Out of equilibrium thermodynamics of quantum harmonic chains
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The thermodynamic implications for the out-of-equilibrium dynamics of quantum systems are to date largely
unexplored, especially for quantum many-body systems. In this paper we investigate the paradigmatic case of an
array of nearest-neighbor coupled quantum harmonic oscillators interacting with a thermal bath and subjected
to a quench of the inter-oscillator coupling strength. We study the work done on the system and its irreversible
counterpart, and characterize analytically the fluctuation relations of the ensuing out-of-equilibrium dynamics.
Finally, we showcase an interesting functional link between the dissipated work produced across a two-element
chain and their degree of general quantum correlations. Our results suggest that, for the specific model at hand,
the non-classical features of a harmonic system can influence significantly its thermodynamics.

The out-of-equilibrium dynamics of quantum systems offer
a very interesting stage for the study of the thermodynamic
properties [1-3]. The establishment of quantum fluctuation
theorems represents a milestone in the link between arbitrar-
ily fast quantum dynamics and equilibrium figures of merit of
thermodynamic relevance, such as free energy changes, heat,
work, and entropy [4-6]. The definition of such quantities
from a genuine quantum mechanical standpoint, the formu-
lation of their operational interpretations, and the design of
experimental techniques for their quantitative assessment are
some of the drives of current research on the thermodynamic
properties of quantum systems and processes [7-20]. An ex-
tensive programme of investigations aimed at understanding
and characterising the non-equilibrium thermodynamics of
simple, paradigmatic systems is currently underway, includ-
ing exactly solvable extended spin models [10, 11, 21-25],
which have offered an interesting platform for the study of
the emergence of irreversible thermodynamics from quantum
many-body features [10, 11].

In this context, a rather privileged role is played by the
quantum oscillator, which offers the possibility for the (either
exact or approximate) analytical assessment of non equilib-
rium features in an ample range of situations, including ex-
ternal driving and special nonlinear cases [26, 27]. However,
to the best of our knowledge, little is known on composite
systems consisting of more than a single harmonic oscillator.
This is an interesting case to study, as it would enable the as-
sessment of the scaling properties of thermodynamically rele-
vant quantities with the size of the system, as well as the study
of processes involving either the whole system or only part of
it, which in principle would result in different behaviors and
manifestations.

This is precisely the context within which the investigation
reported in this paper lies. We aim at addressing the effects
that a global quench of the inter-particle coupling strength has
on the phenomenology of thermodynamic quantities such as

(irreversible) work and free energy differences. We study the
case of an open-ended array of quadratically coupled quan-
tum harmonic oscillators, in contact with a thermal reservoir.
By allowing for a global quantum quench, we address the
scaling of both the average work and the free energy differ-
ences, providing exact analytic expressions for the dissipated
work, which is an important figure of merit to gauge the de-
viations of the actual state of the array after the quench from
its counterpart at thermodynamic equilibrium. It thus gives
us information about the effects of non-adiabaticity. How-
ever, this study offers even more opportunities for exploration:
by calculating explicitly the amount of quantum correlations
shared by the elements of a two-oscillator system, we illus-
trate the existence of a clear functional relation between dissi-
pated work and quantum correlations. For the specific case of
the coupling model at hand, this hints at the interdependence
of quantum and thermodynamic features in quadratically cou-
pled harmonic chains. This is a tantalising possibility that will
deserve future in-depth explorations.

The remainder of this paper is organised as follows: Sec. I
introduces the harmonic model and illustrates an interfero-
metric approach to the exact determination of the character-
istic function of work distribution [2] resulting from a sudden
quench of the inter-oscillator coupling strength. This opens
the way to the assessment of quantum fluctuation relations [4—
6] and the fully analytic calculation of the average work, free
energy change and other figures of merit for the characteriza-
tion of irreversibility. This study allows us to identify the de-
gree of squeezing generated by the oscillators’ quadratic cou-
pling as a very important resource for the ability of the process
to do work on the system (see Ref. [27] for a different analysis
of this point made on a single harmonic oscillator). Our cal-
culations, which are valid for chains of an arbitrary number
of elements, allow for the clear identification of “classical”
and “quantum” parts of both the change of free energy, which
are then related to the degree of quantum correlations across a



two-element chain in Sec. II. Finally, in Sec. III we draw our
conclusions and discuss briefly the questions opened by our
study. Two appendices summarize the most technical part of
our calculations.

I. DESCRIPTION OF THE COUPLING MODEL AND
ANALYSIS OF NONEQUILIBRIUM THERMODYNAMICS

We consider coupled harmonic oscillators in an open linear
configuration [cf. Fig. 1 (a)]. While in this part of our anal-
ysis we will mostly concentrate on the case of only two cou-
pled oscillators, the generalization to a multi-element register
is addressed later on. We start from a Hooke-like coupling
model between two harmonic oscillators in contact with a heat
bath at temperature 7. The model is described by the follow-
ing Hamiltonian (we assume units such that i = 1 across the
manuscript)
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with Q the frequency of the oscillators (assumed for simplic-
ity to be identical and with a unit mass) and g the (possibly)
time-dependent interaction strength. Here, %; and p; are the
position- and momentum-like operators of oscillator j = 1,2
(satisfying the commutation relations [%}, p;] = i). Within
the context of our analysis we will assume that, after detach-
ing the system from the heat bath, the coupling strength is
abruptly turned on to the value gy > 0, namely g, = go®(?),
where O(7) is the Heaviside step function. This process em-
bodies a sudden quench of the interaction between the har-
monic oscillators. A straightforward calculation shows that
the post-quench time evolution operator U(t > 0) = 70
generated by Eq. (1) can be written as

Ut > 0) = B'S" (MR (6:1(0) ® Ro(G2()IS(NB,  (2)

where 8 = exp[m(X; pa — X2p1)/4] is the 50 : 50 beam-splitter
operator, S(r) = 1, ® S>(r) describes the local squeezing of
oscillator 2 by a degree r = (1/4)In+/1 + 2go/w performed
by the squeezing operator Sy(r) = explilm(r)(23 — p3) -
iRe(r)(X2p2+P2%)], w = Q/2 and 7A€j(9j) = exp[—iej(fc?+ﬁ§)]
accounts for phase-space rotations by the angle 6; (j = 1,2).
In the specific case of our problem we have 6,(f) = wt and
6,(1) = wt /1 + 2gy/w. In light of such decomposition, which
accounts for the free evolution (each occurring at the re-
spective frequency) of the centre-of-mass and relative-motion
modes of the system, the time-evolution of the two-oscillator
system can be understood as the result of the action of a Mach-
Zehnder interferometer endowed with an active element, em-
bodied by the local squeezer, on one of its arms [cf. Fig. 1(b)].

This establishes quantum correlations between the harmonic
oscillators. Our first goal here is to show that such correla-
tions are linked with the work that is irreversibly generated in
the process due to the non-adiabatic nature of the quench.

In order to accomplish this goal, let us briefly sketch
the way to compute the characteristic function of the work
probability distribution associated with the process that takes
abruptly the Hamiltonian from 7A{, =H 1(0) to VA{ F= (ﬁ(] (g0)
at time r = 0. As we will show, y(«#) can be understood in
terms of the thermal convolution of inner products between
displaced squeezed vacuum states. For the sudden switch of
the work parameter that we are considering here, the expres-
sion for the characteristic function of work distribution takes
the form

x(w) = el e~ 5 o)), 3)

where p’sh(O) = ePHZ, is a pre-quench thermal-
equilibrium state of the two harmonic oscillators at in-
verse temperature 8 and Zo = Tr[e#1©] is the associ-
ated partition function. In light of the structure shown in
Eq. (2), it is convenient to decompose the pre-quench state
over the single-oscillator coherent-state basis as p‘Sh(O) =
[ ey d*ar 15, P@))lr, a2) (@1, aalyy with Piia)) =
2[x(V — D]! exp[—2|a§|/(V — 1)] the thermal P-function of
oscillator j, characterised by the variance V = 2n + 1 with
7 = (e’ — 1)7! the thermal mean occupation number. Here,
la;) = @j(aj) |0); is a coherent state generated by the dis-
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With xa,0,() = (@i, asle™ e ™" |a;, ay) the Loschmidt
echo corresponding to the evolution of a pair of initial co-
herent states under the process addressed here. As the in-
teraction between the harmonic oscillators is quadratic, the
Gaussian nature of coherent states is preserved across the pro-
cess, and the thermal convolution in Eq. (4) consists of a
four-fold integration over Gaussian functions. We thus fo-
cus on the explicit evaluation of 4, «,(#), whose details are
given in the Appendix, and results in the elegant expression
X, () =13 611 &2 £2) with 153 €5) = D()S(£)10); a dis-
placed squeezed state (£, ¢ € C) [28, 29], which can be calcu-
lated analytically to be
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FIG. 1: (Color online) (a) Sketch of the model considered in this paper: a linear chain of coupled harmonic oscillators (coupling strength
g:) is in contact with a thermostat at inverse temperature 8. The couplings are all suddenly quenched to bring the system out-of-equilbrium.
We study the thermodynamics of the corresponding evolution. (b) Equivalent interferometer describing, in terms of linear optics elements,
the time evolution resulting from the propagator e’ generated by the quenched model in Eq. (1). We show the symbols for single-mode
squeezing [S (r)], phase-space rotation [R(6)], and two-mode beam splitting [BS].
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The expressions for £, and &, are given in the Appendix. Examples of the behavior of the characteristic function for various

quench strengths gy and temperatures of the initial equilibrium states are shown in Fig. 2.

Looking at Fig. 2 (c¢) and (d), we see that as the tempera-
ture of the initial thermal states increases (i.e., as V grows),
the absolute value of the derivative of both the real and the
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FIG. 2: (Color online) Panels (a) and (b): Characteristic function of
the work distribution after a sudden quench of the coupling strength
between two harmonic oscillators coupled via a Hooke-like model.
We show the behavior of Re[y(x)] [panel (a)] and Im[y(u)] [panel
(b)] against wu for V = 1 and go/w = 0.1 (solid line), 1 (dashed
line), 3 (dotted line), and 10 (dot-dashed line). Panels (c) and (d):
Same study as in panels (a) and (b) but for go/w = 0.75 and V =1
(solid line), 3 (dashed line), and 10 (dotted one).

imaginary part of y(u) at u = O grows. This is an impor-
tant observation in light of the possibility to evaluate the av-
erage work extractable from the system after the process as
(W) = —i0, x(u)|,=0. Although the full-fledged expression of
x(u) at arbitrary values of § is too involved to be reported here,
the average work takes the compact expression (W) = goV/2,
which is thus linear in the strength of the quench and takes
the frequency-independent value go/2 in the low temperature
limit 8 — oo and grows as go/(Bw) in the classical limit for
very large temperatures.

As a check that our analytic form for the characteristic func-
tion is correct we consider the Jarzynski equality y(i8) =
e PP The net change in free energy of the system can
be evaluated using the pre- and post-quench partition func-
tions Zy and Z, whose evaluation we now sketch. While
the calculation of the pre-quenched case trivially leads to
Zo =4/ sinh2(ﬁw/ 2), in line with the tensor-product nature
of the initial equilibrium state, the post-quenched one requires
the evaluation of

Z= Tr[e_/m(g")] — Tr[@TSTe_ o 9./¢><£3+ﬁ3)3@]
4 (6)
sinh(Bw/?2) sinh(6,(B)/2)

so that ¢ 2 = sinh (’87“’) csch (/32_w A1+ z%) This in turn

gives us the free-energy change

= Tr[e” T 9j(ﬂ)(5€§+ﬁf)] —

AF =t sinh(Bw/2) . )
B sinh (%‘” W)



In the classical limit of very high temperature, this expression

becomes AF, =~ (1/B)In[ /1 + 2go/w]. In the quantum limit
of B — oo, on the other hand, the net change in free energy is

bound by the asymptotic value AF, =~ (w/2)(/1 + 2go/w—1),
which only depends on the strength of the quench (in units of
w). Although we have not been able to study analytically the
Jarzynski identity due to the cumbersome form of y(u), we
have numerically checked that it is satisfied.
We now analyze the degree of irreversibility of our quench
process. This can be quantified by the quantity
L = BWaiss = BIKW) = AF] = Dlpdlp;“1, ®)
which accounts for the “nonequilibrium lag” between the ac-
tual system state p, and the reference thermal state p;? =

¢ AW Z (1) as measured by the Kullback-Leibler divergence
(or relative entropy) between two arbitrary states p and o~ and
defined as D[p||o] = Tr(plogp — plog o) [35-38]. We find

p=P8 th(’82 )+1n 51nh(’82 )c h(ﬁz %+1”.
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Despite being customarily referred to as “nonequilibrium en-
tropy production”, L is in general not equal to the change in
thermodynamic entropy [22], hence we dub it more appropri-
ately the “nonequilibrium lag”. In Fig. 3 we report the anal-
ysis of average work, change in free energy, and nonequil-
brium lag against the strength of the quench, as well as the
assessment of the dependence of L on the inverse temperature
and g. A remarkable feature is the quasi-linear growth of the
nonequilibrium lag at low temperatures [cf. Fig. 3 (b)], which
will be useful for the analysis reported in Sec. II.
Another closely related quantifier of irreversibility, specifi-
cally designed for thermally isolated systems, is provided by

AE = Tr[p,E(1) — po&(0)], (10)

which is defined using the operator

&) = Z In klk, £k, ] (11)
k

built using the eigenstates |k, ) of the instantaneous Hamil-
tonian H(r). They are ordered by their increasing energy
Ei(t) > E,(¢) for k > m. The operator &, first introduced
in Ref. [39], is the quantum version of the Gibbs entropy as-
sociated with the microcanonical ensemble [40-47]. Just like
thermodynamic entropy, it remains unchanged in a slow (adi-
abatic) protocol and cannot decrease in a generic fast one,
provided the initial density matrix is diagonal in the initial
Hamiltonian eigenbasis, its eigenvalues are ordered in a non-
increasing fashion, and the spectrum is non-degenerate at all
times. The quantitative analysis of the behavior of A& in our
system, which is made possible by the knowledge of the spec-
trum of H; as obtained in the Appendix, will be presented
elsewhere.

It is interesting to note the closeness in spirit of the calcu-
lations reported here with those presented in Ref. [48], where

4

the work statistics of a non-interacting bosonic system sub-
jected to a quantum quench — a situation akin to that of a
split one-dimensional quasi-condensate — has been investi-
gated. While the studies in Ref. [48] and ours are different
in nature (the former focusing on the effect of a change in the
frequency of the oscillators, the latter being concerned with
a quench in the interaction term between the elements of a
bosonic system), the phase-space approaches being used in
the two works are close. .

We now turn to the assessment of the role that squeezing
has on the ability of the system to produce extractable work.
In order to do so, we compare the performance of the coupling
scheme addressed so far to the ability of the system to perform
work when the two harmonic oscillators are coupled via the
model % p, — p1X» That is, we consider the Hamiltonian

2
N Q . . n A PN
H, = 3 E (x? +p?)+g;(xll72 - p1%2). 12)
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There are two fundamental differences between '7:(1 and '7:{2:
first, H, is energy preserving and the corresponding time
propagator would not require the squeezing of any harmonic
oscillator [30]. As we will argue soon, this gives rise to key
differences with respect to the thermodynamic behavior show-
cased up to this point. Second, consistently with the fact that
H, is the rotating-wave form of Eq. (1), the strength of the
quench cannot be arbitrary, as the spectrum of the Hamilto-
nian acquires an imaginary eigenvalue for go > Q.

Besides this limitation, the characteristic function associ-
ated with the process generated by a quench of F, can be
worked out in a way similar to what has been sketched before
for the case of Eq. (1). A second-order Taylor expansion of
the characteristic function with respect to variable u leads to
Du? +O0@?)
where the subscript indicates that model H, is under scrutiny.
The first moment of this distribution evaluated in u = 0, as
requested for the calculation of the average work, gives us
Wy > = 0, at variance with the result for the average work
vahd for Eq. (1). The reason behind such dissimilarity should
be traced back to the energy-conserving nature of model H,,
which does not give rise to any squeezing of the oscillators.

Let us go back now to the case embodied by Hamiltonian
H, 1. The results gathered so far for a two-element system can
be generalised to an array of arbitrary length. In particular, the
change in free energy for an array of N harmonic oscillators
interacting according to the Hooke-like model

. . 8
the approximate expression y, () ~ 1- l—g(V2 -

Q N N-1
=S 2@ ey =g’ (13
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reads

Y
AFy = -1 sinh™ (Bw/2)

1
In|————F7—- 14
ﬁn[nyzl sinh(B1;/2) (14)

with u; = w+/4;/w, w = Q/2 and {4;} the set of eigenvalues
of the adjacency matrix representing the Hamiltonian H, (cf.
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FIG. 3: (Color online) (a) We plot the average work (W), the free-energy change AF and the correspondingly produced nonequilibrium lag
for a system of two oscillators with w = 3 and 8 = 1 against the coupling strength g. (b) [(c)] We study of the nonequilibrium lag produced for
the system addressed in panel (a) against the inverse temperature [coupling strength], for three different values of the strength of the quench

[three values of the inverse temperature].

the Appendix). Using the characteristic function for coherent
states y{.(#) given in Eq. (32) and its first statistical moment,
we can easily calculate the average work, which is found to
scale with the number of oscillators as

N-1
(Win = 8oV 7 (15)

This formula has a very simple interpretation. Each interac-
tion term (there are in total N — 1 of them) brings in a contribu-
tion goV/2 to the total work. The factor N — 1 can also be un-
derstood by noticing the fact that, out of the N modes involved
in the evolution of the system resulting from the quench, only
N — 1 of them are squeezed. This is proven rigorously in the
Appendix, where the spectrum of Eq. (13) is shown to always
contain the bare-oscillator value w among N — 1 squeezing-
dependent values [cf. Eq. (26)]. Physically, this is due to the
fact that the centre-of-mass mode of the system of oscillators
is always a normal mode of the system itself.

With the average work and the change in free energy, we
can finally consider the nonequilibrium lag for N oscillators

L= ﬁ—go V(é\/ —D +In [sinhN ('870))] - ZNl In [Sinh (%)}
=1

N
V .
,Bgzo +1In [sinh (%U )]) - ; In [sinh (% )] .
| (16)
The behavior of L against the length of the chain and for three
values of the inverse temperature 3 is reported in Fig. 4.

:(N—l)(

II. RELATION WITH QUANTUM CORRELATIONS

In the following, we study the possibility of establishing a
direct quantitative link between the nonequilibrium lag pro-
duced by the quantum quench under scrutiny and the gen-
eral quantum correlations shared by the oscillators. We will
mainly restrict our attention to a two-oscillator system, so as
to avoid unnecessary computational problems.

Fig. 3 and our related analysis have shown the existence
of a one-to-one correspondence between temperature and the
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FIG. 4: (Color online) Nonequilibrium lag after a quantum quench in
an array of N Hooke-like coupled harmonic oscillators with g = 2w
and for three values of the inverse temperature S.

nonequilibrium lag L, which can be considered as a reliable
thermometer, in particular in the interesting quantum region
of 8 > 1. In a qualitatively analogous way, it is possible
to establish a link between 8 and the amount of non-classical
correlations (as measured by Gaussian entanglement and dis-
cord) shared by the oscillators of our array after the quench.

We start by addressing entanglement, which is quantified
here using the logarithmic negativity. For a two-mode Gaus-
sian state, such as the one corresponding to the equilibrium
state of Hamiltonian in Eq. (1) at inverse temperature 3 , the
latter is defined as

E = max[0,—Inv_]. 17)

Here, v_ is the smallest eigenvalue of the matrix |{XPoP|,
where P = diag[1, 1, 1, —1] performs the inversion of momen-
tum of the second harmonic oscillator, ¥ = ioy ® o, is the
symplectic matrix (with o, the y-Pauli matrix) and o is the
covariance matrix of the two-oscillator system [33]. The latter
can be easily calculated using the formal analogy with an op-
tical interferometer discussed above and used to calculate the
characteristic function of the work distribution. The results
of our calculations are shown in Fig. 5, where the logarithmic
negativity is plotted against the inverse temperature at three



0.7

0.6 S —
osp o —g=w

od ---g=5w

03
02
0.1

0 - 5 10 15 20 6

0.7

VT SR
0.5t —g=w

04 =g = bW

0'3~ Cmmeg=10w

02|
0.1

0 10 20 30 40 50 60 Lq

FIG. 5: (Color online) (a) Entanglement in the equilibrium state of two harmonic oscillators coupled by a Hooke-like model, plotted against
the inverse temperature (3 for three values of the coupling strength g (values given in units of w). (b) Illustration of the link between L, and the
logarithmic negativity in a system of two Hooke-like coupled harmonic oscillators shown for three different values of the quench amplitude.

The inverse temperature (3 is the curvilinear abscissa of each curve.

FIG. 6: (Color online) Comparison between the full form of the
nonequilibrium lag L and its classical counterpart L. shown against
the inverse temperature § and the dimensionless interaction strength
go/w. At high temperature L — L, regardless of the strength of the
quench.

values of the quench amplitude. Analytically

\/[1 + csch(%)] [1 + csch (%‘” \/@)]
VT +2go/w)

E = max|0,—1n

(18)
which reaches the maximum value given by E =
In v/1 + 2go/w for § — oo. The two-oscillator entanglement
disappears above a threshold temperature whose value de-
pends on the ratio go/w.

We now aim at comparing the behavior of E to that of the
‘quantum’ part of the nonequilibrium lag, i.e. the part of
L that remains after subtracting the high-temperature value
L. = limg_oL = go/w —In V1 +2go/w. As seen in Fig. 6,
at low temperatures and large coupling strengths, the quan-
tum part of L is crucial in determining quantitatively the non

equilibrium lag. In Fig. 5 (b) we thus plot the logarithmic neg-
ativity against the quantum part L, = L — L, of the nonequi-
librium lag, by eliminating the inverse temperature, showing
that a direct relation exists between such quantities, which ap-
pear to be in mutual functional dependence. The (in general)
involved non-linear relation of each of them with the inverse
temperature prevents us from finding such dependence explic-
itly. However, some insight can be gathered from the behav-
ior shown in Fig. 5 (b), such as the existence of a (quench-
dependent) threshold above which the logarithmic negativity
becomes insensitive to the actual value of L,. As the inverse
temperature embodies the curvilinear abscissa of each of the
curves displayed in Figs. 5, we can identify the region of in-
sensitivity to the nonequilibrium lag as the low-temperature
part of Fig. 5 (a). However, the large-temperature part of
Fig. 5 (b) is somehow misleading: at large temperature, en-
tanglement is strictly null while L, might well achieve, in gen-
eral, non-zero values. As the existence of such a temperature-
dependent threshold for the non-nullity of entanglement is an
expected common feature of entanglement measures, this in-
duces us to consider entanglement as a somehow unfit figure
of merit for a comparison between the behavior of quantum
correlations and the nonequilibrium lag produced across the
process. We thus turn our attention to the measure of quan-
tum correlations embodied by the Gaussian discord [34]: for

. . . . (6 73] .
a Gaussian state with covariance matrix o = (7 (Z ), dis-
2
cord is defined as

D = f({/detew) — f(v_) — f(vs) + inf f( Vdete). (19)

Here, f(x) = (x+1)/2In[(x+1)/2] = (x—1)/2 In[(x—1)/2], v+«
are the symplectic eigenvalues of o, € = o] — (o + o) 'y
is the Schur complement of a; and o is the covariance matrix
of a single-mode rotated squeezed state.

The results of the calculations are shown in Fig. 7. First,
panel (a) shows that, at variance with entanglement, Gaus-
sian discord allows for no threshold in temperature and it dis-



appears only for 8 = 0. Second, albeit panel (b) is qualita-
tively similar to Fig. 5 (b), the analysis of the former is less
ambiguous as both D and L, vanish at infinite temperatures
only. Although valid for the specific case of our system and
so far limited to a study of only two-body quantum correla-
tions, our analysis suggests the existence of a clear functional
link between the amount of general quantum correlations es-
tablished between two of the interacting harmonic oscillators
studied here and the amount of nonequilibrium lag generated
in a quantum-quench. It would be interesting to extend our
analysis to multipartite figures of merit for quantum correla-
tions. This is, per se, a rather difficult problem due to the cur-
rent lack of computable quantifiers of genuinely multipartite
quantum correlations.

III. CONCLUSIONS

We have characterised the dynamics of relevant quantum
and thermodynamic properties of an array of coupled har-
monic oscillators in thermal equilibrium and experiencing a

;o
Xm ,a (M) =e 2
. 1-?2 (10)—cwu

-] 2| SY NS e ) [aL) e O,

sudden quench in the inter-particle coupling strength. We
have provided useful analytic expressions for the characteris-
tic function of work distribution, the reversible and dissipated
work, and the variation of free energy, which have allowed
us to study quantum fluctuation identities in relation to the de-
gree of squeezing induced by the dynamics. Our results show-
case an interesting functional dependence of the irreversible
lag with respect to the degree of quantum correlations across
a two-oscillator system, thus suggesting a direct influence of
quantum correlations in the settling of thermodynamic fea-
tures.

APPENDIX
We aim at evaluating the function xg,q,(u) =
lar, asle™ e~ i oy, as)y,.  In what follows, we will
use the decomposition of the time-evolution operator in
A . 82 A2
Eq. (2) and the fact that exp[—iFHu] = ®§=1 UDEGHP) e
find

(20)

=7 20 D)) (NSa(re* ) D, W+ ), .

with @, = (a1 £ @)/ V2. Eq. (20) can be put into the form
of an overlap between displaced squeezed states by exploiting
the operator identity

SODS'€) = D¢ cosh il + "¢ sinh ), (21)
which is valid for any {,& € C. The order of squeezing and

displacement operators can thus be swapped to get x4, .0, (#) =

L0 (W)—-wu

e ({13611 8 &) with

{1 = @, coshr + @ sinhr,

—iwu * lwu

& = [are ™ coshr + ae™ sinh r]e™®™"), (22)

é‘:l =r §2 - rezit‘)z(u).

We now sketch the formal procedure for the generalization
of the approach discussed above to the case of a harmonic
chain of an arbitrary number of oscillators coupled through
the Hooke-like model

N N-1
A =0 B +pD+e ) (G-x)h (23
j=1 =1
which generalises Eq. (1). In the basis of the quadratures 7 =
(R1,..., %N, P15 .., pn)T, the Hamiltonian is represented by
the block matrix H}' = #" HY# reading

vV O
' =(J 7 24

with O the identically null matrix, K = w1 y the matrix repre-
senting the kinetic-energy term and

w+g & 0
-g& w+2g -g
V= 25)
& w+2g -g&
0 —& wtg

that stands the potential energy of the Hamiltonian. Eq. (25)
embodies a symmetric quasi-uniform tridiagonal (QUT) ma-
trix, whose spectrum can be fully characterised analytically.
In fact, by shifting and rescaling its entries as —(1/g)[V —
(w + 2g)1y], we get a special case of the QUT matrices ex-
plicitly addressed in Ref. [31]. The eigenvalues {4;} of such
matrix can be analytically computed and give

-1

/l_,-:w+2g,(1—cos[ ]) j=1,.,N (26)
which shows that there is always one eigenvalue equal to the
bare oscillator frequency w. As we will see, this has quite
remarkable consequences and is strongly tied with the results
valid for the two-oscillator case addressed in the main text.
The diagonalization of V is achieved through an orthogonal
matrix P (which can be fully determined regardless of N [31])
that leaves K unaffected. Following the general protocol put
forward in Ref. [32], such matrix can be easily broken down
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FIG. 7: (Color online) (a) Gaussian discord in the equilibrium state of two harmonic oscillators coupled by a Hooke-like model, plotted against
the inverse temperature (3 for three values of the coupling strength g (values given in units of w). (b) Illustration of the link between L, and the
Gaussian discord in a system of two Hooke-like coupled harmonic oscillators shown for three different values of the quench amplitude. The

inverse temperature 3 is the curvilinear abscissa of each curve.

into a cascade of beam-splitters and phase rotators. Therefore

PHYP" = Hpy = (VD ®) (27)

0 K

with P = PP @ P and Vp = diag[di,...,Av]. Matrix Hpy
corresponds to a Hamiltonian term of the form

N
Hpy = X + P)+ Y [,87 + wb?) (28)
j=2

with (X s P ;) the new modes of the system. Eq. (28) has been
deliberately written in a way to emphasize that only N — 1 os-
cillators are squeezed. Therefore, by applying the squeezing
operator SV = 1; ® [®§V= 23 j(rj)] we can transform the time-
evolution operato generated by the initial model (23) as

OV(0) = M = PISVT @ Ri0,0)| SVP (29)

with # the operator corresponding to the transformation ma-
trix P and 0;(r) = A;t. This is in formal correspondence with
what has been illustrated for the two-oscillator case.

Let us concentrate now on the (so far unspecified) operator
P. As mentioned, this can be decomposed into a suitable se-
quence of beam-splitting and phase-rotation operations. For
the sake of completeness, in Fig. 8 (a) and (b) we provide a
pictorial representation of the equivalent interferometer and
the sequence of beam-splitting and phase-rotation operations
needed for the case of four oscillators. However, although use-
ful in order to identify the correct sequence of operations that
would realise 7:’, we do not actually need to determine the full-
fetched decomposition in order to be able to understand the ef-
fect that such transformation has overall. Indeed, it is enough

to have the entries of P to determine the transformation laws
of the oscillators’ quadratures as 7, — ZI;’: Pty (r = x,p).
It takes a straightforward calculation to check that, when ap-
plied to the tensor product of N coherent states ®ﬁ | i), this
leads to

N N
Y lap); — P XY Pﬁ&,»> : (30)
i=1 |j=1

i

with ¢(P) a phase that depends on the set of amplitudes «;
and the entries of P. Therefore, the calculation of the charac-
teristic function of the work distribution for an initial thermal
equilibrium state of N coupled harmonic oscillators can pro-
ceed along the lines of the approach sketched in the main text
for two modes only, resulting in

W) = fdzal--~fdzan]_[?]=]Pch(a’j),\({(,}(u) 31

with y(41(«) the characteristic function of work for a collection
of N modes, each initially prepared in a coherent states of
amplitude «; and reading

LN .=
Xia)(u) = 3 2 WOTRNII (0 i 6410 1 60). (32)

Here, {i2).; and &j(p); are the amplitudes of the displace-
ment and squeezing operations, respectively, of the displaced
squeezed states of mode j = 2, .., N that enter into the defini-
tion of y(,(u). Their expressions can be gathered easily in a
way analogues to what has been done for just two oscillators.
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