbitrary
Lagrangian–Eulerian (ALE) method. Simulations were performed using COMSOL Multiphysics.
Different configurations were performed to investigate the effect of the heating conditions on the
shape and intensity of the Marangoni circulations. A droplet can be heated by the substrate (different
natures and thicknesses were tested) and/or by a heat flux supplied at the top of the droplet. The
results show that the Marangoni flow can be controlled by the heating configuration. An upward
Marangoni flow was obtained for a heated substrate and a downward Marangoni flow for a flux
imposed at the top of the droplet. Using both heat sources generated two vortices with an upward
flow from the bottom and a downward flow from the top. The position of the stagnation zone
depended on the respective intensities of the heating fluxes. Controlling the circulation in the
droplet might have interesting applications, such as the control of the deposition of microparticles
in suspension in the liquid, the deposition of the solved constituent, and the enhancement of the
evaporation rate.

Keywords: droplet; evaporation; Marangoni circulation; heating configuration; upward/downward flow

1. Introduction

The evaporation of sessile droplets is a phenomenon of great industrial importance,
such as the cleaning and drying of semiconductor surfaces [1] and spray cooling [2].

Currently, modern technologies involve the evaporation of sessile droplets containing
components (colloid suspension, nanoparticles, surfactants, salts, etc.). Controlling the
deposition and morphology of these components, following droplet evaporation, is of
significant interest in different industries. In the field of printing, the authors of [3] varied
the compositions and concentrations of the ink in order to control the morphology of the
deposits following evaporation, and in [4], a novel approach was proposed with the aim
of fabricating controllable 3D microstructures from a droplet on a hydrophilic pinning
point-patterned substrate via inkjet printing. In biological applications, the authors of [5]
tried to locate proteins on glass substrates, and the authors of [6] detected different modes
of evaporation when they subjected DNA droplets to total evaporation, and the reversal of
the coffee ring phenomenon in bacterial systems was considered in [7].
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To highlight this phenomenon, it is necessary to study an isolated sessile droplet
deposited on a heated or unheated substrate and follow its evolution. Several works have
been proposed on the fundamental and applied aspects of this physical phenomenon, such
as the work in [8], which presented the fundamental phenomena as well as correlations,
calculations, and numerical modeling of droplet processes, as well as the work in [9],
which constituted a collection of principles on the dynamics of the wetting of droplets.
It was also designed to propose solutions (physical and chemical) for the transformation
of a hydrophilic surface into a hydrophobic surface and vice versa. The work proposed
in [10] focused on the study of droplets and sprays because of their numerous industrial
applications (e.g., combustion of automobile engines, drug aerosols). Starting from a
relevant theoretical background, the authors of [11] proceeded to examine specific aspects,
such as heat transfer, flow instabilities, as well as the drying of complex fluid droplets.

Many coupled physical phenomena are involved. Several authors have focused on the
physical aspects, such as the dynamics of the contact line [12], the mode of evaporation [13],
surface wetting [14], the deposit following the evaporation [15], the vapor concentration
distribution [16], the self-cooling on the droplet surface [17], and the Stokes flow near the
triple line [18].

The nature of the substrate, its shape, and its roughness are the subjects of several
research works. In fact, the type of substrate could affect the kinetics of the evaporation
of a droplet. The experimental work in [19] showed that the evaporation rate is limited
by the thermal properties of the substrate. The thermal and dynamic fields during the
evaporation of a droplet were presented numerically in [20] for different types of substrate
(aluminum, copper, and stainless steel). The numerical and experimental work in [21]
demonstrated that the thermal properties of the substrate have a considerable influence on
the evaporation time of a sessile water droplet. The numerical work in [22] aimed to study
the effect of the volatility of water and alcohol droplets on substrates of different natures
and thicknesses. The evaporation of an oil droplet deposited on textured and smooth
silicon substrates was studied experimentally in [23]. The authors showed that the droplets
evaporated according to the Wenzel-like wetting regime, i.e., the sessile droplet takes on a
hexagonal shape and is bound by an oil film.

When a liquid droplet is deposited on a solid substrate, there are three evaporation
processes. The first one is characterized by a fixed contact radius and a variable angle
(pinned mode), [22] as in the case of alcohol droplets, and [24,25] in the case of a water
droplet. The second process is characterized by a fixed contact angle and a variable
radius (unpinned mode) [12]. The third process is governed by a combination of the two
previous ones (stick-slip mode) [26]. The experimental work presented in [27] showed
that the pinned mode dominates almost all of the evaporation of a water droplet. In the
present simulation, we adopted the hypothesis of the pinned mode. Other authors have
focused on the nature of the droplet (water, alcohol, binary, ternary). In a continuation
of these works, the behaviors of droplets of binary and ternary mixtures were examined
in [28–30]. A comparative study of the volatility of pure droplets (water, ethanol, and
butanol) and strongly diluted binary mixtures (water–butanol and water–ethanol) was
conducted numerically and experimentally in [31] and showed that the volatility of the
liquid sometimes exhibited a different behavior in binary droplets compared to pure ones.

Several authors investigated the Marangoni circulation, which occurs in two ways.
In the first case, the surface tension could become non-uniform due to thermal effects.
Indeed, the heating of the substrate causes the heating of the droplet, and consequently,
a variation in the temperature along the gas–liquid interface, causing a surface tension
gradient. To characterize the intensity of natural convection and Marangoni convection
and their competition, [20] introduced and compared dimensionless numbers. Another
numerical study [25] showed that the effect of the Marangoni flux on the evaporation rate
was evident for a large contact angle while it was negligible for a small contact angle. A
theoretical lubrication model and a numerical simulation have been developed [32], to
describe the velocity field in the evaporating droplet, neglecting the Marangoni stress.
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A theoretical and experimental study conducted in [33] established criteria to measure
the influence of thermal Marangoni flow. The analysis showed that the direction of the
flow depended on the relative thermal conductivity of the substrate and the liquid (λs/λl),
reversing the direction at a critical contact angle over the range (1.45 < λs/λl < 2). In the
same analytical context, the authors of [34] showed that the direction of the Marangoni
flow reversed at a critical contact angle, depending not only on (λs/λl) but also on the
ratio of the thickness of the substrate to the contact line radius. Marangoni convection in
a low-volatile sessile droplet was numerically studied in [35] by varying the Marangoni
number and the contact angles. They showed that Bénard–Marangoni convection and
thermocapillary convection can coexist in a droplet due to its curved surface. The second
possibility is the change in the surface tension with the composition of a droplet, such as
multicomponent droplets [36] or droplets with surfactants [37].

When a droplet of coffee is deposited on a substrate and surrounded by air evaporates,
it causes a ring-shaped deposit, which is known as the “coffee ring effect” [38]. This
phenomenon appears when the contact line of the droplet remains pinned during the
evaporation process since suspended particles tend to accumulate at the falling edge for the
capillary flow to replenish the local rapid solvent loss. The coffee ring effect phenomenon
compromises the performance of many industrially relevant manufacturing processes
involving droplet evaporation, such as printing, biochemical analysis, and the fabrication
of nanostructured materials. Several techniques have been proposed in the literature to
suppress this phenomenon. The review in [39] summarizes the main techniques used.

Several works have shown that different phenomena affect the deposition of particles,
such as using resistive micro-elements to heat the substrate [40], examining the influence of
the wettability of the substrate [41], using a polymer solution with double dewetting [42],
the evaporation of a drop of a colloidal suspension of latex spheres placed on a hydropho-
bic silicon pillar array (Wenzel wetting state) [43], and the interaction between colloidal
photonic crystals and a low-adhesive superhydrophobic substrate [44]. Modeling and
predicting particle deposition is a complex phenomenon. On this point, we can cite the
work of [45], who developed a stochastic method and a 3D Monte Carlo model in order to
model the deposition of particles following the evaporation of a colloidal drop.

In [46], the authors presented an experimental study of the evaporation of a droplet
subjected to the two types of evaporation. The first represents the classic case of a heated
substrate. The second one is the heating due to the application of a laser beam to the top
of the droplet (differential evaporation). The authors show that in the case of differential
evaporation (laser heating), the water condenses on the cold substrate by forming micro-
droplets around the original drop. The phenomenon of condensation is not present in
the case of the heated plate. The droplet evaporation occurs in the unpinned mode for
differential evaporation, and in the pinned mode for the case of substrate heating. Due
to the surface laser heating on the apex of the droplets, the evaporation flux of water is
highest at the apex of the droplets. An internal flow develops to replenish the volume of
water lost at the top, producing an inward radial flow that transports colloidal particles to
the center of the droplets and reverses the coffee ring effect. In [47], the authors presented a
numerical work aimed at predicting and studying the occurrence of Marangoni circulation
during the evaporation of droplets containing soluble surfactants. Dimensionless numbers
and regime diagrams were highlighted with the aim of predicting the appearance, or not,
of Marangoni vortices.

Several studies [48–51] have focused on binary mixtures of very dilute alcohols with
a large number of carbon atoms (butanol, pentanol, hexanol). These solutions exhibit a
unique characteristic of surface tension, which increases above a critical temperature. These
solutions are called self-rewetting fluids. Indeed, in the case of these mixtures, Marangoni
circulation can drive the fluid flow towards hot zones, avoiding the liquid–gas interface.
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Synthesis and Objectives of the Work

From the bibliographic review presented in the previous section, it appears that
understanding the flow drivers inside a droplet is an important task, and control of the
Marangoni circulation (upward or downward flow, along the interface) could influence the
deposition of particles and seriously affect several industrial aspects.

To further analyze and quantify the experimental works proposed in the literature, a com-
prehensive numerical study was proposed to investigate the influence of the heating regime
on Marangoni circulation. We used a comprehensive physical formulation and developed
a computational model in COMSOL Multiphysics to simulate the evaporation of a sessile
droplet placed on a substrate and surrounded by ambient air. To reach this goal, we considered
three different heating configurations. In the first one, the heat was simply supplied from the
bottom of the drop support. The second one was inspired by the experimental work proposed
in [46]—a heat flux was imposed at the top of the droplet. The third configuration was a
combination of both (Figure 1). The balance between the two sources of heat was triggered by
the nature (glass and PTFE) and the thickness of the substrate.
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2. Mathematical Model
2.1. Physical Domain

The simulated physical domain is shown in Figure 2. The liquid droplet of radius
R, surrounded by air, was placed on a solid substrate. The substrate had a thickness,
denoted as ‘e’, and the droplet formed an angle θ with the horizontal plane. In this
study, we assumed a 2D geometry with the cylindrical coordinates r and z [20,52,53]. The
droplet took the form of a spherical cap during evaporation and it was assumed to be
pinned [22,24,25,31].

Viscous shear stresses caused by the outside air on the droplet were neglected. In the
fluid zones, the thermophysical properties were assumed to be constant, and the surface
tension was assumed to be dependent on the temperature (see Equation (13)).

The droplet size was less than the capillary length (Lc =
(

σ
ρg

)1/2
), so gravity was

neglected compared to the surface tension, and thus, the droplet took the form of a spherical
cap during evaporation.

The low value of the Bond number (Bo = ρgR2

2σ < 1) confirms that the thermocapillarity
dominated the flow inside the droplet compared to the floatability.
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2.2. ALE Formulation

In our study, we considered domain 1 (the droplet) that evaporated in domain 2 (the
air), presenting a mobile liquid–gas interface. To manage the motion of the interface and
the volume of the time-dependent domains, different techniques have been proposed in the
literature, such as the Marker and Cell (MAC) method, the volume of fluid (VOF) method,
the Level Set method (LS), and the ALE formulation (Arbitrary Lagrangian–Eulerian
Method), the latter of which was adopted in this study to model the movement of the
liquid–gas interface.

The ALE technique, based on the deformed mesh method [25,54,55], combines the
advantages of the Lagrangian and Eulerian methods, allowing for mobile frontiers without
moving the mesh. We introduced a third coordinate (linked to the mesh) to this method,
and partial differential equations were formulated in the grid coordinate system.

Using the ALE technique, the computation mesh inside of the domains can move
arbitrarily to optimize the shapes of the elements. In fact, the mesh nodes can:

• move with the materials (at the interface liquid–gas) to accurately reproduce the
moving boundaries and interfaces of multi-domain systems;

• be fixed in space inside the material domain;
• be fixed in one direction and move with the material in other directions.

In the three-coordinate system, one is related to space (x), another is related to the
domain (X), and the other is linked to the mesh (Xm) [25,31,56]. Therefore, the velocities are
defined as U(X, t) in the area and U(Xm, t) in the mesh, as follows:

U(X, t) =
(

∂X
∂t

)
X

(1)

U(Xm, t) =
(

∂X
∂t

)
Xm

(2)

The Lagrangian formulation is defined by constant material coordinates, so the mate-
rial derivative of the spatial coordinate x is

DX
Dt

=

(
∂x
∂t

)
X
+

∂x
∂X

(
∂X
∂t

)
X
=

(
∂x
∂t

)
X
= U(X, t) (3)

In the ALE formulation,

DX
Dt

=

(
∂x
∂t

)
Xm

+
∂x

∂Xm

(
∂Xm

∂t

)
X
=

(
∂x
∂t

)
X
= U(Xm, t) +

∂x
∂Xm

(
∂Xm

∂t

)
X

(4)
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Combining Equations (3) and (4), we get the convective velocity Uc, as follows:

∂x
∂Xm

(
∂Xm

∂t

)
X
= U(X, t)−U(Xm, t) = Uc (5)

In the governing equations for droplet evaporation, U(Xm,t) is the flow velocity. In the
advection term, the velocity is denoted as Uc. In the rest of the paper, for simple notations,
the velocity U(Xm,t) is denoted as U. Consequently, the material derivative of each physical
quantity ϕ is written as follows:

Dϕ

Dt
=

(
∂ϕ
∂t

)
Xm

+
∂ϕ

∂Xm

(
∂ϕXm

∂t

)
X
=

(
∂ϕ
∂t

)
Xm

+
∂ϕ
∂x

∂x
∂Xm

(
∂Xm

∂t

)
X
=

(
∂ϕ
∂t

)
Xm

+ Uc
∂ϕ
∂x

(6)

2.3. Governing Equations System

Several physical phenomena were combined in this study: the heat conduction equa-
tion in the solid substrate, the continuity (mass conservation), the Navier–Stokes and the
energy equations inside the liquid droplet and in the gas phase, and the advection–diffusion
equation in the gas phase. Indices l, s, and g used in the equations and in the boundary
conditions refer respectively to the liquid, solid, and gas phases. Based on the assump-
tions considered and the ALE method described above, the equations are written, in the
cylindrical coordinates (r,z), as follows [22,25,52]:

• Conduction equation in the solid substrate:

(
ρcp

)
s

∂Ts

∂t
=

1
r

∂

∂r

(
rλs

∂Ts

∂r

)
+

∂

∂z

(
λs

∂Ts

∂z

)
(7)

• Continuity, Navier–Stokes, and energy equations in the liquid droplet and gas domain:

∂rul,g

∂r
+

∂wl,g

∂z
= 0 (8)

ρl,g

(
∂ul,g

∂t
+ uc

∂ul,g

∂r
+ wc

∂ul,g

∂z

)
= −

∂pl,g

∂r
+ ρl,ggr +

1
r

∂

∂r

(
rµl,g

∂u
∂r

)
+

∂

∂z

(
µl,g

∂u
∂z

)
(9)

ρl,g

(
∂wl,g

∂t
+ uc

∂wl,g

∂r
+ wc

∂wl,g

∂z

)
= −

∂pl,g

∂z
+ ρl,ggz +

1
r

∂

∂r

(
rµl,g

∂w
∂r

)
+

∂

∂z

(
µl,g

∂w
∂z

)
(10)

(ρCp)l,g

(
∂Tl,g

∂t
+ uc

∂Tl,g

∂r
+ wc

∂Tl,g

∂z

)
=

1
r

∂

∂r

(
rλl,g

∂Tl,g

∂r

)
+

∂

∂z

(
λl,g

∂Tl,g

∂z

)
(11)

• Advection-diffusion equation in the gas domain, with air surrounding the droplet:

(ρCp)g

(
∂Cg

∂t
+ uc

∂Cg

∂r
+ wc

∂Cg

∂z

)
=

1
r

∂

∂r

(
D

∂Cg

∂r

)
+

∂

∂z

(
D

∂Cg

∂z

)
(12)

• At the liquid–gas interface.

At the interface, the surface tension is a function of the temperature. It is expressed
along the interface, its variation causes the Marangoni circulation, it is given by the follow-
ing equation [52]:

σT(T) = σ0 −
∣∣∣∣dσdT

∣∣∣∣(T− T0) (13)

The concentration of the saturated vapor at the droplet surface depends on the interface
temperature field. The shape and position of the liquid–gas interface vary with the amount
evaporated. The saturated vapor is considered at the liquid–gas interface.
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For water, the saturation vapor pressure Pv,sat involving the saturation temperature
Tsat is given by the following expression [25]:

Pv,sat = exp
(

9.487− 3893
Tsat + 230.47

)
(14)

The saturation concentration Csat is calculated based on the saturation pressure Pv,sat,
such that:

Csat =
Pv,sat

RTsat
(15)

The local evaporated flux mev is calculated at the liquid–gas interface according to the
following equation:

mev = n · (−D∇C)Mw (16)

Mw is the molar mass of liquid (water) and D is the diffusion coefficient.
The shape and position of the liquid–gas interface vary with the local evaporated flux

mev. The thermal and dynamic conditions at the interface are as follows [25,31,52]:

n ·
(
λg(∇T)g − λl(∇T)l

)
= mevLv (17)

Ul −Ug =

(
1
ρg
− 1
ρl

)
mev · n (18)

Equations (17) and (18) respectively describe the balance between the amount of heat
transferred by conduction at the interface with the rate of evaporation and the conservation
of mass at the free surface, which results in the equality between the amount of fluid
moving towards the interface and the amount of evaporated liquid.

2.4. Initial and Boundary Conditions

The fluid phases (air and water) are initially assumed at rest (u = w = 0) and at atmospheric
temperature T0 and humidity H0. Initially, the substrate is also at temperature T0.

2.4.1. Boundary Conditions

We applied the boundary conditions at the liquid–solid interface, solid–gas interface,
symmetry axis, substrate base (heating temperature), top of the droplet (heating flux), and
away from the droplet, as follows (Figure 3):

• At r = 0,

symmetry (Newmancondition) :
∂Ts

∂r
=

∂Tl
∂r

=
∂C
∂r

=
∂u
∂r

=
∂w
∂r

= 0 (19)

• At r = 0, z = h,

assigned flux (Dirichlet condition) : Φ = 40mW or Φ = 3 mW (20)

• At z = −e,

imposed temperature (Dirichlet condition) : T = Th (21)

• At z = 0, 0 < r < R,

continuity of heat flux (Newman condition) : λs
∂Ts

∂z
= λl

∂Tl
∂z

(22)

no slip (Dirichlet condition) : u = v = 0 (23)

• At z = 0, R < r < L,

continuity of heat flux (Newman condition) : λg
∂Ts

∂z
= λg

∂Tl
∂z

(24)
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no slip (Dirichlet condition) : u = v = 0 (25)

no infiltration (Newman condition) :
∂C
∂z

= 0 (26)

• At z = ∞,

imposed temperature : T∞ = T0 (27)

imposed concentration (Dirichlet condition) : C∞ = C0 (28)
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2.4.2. Heating Configurations

Imposing a temperature value on the substrate is a classic case, widely investigated in
the literature. On the other hand, imposing a heating flux on the top of the droplet is not
frequent in the literature. Indeed, we found the case of [46], which exposed a laser beam on
the top of the droplet.

In this section, we consider three heating configurations: heated substrate or bottom
heating (BH) (classical configuration), heated droplet top or top heating (TH), and the
combination between the previous two (TBH) (Figure 1). With the three situations, we
compare the thermal and dynamic behavior inside the droplet, including the direction of
the flow, the evaporated mass, as well as the variation in the temperature.

In the BH configuration, we imposed at the base of the substrate a temperature Th of
50 ◦C. On the other hand, when dealing with the TH configuration, we imposed at the top
of the droplet (on a line of 50 µm) a heating flux Φ of 40 mW. The objective of choosing
these boundary conditions was to qualitatively validate our numerical results with the
experimental results of [46].

Concerning the TBH configuration, we kept the same value of the imposed tempera-
ture (Th = 50 ◦C) and we decreased the value of the flux (Φ = 3 mW) in order to highlight
the two Marangoni circulations.

3. Numerical Simulation
3.1. Mesh Velocity and Balanced Stresses

Two extra equations were added to the thermal and dynamic modeling presented at
the interface (Equations (17) and (18)). The first relates to the displacement of the grid and
the second defines the stress equilibrium [25,31,52]:
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Umesh =

(
Ul · n +

mev

ρl

)
n (29)

n · τg − n · τl = fst (30)

where mev is the local evaporated flux defined by Equation (16), n presents the normal
vector of the interface, τ is the total stress tensor, and fst represents the force per unit area
due to the surface tension σ.

fst = σ(∇st · n)n−∇stσ (31)

where ∇st is the surface gradient operator.

∇st =
(

I− n · nT
)
∇ · I (32)

where I is the identity matrix.
The force fst is described by two components, normal and tangential, and we write the

balance of the forces as follows:(
n · τg − n · τl

)
· n =

σ

rc
· n (33)

(
n · τg − n·τl

)
·
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3.2. Computer Code and Used Grid

The simulation of the evaporation phenomenon of the sessile droplet and the res-
olution of the system of equations presented with the boundary conditions, as well as
the modeling of the displacement of the liquid–gas interface based on the ALE method
described previously, were carried out at using the calculation code of the finite element
method-based commercial software package COMSOL Multiphysics [25,31,55,56].

Indeed, the monitoring of the mobile interface during the evaporation process is
managed by COMSOL’s “mobile mesh” interface. This interface implements the ALE
technique for tracking moving boundaries (liquid–gas interface in our case).

The mesh used for the simulations is shown in Figure 4. It is refined at the interfaces,
at the top of the droplet, and at the triple point. The physical domains (air, liquid droplet,
and solid substrate) are discretized using triangular elements. The discrete form of all of
the PDEs (Equations (7)–(12)) and the boundary conditions (Equations (19)–(28)) yield a
nonlinear system of coupled algebraic equations.
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In order to make sure of the independence of the results towards a variation of the
mesh, we performed a sensitivity analysis test of the mesh size. We considered three
different grid sizes. In Table 1, we list the results of the simulation for the different meshes.
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We considered, at time t = 100 s, the average values of the temperature and the evaporated
flow rate at the level of the interface, as well as the volume of the droplet, for the TH, BH,
and TBH configurations. The maximum relative difference computed between grids 1 and
2 or grids 2 and 3 is calculated as follows:

ε =

∣∣∣∣ϕi+1 −ϕi

ϕi+1

∣∣∣∣ (35)

where ϕ = (T, mev,V) and i represents the number of the grid, i = 1,2.

Table 1. Mesh stability (V0 = 1 mm3, θ = 90◦, t = 100 s).

Grid 1
29,261 Elements

Grid 2
35,557 Elements

Grid 3
41,034 Elements

TH (Φ = 40 mW)

V (mm3) 0.7239 0.7219 0.7235

T (◦C) 33.061 33.161 33.080

mev (g·m−2·s−1) 3.9119 3.9045 3.8955

BH (Th = 50 ◦C)

V (mm3) 0.3211 0.3282 0.3271

T (◦C) 45.532 45.738 45.732

mev (g·m−2·s−1) 2.3767 2.2721 2.2824

TBH (Th = 50 ◦C, Φ = 3 mW)

V (mm3) 0.3193 0.3151 0.3184

T (◦C) 47.683 47.708 47.692

mev (g·m−2·s−1) 3.2700 3.2499 3.2213

The values in this table show that the simulation results remained stable for the meshes
considered. From grid 2 to grid 3, the maximum relative difference ε did not exceed 0.3%
for the TH configuration, 0.45% for the BH configuration, and 1% for TBH. Consequently,
in this study, we considered a mesh described by grid 2.

4. Results and Discussion

In Section 4.1, we validate the model and the computer code by comparing the results
of the simulation with those of the literature. In Section 4.2, we present the TH and BH
configurations (case of one single heat source) and examine their impact on the thermal
and dynamic behavior of the evaporated droplet. Section 4.3 presents our study on the
influence of the nature and the thickness of the substrate on the thermal and dynamic
behavior of the droplet, for the TBH configuration (case of two heat sources). We considered
two types—glass and polytetrafluoroethylene (PTFE).

4.1. Model Validation

The validation of the mathematical model and the computer code was performed by
comparing the results of the simulation with those in the literature. Figure 5 describes the
time evolution of the droplet volume in the case of an unheated substrate. The comparison
was made with the experimental work presented in [57] and the numerical study in [31].

In the experimental work [57], the authors considered the evaporation of a water
droplet with an initial volume equal to 3.64 mm3 and an initial contact angle equal to
57.2◦, deposited on a glass substrate. The environment surrounding the droplet (i.e.,
temperature and humidity) was controlled, and the droplet evaporated under ambient
conditions (T = 25 ◦C and H = 40%). The numerical work in [31] and the present work have
reproduced the same experimental conditions presented in [57].
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Satisfactory agreement was observed between the results (see Figure 5). The reason
for the small scatters could be due to the experimental measurement errors, as well as the
pinned mode assumption adopted in our model.

Another comparison is presented in Figure 6 regarding the time evolution of the
droplet top temperature considering two different liquids: water and methanol. Indeed,
we compared our results with the numerical results of [22], which studied the effect of
droplet volatility on the evaporation process. In their study, [22] developed a Fortran
computer code based on the finite volume method for solving equations describing the
evaporation of a droplet (water or alcohol) deposited on a solid substrate. A satisfactory
agreement is observed. In Figure 6, it can be observed the cooling of the droplet following
evaporation. Indeed, the phase change by evaporation consumes energy and, therefore,
cools the surrounding environment. We also observed that the degree of cooling depends
on the nature of the droplet. In fact, the more volatile a droplet is, the more intense its
cooling is.
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4.2. Marangoni Circulation in the Case of One Single Heat Source (TH and BH Configurations)

In this section, we present our study on the two configurations involving one single
source of heat, either from the top through a heat flux or from the bottom through the heated
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substrate. These simple and contrasted configurations are intended to analyze the main physical
phenomena and to depict simple ways to trigger and inverse the Marangoni circulation.

Figure 7 describes the temperature fields in the glass substrate and in the droplet for
two different heating configurations (Figure 1): TH (heat flux imposed at the top of the
droplet) and BH (temperature imposed at the base of the substrate). From the thermal fields,
it can be observed that the TH shows a higher temperature profile at the top of the droplet.
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Figure 7. Temperature field for two configurations. (t = 1 s, θ = 90◦, V0 = 1 mm3) (a): BH (Th = 50 ◦C)
(b): TH (Φ = 40 mW).

Figure 8 describes the evolution of the temperature field along the liquid–gas interface
at time t = 1 s. In this figure, r = 0 mm represents the triple point and r = 1.25 mm, the
apex of the droplet. For the classic BH configuration, the temperature variation along the
interface did not exceed 7–8 ◦C (mean value of 40 ◦C). Regarding the TH configuration, the
temperature variation along the interface did not exceed 2 ◦C for over 80% of its length
(average value close to 30 ◦C), then, approaching the top of the droplet, the temperature
rise to 60 ◦C.
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Figure 8. Temperature evolution along the interface for two configurations. (t = 1 s, θ = 90◦,
V0 = 1 mm3, Th = 50 ◦C, Φ = 40 mW).

For the studied configurations, it was important to know the distribution of the
temperature in the droplet, especially at the interface. Indeed, surface tension is a function of
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the temperature (see Equation (13)), and its variation is the driving force for the Marangoni
circulation.

In Figure 9, we represent the temporal evolution of the average evaporated flux for
the two studied configurations TH and BH. The evaporated flux presents the maximum
values at the first moments, and then it evolves towards quasi-constant values. Indeed,
at the beginning of evaporation, the concentration gradient is important, as it promotes
evaporation, and then the air is enriched in vapor, and the values of the evaporated flow
rate decrease.
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Figure 9. Average flux rate evolution vs time for two configurations. (t = 1 s, θ = 90◦, V0 = 1 mm3
,

Th = 50 ◦C, Φ = 40 mW).

These curves show that the average flux rate was important for the TH configuration,
which had a very high local density near the top of the droplet. Overall, the evaporation rate
was higher for the case of the BH configuration, since the average temperature was higher
for this configuration (Figures 7 and 8), which accelerated the evaporation of the droplet.

Figure 10 describes the direction of the flow in the droplet for the two configurations
TH and BH. As Marangoni circulation is driven by the effect of temperature on the surface
tension, it consistently obtained an inverted circulation between the two configurations.
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When the heat came from the substrate (BH), the surface tension had low values at the
contact line (high temperature) and high values at the top of the droplet (low temperature),
and an upward movement of the fluid was observed along the droplet interface (Figure 10a).
The water evaporation flux was highest at the edge of the droplets, so an internal flux had
to be provided to replenish the water loss at the edge. As a consequence of this Marangoni
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circulation and in the case of droplets containing particles, radial outward flow carried the
particles to the edge of the drop, causing the coffee ring effect.

The opposite case is observed in Figure 10b. Due to the variation in the surface tension,
which had low values at the top of the droplet (high temperature) and high values at the
triple point (low temperature), a downward motion of the fluid along the droplet interface
was observed. Due to the heat flux imposed at the top of the droplets, the evaporation flux
of the water was highest at the top of the droplet. An internal flow developed to replenish
the volume of water lost at the top, producing a radial flow inward (center of the droplets)
and reversing/avoiding the coffee ring effect.

This result confirms the experimental work presented in [46], where a laser beam was
applied to the top of a droplet deposited on an unheated substrate. Figure 11 presents
a qualitative comparison between the experimental results of [46] and our simulation,
showing the reversal of the coffee ring effect.
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Moreover, in [46], the authors imposed a laser beam (40 mW) at the top of the droplet,
which accelerated its evaporation compared to the case of a heated substrate (50 ◦C). This
was not the case in our simulation since we imposed a flux at the top of the droplet. Indeed,
the laser beam did not just heat the top of the droplet but crossed it and heated the entire
droplet, which was not the case in our study.

4.3. TBH Configuration and Nature Substrate Effect

In this section, we present our study on the TBH configuration (see Figure 1), in which
two sources of heat coexisted: the top flux and the heated bottom plate. In order to change
the balance between the top and bottom fluxes, the heat flux supplied by the substrate was
changed by the type of substrate and its thickness. We considered two types of substrates
(see Table 2)—glass and polytetrafluoroethylene (PTFE).

Table 2. Thermophysical characteristics of different substrates.

λ (W·m−1·K−1) ρ (kg·m−3) Cp (J·kg−1·K−1)

Glass 1.38 2203 703

PTFE 0.25 2200 1010

4.3.1. Marangoni Circulation

Figure 12a describes the temperature field in the droplet and in the substrate when
a flux was imposed at the top of the droplet at the order of 3 mW and a temperature at
the base of the substrate equal to 50 ◦C. Moving from the triple point, r = 0 mm, towards
the top of the droplet, r = 1.25 mm, the temperature values along the interface decreased
(temperature imposed on the substrate). Then, at a given position, these values increased
(flux imposed on the top of the droplet). This non-homogeneity of the temperature along the
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interface (Figure 12b) resulted in non-homogeneity of the surface tension (which depended
on the temperature). This double variation of the surface tension generated a double
variation of the Marangoni circulation manifested by two vortices, describing an upward
and downward flow along the interface (see Figure 13).
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4.3.2. Substrate Type Effect

Figure 13 describes the direction of flow in the droplet for the TBH configuration and
for the two types of substrates used—glass and PTFE (see Table 2).

In both cases, the global trend was the appearance of two vortices in the droplet. The
first was an upward Marangoni flow along the interface, and the second was a downward
Marangoni flow. Indeed, this double behavior was linked to the two thermal conditions
used—a temperature imposed on the substrate (upward flow) and a flux imposed on the
top of the droplet (a downward flow).

However, the effect of the type of substrate, due to its thermal conductivity, changed
the conductive flux through its thickness, and hence, the intensity of the heat supplied to
the droplet from the bottom.

The isotherms in the substrate, as plotted in Figure 13, also proved that, in the case of
the glass, the most conductive substrate, a lateral thermal gradient also drove heat radially.
Compared to the PTFE, the temperatures in the case of the glass were consistently higher at
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the liquid–solid interface: 44.2 ◦C for the glass versus 30.63 ◦C for the PTFE. Thus, the use
of PTFE reduced the transfer of heat to the substrate and, therefore, to the droplet, which
affected the partition of the two vortices. Compared to the case of the glass substrate, the
size of the upward vortex was, therefore, reduced.

Figure 14 presents the evolution of the flow velocity along the interface for the TBH
configuration and for the two types of substrates used, glass and PTFE. These curves
show that along the interface, the flow velocity presents two maximum values (of different
intensities) separated by a stagnation point (velocity equal to zero). The first increase in
the velocity value was related to the upward Marangoni flow circulation, which occurred
near the triple point. As explained above, the intensity of the velocity in this zone and
its location depended on the nature of the substrate. The second velocity peak occurred
near the top of the droplet exposed to a heat flux applied to the top. This peak did not
depend on the substrate since it was directly related to the heat flux supplied at the top of
the droplet.
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(t = 1 s, θ = 90◦, V0 = 1 mm3, Th = 50 ◦C, Φ = 3 mW).

4.3.3. Effect of the Substrate Thickness

In Figure 15, we present the velocity fields and the Marangoni circulation at the
beginning of the evaporation (t = 1 s) for different thicknesses of the PTFE substrate (from
0.4 to 1 mm). The thickness is another way to change the bottom flux supplied to the droplet.
Figure 15 confirms that the size of the top vortex increased with the increasing substrate
thickness. Obviously, the increase in the substrate thickness reduced the conductive flux,
which, in turn, influenced the velocity field and sizes of the vortices.

As mentioned before, the two vortices were separated by a stagnation zone. Figure 16
presents the evolution of the velocity of the flow along the interface at the beginning of
the evaporation (t = 1 s) for the various thicknesses of PTFE considered. By increasing the
thickness of the substrate, the stagnation zone approached the triple point (r = 0 mm). This
result confirms the observations in Figure 15.

In Table 3, we list the evolution of the stagnation zone with the substrate thickness.
The increase in the thickness of the substrate shifted the stagnation zone towards the triple
point. These results are depicted in Figure 17, showing the nonlinear approach of the
stagnation zone XSZ to the triple point as the thickness of the substrate increased.
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Table 3. Evolution of stagnation zone with substrate thickness (t = 1 s, θ = 90◦, V0 = 1 mm3, Th = 50 ◦C,
Φ = 3 mW).

e (mm) 0.4 0.6 0.8 1

XSZ (mm) 0.837 0.762 0.576 0.240

(Xi+1 − Xi)/Xi+1 - 8.96% 24.41% 58.33%
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Figure 17. Evolution of stagnation zone with PTFE substrate thickness. (t = 1 s, θ = 90◦, V0 = 1 mm3,
Th = 50 ◦C, Φ = 3 mW).

Figure 18 depicts the time evolution of the stagnation zone XSZ for different thicknesses
of PTFE substrates. At the start of evaporation (t = 1 s), this zone approached the top of the
droplet for small substrate thicknesses, which favored the upward Marangoni flow, and
the opposite case was observed when the thickness was large. After t = 10 s, and when the
heat propagated towards the liquid–solid interface, the position of the stagnation zone XZS
was almost similar to all the thicknesses considered.
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5. Conclusions

In this study, we used a comprehensive physical formulation and developed a nu-
merical code to investigate the heat regime on the Marangoni circulation of a droplet
evaporating on a substrate. The model considers a sessile liquid droplet deposited on a
substrate and surrounded by ambient air. This droplet was subjected to three different
heating configurations—heated substrate (BH), droplet top heated (TH), and a combination
of both (TBH). The results obtained allow us to draw the following conclusions:

• Using one single source of heat, the direction of Marangoni circulation is monotonic
and can be chosen; upward flow occurs when the substrate is heated (BH) and a
downward flow occurs when heat is supplied at the top of the droplet (TH);
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• The combination of the two types of heating (TBH) triggered a Marangoni flow with
two vortices separated by a stagnation point;

• The balance between the magnitude of the two heat sources was changed by the nature
and the thickness of the substrate. The results show that the respective importance of
the two vortices and the position of the stagnation point can be controlled.

This computational study highlights the effect of a double heat source on Marangoni
circulation and proves that the Marangoni circulation inside the droplet can be controlled
by the heating regime. These results can be exploited to orient the formation of a deposit
during the evaporation of droplets containing dissolved components or microparticles,
which has an important impact on several industrial aspects.

Author Contributions: Conceptualization, W.F. and S.B.J.; methodology, W.F., C.A., P.P. and S.B.J.;
software, P.P.; validation, W.F.; formal analysis, W.F. and C.A.; investigation, W.F. and S.B.J.;
writing—original draft preparation, W.F., C.A., P.P. and S.B.J.; writing—review and editing, W.F., C.A.,
P.P. and S.B.J.; supervision, C.A., P.P. and S.B.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbols Abbreviation
ALE Arbitrary Lagrangian–Eulerian (-)
BH Bottom Heating (-)
Bo Bond number (-)
C concentration (mol·L−1 or g·L−1)
Cp heat capacity (J·kg−1·K−1)
D diffusion coefficient (m2·s−1)
e substrate thickness (m)
fst force per unit area (N·m−2)
g gravity acceleration (m·s−2)
h droplet height (m)
H humidity (%)
L substrate length (m)
Lc capillary length (m)
Lv latent heat (J·kg−1)
mev local evaporation rate (kg·m−2·s−1)
Mw molar Mass (kg·mol−1)
n normal direction (-)
p pressure (Pa)
rc curvature radius (m)
R contact radius (m)
Rm universal gas constant (J·mol−1·K−1)
(r,z) cylindrical coordinates (m)
SZ Stagnation zone (-)
t time (s)
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3.2. Computer Code and Used Grid 
The simulation of the evaporation phenomenon of the sessile droplet and the resolu-

tion of the system of equations presented with the boundary conditions, as well as the 
modeling of the displacement of the liquid–gas interface based on the ALE method de-
scribed previously, were carried out at using the calculation code of the finite element 
method-based commercial software package COMSOL Multiphysics [25,31,55,56]. 

Indeed, the monitoring of the mobile interface during the evaporation process is 
managed by COMSOL’s “mobile mesh” interface. This interface implements the ALE 
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tangential direction (-)
T temperature (K or ◦C)
TH Top Heating (-)
TBH Top and Bottom Heating (-)
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Symbols Abbreviation
(u,w) velocity components (m·s−1)
U norm of velocity (m·s−1)
V droplet volume (mm3 or µL)
x space coordinates (m)
X domain coordinates (m)
Xm mesh coordinates (m)
Greek symbols
ε relative difference (%)
θ contact angle (◦)
λ thermal conductivity (W·m−1·K−1)
µ dynamic viscosity (Pa·s)
ρ density (kg·m−3)
σ surface tension (N·m−1)
τ total stress tensor (-)
Φ heat flux (W)
Subscripts
c convective
g gas (air)
h hot
l liquid (water)
∝ infinite
0 ambient, reference
s solid (substrate)
sat saturation
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