CARDINAL INVARIANTS FOR THE G; TOPOLOGY
ANGELO BELLA AND SANTI SPADARO

ABSTRACT. We prove upper bounds for the spread, the Lindel6f number
and the weak Lindel6f number of the G5 topology on a topological space
and apply a few of our bounds to give a short proof to a recent result
of Juhész and van Mill regarding the cardinality of a o-countably tight
homogeneous compactum.

1. INTRODUCTION

All spaces are assumed to be T;. The word compactum indicates a com-
pact Hausdorff space.

Given a topological space X we can consider a finer topology on X by
declaring countable intersections of open subsets of X to be a base. The
new space is called the Gy topology of X and is denoted with Xj.

There are various papers in the literature investigating what properties
of X are preserved when passing to X5 and presenting bounds for cardinal
invariants on Xj in terms of the cardinal invariants of X (see for example
[15], [13], [21], [18]). Moreover, results of that kind have found applications
to central topics in general topology like the study of covering properties in
box products (see, for example, [19]), cardinal invariants for homogeneous
compacta (see, for example [2], [7], [8] and [23]) and spaces of continuous
functions (See [1]).

Two of the early results on this topic are Juhasz’s bound c¢(Xs) < 2¢(%)
for every compact Hausdorff space X, where ¢(X) denotes the cellularity
of X and Arhangel’skii’s result that the Gs topology on a Lindel6f regular
scattered space is Lindel6f. Juhasz’s bound is tight in the sense that it’s not
possible to prove that ¢(Xs) < ¢(X)* for every compact space X (see [12])
and the scattered property is essential in Arhangel’skii’s result because there
are compact Hausdorff spaces whose Gs-topology even has (weak) Lindelof
number ¢t (see [23]).

In this paper we prove various new bounds for cardinal invariants on

the Gs topology. For example we prove that s(Xs) < 2°(%) for every space

2010 Mathematics Subject Classification. Primary: 54A25, Secondary: 54D20, 54G20.
Key words and phrases. cardinal invariant, Gs-topology, weak Lindel6f number, Lin-
delof degree, homogeneous space.
1



2 A. BELLA AND S. SPADARO

X, where s(X) is the spread of X (that is, the supremum of the cardi-
nalities of the discrete subsets of X). For a regular space we prove that
L(Xs) < min {psw(X)¥X) 251 where L(X) denotes the Lindelf degree
of X, psw(X) denotes the point-separating weight of X and d(X) denotes
the density of X.

Many questions are left open. For example we don’t know whether the
inequality ¢(X;) < 2/%) is true, where ¢ denotes the tightness, even when
X is a compact space.

Finally, we exploit a few of our results to give a short proof of a recent
result of Juhasz and van Mill on the cardinality of homogeneous compacta.

Our notation regarding cardinal functions follows [16]. The remaining
undefined notions can be found in [11].

In our proofs we often use elementary submodels of the structure (H (), €).
Dow’s survey [10] is enough to read our paper, and we give a brief informal
refresher here. Recall that H(u) is the set of all sets whose transitive clo-
sure has cardinality smaller than p. When p is regular uncountable, H (u)
is known to satisfy all axioms of set theory, except the power set axiom. We
say, informally, that a formula is satisfied by a set S if it is true when all
existential quantifiers are restricted to S. A set M C H(u) is said to be an
elementary submodel of H () (and we write M < H(p)) if a formula with
parameters in M is satisfied by H(u) if and only if it is satisfied by M.

The downward Lowenheim-Skolem theorem guarantees that for every
S C H(p), there is an elementary submodel M < H(u) such that | M| <
|S| - w and S C M. This theorem is sufficient for many applications, but
it is often useful (especially in cardinal bounds for topological spaces) to
have the following closure property. We say that M is k-closed if for every
S C M such that |S| < k we have S € M. For large enough regular u
and for every countable set S C H(u) there is always a k-closed elementary
submodel M < H(u) such that |[M| = 2% and S C M.

The following theorem is also used often: let M < H () such that k+1 C
M and S € M be such that |S| < k. Then S C M.

2. CARDINAL INVARIANTS FOR THE (G5 TOPOLOGY

Let’s start by listing the simplest bounds for cardinal functions of the
G topology. They are probably folklore, and we include them just for the

convenience of the reader.

Proposition 2.1.
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(1) w(X,) < (w(X))"~.

(2) x(X.) < (x(X))".

(3) If X is regular then d(X,) < 24X)*,

(4) If X is regular, then mw(X,) < 27X,

Proof. The first two items are easy.

As for the third item, recalling that w(X) < 2%%) for regular spaces, we
have that d(X,) < w(X,) < w(X)* < 24X)*,

To prove the fourth item, recall that w(X) < (rw(X))*™X) for every
regular space X. Hence mw(X,) < w(X,) < w(X)* < (mw(X))X)+* <
(rw(X) T X0 < grulX)n.

U

Regularity is essential in both the third and the fourth item, as the
following example shows.

Example 2.2. A Hausdorff space X such that:

7T’LU(X5) > d(Xg) > 27rw(X) > 2d(X)

Proof. Let X = fw, provided with the following topology: every principal
ultrafilter is isolated. A basic neighbourhood of a non-principal ultrafilter p
has the form {p} U A\ F, where A € p and F is a finite set. The space X
has a countable 7m-base, but Xj is a discrete set of cardinality 2°. U

The following example shows that, unlike in the case of the w-weight,
there is no bound on the 7-character of the Gs-topology on a regular space

of countable m-character.

Example 2.3. For every cardinal x, there is a hereditarily normal space of
countable m-character X (k) such that mx(X(k)s) > k.

Proof. Let X (k) be the space obtained by taking the sum of a convergent
sequence and the one-point compactification of a discrete set of size xk and
then collapsing the limit points to a single point co. In the resulting space,
every point is isolated except for oo, which nevertheless has a countable 7-
base. So mx(X(k)) = w. However, X (k)s is homeomorphic to the one-point
Lindeldfication of a discrete set of size k. So its w-character is no smaller
than k. O

One of the early results regarding cardinal invariants for the G topology
was proved by Juhész in [15] and was originally motivated by a problem of
Arhangel’skii regarding the weak Lindelof number of the Gs topology on
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a compactum. Its proof is an application of the Erdés-Rado theorem from

infinite combinatorics.

Theorem 2.4. (Juhdsz, [15]) Let X be a countably compact reqular space.
Then c(Xs) < 264X,

Note that regularity is essential in the above theorem as Vaughan [25]
constructed a countably compact Hausdorff space with points G5 and car-
dinality larger than the continuum which is even separable.

We also exploit the Erdos-Rado theorem in our next result. Recall that
s(X) =sup{|D| : D is a discrete subset of X}.

Theorem 2.5. Let X be any space and r be a cardinal. Then s(X,) <
95(X)
Proof. Without loss of generality we can assume that s(X) < k. Suppose
by contradiction that there is a discrete set D C X, of cardinality > (27).
For every z € D we can find a G,; set G, in X such that G,ND = {z}. Let
{UZ: a < Kk} be a sequence of open sets such that G, = ({U? : o < k}. Let
< be a linear ordering on X. For every a, 8 <  let C, 5 = {{z,y} € [D]*:
z=<yANz ¢ Uy Ny ¢ U5} Then {Cyp : (o, 3) € K} is a coloring of [D]?
into x many colors. By the Erdés-Rado theorem we can find a set T C D of
cardinality ™ and a pair of ordinals (v, d) € k* such that [T]* C C, 5. Note
now that US N U7 NT" = {x} for every x € T'. Hence T' is a discrete subset
of X of cardinality T, which contradicts s(X) = k. O

Corollary 2.6. (Hajnal and Juhdsz) Let X be a Ty space. Then |X| <
93(X)6(X)

Proof. Set k = s(X) - ¥(X). By the above theorem we have s(X,) < 2%,
but since X, is discrete we must have | X| < 2%. O

K

The next example shows that 2°X)* cannot be replaced with s(X)* in

Theorem 2.5, even for compact LOTS.

Example 2.7. There is a compact linearly ordered space L such that
S(L(s) > S(L)w.

Proof. Fleissner constructed in [12] a compact linearly ordered space L such
that ¢(L) < ¢ and L has a c¢t-sized subset S consisting of G points. Since
c(X) = s(X) for every linearly ordered space X we must have s(L) < c,
but it’s clear that s(Ls) > ¢ . O
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Recall that the Lindelof degree of a topological space X (L(X)) is defined
as the minimum cardinal x such that for every open cover of X has a x-sized
subcover.

The weak Lindelof degree of X (wL(X)) is defined as the minimum car-
dinal k such that, for every open cover U of X there is a k-sized subcollection
V C U such that X c [JV.

At the 1970 International Congress of Mathematicians in Nice, France,
Arhangel’skii asked whether the weak Lindelof degree of a compact space
with its G5 topology is always bounded by the continuum. A counterexample
has recently been given in [23| but various related bounds for the (weak)
Lindel6f number of the Gs topology have been presented in the literature
(see, for example [13], [21], [15] and [8]).

A set G C X is called a G¢ set if there is a family {U, : & < k} of open
subsets of X such that G = {Uy, : a <k} = ({U. : o < k}.

Given a space X, we denote with X the topology generated by the G¢
subsets of X. Obviously if X is regular, then X, = X¢.

Theorem 2.8. Let X be any space and k be a cardinal. Then L(X¢) <
9s(X)#
Proof. Without loss we can assume s(X) < k. Fix a cover F of X by G¢
sets.

Let 6 be a large enough regular cardinal and M be a x-closed elementary
submodel of H(f) such that X, F € M, 2"+ 1 C M and |M| = 2~

For every F' € F choose open sets {U,(F) : @ < k} witnessing that F
is a G¢-set. Note that when F' € F N M we can assume that {U,(F) : a <
k} € M and hence {U,(F) : o < Kk} C M.

Claim 1. FN' M covers X N M.

Proof of Claim 1. Suppose this is not true and let p € X N M \ [J(F N M).
For every x € X N M we can find F, € F N M such that z € F,. Moreover,
there must be a(z) < & such that p & Uy (F3). Now, O = {Us) (F2) 1 @ €
X NM} is an open cover of X N M. By Shapirovskii’s Lemma (see [16]) there
is a discrete set D C X N M and a subcollection Y C O with |U| = |D| <k
such that X N M C D UJU. By k closedness of M we have D,U € M
hence M |= X C DUJU. Therefore by elementarity H() = X C DUJU.
Since p ¢ |JU we must have p € D.

Let now F be an element of F such that p € F. We have p € U,(F) N D
for every a < x and U,(F)N'D € M, by k-closedness of M. Define B =

({Us(F)ND : a < k}. Then B € M. Note that we have H(#) = (3G €
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F)(B C G), hence by elementarity M = (3G € F)(B C G), which implies
the existence of H € F N M such that p € B C H. But this contradicts
the fact that p ¢ |J(F N M). Hence F N M covers X N M and the claim is
proved.

YA
Claim 2. F N M covers X.

Proof of Claim 2. Suppose this is not true and let p be a point of X \ | J(FN
M). For every F' € F N M we can find S(F) < & such that p & Ugp)(F).
It follows from Claim 1 that the family V := {Ugr)(F) : F' € FN M} is
an open cover of X N M. By Shapirovskii’s Lemma we can find a discrete
D C XNM and a family W C V such that [W| = |D| < k and X N M C
XNMc DUUJW. Note that D,W € M, by < k-closedness of M. This
implies that M = X C DU[JW and hence H(f) = X C DUJW by
elementarity. But this is a contradiction because p ¢ W, for every W € W
and since D C X N M we also have that p ¢ D. A

Since |M| < 2% it follows that FNM is a 2"-sized subfamily of F covering
X and hence we are done.
O

It’s not possible to replace X§ with X; in the above result, as the fol-

lowing example shows.

Example 2.9. There are T} spaces X of countable spread where L(Xj) can
be arbitrarily large.

Proof. Let k be a cardinal of uncountable cofinality and p = cf (k). Define
a topology on X = k by declaring sets of the form [0, ] \ F to be a base,
where « is an ordinal less than x and F' is a finite set. It is easy to see
that s(X) = w. Moreover {[0,a] : & < k} is an open cover of X without
subcovers of cardinality less than p and hence L(Xs) > p. i

However, for regular spaces, the G5 modification and the G§ modification
coincide, so we obtain the following result:

Theorem 2.10. Let X be a regular space. Then L(X,) < 25(X)%,

Recall that the tightness of a point = in the space X (t(x, X)) is defined
as the minimum cardinal x such that for every subset A of X with z € A\ A
there is a subset B C A such that |B| < x and z € B. The tightness of
the space X is then defined as t(X) = sup{t(z,X) : z € X}. A space of
countable tightness is also called countably tight.
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Recall that for a topological space X, the cardinal invariant wL.(X) is
defined as the minimum cardinal s such that, for every closed set F' C X

and for every open family U covering F' there is a k-sized subfamily V C U

such that F' C W

Theorem 2.11. Let X be a countably compact space with a dense set of
points of countable character. Then wL(X¢) < 21X)wke(X)x

Proof. Without loss of generality we can assume that wL.(X) - t¢(X) < k.
Fix a cover F of X by G¢ sets

Let 0 be a large enough regular cardinal and M be a r-closed elementary
submodel of H(#) such that X, F € M and |M| = 2~.

For every F' € F choose open sets {U, : a < k} witnessing that F' is a
G¢ set.
Claim 1. F N M covers X N M.

Proof of Claim 1. Let + € X N M and use t(X) < k to fix a k-sized set
A C X N M such that € A. Note A € M. Let F' € F be such that z € F
and let {U, : @ < Kk} be a sequence of open sets witnessing that F' is a G¢
set.

Note that the set B =({ANU, :a < k}isin M and z € B C F. Now
H) = (3F € F)(B C F). Hence M = (3F € F)(B C F). Therefore we
can find G € F N M such that x € B C G, which is what we wanted. A

Claim 2. F N M has dense union in X.

Proof of Claim 2. Suppose not and let p € X \ m be a point of
countable character. Fix a local base {V,, : n < w} at p.

For every z € X N M pick F, € F N M such that z € F, and let
{VZ¥:a < Kk} € M be asequence of open sets witnessing that F), is a G¢ set.
Since p ¢ F,, there must be a <  such that p ¢ V=. Hence there must be
n, < wsuch that V,, NVZ = 0. let U, = |J{VZ : n, = n}. Then {U, : n < w}
is a countable open cover of the countably compact space X N M. So there
is k < w such that {U, : n < k} covers X N M. Let now U = {U? : n, < k}.
Then U covers X N M, hence wL.(X) < « implies the existence of V € [U]"
such that X N M C [JV. But that implies M = X < [JV and hence
H(0) = X c [JV, which contradicts Vi, N (JV) = 0. A

g

Corollary 2.12. (Alas, [3]) Let X be a countably compact Ty space with a

dense set of points of countable character. Then | X| < 20e(XOUX)wLe(X),
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Corollary 2.13. Let X be a regular countably compact space with a dense
set of points of countable character. Then wL(X,) < 2wke(X)HX)x

Corollary 2.14. Let X be a normal countably compact space with a dense
set of points of countable character. Then wL(X,) < 20HX)HX)x,

In a similar way we can prove the following theorem:

Theorem 2.15. Let X be a space with a dense set of isolated points. Then
’LUL(XE) < 2ch(X)-t(X)-n.

Question 1. Is it true that wL(X¢) < 2vE(X)t X% for any Hausdorff space
X?

The referee pointed out that a positive answer to the above question
would lead to a common generalization of the Hajnal-Juhasz inequality
| X| < 2¢9)%(X) and the Arhangel’skii-Shapirovskii bound | X | < 25 ¥(X)4X),
No such generalization is known at the moment.

We call a cover U of a space X, strongly point-separating if {U : U €
UNzeU}t={x}.

We define psw,(X) to be the least cardinal x such that X admits a
strongly point-separating open cover of order x. Obviously psws(X) =
psw(X) for every regular space X.

Theorem 2.16. Let X be a Ty space. Then L(X,.) < psw,(X)HX)*,

Proof. Let A = pswy(X) and fix a strongly point-separating open cover U
of X of order < A\. We can assume L(X) < k. Let F be a G, cover of X.
Since L(X) < k we can assume that F is made up of x-sized intersections
of elements of U. Let M be a r-closed elementary submodel of H(f) such
that \* C M, X,U,F € M and |M| = \".

Claim 1. F N M covers X N M.

Proof of Claim 1. Let p € X N M. Let F € F be such that p € F. Let
{U, : @ < K} C U be a family of open sets such that ' = [({U, : @ < k}.
Let z, be any point in U, N M. Note that for every @ < x we have that
{U el :x, €U} is an element of M of cardinality A. Therefore {U € U :
o € U} € M and hence U, € M, for every a < k. By k-closedness of M
we have F'= ({U, : a < k} € M, as we wanted. A

Claim 2. F N M actually covers X.

Proof of Claim 2. Suppose that is not true and let p € X \ J(F N M).
For every z € X N M, let F, € F N M such that = € F, and let {U? :
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a < Kk} € M be a sequence of open sets such that ({U? : a < k} = F,.
We again have that {U® : a < k} C M and hence, for every x € X N M
we can find an open neighbourhood U, € M of = such that p ¢ U,. The
family V := {U, : # € X N M} is an open cover of the space X N M, which
has Lindel6f number at most ~ and hence we can find C € [V]* such that
XNMcXNM c|JC. By k-closedness of M we have C € M and hence
the previous formula implies M = X C [JC. By elementarity we get that
H(9) = X C |JC, which contradicts the fact that p ¢ |JC. A

U
Corollary 2.17. Let X be a reqular space. Then L(X,.) < psw(X)HX) .

Question 2. Is t(X;) < 2! true for every (compact) Ty space X ?

3. AN APPLICATION TO HOMOGENEOUS COMPACTA

Definition 3.1. Let X be a topological space. A set S C X is called
subseparable if there is a countable set C' C X such that S C C.

Since w(X) < 2%X) for every regular space X and the weight is heredi-
tary, every subseparable subspace of a regular topological space has weight

at most continuum.

Lemma 3.2. (Juhdsz and van Mill, [17]) Let X be a o-countably tight
homogeneous compactum. Then X contains a non-empty subseparable G-

subset and has a point of countable m-character.

Corollary 3.3. Fvery o-countably tight homogeneous compactum has char-
acter at most continuum.

Proof. Let x € X be any point. By homogeneity we can find a subseparable
Gy set G containing z. Then w(G) < 2¥. So we can fix a continuum-sized
family U of open neighbourhoods of x such that G N U, = {z}. Let
{U, : n < w} be a countable family of open sets such that G = ({U, :
n <w}. Then V = {U, : n < w}UU is a continuum sized family of open
subsets of X such that (|V = {z}. Since X is compact, this implies that
x(x, X) <2v. O

Theorem 3.4. Let X be a homogeneous compactum which is the union of

countably many countably tight dense subspaces. Then L(Xj) < 2%.

Proof. Let {X,, : n < w}, be a countable family of countably tight subspaces
covering X. Let U be a Gs-cover of X. Without loss we can assume that
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for every U € U there are open sets {O,,(U) : n < w} such that 0,4, (U) C
On(U), for every n <w and U = ({O,(U) : n < w}.

Let 6 be a large enough regular cardinal and let M be an w-closed ele-
mentary submodel of H(f) such that |[M| = 2% and M contains everything
we need.

Claim. U N M covers X N M.

Proof of Claim. Let z € X N M.

We claim that z € X,, N M, for every n < w. Indeed, fix n < w and let
V be a neighbourhood of z. Pick y € VN (X N M). Then y has a local base
U, € M having cardinality continuum. By the assumptions on M, U, C M.
Since X, is dense in X, M reflects this and therefore for every U € 7N M
we have UN X, N M # (). Hence for every U € U, we have UNX,, N M # 0.
It turns out that V N X, N M # (), for every open neighbourhood V of x,
as we wanted.

Let £ < w be such that x € Xj. Using the fact that X}, has countable
tightness we can choose a countable set C}, C XN M such that 2 € Cj. Note
that, since M is countably closed, every subset of C' is an element of M.
Since U covers X there is U € U such that = € U. Note that = € O;(U) N C,
for every i < w. Let B = {0;(U)NC :i < w} and note that B € M. We
have H(0) = (3U € U)(B C U). Since every free variable in the previous
formula belongs to M, by elementarity we have M = (3U € U)(B C U)
and hence there is U € U N M such that x € B C U, which finishes the
proof of the Claim. A

Let us now prove that & N M actually covers X, which will finish the
proof.

Suppose this is not the case and let p € X \ (J(U N M). By the claim,
for every # € X N M we can pick a U, € U N M containing z. Then we
can choose m < w such that p ¢ O,,(U,) € M. This means that we can
cover X N M by an open family V C M such that p ¢ | JV. By compactness
we can then take a finite subfamily F of I such that X N M C |JF. Since
F € M this is equivalent to M | X C |JF, which implies, by elementarity,
H(9) = X C |JF, and that is a contradiction because p € H(6) \ J F.

O

Lemma 3.5. Let X be a compact homogeneous space which is the union of
finitely many countably tight subspaces. Then L(Xs) < 2%.

Proof. Let F be a finite cover of X by countably tight subspaces. We can
find a non-empty open subset V' of X such that VN F' is dense in V', whenever
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VNF # 0 and F € F. Applying the argument proving Lemma 3.4 to V we
obtain that L(Vs) < 2% Using the homogeneity of X we can find an open
cover V of X such that L(V;) < 2%, for every V € V. Choosing a finite
subcover of V we see that L(Xs) < 2¢: O

The following lemma was noted independently by de la Vega and Rid-

derbos (see [6] and [22] for the proof of much more general statements).
Lemma 3.6. Let X be a homogencous space. Then | X| < d(X)™X),

Theorem 3.7. (Juhdsz and van Mill) Let X be a compact homogeneous
space which is the union of countably many dense countably tight subspaces
or of finitely many countably tight subspaces. Then | X| < 2%,

Proof. Use homogeneity to fix, for every x € X, a subseparable Gs set G,
containing x. We have w(G,) < 2¥. Note that Y = {G, : v € X} is a
Gs cover of X, so there is C' € [X]*" such that X C U{G. : z € C}. For
every x € (', we can fix a continuum-sized D, C G, dense in GG,. Then
D = |J{D, : = € C} is a dense subset of X having cardinality at most
continuum, proving that d(X) < 2¥. Using the above lemmas we obtain
that | X| < 2v. O
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