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Abstract: Wine by-products, generated in large quantities and wasted with serious environmental
and economic consequences, are an exceptional alternative to conventional and non-sustainable food
sources. The aim of the study was to understand if these by-products could be reused in feed for
broiler chickens, improving certain blood parameters important in immune responses, by testing
different concentrations and administration times. The effects of the grape-seed and pomace flour of
red-wine waste were evaluated. Three different diets were tested containing pomace (0%, 3%, and
6%), grape seeds (0%, 3%, and 6%), and a mix of pomace and grape seeds (0 and 3%) for 7, 21, and
42 days. Esterase, alkaline phosphatase, and peroxidase activity, along with glucose, reactive oxygen
species, and glutathione levels, were evaluated in blood samples. The results showed significant
changes in the parameters analyzed, especially after 21 and 42 days of administration. All diets
administered showed significant effects based on exposure time and by-product concentration used.
The greatest effects seem to have come from grape-seed flour. All the by-products of wine production
analyzed in this study showed important antioxidant activities and can be included in the food
context of farm animals in different growth phases at different concentrations.

Keywords: antioxidant; enzyme; feeding; glucose; plasma; wine waste

1. Introduction

Recently, there has been considerable interest in the possibility of reusing agricultural
by-products to extract bioactive molecules with anticancer, antimicrobial, antioxidant, and
nutraceutical properties. Among the most productive economic sectors at the international
level, wine production has played an important role. The best-known and most-used
species of vine (almost 70%) is Vitis vinifera L., among which Cabernet Sauvignon is the
most cultivated variety [1].

At the end of wine production, a series of waste products are produced in large
volumes including pomace, grape seeds, and stems for which disposal has an economic cost
for the companies and, if carried out inappropriately, risk damage to the environment [2].
For this reason, it is important find new solutions for reusing these wastes which are rich
in unsaturated fatty acids, monosaccharides, polysaccharides, proteins, fiber, minerals,
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polyphenols, and phenols [3–6], and which may have antioxidant properties, as well as
antibacterial and antiviral activities, thus constituting a breakthrough in their applications
for various sectors (e.g., biomedical, agri-food, and cosmetics) in complete coherence with
the principles of sustainability and eco-compatibility [3,7–12].

Several studies have evaluated the possibility of reusing these by-products in var-
ious sectors, including the production of energy, cosmetics, fertilizers, beverages, and
animal-feed supplements [12–14]. Focusing on animal nutrition and on broiler chickens in
particular, it is known that antioxidants are important elements for preventing the loss of
redox homeostasis and its negative effects on growth performance, immune responses, and
meat quality; to meet these needs, synthetic antioxidants such as butylated hydroxyanisole,
butylated hydroxytoluene, and ethoxyquin are currently used.

However, it is important to think of replacing synthetic molecules with natural antioxi-
dants, reducing the risks of toxicity and ensuring the greater safety of food products, as well
as a better state for farmed animals [15,16]. It is also important to note that the antioxidant
potential of the polyphenols contained in wine-production waste appears to be higher than
that of vitamin E (20 times) and vitamin C (50 times) [17,18]. In addition, several studies
have recently worked at identifying potential substitutes for the use of antibiotics (now
banned in several countries) in breeding and, in this context, grape seeds, which have been
shown to have important anti-inflammatory, antimicrobial, anticancer, cardioprotective,
and neuroprotective activities, have become excellent study candidates [19–23]. Moreover,
several authors have studied the optimum level of grape seed or pome fruit to maximize
growth performance and health [24,25], showing that the optimum dosage of grape-seed
extract (useful as a natural antioxidant and immunostimulant agent in broiler-chicken diets)
could be 125 to 250 ppm. Other authors have evaluated the applications of these wastes
in animal nutrition, but there is scarce information regarding the correct percentages to
be administered in the various life stages and which of the wastes produced during wine
production could potentially be the most efficacious [26,27].

Moreover, it is obviously important to consider that even though the by-products
of wine production are fibrous foods that have a high potential for use in animal diets
they could have various limitations. Modern broilers are very high-performing animals;
to achieve a high rate of weight gain, they need to be fed with nutrient-rich diets, so
by-products in general are usually included at very low rates in broiler feed. Grape by-
products are rich in Neutral Detergent Fiber (NDF) and low in nutritional value, so their
inclusion may dilute the energy density of the diets and thus negatively affect the growth
of animals. In addition, grape by-products are also rich in tannins that are known to have
potential antinutritional effects in monogastric animals because they can decrease feed
intake, nutrient digestibility, and growth performance of chicken [28].

One method for evaluating the possible beneficial effects of integrating these diets is
to evaluate different biomarkers at the plasma level, such as esterase, alkaline phosphatase,
glucose, peroxidase, reactive oxygen species (ROS), and glutathione (GSH). Esterase is one
of the biomarkers that has been used in the literature in different types of organisms to
understand the effects of stressful conditions [29,30]; it performs the hydrolysis of the ester
bond and is present in different forms for different substrates [31]. Alkaline phosphatase is a
metalloenzyme that catalyzes the non-specific hydrolysis of phosphate monoesters [32] and,
together with other enzymes, participates in the degradation of carbohydrates, proteins,
and lipids and helps protect individuals from infections caused by pathogens [33,34].
Together, these two enzymes play a very important role in the evaluation of possible
hepatic impairments of the organisms [35]. The mobilization or production of glucose is
often made necessary to ensure an energy supply to the body to maintain homeostasis in
the presence of stressful conditions [36,37]. This leads to an increase in glucose levels due
to incorrect insulin signaling due to oxidative stress [38,39]. Its evaluation in circulation can
be an important parameter as polyphenols can inhibit their absorption [18]. Peroxidases
are parts of antioxidant enzymes and play a crucial role in the reduction of oxidative stress,
as they are involved in the lowering of ROS levels in circulation, thus restoring redox
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homeostasis [40]. Measuring ROS levels is a useful parameter since these radical species
increase under stress conditions and can create considerable oxidative damage by attacking
cells and damaging lipids, proteins, and enzymes [41]. Finally, GSH levels are closely
related to circulating peroxidase activity. High levels of GSH in the circulation may be
indicative of an improvement in antioxidant defenses.

The aim of this study was to evaluate the effects of dietary supplementation using
wine by-products on broiler chickens at different stages of growth (7, 21, and 42 days), fed
with different percentages of grape pomace, grape seeds, and mixtures of the two through
the evaluation of plasma levels of the biomarkers described above.

2. Materials and Methods
2.1. Grape-Seed and Pomace Flour Preparation

The pomace- and grape-seed-flour samples were obtained from red-wine-production
waste obtained from the harvests carried out in September 2020. The wine variety was the
“Sangiovese” grown in western Sicily (Italy) in organic and sunny conditions, with mild
temperatures and moderate ventilation. The grape-seed and -pomace flour preparation
was performed according to [6].

In the first phase, the obtained waste consisted of pomace, grape seeds, and stems
which were sieved for separation. To reduce humidity levels, the grape seeds were dried at
24 ◦C for four days and then cold pressed (Cgoldenwall CAN-684) to remove any oil they
contained. The defatted grape seeds were then ground to produce grape-seed flour. As for
the pomace, this was instead dried at 55 ◦C for two days and ground to become a fine flour.

2.2. Experimental Plan

The pomace and grape-seed flours obtained were analyzed according to AOAC (2005)
methods to define dry matter (DM) (AOAC method 934.01), crude protein (CP) (AOAC
method 2001.11), ether extract (AOAC method 920.39), ash (AOAC method 942.05), and
structural carbohydrates as aNDFom (neutral detergent fiber using heat-stable amylase
and exclusive of residual ash) (AOAC method 2002.04). The non-structural carbohydrate
(NSC, %) amount was calculated as [100 − (CP % + EE % + ash % + aNDFom %)] (Table 1).

Table 1. Chemical composition (% DM) of pomace and grape-seed flour.

Parameter Pomace Flour Grape-Seed Flour

Dry matter (DM %) 92.31 95.55
Crude protein 12.64 14.69
Ether extract 4.69 3.19
aNDFom 33.49 55.35
Ash 7.48 3.76
Non-structural carbohydrates 41.70 23.01

To investigate the effects of grape by-products in broilers, the experimental plan was
extended from 0 to 42 days of age of the animals. Groups of 30,000 one-day-old chicks (Ross
308 strain) obtained from a commercial hatchery were transported to the Leocata Mangimi
S.p.A. facilities to be housed for the growing phase. The animals, divided by sex, were
placed on wheat-straw bedding and kept under constantly controlled light, temperature,
and humidity conditions for the entire growing period. Access to water and food was ad
libitum [42]. During the experiment, three different trials were applied to test nutritional
programs from 0 to 42 days; in particular, standard diets were compared to diets including
the grape by-products of pomace flour, grape-seed flour, and mixtures of pomace and
grape-seed flours.

Animals were fed according to the nutrition specifications suggested by the genetic
company [43]. According to these suggestions, each group received four different diets
(formulated to meet the requirements for their stage of growth) during the growing phase:
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Pre-starter diets (1 to 11 days), Starter diets (11 to 24 days), Grower diets (25 to 39 days),
and Finisher diets (40 to slaughter).

To investigate the effects of including grape pomace and grape seed in the diets, grape
by-products were introduced at different percentages and combinations to the experimental
groups in partial substitution of common dietary ingredients (corn, soybean meal, etc.).
To obtain comparable diets among the groups, each feed period was formulated and
optimized to obtain the same nutritional profile with respect to the standard diet (zero
grape-by-product inclusion). Diets were formulated to be comparable in terms of energy,
amino acids, and vitamins (Tables 2–4). Feed was formulated and produced at the Leocata
Mangimi S.p.A. feed mill plant. According to this procedure, we defined three phases
of experimentation.

Table 2. Composition of diet supplemented using grape-pomace flour. All nutrients are expressed as
% feed except selenium in ppm, vitamins in International Units (IU), and Amen in kcal/kg.

P0 P3 P6
Ingr./Nutr Pre-Starter Starter Grower Finisher Pre-Starter Starter Grower Finisher Pre-Starter Starter Grower Finisher

Corn 46 49 54 56 46.9 49 55.2 57.507 47.9845 48.5 55.3 56.482
Soybean Meal 36.875 33.15 28.7 2.,175 34.9 34 28.1 25.8 34.725 34.2 27.8 26.25
Fat and Oil 3.8 5 5.75 5.6 3.9 5 5.95 6 3.85 5.4 5.85 5.85
Grape Pomace 0 0 0 0 3 3 3 3 6 6 6 6
Other ingredients 13.3 12.9 11.6 12.2 11.3 9.0 7.7 7.7 7.4 5.9 5.1 5.4
VOLUME 100 100 100 100 100 100 100 100 100 100 100 100
DM 88.6 88.5 88.5 88.5 88.8 88.6 88.7 88.7 88.9 88.8 88.8 88.8
AMEN 2980 3075 3168 3189 2979 3075 3182 3195 2980 3075 3180 3195
CP 23.1 20.8 18.8 18.0 22.8 20.9 18.9 18.1 22.8 20.9 18.8 18.1
CF 3.6 3.7 3.4 3.5 3.5 4.0 3.6 3.7 3.9 4.5 4.0 3.9
EE 6.1 7.2 8.2 8.2 6.1 7.3 8.4 8.3 6.1 7.7 8.6 8.6
ASH 7.0 6.3 5.5 5.2 6.9 6.2 5.4 5.2 6.9 6.2 5.4 5.2
#D LYS 1.3 1.2 1.0 1.0 1.3 1.2 1.0 1.0 1.3 1.2 1.0 1.0
#D MET 0.7 0.6 0.5 0.5 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.5
CA TOT 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7
P TOT 0.7 0.6 0.5 0.5 0.7 0.6 0.5 0.5 0.7 0.6 0.5 0.5
SELENIUM 0.3 0.25 0.25 0.25 0.3 0.25 0.25 0.25 0.3 0.25 0.25 0.25
VIT A 12,000 10,000 10,000 10,000 12,000 10,000 10,000 10,000 12,000 10,000 10,000 10,000
VIT D 4950 4125 4125 4125 4950 4125 4125 4125 4950 4125 4125 4125
VIT E 84 70 70 70 84 70 70 70 84 70 70 70

Table 3. Composition of diet supplemented using grape-seed flour. All nutrients are expressed as %
feed except selenium in ppm, vitamins in International Units (IU), and Amen in kcal/kg.

G0 G3 G3
Ingr./Nutr Pre-Starter Starter Grower Finisher Pre-Starter Starter Grower Finisher Pre-Starter Starter Grower Finisher

Corn 46.8895 49.2145 54.162 53.027 44.5295 50.4095 55.07 54.47 44.317 50.7995 55.765 54.6
Soybean
Meal 37.95 32.65 28.325 25.625 36.9 32.275 28.8 27.075 38.225 33.425 29.925 28.17

Fat and Oil 3.7 4.1 5.6 6.2 4.47 4.3 5.7 6.7 475 4.5 5.85 7
Grape Seed 0 0 0 0 3 3 3 3 6 6 6 6
Other
ingredients 11.4605 14.0355 11.913 15.148 11.1005 10.0155 7.43 8.755 −463.542 5.2755 2.46 4.23

VOLUME 100 100 100 100 100 100 100 100 100 100 100 100
DM 89.4 89.2 89.2 89.1 89.6 89.4 89.4 89.5 89.8 89.5 89.5 89.7
AMEN 2991 3080 3180 3204 2991 3080 3179 3210 2990 3079 3179 3210
CP 23.0 21.1 19.1 18.3 23.2 21.1 19.1 18.3 23.3 21.1 19.2 18.4
CF 2.9 2.9 2.8 2.9 4.2 4.1 3.9 4.1 4.8 4.7 4.6 4.8
EE 6.2 6.7 8.2 8.8 6.9 6.8 8.2 9.2 7.2 7.0 8.4 9.4
ASH 6.5 5.7 5.2 4.7 6.4 5.7 5.1 4.7 6.3 5.6 5.1 4.7
#D LYS 1.29 1.15 1.02 0.97 1.29 1.15 1.02 0.96 1.29 1.15 1.02 0.96
#D MET 0.67 0.61 0.55 0.51 0.68 0.61 0.56 0.53 0.67 0.61 0.57 0.52
CA TOT 0.96 0.89 0.83 0.75 0.96 0.90 0.82 0.74 0.97 0.90 0.82 0.74
P TOT 0.72 0.59 0.54 0.49 0.71 0.58 0.53 0.48 0.70 0.57 0.52 0.47
SELENIUM 0.30 0.25 0.25 0.25 0.30 0.25 0.25 0.25 0.30 0.25 0.25 0.25
VIT A 12,000 10,000 10,000 10,000 12,000 10,000 10,000 10,000 12,000 10,000 10,000 10,000
VIT D 4950 4125 4125 4125 4950 5000 4125 4125 4950 5000 4125 4125
VIT E 84 70 70 70 84 70 70 70 84 70 70 70
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Table 4. Composition of diet supplemented using grape-pomace and grape-seed flours. All nutrients
are expressed as % feed except selenium in ppm, vitamins in International Units (IU), and Amen in
kcal/kg.

P0G0 P3G3
Ingr./Nutr Pre-Starter Starter Grower Finisher Pre-Starter Starter Grower Finisher

Corn 43.42 48.04 51.86 53.945 42.695 50.465 50.08 54.392
Soybean Meal 37.35 33.725 28.65 26.2 40.7 33.8 29.925 29.45
Fat and Oil 4.4 5.05 6.25 6.4 5.3 4.9 5.9 5.9
Grape Pomace 0 0 0 0 3 3 3 3
Grape Seed 0 0 0 0 3 3 3 3
Other Ingredients 14.83 13.185 13.24 13.455 5.305 4.835 8.095 4.258
VOLUME 100 100 100 100 100 100 100 100
DM 89.5 89.3 89.3 89.2 89.9 89.7 89.4 89.3
AMEN 2990 3079 3180 3209 2990 3081 3131 3160
CP 23.4 21.2 19.1 18.2 23.5 21.2 20.4 19.2
CF 3.5 3.4 3.3 3.3 4.9 4.6 5.0 4.9
EE 6.6 7.2 8.5 8.6 7.4 7.4 8.5 8.5
ASH 6.4 5.7 5.1 4.8 6.5 5.6 4.8 4.5
#D LYS 1.3 1.2 1.0 1.0 1.3 1.2 1.1 1.0
#D MET 0.7 0.6 0.6 0.5 0.7 0.6 0.6 0.6
CA TOT 1.0 0.9 0.8 0.7 1.0 0.9 0.6 0.6
SELENIUM 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
P TOT 0.7 0.6 0.5 0.5 0.7 0.6 0.5 0.4
VIT A 12,000 10,000 10,000 10,000 12,000 10,000 10,000 10,000
VIT D 4950 5000 4125 4125 4950 5000 4125 4125
VIT E 84 70 70 70 84 70 70 70

In the first phase, grape-pomace evaluation, chickens were fed at three levels of
grape-pomace inclusion:

• P0: 0% Pomace (control diet);
• P3: 3% Pomace (experimental diet);
• P6: 6% Pomace (experimental diet).

In the second phase, grape-seed evaluation, chickens were fed at three levels of grape
seed inclusion:

• G0: 0% Grape seed (control diet);
• G3: 3% Grape seed (experimental diet);
• G6: 6% Grape seed (experimental diet).

In the third phase, simultaneous grape-pomace and grape-seed evaluation, chickens
were fed at two levels of inclusion:

• P0G0: Pomace 0% + Grape seed 0% (control diet);
• P3G3: Pomace 3% + Grape seed 3% (experimental diet).

For each treatment, individuals were randomly selected and divided to achieve the
desired stocking density using standard-sized fenced areas of standard dimensions inside
the pen. Attention was paid not to exceed, until the slaughter of birds, the maximum
stocking density established by European legislation.

In order to avoid variability due to the sex of the animals, all experimental measure-
ments were carried out exclusively on male subjects. In detail, for pomace treatments
90 animals in total were used, 30 for P0, 30 for P3, and 30 for P6. For grape-seed treatment,
90 animals in total were also used, 30 for G0, 30 for G3, and 30 for G6. In the end, for the
simultaneous treatment with grape-seed and pomace flour, two fenced areas were used
with 60 animals in totals of 30 individuals for P0G0 and 30 for P3G3.

To evaluate animal growth, for each group (at 7, 21, 42 days), animals were weighed
individually to record body weight. Average daily gain (ADG) was calculated using the
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difference between the final weight and the initial weight (at placement), divided by the
number of days of life.

For each group, at 7, 21, and 42 days a random sample (10 for each age and for each
treatment) of chickens were chosen for blood sampling. Blood sampling was performed
using specific sampling tubes, using Ethylenediaminetetraacetic acid (EDTA) as an antico-
agulant. Some drops of blood were collected from the base of the wing after disinfecting
the sampling area. Subsequently, the samples were centrifuged at 1000× g for 10 min at
4 ◦C, and the supernatant was recovered for biochemical analyses.

2.3. Biochemical Assay

Six different biochemical evaluations were performed on the plasma supernatant
obtained, specifically esterase, alkaline phosphatase, and peroxidase activity, glucose level,
ROS level, and GSH content. Each assay was performed in three replicas. Esterase and
alkaline phosphatase activities were evaluated according to the method in Ross et al. [44].
In detail, 50 µL of the sample was incubated with 50 µL of buffer (0.4 mM p-nitrophenyl-
myristate substrate in 100 mM ammonium bicarbonate buffer containing 0.5% Triton X-100,
pH 7.8, 30 ◦C for esterase, and 4 mM p-nitrophenyl liquid phosphate in 100 mM ammonium
bicarbonate containing 1 mM MgCl2, pH 7.8, 30 ◦C for alkaline phosphatase) and Abs was
evaluated for 1 h every five minutes at 405 nm.

Esterase and alkaline phosphatase activity were calculated according to the following
formula:

{(Abs/min) × (1000/Eb) × (Vf/Vi)}, (1)

with Eb =16.4 for esterase activity and Eb = 18.4 for alkaline phosphatase activity. The
results were expressed in U/µg.

Peroxidase activity was measured by modifying the Quade and Roth [45] method. In
detail, 50 µL of each sample was incubated with 100 µL of TMB (3.3’, 5.5’ tetramethylbenzi-
dine) (Sigma, Darmstadt, Germany), and the reaction was stopped after 30 min using an
equal volume of sulfuric acid (2M). Then, the Abs was measured at 450 nm, and the results
were expressed as unit U/µg. One unit of activity was defined as the amount of enzyme
required to release 1 µmol of substrate produced in 1 min.

Glucose levels were evaluated in all samples in three replicas using Pic Gluco Test and
test strips. One drop (approximately 0.3 µL) was used for each sample. The results were
expressed in mg/dL.

ROS and GSH were measured with fluorescent dyes following the protocol of Bjedov
et al. [46], previously developed for avian plasma with the contribution of minor method-
ological variations described below. Analysis was conducted using the Promega™ GloMax®

Plate Reader (Milan, Italy) set at 485 nm excitation and 530 nm emission wavelengths. Each
sample was measured in parallel and in triplicate by normalizing the samples on blank and
autofluorescence controls. GSH content was evaluated with the use of CellTracker Green
CMFDA dye (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. c2925). Briefly, 2 µL
of the plasma sample was mixed with 93 µL phosphate buffer (0.1 M pH 7.2) and 5 µL of
CellTracker Green CMFDA (10 µM in DMSO) working solution. The blank control was
without plasma, while the autofluorescence control was without dye. Fluorescence was
measured after an incubation of 30 min at room temperature in the dark, subtracting blank
and autofluorescence controls from measured values. The ROS level was evaluated using
CM-H2DCFDA dye (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. c6827). In
short, 5 µL of the plasma sample was mixed with 85 µL phosphate buffer (0.1 M pH 7.2)
and 10 µL of CM-H2DCFDA (10 µM in DMSO) working solution. The preparation of the
blank control, autofluorescence sample, and incubation conditions were the same as those
described above.

2.4. Statistical Analysis

Results were expressed as mean ± SD of n separate experiments conducted in triplicate.
Statistical comparisons were performed using one-way analysis of variance (ANOVA),
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followed by Tukey’s correction for multiple comparisons using Prism 9.5.0 (GraphPad
Software, San Diego, CA, USA). In all cases, significance was accepted if the null hypothesis
was rejected at the p < 0.05 level.

3. Results

The results for esterase activity (Figure 1) evaluated in plasma showed a significant
decrease only in animals fed for 21 and 42 days compared to the control. In detail, after
21 days (Figure 1B) the levels of enzymatic activity decreased significantly in animals fed
with pomace only (P3, p < 0.05 and P6, p < 0.001) and with only grape seeds (G3, p < 0.05
and G6, p < 0.01), with more evident effects in animals fed with 6% of pomace (P6). In
the animals fed with the mix of pomace and grape seeds, the levels of enzymatic activity
decreased compared to the controls, although the results were not significant. In animals
fed for 42 days (Figure 1C), enzyme levels decreased in all types of treatment compared
to controls at the highest rates of administration. In detail, in the treatment with pomace
significant decrease was observed at the highest percentages (P6, p < 0.001), while in the
treatment with grape seed the results were significant at all treatment percentages (G3,
p < 0.01 and G6, p < 0.001), with a greater effect at the highest percentages (G6). In the
end, in the animals fed with the mix of pomace and grape seeds significant decrease were
observed in the levels of enzymatic activity at highest percentages of treatment (P3G3,
p < 0.001). No significant differences were found in any case when comparing the treatments
with each other.
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Figure 1. Esterase activity evaluated in broiler-chicken plasma fed with pomace at different percent-
ages (P0, P3, and P6), grape seed at different percentages (G0, G3, and G6), and a mix of pomace and
grape seed at different percentages (P0G0 and P3G3) at three different experimental times: 7 days
(A), 21 days (B), and 42 days (C). The data are expressed as mean ± SD. (*** p < 0.001, ** p < 0.01,
* p < 0.05).

The different feeds administered to broiler chickens showed similar and greater effects
than esterase on alkaline phosphatase activity levels (Figure 2). In fact, significant results
were observed only after 21 and 42 days of treatment, with decreasing enzyme levels
with respect to the control. However, in this case, after 21 days (Figure 2B) significant
decreases were observed for all experimental feeds, in particular at highest percentages of
treatment (P6, G6 and P3G3 p < 0.001). At 42 days (Figure 2C), the effects were minor with
respect to the esterase activity; although, also in this case, enzymatic levels decreased with
respect to the control for all types of diets administered and at the highest percentages of
administration (P6, G6 an P3G3 p < 0.01). No significant differences were found in any case
when comparing the treatments with each other.
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Figure 2. Alkaline phosphate activity evaluated in broiler-chicken plasma fed with pomace at
different percentages (P0, P3, and P6), grape seed at different percentages (G0, G3, and G6), and a mix
of pomace and grape seed at different percentages (P0G0 and P3G3) at three different experimental
times: 7 days (A), 21 days (B), and 42 days (C). The data are expressed as mean ± SD. (*** p < 0.001,
** p < 0.01).

Glucose levels (Figure 3) significantly decreased only after 42 days (Figure 3C) of
feeding for all treatments in respect of the control (p < 0.001). In grape-seed treatment,
significant differences were observed when comparing the two feed percentages (G3/G6,
p < 0.01). Moreover, significant differences were observed when also comparing the highest
percentages of treatment with grape seed and the mixture of pomace and grape seed (G6
and P3G3, p < 0.001). No significant differences were found in any case when comparing
the treatments with each other.
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Figure 3. Glucose levels evaluated in broiler-chicken plasma fed with pomace at different percentages
(P0, P3, and P6), grape seed at different percentages (G0, G3, and G6), and a mix of pomace and
grape seed at different percentages (P0G0 and P3G3) at three different experimental times: 7 days (A),
21 days (B), and 42 days (C). The data are expressed as mean ± SD. (*** p < 0.001, ** p < 0.01).

Peroxidase activity (Figure 4) showed a significant decrease with respect to the control
only after 42 days (Figure 4C). The pomace flour significantly decreased peroxidase activity
only at the highest percentage (P6, p < 0.01), while grape-seed flour significantly decreased
enzymatic activity at all treatments percentages (G3, p < 0.05 and G6, p < 0.001). Significant
decrease was observed, also, at the highest percentages of treatment with the mix of pomace
and grape seed (P3G3, p < 0.01) In detail, the highest effect was observed when animals
were fed using grape-seed flour at the higher percentage (P6). No significant differences
were found in any case when comparing the treatments with each other.
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Figure 4. Peroxidase activity evaluated in broiler-chicken plasma fed with pomace at different
percentages (P0, P3, and P6), grape seed at different percentages (G0, G3, and G6), and a mix of
pomace and grape seed at different percentages (P0G0 and P3G3) at three different experimental
times: 7 days (A), 21 days (B), and 42 days (C). The data are expressed as mean ± SD. (*** p < 0.001,
** p < 0.01, * p < 0.05).

ROS level decreased for all treatments and at all experimental times, observing sig-
nificant results only after 21 and 42 days of feeding (Figure 5). In particular, after 21 days
(Figure 5B), ROS levels significantly decreased for all experimental feeds only at the highest
percentage, in respect of the control (P6 and P3G3, p < 0.05; G6, p < 0.01). In detail, higher
effects were observed in animals fed with the highest percentages of grape-seed flour (G6).
After 42 days (Figure 5C), on the other hand, greater effects were observed in animals fed
with pomace; in fact, ROS significantly decreased at both percentages of flour administered
(P3, p < 0.05 and P6, p < 0.001) compared to the control. Regarding grape seed and mixed
treatment, the ROS values decreased significantly only at the highest percentage compared
to the control (G6, p < 0.01 and P3G3, p < 0.05). No significant differences were found in
any case when comparing the treatments with each other.
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Figure 5. ROS production measured in broiler-chicken plasma fed with pomace at different percent-
ages (P0, P3, and P6), grape seed at different percentages (G0, G3, and G6), and a mix of pomace and
grape seed at different percentages (P0G0 and P3G3) at three different experimental times: 7 days
(A), 21 days (B), and 42 days (C). The data are expressed as mean ± SD. (*** p < 0.001, ** p < 0.01,
* p < 0.05).

GSH content (Figure 6) increased at all experimental times and for all experimental
feedings with respect to the control. In particular, we observed a significant increase of
GSH after 7 days (Figure 6A) in animals fed with grape-seed flour at highest percentages of
administration (G6, p < 0.01). Moreover, significant increase was observed when comparing
the grape-seed treatment (G3 and G6, p< 0.05). After 21 days (Figure 6B), on the other hand,
GSH production increased for all experimental feeds but only at the higher percentages of
administration (P6 and P3G3, p < 0.05; G6, p < 0.01), with more obvious effects in animals
fed using grape-seed flour (G6). In the end, after 42 days (Figure 6C), GSH levels increased
more than at all previous experimental feedings and only at the higher percentages of
administration (P6, G6, and P3G3, p < 0.01).
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Figure 6. Evaluation of GSH in broiler-chicken plasma fed with pomace at different percentages
(P0, P3, and P6), grape seed at different percentages (G0, G3, and G6), and a mix of pomace and
grape seed at different percentages (P0G0 and P3G3) at three different experimental times: 7 days (A),
21 days (B), and 42 days (C). The data are expressed as mean ± SD (** p < 0.01, * p < 0.05).

No difference was observed in this case between different experimental feeds. No sig-
nificant differences were found in any case when comparing the treatments with each other.

The weight trend in all three experiments and among the treatments were evaluated
(Table 5) and was very similar. Although some differences were recorded during the growth
phase (p < 0.05) and at 42-day weights, in phase 3, no differences were found, and, in phases
1 and 2, there were some differences between treatments but no effect on dose/response of
the by-products included for weight.

Table 5. Weight trend in all experiments and treatments.

Diet Day 0 Day 7 Day 21 Day 42 ADG 0–42

P0 42.3 ± 2.03 a 172 ± 17.3 a 957 ± 93.3 a 2994 ± 269 a 70.2
P3 43.6 ± 3.84 a 163 ± 29.0 a 972 ± 69.6 ab 2850 ± 227 b 66.8
P6 43.0 ± 3.00 a 149 ± 27.6 b 923 ± 58.8 ac 2913 ± 123 ab 68.3

G0 45.9 ± 3.54 a 151 ± 7.44 a 892 ± 60.4 a 3024 ± 131 a 70.9
G3 34.4 ± 2.28 b 151 ± 6.66 a 858 ± 74.8 a 2937 ± 344 ab 69.1
G6 34.3 ± 2.03 bc 168 ± 8.15 b 967 ± 43.9 b 3128 ± 242 ac 73.8

P0G0 47.8 ± 1.25 a 177 ± 10.2 a 966 ± 68.8 a 3050 ± 188 a 71.5
P3G3 47.3 ± 1.69 a 177 ± 10.1 a 960 ± 73.9 a 3114 ± 136 a 72.9

Different letters shows p < 0.05.

4. Discussion

The results obtained in this study demonstrate that wine-production by-products
have the potential to improve certain blood parameters of farmed broiler chickens. In
particular, improvements depend on the type of by-products considered, the combination
of different types, the percentage administered, and the growth phase of the animals. Thus,
in agreement with Cao et al. [39], phenolic feed supplements have the potential to improve
blood parameters of these animals without affecting their production performance, which
has been evaluated over all life phases. In fact, weight trends in all three experiments
and among the treatments were very similar. This leads to the conclusion that animal
performance was not affected by the inclusion of grape by-products. The decrease of both
enzymes of the hydrolase class analyzed in plasma samples in this study highlights that
the flours obtained from wine-production waste can improve the liver function of the
organisms examined [35]. In fact, elevated levels of these enzymes could normally be
used as indicators of liver damage [39]. These results are in agreement, for example, with
Hossein-Vashan et al. [35] who demonstrated that in conditions of heat stress liver enzyme
levels can increase but, at the same time, decrease in conditions of reduced hepatic stress
also due to dietary supplementation. In addition, El-Kelawy et al. [47] showed a decrease
in enzyme levels in grape-seed-fed broiler chickens, confirming that this could be directly
attributed to the presence of polyphenols and their known antioxidant properties [17,18].
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Furthermore, the different results obtained at the different life stages indicate and highlight
how the nutritional intake of these organisms must be different according to their growth
stage, and how the intake of these additional elements must be calibrated depending on
the latter.

Plasma glucose levels decreased in treated individuals compared with controls after
42 days and especially in individuals fed grape-seed flour. This finding is in agreement
with Hajati et al. [18] and Maghrani et al. [48], who observed that plant extracts with a high
flavonoid content inhibit the renal reabsorption of glucose through the inhibition of sodium–
glucose sympathizers located in the proximal renal tubule. This could confirm a beneficial
effect exerted by flavonoids on hypoglycemic and hepatic action of liver glucokinase. In
conditions of stress, blood glucose levels could, in fact, increase due to the production of
glucose used to supply the energy necessary to maintain or restore homeostasis [36,37].
Indeed, insulin response is, for example, impaired under conditions of oxidative stress, but
polyphenols have the potential to reverse this type of alteration by restoring the signaling
mechanisms of insulin production [38,49–51]. Furthermore, the reduction in plasma glucose
levels may depend on the ability of flavonoids to reduce intestinal absorption through
the inhibitory action on the transporters involved [52–56]. It cannot be excluded that
any proanthocyanidin content may increase insulin levels, contributing to blood glucose
regulation [57], or that polyphenolic compounds, by inhibiting carbohydrate digestion
and glucose absorption in the intestine, may stimulate insulin secretion from pancreatic
β-cells, modulating glucose release from the liver [58]. Finally, if we focus on antioxidant
parameters, our results showed a decrease of peroxidase enzyme activity, lowered ROS
levels, and a reduction of GSH depletion with an increase in fed animals compared to the
control, with greater effects after 42 days.

The flours evaluated influenced different parameters in different ways; in fact, per-
oxidase levels were influenced more by grape-seed flour, while ROS levels were more
impacted by pomace flour. On the other hand, all feeds influenced GSH content in the
same way. The reduction in ROS levels was probably due to the biological function of the
phenolic compounds contained in the flours which show natural antioxidant activity and
have the ability to protect the intestinal mucosa from oxidative damage and pathogens [59].
This confirms that polyphenols were absorbed at levels sufficient to modulate antioxidant
activity in the tested animals [8,60,61].

Moreover, it has been observed that wine-production by-products contain catechin,
epicatechin, gallic acid, and proanthocyanidins which have strong radical-scavenging
activity [8,62]. In confirmation of this, decreases in the levels of unstimulated peroxidase
enzyme activity were in fact observed given the reduction in ROS levels caused by the
action of the natural antioxidants present in the supplemented feed. However, it cannot be
excluded that the decrease in the levels of enzymes of the peroxidase class may also depend
on the concentration of the by-products administered and, consequently, on the polyphenol
content. In fact, in other studies, no significant changes in antioxidant capacity were
found nor were there observed decreases in plasma enzyme levels [2,63]. The enzymatic
responses are, therefore, strictly dependent and conditioned by the type of by-product, the
concentration administered, and the method of preparation and treatment of the by-product
before administration [16,64–66].

In the end, the observed increases in GSH levels could be due to the action of both
polyphenols and flavonoids, which are active compounds that act as effective antioxidants
and increase resistance against oxidative stress by activating the antioxidant enzyme sys-
tem [15,67,68]. The variations observed in GSH levels are in agreement with several authors
who tested the effects of by-products at different concentrations on broilers [16,61,69]. In
light of our results, it is evident that the flours obtained from wine by-products have
considerable potential to improve certain blood parameters of farmed chickens, both indi-
vidually and in combination, at different percentages, and based on the time of absorption.
Furthermore, it cannot be excluded that animals kept in intensive farms may be subject to
minimal stress conditions, which are further reduced by feed supplemented with pomace
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and grape-seed flours. This could be demonstrated with future studies by analyzing ani-
mals which are not kept in breeding conditions and are fed with flour obtained from wine
by-products.

5. Conclusions

The results of this study highlight how the by-products of wine production can be
reused in the context of feeding broiler chickens, contributing to the reduction of the
economic and environmental damage that they can cause. All the by-products evaluated
in this study showed evident antioxidant potentiality, depending on the concentration
of administration, the growth phase in which they were administered, and whether they
were administered alone or in a mixture. The most prevalent effects were determined
as those from grape-seed flour after 42 days of administration. From our results, we can
conclude that all the by-products of wine production are very important resources and can
be reused in formulating different diets, at different percentages, based on the growth stage
of the animal.
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