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Fig. 4. Simulation results with a two-degree-of-freedom SAR when the system output is perturbed by a white measurement noise with a noise power 𝑝𝑤 = 3.5 ⋅10−6. The proposed
method, i.e. LUIO, allows a fast and precise estimation of the state vector, with the corresponding unknown inputs, with respect to the DUIO one which is affected by heavy
peaking phenomena. The estimation errors of system state and unknown inputs, are with respect to the noise free behavior reported in figure.
Fig. 5. Experimental results with a SAR. The overall noise affecting the measurement of the robot’s joint positions has an average value of 0 radians and a standard deviation of
pproximately 0.004908 radians. The graphs show how the LUIO outperforms the DUIO in terms of estimation performance and absence of spikes.
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llowing a fast and precise estimation both state vector and unknown
nput signals also in this case. Furthermore, the estimates provided by
he LUIO do not present the peak phenomena that characterize those
btained through the DUIO.

.3. Experimental validation

The experiment results obtained with a real SAR using the presented
pproach are finally reported here. The experimental robot is depicted
n Fig. 6 and consists of a three-degree-of-freedom kinematic chain,
here each link is connected to the previous one by a variable stiffness
ctuator (VSA) joint, i.e., a qbmove advanced (qbrobotics, 2022). Each
oint comprises two electric motors, 𝑎 and 𝑏, acting in an agonist-
ntagonist configuration. More precisely, by varying the angles 𝜃 and
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𝑖,𝑎 u
𝑖,𝑏 of the 𝑖th joint, the 𝑖th (elastic) torque 𝜏𝑖 is applied to the link
ccording to the experimentally identified formula

𝑖(𝜃𝑖,𝑎, 𝜃𝑖,𝑏) = 𝑘𝑎 sinh(𝑎𝑎(𝑞𝑖 − 𝜃𝑖,𝑎)) + 𝑘𝑏 sinh(𝑎𝑏(𝑞𝑖 − 𝜃𝑖,𝑏)) ,

here all the constants involved have nominal values listed in Table 1.
n the experiments, the first two joints are active, while the last one is
assive, causing the last link to simply act as a load for the previous
nes, and are forced to track well-defined desired positions through a
uitable internal controller. For the remaining part of the paper, the
esign and structure of the controller will be seen as a black box. More
pecifically, the joints are forced to track sinusoidal trajectories, and
oth LUIO and DUIO, exploiting both joint position and known control
nput measures, can estimate the entire state vector, i.e. 𝑥, and the
nknown input vector 𝛿. It should be noted that, in the experiment,
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Fig. 6. Picture of the hardware setup used to validate the proposed solution (left) and
depiction of the internal functioning of the soft articulated robot driven by VSA devices
(right).

Table 2
RMSE index comparison between the proposed LUIO and a DUIO approach in
experimental results.

Method RMSE( ̇̃𝑞1) RMSE( ̇̃𝑞2) RMSE(𝛿1) RMSE(𝛿2)

LUIO 8 ⋅ 10−2 7 ⋅ 10−2 9 ⋅ 10−2 6 ⋅ 10−2

DUIO 5 ⋅ 10−1 4 ⋅ 10−1 5 7

the real unknown input can be computed, since the nonlinear model is
known, but it is not used in the estimation process. As it can be seen in
Fig. 5, the LUIO quickly tracks both state and unknown inputs, respec-
tively, with respect the DUIO. However, the improved performance of
the LUIO is numerically quantified in Table 2, by showing a reduction
of the Root Mean Square Error (RMSE) index of at least one order of
magnitude with respect to the DUIO one in experimental results.

5. Conclusion

This paper presented a Linear Unknown Input-state Observer and
its experimental validation on a soft articulated robot. Using the first
entries of the Taylor series vector of the system output, the approach
showed how to recover the unknown input and system state with better
estimation performance and more relaxed unknown input decoupling
conditions with respect to existing techniques. Necessary and sufficient
conditions, as well as a construction procedure, were described with
convergence speed guarantees also in the presence of measurement
noise. Future work will be related to closing the loop with a robust
control law and its extension to the discrete-time domain.
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