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Abstract: Familial hypercholesterolemia (FH) is the most frequent genetic disorder resulting in
increased low-density lipoprotein cholesterol (LDL-C) levels from childhood, leading to premature
atherosclerotic cardiovascular disease (ASCVD) if left untreated. FH diagnosis is based on clinical
criteria and/or genetic testing and its prevalence is estimated as being up to 1:300,000–400,000 for
the homozygous and ~1:200–300 for the heterozygous form. Apart from its late diagnosis, FH is
also undertreated, despite the available lipid-lowering therapies. In addition, elevated lipoprotein(a)
(Lp(a)) (>50 mg/dL; 120 nmol/L), mostly genetically determined, has been identified as an important
cardiovascular risk factor with prevalence rate of ~20% in the general population. Novel Lp(a)-
lowering therapies have been recently developed and their cardiovascular efficacy is currently
investigated. Although a considerable proportion of FH patients is also diagnosed with high Lp(a)
levels, there is a debate whether these two entities are associated. Nevertheless, Lp(a), particularly
among patients with FH, has been established as a significant cardiovascular risk factor. In this
narrative review, we present up-to-date evidence on the pathophysiology, diagnosis, and treatment of
both FH and elevated Lp(a) with a special focus on their association and joint effect on ASCVD risk.

Keywords: familial hypercholesterolemia; lipoprotein(a); cardiovascular disease; hypolipidemic
treatment; cholesterol

1. Introduction

Familial hypercholesterolemia (FH) is caused by mutations in the genes involved in
low-density lipoprotein (LDL) catabolism, and is related to premature atherosclerotic car-
diovascular disease (ASCVD) [1]. Although available lipid-lowering therapies are effective
in reducing LDL-C levels and cardiovascular risk in FH patients, the majority of these
are diagnosed late or remain undertreated [2]. On the other hand, elevated lipoprotein(a)
(Lp(a); hyperLp(a)), controlled mostly genetically by the LPA gene locus, is also associated
with increased ASCVD risk [3,4]. Novel therapies targeting apolipoprotein(a), such as
antisense oligonucleotide or silent RNAs, are effective in lowering Lp(a), but their cardio-
vascular benefit is yet to be determined [5]. A considerable proportion of patients with FH
is diagnosed with high Lp(a) levels, but there is debate about whether these two entities are
associated. A few studies have demonstrated a higher prevalence of hyperLp(a) in geneti-
cally or clinically diagnosed FH patients, but others suggest that a considerable proportion
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of these might have been misdiagnosed due to high Lp(a) levels [6–8]. Nevertheless, the
co-existence of FH and hyperLp(a) seems to multiply the risk of ASCVD [6].

Herein, we narratively review the available data regarding the pathophysiology,
diagnosis, and treatment of both FH and hyperLp(a). Furthermore, we focus on their
relationship and joint effect on ASCVD risk.

2. Materials and Methods

Relevant studies were identified by searching the MEDLINE, Embase, and CENTRAL
databases up to 6 September 2022 using the following terms: familial hypercholesterolemia,
lipoprotein(a), cardiovascular disease, hypolipidemic treatment, and cholesterol. The
reference lists from these articles were also scrutinized.

3. Results
3.1. Familial Hypercholesterolemia
3.1.1. Definition and Prevalence of FH

FH prevalence varies depending on the definition used and population studied.
Homozygous patients (HoFH) are rare, with an estimated worldwide prevalence of
1:300,000–400,000 [9], while heterozygous FH (HeFH) prevalence is estimated to be
~1:200–300 [10].

3.1.2. Genetics of FH

FH is mostly caused by functional mutations in the following genes: LDL receptor
(LDLR), proprotein convertase subtilisin kexin 9 (PCSK9), apolipoprotein B (apoB), and
LDLR adaptor protein 1 (LDLRAP1) [11]. Mutations in these genes may impair the LDLR-
mediated catabolism of LDL by markedly reducing hepatic LDL clearance and leading to
LDL-C accumulation [11]. Among FH patients, 85–90% exhibit mutations in LDLR, 2–4%
in PCSK9, 1–12% in apoB, and only a few in LDLRAP1 genes [11–14].

Considering that FH is an autosomal dominant disorder inherited with a gene-dosing
effect, homozygotes are more adversely affected than heterozygotes [9]. It should also be
noted that most HoFH patients are compound heterozygotes [9]. This is attributed to a
large number of distinct LDLR gene mutations [9]. Therefore, an adult with HoFH is more
likely to have inherited genetic mutations in two different LDLRs [9]. True homozygosity
more often occurs in cases of consanguineous union between two heterozygotes [9]. Of
note, a high prevalence of a limited number of LDLR mutations may occur in a region due
to the founder gene effect [9].

3.1.3. Clinical Presentation of FH

If left untreated, males and females with HeFH typically develop coronary heart
disease (CHD) before the age of 55 and 60, respectively, while HoFH individuals develop
CHD very early in life, and many will die before the age of 20 [15,16].

The characteristic lipid profile of FH patients consists of elevated total cholesterol
and LDL-C (usually ≥190 mg/dL for HeFH or ≥500 mg/dL for HoFH) with normal
high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels [15,16].

3.1.4. Diagnosis of FH

The diagnosis of HeFH is based on genetic testing or clinical criteria [17,18]. The most
commonly used clinical criteria for HeFH are the Dutch Lipid Clinic Network (DLCN)
which include patient family history for increased LDL-C levels, personal clinical history of
premature ASCVD, the presence of tendon xanthomas, the presence of corneal arcus in a
person < 45 years, patient LDL-C levels, and genetic testing, if available [13]. HoFH diag-
nosis is based on either genetic testing or an untreated/treated LDL-C > 500/300 mg/dL
together with the presence of xanthomas before the age of 10 years or untreated LDL-C
levels in both parents compatible with HeFH [13].
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In the case of FH diagnosis, a screening cascade in all first-degree relatives is strongly
recommended, including children beginning from the age of 2 years [10]. It is worth
mentioning that, despite its well-documented high prevalence, <5% of those with FH have
been diagnosed worldwide and the majority of those are diagnosed over 40 years old [2].

3.1.5. Prognosis and Treatment of FH

At any level of untreated LDL-C, the prognosis for HeFH patients is worse than
individuals without FH [19]

Possible ASCVD predictors in FH patients include family ASCVD history, age, gen-
der, smoking, hypertension, type 2 diabetes, hyperLp(a), as well as other potential risk
modifiers [1]. These include genetic parameters beyond the traditional FH-causing mu-
tations, parameters of HDL composition and function, inflammation, telomere length in
somatic cells, oxidative stress, and hemostasis [1].

Concerning FH treatment, the European Society of Cardiology/European Atherosclerosis
Society (ESC/EAS) 2019 guidelines recommend an LDL-C target < 70 mg/dL (1.8 mmol/L) for
FH patients without cardiovascular risk factors, and <55 mg/dL (1.4 mmol/L) for those
with ASCVD or additional risk factors [10].

Maximally tolerated statin therapy ± ezetimibe is the cornerstone of treatment for FH
patients [20]. Other therapeutic agents include PCSK9 inhibitors, bempedoic acid, and bile
acid sequestrants [20,21]. In the case of HoFH, lomitapide, evinacumab, and lipoprotein
apheresis are additional treatment options [20].

3.2. Lipoprotein(a)
3.2.1. Molecular Properties of Lp(a)

Lp(a) consists of an LDL-like particle, in which apoB-100 is linked by a single disulfide
bridge to a unique plasminogen-like glycoprotein, known as apolipoprotein(a) (apo(a)) [3,4].
The LDL-like core constitutes a combination of triacylglycerols, phospholipids, and esteri-
fied/unesterified cholesterol surrounded by one molecule of apoB-100 [3,4]. Considering
its formation, Lp(a) contributes to atherosclerosis, but also exerts inflammatory, oxidative,
thrombotic, and antifibrinolytic properties [3,22,23].

3.2.2. Genetics of Lp(a)

About 90% of the Lp(a) level is autosomal dominantly inherited and strongly deter-
mined by a single gene, the LPA gene [23]. Most individuals express two distinct Lp(a)
isoforms [23]. The LPA gene, located in chromosome 6q23, is evolutionarily derived from
the plasminogen (PLG) gene and remains highly homologous to it [23–26]. The LPA
gene, and thus apo(a), consists of two kringle domains: kringle V (KV) and kringle IV
(KIV) [23,27]. KV is similar in apo(a) and plasminogen [23,27]. Although KIV is present
only once in plasminogen, it is expressed in 10 different types in apo(a) [23,27]. Specifically,
KIV contains one copy of KIV1 and KIV3–10, but variable copies of KIV2 (1 to >40 on each
allele) [23,27]. KIV2 and its different repeats in apo(a) account for the high size apo(a)
polymorphism and determine the size of each apo(a) isoform, its formation rate, and serum
Lp(a) concentrations [26,27].

3.2.3. Definition and Prevalence of High Lp(a)

Plasma Lp(a) levels vary widely between individuals and are largely determined by
apo(a) size [28]. There is an inverse relationship between the number of KIV2 repeats of
apo(a) and Lp(a) levels in plasma [29]. Consequently, small apo(a) isoforms are related
to hyperLp(a) [29]. The presence of the LPA single-nucleotide polymorphisms rs3798220
and rs10455872 is also associated with hyperLp(a) [30,31]. Lp(a) levels double over the
first year of life in parallel with the apo(a) gene, which is fully expressed from the first or
second year of life [32,33]. Afterwards, Lp(a) levels are stable over time and seem not to
be affected by diet, physical activity, or other environmental factors [3,34]. Thus, Lp(a) is
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enough to be measured once, unless a secondary cause is suspected or specific treatment is
instituted [3,34].

Lp(a) measurement is challenging in clinical practice [35]. There is substantial vari-
ability in assays, partly due to apo(a) structure and variability in K-IV repeats [35]. Ideally,
clinical assays should use an antibody for a unique non-repetitive epitope in apo(a), to
recognize each Lp(a) particle once and report levels as nmol/L [35]. On the other hand,
Lp(a) values measured by assays based on polyclonal antibodies cannot be reported in
molar units [35]. As a compromise, they approximate their findings by comparison with
apo(a) isoform-insensitive reference methods that use molar units; in case this is impossible,
Lp(a) values should be reported in mg/dL [35].

Traditional thresholds for hyperLp(a) are >30 mg/dL (>75 nmol/L), with about 20%
of the general population having Lp(a) >50 mg/dL (>120 nmol/L) [3,35,36].

The cholesterol contained in Lp(a) particles cannot be separated from that in LDL
particles and is thus totally reported as LDL-C concentration [35]. The analyses of isolated
Lp(a) particles have shown so far that cholesterol accounts for 30–45% of Lp(a) mass
concentration [35]. Therefore, it has been suggested that Lp(a)-cholesterol (Lp(a)-C) can
be estimated by multiplying the Lp(a) mass by 0.3, whereas corrected LDL-C is equal to
measured LDL-C minus Lp(a)-C [35]. However, this approach has limitations [35]. The
direct measurement of Lp(a)-C relative to Lp(a) mass has shown inter- and intraindividual
variation ranging from 6% to 60%, which may affect the prediction risk [35]. Therefore, the
routine correction of LDL-C for Lp(a)-C is not strongly recommended [35].

3.2.4. Clinical Presentation of hyperLp(a)

The physiological role of Lp(a) is not thoroughly understood. Evidence from ex-
perimental, observational, and genetic studies has demonstrated that hyperLp(a) is an
established risk factor for CHD, ischemic stroke, peripheral artery disease, heart failure,
calcific aortic valve stenosis, and retinopathy in diabetic patients [3,34,35,37–41].

Recent guidelines recommend that Lp(a) levels should be measured at least once in
each adult’s lifetime to identify those with hyperLp(a) [10]. Moreover, Lp(a) measurement
should be considered in patients with personal or family history of premature ASCVD,
and family history of high Lp(a) or FH [10,35]; premature atherosclerosis can be easily
detected by endothelial dysfunction and early carotid lesions [42]. Screening for Lp(a) is
also recommended in youth with a history of ischemic stroke and no other identifiable risk
factors [35].

3.2.5. Available and Upcoming Therapies for hyperLp(a)

There are neither known nonpharmacologic methods nor any medications specifically
approved for lowering Lp(a) levels [23]. However, some currently used therapeutic agents
have a limited effect on Lp(a) [23]. Although low-saturated fat diets and statin therapy
have been previously considered to raise Lp(a) levels by approximately 10–30% [4,23,43–46]
a secondary analysis of the Familial Hypercholesterolemia Expert Forum (FAME) study
including a Japanese nationwide cohort of FH patients has recently shown opposing
results [47]. According to this analysis, the Lp(a) levels tended to lower in those under
treatment (n = 399) after 2–4 years of follow-up compared with the baseline values [47].

On the other hand, lipoprotein apheresis is highly effective in reducing Lp(a) levels
(25–40%) [4,23]. Similarly, fibrates, niacin, lomitapide, PCSK9 and cholesteryl transfer
protein (CETP) inhibitors, aspirin, antibodies to interleukin-6, nutraceuticals, tibolone, and
ezetimibe moderately decrease Lp(a) levels [4,23,48].

Novel medicines based on antisense oligonucleotides (ASOs) and small interfering
RNAs (siRNA) technology are currently in clinical development [4,23,49,50]. Pelacarsen,
an ASO, has shown much promise with reductions of up to 92.4% in Lp(a), olpasiran, a
siRNA, reduced Lp(a) with observed maximal percent reductions of >90% in a phase I study,
whereas the siRNA SLN360 also reduced plasma Lp(a) concentrations in a dose-dependent
way [4,23,49,50].
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4. Discussion
4.1. FH and hyperLp(a)
4.1.1. Prevalence of hyperLp(a) in FH Patients

Several studies have addressed whether hyperLp(a) is more common in FH patients
compared with the general population (Table 1) [6,7,51]. Indeed, elevated Lp(a) levels
have been observed in clinically and genetically diagnosed FH [6,7,51]. This could be
attributed to decreased plasma Lp(a) clearance due to reduced LDLR function in FH [6,7,51].
Nevertheless, LDLR uptake is not the major pathway of Lp(a) clearance [52]. Indeed, statins
enhance LDLR function, but increase circulating Lp(a) levels and decrease fibrinogen
concentrations [53]. On the other hand, PCSK9 inhibitors, which also enhance LDLR
upregulation, are associated with reductions in Lp(a) levels by 20–30% [52].

Another possible explanation could be a clinical misdiagnosis of FH due to the high
Lp(a)-cholesterol content in patients with hyperLp(a) [7]. In a large cohort with 46,200 people
from the Copenhagen General Population Study, ~25% of those originally considered as FH
patients (n = 3266) did not fulfill FH criteria after adjusting LDL-C for high Lp(a) [7]. The
Lp(a) concentrations between those fulfilling the clinical criteria for FH and those who did not
differed significantly after adjusting LDL-C for Lp(a) levels (Table 1) [7]. Likewise, a study
(n = 907) has shown that the proportion of FH patients diagnosed with DLCN and Simon
Broome (SB) criteria decreased significantly in patients with hyperLp(a) when the LDL-C
concentration was adjusted for the cholesterol content of Lp(a) (Table 1) [54]. Another large
study including clinically diagnosed FH patients (n = 391) and individuals with genetically
diagnosed FH from the general population (UK Biobank; n = 37,486) concluded that FH was
not the cause of hyperLp(a), but it was more common for someone with hyperLp(a) to be
misdiagnosed clinically with FH [8] (Table 1). The authors recalculated the DLCN scores after
adjusting for the contribution of Lp(a) to LDL-C values and found that 16.6% of patients fell
into a lower DLCN category [8]. In this context, the routine correction of LDL-C for Lp(a)-C
is recommended in clinically suspected FH and elevated Lp(a) levels, where correction may
refine or exclude diagnosis and avoid unnecessary genetic sequencing [35].

Genetically, FH and Lp(a) are independently inherited, with hyperLp(a) being much
more common than FH [55]. Nevertheless, the findings derived from genetic studies are
controversial regarding their relation. A large Spanish cohort study including genetically
confirmed HeFH patients and non-FH individuals showed significantly higher levels of
Lp(a) in the former group (Table 1) [6]. Of note, patients carrying null LDLR mutations had
higher Lp(a) levels compared with those carrying defect LDLR mutations (Table 1) [6]. An-
other study comparing 240 genetically HeFH patients with 4015 control patients presented
to a University Hospital in Japan for any reason showed that Lp(a) was significantly higher
in the former group independently of the FH mutation type (Table 1) [56]. Interestingly,
the Lp(a) levels did not differ between patients with PCSK9-gain of function mutations
and those with LDLR ones [56]. A significant difference was also found in a study at
Fuwai Hospital between 255 genetically confirmed HeFH patients and 255 healthy controls
(Table 1) [57]. On the other hand, the Copenhagen General Population Study (n = 46,200)
showed that Lp(a) concentrations were similar within the genetic heterogenicity of the FH
group (Table 1) [7]. Likewise, no difference was found in the Lp(a) levels between carriers
and non-carriers of FH mutations within the British Columbia cohort (n = 391) and the UK
Biobank (n = 37,486, Table 1) [8].

The available evidence supports that HoFH patients have higher Lp(a) compared with
non-FH hyperlipidemic individuals [58,59]. In a study analyzing 69 members of 22 families
for LDLR mutations, apo(a) genotypes/isoforms and Lp(a) plasma levels, HoFH patients
with two nonfunctional LDLR alleles (n = 26) had higher Lp(a) levels compared with HeFH
ones (n = 43) (49.9 vs. 29.9 mg/dL) [60]. This increase was not explained by any differences in
apo(a) allele frequencies, since KIV allele repeats did not differ between the two groups [60].
Similarly, in a study including 34 HoFH, 63 HeFH patients, and 22 unaffected family members,
the median Lp(a) levels were higher in those with HoFH compared with HeFH and unaffected
relatives (47.3 vs. 24.4 vs. 19.9 mg/dL, respectively) [61].
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Table 1. Studies investigating prevalence of high Lp(a) levels in patients with FH.

Authors Sample Size Country Diagnosis of FH Results

Utermann et al. [62] 381 UK Clinical 102 FH patients vs. 279 healthy subjects: 41.3 vs. 14.1 mg/dL,
p < 0.001.

Langsted et al. [7] 46,200 Denmark Clinical and Genetic

42,934 Unlike vs. 1675 Possible vs. 184 Probable/Definite FH
patients: 23 (22.8–23.3) vs. 32 (31–34) vs. 35 (29–41) mg/dL, p < 0.05

(using unadjusted LDL-C for Lp(a)-cholesterol).
43,699 Unlike vs. 2360 Possible vs. 141 Probable/Definite FH

patients: 24 (23.5–24.1) vs. 22 (21–24) vs. 21 (16–26) mg/dL, p = 0.46
(after adjusting LDL-C for Lp(a)-cholesterol).

Lp(a) concentrations were similar in those with and without FH
mutations: 24 (23.4–14) mg/dL in 46,124 individuals without an FH

mutation vs. 23 (9–36) mg/dL in 27 individuals with an LDLR
mutation (p = 0.10 vs. no known mutation) vs. 21 (14–28) mg/dL in
49 individuals with an apolipoprotein B mutation (p = 0.52) and 22
(15–28) mg/dL in 76 individuals with any FH mutation (p = 0.64)

Chan et al. [54] 907 N/A Clinical and Genetic

74 patients with FH (8.2%) were reclassified to unlike FH when
LDL-C was corrected for Lp(a)-cholesterol.

There were no significant differences detected in the proportion of
pathogenic FH mutations (27.9% vs. 33.1%) between patients with
increased and normal Lp(a) concentrations at a cutoff of 50 mg/dL

(p = 0.05).

Trinder et al. [8] 37,877 UK Clinical and Genetic

British Columbia FH and Familial Combined Hyperlipidemia
cohort; 391 FH patients vs. 245 non-FH patients: 28.7 (10.3–75.4) vs.
13 (10–48.9) mg/dL, p < 0.01. No significant differences were noted

between carriers of a pathogenic variant in the LDLR or
apolipoprotein B and noncarriers (1.43 log mg/dL vs.

1.42 log mg/dL, p = 0.97).
UK Biobank cohort (n = 37,486); 221 patients with FH mutation vs.

37,265 without FH mutation: 10.7 (4.9–26.3) vs. 8.7 (4.0–25.8) mg/dL,
p = 0.24.

Kraft et al. [60] 69 South
Africa Clinical and Genetic 26 HoFH patients vs. 43 HeFH relatives: 36.6 vs. 14.4 mg/dL,

p = 0.004.

Li et al. [51] 8050 China Clinical and Genetic 6250 Unlikely vs. 1519 Possible vs. 281 Probable/Definite FH
patients: 51.8 vs. 57.1 vs. 60.5 mg/dL, p < 0.001.

Leitersdorf et al. [63] 216 N/A Clinical and Genetic 99 FH patients vs. 117 controls: 33 vs. 22 mg/dL, p < 0.001.

Mbewu et al. [64] 277 UK Clinical and Genetic 89 HeFH patients vs. 109 normocholesterolemic controls vs.
40 healthy controls: 22.7 vs. 10.0 vs. 9.1 mg/dL, p < 0.05.

Alonso et al. [6] 2917 Spain Genetic

1960 HeFH patients vs. 957 non-FH relatives: 23.6 (9.6–59.2) vs. 21.0
(7–47.2) mg/dL, p < 0.001.

500 FH patients with null mutations vs. 246 FH patients with defect
LDLR mutations: 24.4 vs. 21.5 mg/dL, p < 0.05.

Tada et al. [56] 4255 Japan Genetic

198 FH patients with LDLR variants vs. 42 with PCSK9 variants vs.
4015 controls: 12.6 (9.4–33.9) vs. 21.1 (11.7–34.9) vs. 5 (2.7–8.1)

mg/dL, p = 0.002 for the comparison between FH-LDLR or
FH-PCSK9 with control group.

Sun et al. [57] 510 China Genetic 259 HeFH patients vs. 255 matched non-FH controls: 28.9 (13.2–64.8)
vs. 11.7 (5.3–26.9) mg/dL, p < 0.05.

Guo et al. [59] 48 France Genetic 8 HoFH patients vs. 18 healthy subjects: 50 ± 32 vs.
20.6 ± 5.2 mg/dL, p < 0.001.

Sjouke et al. [61] 119 Netherlands Genetic 22 unaffected relatives vs. 63 HeFH vs. 34 HoFH patients: 19.9
(11.1–41.5) vs. 24.4 (5.9–70.6) vs. 47.3 (14.9–111.7) mg/dL, p = 0.150.

Lingenhel et al. [65] 203 South
Africa Genetic 103 FH patients vs. 100 non-FH relatives: 35.4 ± 31 vs.

20.7 ± 18.1 mg/dL, p = 0.0014.

Wiklund et al. [66] 120 Sweden N/A 47 HeFH patients vs. 47 controls matched for age and sex: 2.4
(2.5–124.5) vs. 9.7 (0.7–104) mg/dL), p < 0.001.

Abbreviations: FH: familial hypercholesterolemia; HeFH: heterozygous FH; HoFH: homozygous FH; LDL-C:
low-density lipoprotein cholesterol; LDLR: low-density lipoprotein receptor; Lp(a): lipoprotein(a); N/A: not
applicable; PCSK9: proprotein convertase subtilisin/kexin type 9.

The discrepancies noticed in the studies including genetically diagnosed patients with
FH could be attributed to their different sample size, control groups, and settings in which
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they were conducted. For instance, the increased Lp(a) levels in the index cases of genetic
FH referred to a lipid clinic might be ascribed to ascertainment bias, because such patients
are more likely to have larger increases in LDL-C and probably also Lp(a) concentrations
than do individuals with genetic FH in the general population [67]. In addition, no genetic
study has found any association between Lp(a) levels and different FH variants. This rejects
the theory that the impaired LDL receptor function in FH could result in the mediated
catabolism of Lp(a), as already supported by kinetic studies in HoFH [67]. The analysis of
the British Columbia cohort and a phenome-wide association study of Lp(a) genetic score
in the UK Biobank demonstrated that hyperLp(a)-related polymorphisms are associated
with a similar phenotype of FH, including increased LDL-C and a personal or parental
history of premature ASCVD [8]. These results are consistent with the concept that elevated
Lp(a) increases the likelihood that an individual will be diagnosed with FH. In this context,
more population-based studies free of ascertainment bias with available genetic data are
needed to elucidate the prevalence of hyperLp(a) in patients with FH.

4.1.2. Joint Effect of FH and hyperLp(a) on Cardiovascular Risk

Studies in FH patients have demonstrated an independent association of elevated
Lp(a) and CHD and stroke risk [6,51,68,69]. This association is substantially higher in
individuals with previous ASCVD [70–73]. A meta-analysis of eight studies (two cross-
sectional and six cohort studies) including 8378 FH subjects and reporting 1458 ASCVD
outcomes demonstrated that hyperLp(a) was a significant ASCVD risk factor (relative
risk: 1.97, 95% CI: 1.57–2.46) [74]. The cardiovascular risk in such patients is additionally
modulated by several other genetic factors, such as the rs2048327 variant, a single nucleotide
polymorphism in the SLC22A3 gene [75]. Indeed, a study including 668 HeFH patients
demonstrated that the rs2048327 variant is associated with hyperLp(a) as well as with
increased ASCVD risk (OR: 1.96, 95% CI: 1.21–3.19, p = 0.007) [75].

4.1.3. Barriers to the Identification of FH

Despite the evidence-based guidelines for its diagnosis and treatment, FH remains
underdiagnosed in clinical practice [2,76]. According to the global Familial Hypercholes-
terolemia Society (FHSC) registry, including 42,167 adults from 56 countries, the rate of
FH identification was low [2]. The mean diagnosis age globally was 43 years in men and
46 years in women, with <50% of adult cases diagnosed before 40 years of age and only
2% diagnosed before the age of 18 years [2]. This might happen due to physician- or
patient-related issues, such as physicians’ lack of education on FH or experience with in-
formation technology-based diagnostic algorithms, concerns about genetic discrimination,
psychological consequences related to genetic diagnosis, gender, race or ethnicity, and the
time/cost burden [76]. The late diagnosis of FH might also be attributed to the lack of early
screening programs, considering that detection globally tends to rely on finding an index
case, opportunistic screening such as health checks, or the investigation of isolated findings
of an elevated LDL-C measurement [2]. Indeed, any form of cascade testing in the FHSC
registry led to an earlier identification of non-index cases with fewer cardiovascular risk
factors and lower ASCVD prevalence when compared with the index FH patients [2]. On
the other hand, the national program of FH screening in the Netherlands mostly relying on
case finding and opportunistic screening led to much earlier FH diagnosis with a lower
cardiovascular burden [2]. Thus, this evidence reinforces the value of wide screening
programs supported by appropriate policies and resources to identify larger numbers of
patients with FH, and earlier when they might be more healthy [2]. However, such policies
raise challenges about accessibility and cost, particularly in low-income and middle-income
countries. In such cases, global actions are needed to promote educational campaigns,
ensure a more affordable and accessible health system, and implement policies leading to
the early identification of FH.
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4.1.4. Cascade Lp(a) Testing in FH Patients

Based on the aforementioned evidence, it has been discussed whether the incorpora-
tion of assessment of Lp(a) in FH cascade testing is feasible and should be a crucial part of
models of care for FH [57,77,78]. In this context, an analysis of SAFEHEART (Spanish Famil-
ial Hypercholesterolemia Cohort Study), including 2927 family members from 755 index FH
cases, investigated whether testing for Lp(a) was effective in detecting and risk-stratifying
individuals participating in a FH cascade screening program [78]. Systematic screening
from index cases with both FH and elevated Lp(a) identified one new case of hyperLp(a)
(≥50 mg/dL) for every 2.4 screened [78]. On the other hand, opportunistic screening from
index cases with FH and Lp(a) < 50 mg/dL identified one individual for every 5.8 screened,
similar to that of general population [78]. Therefore, testing for hyperLp(a) during cascade
FH screening seems to be effective in identifying relatives with hyperLp(a), especially in
cases where the proband has both FH and hyperLp(a) [78].

5. Conclusions

The prevalence of hyperLp(a) is high in patients with FH. The available evidence
suggests that FH and hyperLp(a) are not genetically associated, but their similar phenotype
increases the likelihood of their misdiagnosis. In this context, more population-based
studies with available genetic data, free of ascertainment bias, are needed to elucidate the
association between FH and Lp(a). On the other hand, their combination undoubtedly
multiplies the ASCVD risk, therefore the early identification of both diseases is imperative
in clinical practice. Physicians’ awareness, along with cascade testing in patients with FH
or hyperLp(a) or national screening programs could help identify these patients at high
cardiovascular risk and tailor appropriate therapeutic strategies.
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