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The Water-Cooled Lithium Lead breeding blanket concept foresees the eutectic lithium-lead (Pb-15.7Li) alloy being 
cooled by pressurized sub-cooled water (temperature 295-328 °C; pressure 15.5 MPa) flowing in double wall tubes. 
Therefore, the interaction between the Pb-15.7Li and water (e.g. tube rupture) represents one of the main safety concerns 
for the design and safety analysis. Available LIFUS5/Mod2 experimental data are employed to assess the performances of 
thermal-hydraulic and thermo-mechanic codes. Thermal-hydraulic simulations, by SIMMER-III code, are focused on the 
prediction of the thermodynamic interaction among the fluids. ABAQUS Finite Element code, used for the design 
activities, is adotped to perform the thermo-mechanic simulations, calculating the stress and strain fields of LIFUS5/Mod2 
main vessel during the experiments. Code results are compared with the experimental data and the outcomes from the 
analyses are discussed, in order to derive conclusions on the code assessment. 
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1. Introduction 

The Water-Cooled Lithium Lead (WCLL) breeding 
blanket (BB) concept ([1]-[4]) adopts pressurized sub-
cooled water as coolant and a Heavy Liquid Metal 
(HLM), namely Pb-15.7Li alloy, as neutron multiplier, 
tritium breeder and carrier. Cooling water flows inside 
the cooling circuit housed within the breeder and 
deputed to remove the heat power therein generated. 
Hence, as a consequence of a possible in-box LOCA 
occurring within the breeder zone, water-HLM 
interactions will take place and are considered pivotal for 
the WCLL BB design and safety analysis activities [5]. 
Research activities are ongoing to master phenomena 
and processes occurring during the postulated accident 
[6], [7], to enhance the predictive capability and 
reliability of numerical tools [8], [9], to validate the 
computer models and codes [10], as well as to qualify 
computer codes and procedures for their applications 
[8]-[10]. These activities are conducted using existing 
and new experimental programmes. Available LIFUS5 
experiments are employed to assess the performances of 
thermal-hydraulic and thermo-mechanic codes.  

Within this framework, ENEA C.R. Brasimone has 
adopted the LIFUS5 facility for the investigation of 
water-HLM interaction, carrying out experimental 
campaigns and starting validation activities of numerical 
codes [7], [10]-[12] in order to assess both the thermal-
hydraulic and thermo-mechanical computer codes 
performances. At present LIFUS5/Mod2 data are the 
most reliable for this purpose and the only one where 
strain data during injection are recorded. Therefore, 
besides these tests neglect the chemical reaction between 
PbLi and water, which, in any case, is delayed in time 
with respect to the thermodynamic interaction, they are 
considered relevant for the preliminary validation of the 
codes. Indeed, the study is focussed on the 

thermodynamic interaction, which is the first phenomena 
occurring when the water is injected at higher pressure 
into a system of HLM at lower pressure (so-called 
Coolant Coolant Interaction, Ref. [5]).  

2. LIFUS5/Mod2 facility description 

LIFUS5/Mod2 (Refs. [11]-[14]) is designed to be 
operated with different HLMs, such as: Lithium-Lead 
and Lead-Bismuth eutectic alloys and pure Lead. The 
operation of the test facility has the objectives of 1) 
investigating relevant phenomena connected with the 
safety of HLM fast reactor designs and 2) developing 
and validating numerical models for simulation codes 
used in safety analysis. The facility consists of four main 
parts: 
• vessel (S1), where HLM/water interactions occur 

with a volume of 100 liters; 
• water tank (S2), pressurized by means of a gas 

cylinder connected on the top; 
• dump tank (S3);  
• liquid metal storage tank (S4). 
More detail about volume of vessels, liquid metal and 
geometry can be found in [11]. 

The description of the THINS (Thermal-Hydraulic of 
Innovative Nuclear System) configuration of the facility 
is reported in Refs. [11]-[14] and it is shown in Fig. 1. 
The main vessel S1 is filled with HLM (Lead-Bismuth 
alloy) with a compressibility ratio of 30%. The test 
section is configured in order to have an axial-symmetric 
geometry. The configuration is set-up in order to reduce, 
as far as possible, perturbations due to structures inside 
the vessel. The water injection system enters from the 
bottom of S1 vessel in central position. The injector 
orifice is covered by a protective cap, which is broken by 
the pressure of the water jet at the beginning of the 
injection phase. 
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Tab. 1. Errors at End of Test 
Strain SG-01 SG-02 SG-03 SG-04 SG-05 SG-06 
Theo [µm/m] -34.18 -34.18 -34.18 -34.18 -34.18 -22.8 
Exp [µm/m] -32.18 -34.55 -32.69 -32.17 -37.27 -8.43 
Δ [%] -6.23 1.08 -4.55 -6.24 8.28 -170.42 
FEM [µm/m] -31.75 -34.66 -34.86 -34.65 -33.49 -24.2 
Exp [µm/m] -32.18 -34.55 -32.69 -32.17 -37.27 -8.43 
Δ [%] 1.33 -0.31 -6.63 -7.69 10.13 -187.07 
FEM [µm/m] -31.75 -34.66 -34.86 -34.65 -33.49 -24.2 
Theo [µm/m] -34.18 -34.18 -34.18 -34.18 -34.18 -22.8 
Δ [%] 7.11 -1.4 -1.99 -1.37 2.02 -6.16 

5. Conclusions 

With the aim of supporting the study of the “in-box-
LOCA” and the associated phenomena for the WCLL 
BB, activities are conducted at ENEA C.R. Brasimone 
using both existing and new experimental campaigns in 
LIFUS5 facility. Available data relevant to HLM/water 
interactions, performed during THINS campaign, have 
been adopted to set up and to validate numerical codes 
towards the thermodynamic interaction occurring for the 
so-called Coolant Coolant Interaction. Indeed, this is 
representative of the first phenomena occurring during 
water leakage characterizing a LOCA scenarios in the 
WCLL breeding zone. 

Thermal-hydraulic and thermo-mechanical analyses 
have been carried out using the LIFUS5/Mod2 Test 
A2.4. Pressure and temperature trends, as well as stress 
and strain distributions, have been calculated using the 
computer codes SIMMER and Abaqus. These results 
have been compared against the experimental data. 

The thermal-hydraulic simulation has demonstrated 
that the pressure trend is correlated with the water mass 
injection. A reliable simulation of the two phase choked 
flow through the orifice, implies a good simulation of the 
pressure trend (i.e. Test A 2.3). On the opposite, minor 
differences in the void fraction at the break, larger in the 
simulation with respect to the experiment, cause the 
underestimation of the mass injected and therefore of the 
pressure gradient (i.e. Test A 2.4).  

As to the thermo-mechanical simulation, a good 
match between experimental and numerical results has 
been achieved, with the except of the comparison 
between data collected by the external strain gauge (SG-
06) and results calculated by Abaqus FEM code, 
probably due to an instrumentation malfunctioning. 
Moreover, non-negligible errors have been observed 
during the first phase of the experimental test, which 
could be justified by the reproduction of the transient by 
means of a sequence of static analyses, neglecting 
dynamic phenomena. 
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