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Abstract. We prove upper bounds for the spread, the Lindelöf number
and the weak Lindelöf number of the Gδ topology on a topological space
and apply a few of our bounds to give a short proof to a recent result
of Juhász and van Mill regarding the cardinality of a σ-countably tight
homogeneous compactum.

1. Introduction

All spaces are assumed to be T1. The word compactum indicates a com-
pact Hausdorff space.

Given a topological space X we can consider a finer topology on X by
declaring countable intersections of open subsets of X to be a base. The
new space is called the Gδ topology of X and is denoted with Xδ.

There are various papers in the literature investigating what properties
of X are preserved when passing to Xδ and presenting bounds for cardinal
invariants on Xδ in terms of the cardinal invariants of X (see for example
[15], [13], [21], [18]). Moreover, results of that kind have found applications
to central topics in general topology like the study of covering properties in
box products (see, for example, [19]), cardinal invariants for homogeneous
compacta (see, for example [2], [7], [8] and [23]) and spaces of continuous
functions (See [1]).

Two of the early results on this topic are Juhász’s bound c(Xδ) ≤ 2c(X)

for every compact Hausdorff space X, where c(X) denotes the cellularity
of X and Arhangel’skii’s result that the Gδ topology on a Lindelöf regular
scattered space is Lindelöf. Juhász’s bound is tight in the sense that it’s not
possible to prove that c(Xδ) ≤ c(X)ω for every compact space X (see [12])
and the scattered property is essential in Arhangel’skii’s result because there
are compact Hausdorff spaces whose Gδ-topology even has (weak) Lindelöf
number c+ (see [23]).

In this paper we prove various new bounds for cardinal invariants on
the Gδ topology. For example we prove that s(Xδ) ≤ 2s(X) for every space
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X, where s(X) is the spread of X (that is, the supremum of the cardi-
nalities of the discrete subsets of X). For a regular space we prove that
L(Xδ) ≤ min {psw(X)d(X), 2s(X)}, where L(X) denotes the Lindelöf degree
of X, psw(X) denotes the point-separating weight of X and d(X) denotes
the density of X.

Many questions are left open. For example we don’t know whether the
inequality t(Xδ) ≤ 2t(X) is true, where t denotes the tightness, even when
X is a compact space.

Finally, we exploit a few of our results to give a short proof of a recent
result of Juhász and van Mill on the cardinality of homogeneous compacta.

Our notation regarding cardinal functions follows [16]. The remaining
undefined notions can be found in [11].

In our proofs we often use elementary submodels of the structure (H(µ), ε).
Dow’s survey [10] is enough to read our paper, and we give a brief informal
refresher here. Recall that H(µ) is the set of all sets whose transitive clo-
sure has cardinality smaller than µ. When µ is regular uncountable, H(µ)

is known to satisfy all axioms of set theory, except the power set axiom. We
say, informally, that a formula is satisfied by a set S if it is true when all
existential quantifiers are restricted to S. A set M ⊂ H(µ) is said to be an
elementary submodel of H(µ) (and we write M ≺ H(µ)) if a formula with
parameters in M is satisfied by H(µ) if and only if it is satisfied by M .

The downward Löwenheim-Skolem theorem guarantees that for every
S ⊂ H(µ), there is an elementary submodel M ≺ H(µ) such that |M | ≤
|S| · ω and S ⊂ M . This theorem is sufficient for many applications, but
it is often useful (especially in cardinal bounds for topological spaces) to
have the following closure property. We say that M is κ-closed if for every
S ⊂ M such that |S| ≤ κ we have S ∈ M . For large enough regular µ
and for every countable set S ⊂ H(µ) there is always a κ-closed elementary
submodel M ≺ H(µ) such that |M | = 2κ and S ⊂M .

The following theorem is also used often: letM ≺ H(µ) such that κ+1 ⊂
M and S ∈M be such that |S| ≤ κ. Then S ⊂M .

2. Cardinal invariants for the Gδ topology

Let’s start by listing the simplest bounds for cardinal functions of the
Gκ topology. They are probably folklore, and we include them just for the
convenience of the reader.

Proposition 2.1.
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(1) w(Xκ) ≤ (w(X))κ.
(2) χ(Xκ) ≤ (χ(X))κ.
(3) If X is regular then d(Xκ) ≤ 2d(X)·κ.
(4) If X is regular, then πw(Xκ) ≤ 2πw(X)·κ.

Proof. The first two items are easy.
As for the third item, recalling that w(X) ≤ 2d(X) for regular spaces, we

have that d(Xκ) ≤ w(Xκ) ≤ w(X)κ ≤ 2d(X)·κ.
To prove the fourth item, recall that w(X) ≤ (πw(X))c(X) for every

regular space X. Hence πw(Xκ) ≤ w(Xκ) ≤ w(X)κ ≤ (πw(X))c(X)·κ ≤
(πw(X))πw(X)·κ ≤ 2πw(X)·κ.

�

Regularity is essential in both the third and the fourth item, as the
following example shows.

Example 2.2. A Hausdorff space X such that:

πw(Xδ) ≥ d(Xδ) > 2πw(X) ≥ 2d(X)

Proof. Let X = βω, provided with the following topology: every principal
ultrafilter is isolated. A basic neighbourhood of a non-principal ultrafilter p
has the form {p} ∪ A \ F , where A ∈ p and F is a finite set. The space X
has a countable π-base, but Xδ is a discrete set of cardinality 2c. �

The following example shows that, unlike in the case of the π-weight,
there is no bound on the π-character of the Gδ-topology on a regular space
of countable π-character.

Example 2.3. For every cardinal κ, there is a hereditarily normal space of
countable π-character X(κ) such that πχ(X(κ)δ) ≥ κ.

Proof. Let X(κ) be the space obtained by taking the sum of a convergent
sequence and the one-point compactification of a discrete set of size κ and
then collapsing the limit points to a single point ∞. In the resulting space,
every point is isolated except for ∞, which nevertheless has a countable π-
base. So πχ(X(κ)) = ω. However, X(κ)δ is homeomorphic to the one-point
Lindelöfication of a discrete set of size κ. So its π-character is no smaller
than κ. �

One of the early results regarding cardinal invariants for the Gδ topology
was proved by Juhász in [15] and was originally motivated by a problem of
Arhangel’skii regarding the weak Lindelöf number of the Gδ topology on



4 A. BELLA AND S. SPADARO

a compactum. Its proof is an application of the Erdös-Rado theorem from
infinite combinatorics.

Theorem 2.4. (Juhász, [15]) Let X be a countably compact regular space.
Then c(Xδ) ≤ 2c(X).

Note that regularity is essential in the above theorem as Vaughan [25]
constructed a countably compact Hausdorff space with points Gδ and car-
dinality larger than the continuum which is even separable.

We also exploit the Erdös-Rado theorem in our next result. Recall that
s(X) = sup{|D| : D is a discrete subset of X}.

Theorem 2.5. Let X be any space and κ be a cardinal. Then s(Xκ) ≤
2s(X)·κ.

Proof. Without loss of generality we can assume that s(X) ≤ κ. Suppose
by contradiction that there is a discrete set D ⊂ Xκ of cardinality ≥ (2κ)+.
For every x ∈ D we can find a Gκ set Gx in X such that Gx∩D = {x}. Let
{Ux

α : α < κ} be a sequence of open sets such that Gx =
⋂
{Ux

α : α < κ}. Let
≺ be a linear ordering on X. For every α, β < κ let Cα,β = {{x, y} ∈ [D]2 :

x ≺ y ∧ x /∈ Uy
α ∧ y /∈ Ux

β}. Then {Cα,β : (α, β) ∈ κ2} is a coloring of [D]2

into κ many colors. By the Erdös-Rado theorem we can find a set T ⊂ D of
cardinality κ+ and a pair of ordinals (γ, δ) ∈ κ2 such that [T ]2 ⊂ Cγ,δ. Note
now that Ux

γ ∩ Ux
δ ∩ T = {x} for every x ∈ T . Hence T is a discrete subset

of X of cardinality κ+, which contradicts s(X) = κ. �

Corollary 2.6. (Hajnal and Juhász) Let X be a T1 space. Then |X| ≤
2s(X)·ψ(X).

Proof. Set κ = s(X) · ψ(X). By the above theorem we have s(Xκ) ≤ 2κ,
but since Xκ is discrete we must have |X| ≤ 2κ. �

The next example shows that 2s(X)·κ cannot be replaced with s(X)κ in
Theorem 2.5, even for compact LOTS.

Example 2.7. There is a compact linearly ordered space L such that
s(Lδ) > s(L)ω.

Proof. Fleissner constructed in [12] a compact linearly ordered space L such
that c(L) ≤ c and L has a c+-sized subset S consisting of Gδ points. Since
c(X) = s(X) for every linearly ordered space X we must have s(L) ≤ c,
but it’s clear that s(Lδ) ≥ c+. �
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Recall that the Lindelöf degree of a topological spaceX (L(X)) is defined
as the minimum cardinal κ such that for every open cover of X has a κ-sized
subcover.

The weak Lindelöf degree of X (wL(X)) is defined as the minimum car-
dinal κ such that, for every open cover U ofX there is a κ-sized subcollection
V ⊂ U such that X ⊂

⋃
V .

At the 1970 International Congress of Mathematicians in Nice, France,
Arhangel’skii asked whether the weak Lindelöf degree of a compact space
with itsGδ topology is always bounded by the continuum. A counterexample
has recently been given in [23] but various related bounds for the (weak)
Lindelöf number of the Gδ topology have been presented in the literature
(see, for example [13], [21], [15] and [8]).

A set G ⊂ X is called a Gc
κ set if there is a family {Uα : α < κ} of open

subsets of X such that G =
⋂
{Uα : α < κ} =

⋂
{Uα : α < κ}.

Given a space X, we denote with Xc
κ the topology generated by the Gc

κ

subsets of X. Obviously if X is regular, then Xκ = Xc
κ.

Theorem 2.8. Let X be any space and κ be a cardinal.Then L(Xc
κ) ≤

2s(X)·κ.

Proof. Without loss we can assume s(X) ≤ κ. Fix a cover F of X by Gc
κ

sets.
Let θ be a large enough regular cardinal andM be a κ-closed elementary

submodel of H(θ) such that X,F ∈M , 2κ + 1 ⊂M and |M | = 2κ.
For every F ∈ F choose open sets {Uα(F ) : α < κ} witnessing that F

is a Gc
κ-set. Note that when F ∈ F ∩M we can assume that {Uα(F ) : α <

κ} ∈M and hence {Uα(F ) : α < κ} ⊂M .

Claim 1. F ∩M covers X ∩M .

Proof of Claim 1. Suppose this is not true and let p ∈ X ∩M \
⋃
(F ∩M).

For every x ∈ X ∩M we can find Fx ∈ F ∩M such that x ∈ Fx. Moreover,
there must be α(x) < κ such that p /∈ Uα(x)(Fx). Now, O = {Uα(x)(Fx) : x ∈
X∩M} is an open cover of X∩M . By Shapirovskii’s Lemma (see [16]) there
is a discrete set D ⊂ X ∩M and a subcollection U ⊂ O with |U| = |D| ≤ κ

such that X ∩M ⊂ D ∪
⋃
U . By κ closedness of M we have D,U ∈ M

henceM |= X ⊂ D∪
⋃
U . Therefore by elementarity H(θ) |= X ⊂ D∪

⋃
U .

Since p /∈
⋃
U we must have p ∈ D.

Let now F be an element of F such that p ∈ F . We have p ∈ Uα(F ) ∩D
for every α < κ and Uα(F ) ∩D ∈ M , by κ-closedness of M . Define B =⋂
{Uα(F ) ∩D : α < κ}. Then B ∈ M . Note that we have H(θ) |= (∃G ∈
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F)(B ⊂ G), hence by elementarity M |= (∃G ∈ F)(B ⊂ G), which implies
the existence of H ∈ F ∩M such that p ∈ B ⊂ H. But this contradicts
the fact that p /∈

⋃
(F ∩M). Hence F ∩M covers X ∩M and the claim is

proved.
4

Claim 2. F ∩M covers X.

Proof of Claim 2. Suppose this is not true and let p be a point of X \
⋃
(F∩

M). For every F ∈ F ∩M we can find β(F ) < κ such that p /∈ Uβ(F )(F ).
It follows from Claim 1 that the family V := {Uβ(F )(F ) : F ∈ F ∩M} is

an open cover of X ∩M . By Shapirovskii’s Lemma we can find a discrete
D ⊂ X ∩M and a family W ⊂ V such that |W| = |D| < κ and X ∩M ⊂
X ∩M ⊂ D ∪

⋃
W . Note that D,W ∈ M , by < κ-closedness of M . This

implies that M |= X ⊂ D ∪
⋃
W and hence H(θ) |= X ⊂ D ∪

⋃
W by

elementarity. But this is a contradiction because p /∈ W , for every W ∈ W
and since D ⊂ X ∩M we also have that p /∈ D. 4

Since |M | ≤ 2κ it follows that F∩M is a 2κ-sized subfamily of F covering
X and hence we are done.

�

It’s not possible to replace Xc
δ with Xδ in the above result, as the fol-

lowing example shows.

Example 2.9. There are T1 spaces X of countable spread where L(Xδ) can
be arbitrarily large.

Proof. Let κ be a cardinal of uncountable cofinality and µ = cf(κ). Define
a topology on X = κ by declaring sets of the form [0, α] \ F to be a base,
where α is an ordinal less than κ and F is a finite set. It is easy to see
that s(X) = ω. Moreover {[0, α] : α < κ} is an open cover of X without
subcovers of cardinality less than µ and hence L(Xδ) ≥ µ. �

However, for regular spaces, the Gδ modification and the Gc
δ modification

coincide, so we obtain the following result:

Theorem 2.10. Let X be a regular space. Then L(Xκ) ≤ 2s(X)·κ.

Recall that the tightness of a point x in the space X (t(x,X)) is defined
as the minimum cardinal κ such that for every subset A of X with x ∈ A\A
there is a subset B ⊂ A such that |B| ≤ κ and x ∈ B. The tightness of
the space X is then defined as t(X) = sup{t(x,X) : x ∈ X}. A space of
countable tightness is also called countably tight.
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Recall that for a topological space X, the cardinal invariant wLc(X) is
defined as the minimum cardinal κ such that, for every closed set F ⊂ X

and for every open family U covering F there is a κ-sized subfamily V ⊂ U
such that F ⊂

⋃
V .

Theorem 2.11. Let X be a countably compact space with a dense set of
points of countable character. Then wL(Xc

κ) ≤ 2t(X)·wLc(X)·κ.

Proof. Without loss of generality we can assume that wLc(X) · t(X) ≤ κ.
Fix a cover F of X by Gc

κ sets
Let θ be a large enough regular cardinal andM be a κ-closed elementary

submodel of H(θ) such that X,F ∈M and |M | = 2κ.
For every F ∈ F choose open sets {Uα : α < κ} witnessing that F is a

Gc
κ set.

Claim 1. F ∩M covers X ∩M .

Proof of Claim 1. Let x ∈ X ∩M and use t(X) ≤ κ to fix a κ-sized set
A ⊂ X ∩M such that x ∈ A. Note A ∈M . Let F ∈ F be such that x ∈ F
and let {Uα : α < κ} be a sequence of open sets witnessing that F is a Gc

κ

set.
Note that the set B =

⋂
{A ∩ Uα : α < κ} is in M and x ∈ B ⊂ F . Now

H(θ) |= (∃F ∈ F)(B ⊂ F ). Hence M |= (∃F ∈ F)(B ⊂ F ). Therefore we
can find G ∈ F ∩M such that x ∈ B ⊂ G, which is what we wanted. 4

Claim 2. F ∩M has dense union in X.

Proof of Claim 2. Suppose not and let p ∈ X \
⋃
F ∩M be a point of

countable character. Fix a local base {Vn : n < ω} at p.
For every x ∈ X ∩M pick Fx ∈ F ∩ M such that x ∈ Fx and let

{V x
α : α < κ} ∈M be a sequence of open sets witnessing that Fx is a Gc

κ set.
Since p /∈ Fx, there must be α < κ such that p /∈ V x

α . Hence there must be
nx < ω such that Vnx∩V x

α = ∅. let Un =
⋃
{V x

α : nx = n}. Then {Un : n < ω}
is a countable open cover of the countably compact space X ∩M . So there
is k < ω such that {Un : n < k} covers X ∩M . Let now U = {Ux

α : nx < k}.
Then U covers X ∩M , hence wLc(X) ≤ κ implies the existence of V ∈ [U ]κ

such that X ∩M ⊂
⋃
V . But that implies M |= X ⊂

⋃
V and hence

H(θ) |= X ⊂
⋃
V , which contradicts Vk ∩ (

⋃
V) = ∅. 4

�

Corollary 2.12. (Alas, [3]) Let X be a countably compact T2 space with a
dense set of points of countable character. Then |X| ≤ 2ψc(X)t(X)wLc(X).
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Corollary 2.13. Let X be a regular countably compact space with a dense
set of points of countable character. Then wL(Xκ) ≤ 2wLc(X)·t(X)·κ.

Corollary 2.14. Let X be a normal countably compact space with a dense
set of points of countable character. Then wL(Xκ) ≤ 2wL(X)·t(X)·κ.

In a similar way we can prove the following theorem:

Theorem 2.15. Let X be a space with a dense set of isolated points. Then
wL(Xc

κ) ≤ 2wLc(X)·t(X)·κ.

Question 1. Is it true that wL(Xc
κ) ≤ 2wLc(X)·t(X)·κ for any Hausdorff space

X?

The referee pointed out that a positive answer to the above question
would lead to a common generalization of the Hajnal-Juhász inequality
|X| ≤ 2c(X)·χ(X) and the Arhangel’skii-Shapirovskii bound |X| ≤ 2L(X)·ψ(X)·t(X).
No such generalization is known at the moment.

We call a cover U of a space X, strongly point-separating if
⋂
{U : U ∈

U ∧ x ∈ U} = {x}.
We define psws(X) to be the least cardinal κ such that X admits a

strongly point-separating open cover of order κ. Obviously psws(X) =

psw(X) for every regular space X.

Theorem 2.16. Let X be a T2 space. Then L(Xκ) ≤ psws(X)L(X)·κ.

Proof. Let λ = psws(X) and fix a strongly point-separating open cover U
of X of order ≤ λ. We can assume L(X) ≤ κ. Let F be a Gκ cover of X.
Since L(X) ≤ κ we can assume that F is made up of κ-sized intersections
of elements of U . Let M be a κ-closed elementary submodel of H(θ) such
that λκ ⊂M , X,U ,F ∈M and |M | = λκ.
Claim 1. F ∩M covers X ∩M .

Proof of Claim 1. Let p ∈ X ∩M . Let F ∈ F be such that p ∈ F . Let
{Uα : α < κ} ⊂ U be a family of open sets such that F =

⋂
{Uα : α < κ}.

Let xα be any point in Uα ∩M . Note that for every α < κ we have that
{U ∈ U : xα ∈ U} is an element of M of cardinality λ. Therefore {U ∈ U :

xα ∈ U} ⊂ M and hence Uα ∈ M , for every α < κ. By κ-closedness of M
we have F =

⋂
{Uα : α < κ} ∈M , as we wanted. 4

Claim 2. F ∩M actually covers X.

Proof of Claim 2. Suppose that is not true and let p ∈ X \
⋃
(F ∩ M).

For every x ∈ X ∩M , let Fx ∈ F ∩ M such that x ∈ Fx and let {Ux
α :
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α < κ} ∈ M be a sequence of open sets such that
⋂
{Ux

α : α < κ} = Fx.
We again have that {Ux

α : α < κ} ⊂ M and hence, for every x ∈ X ∩M
we can find an open neighbourhood Ux ∈ M of x such that p /∈ Ux. The
family V := {Ux : x ∈ X ∩M} is an open cover of the space X ∩M , which
has Lindelöf number at most κ and hence we can find C ∈ [V ]κ such that
X ∩M ⊂ X ∩M ⊂

⋃
C. By κ-closedness of M we have C ∈ M and hence

the previous formula implies M |= X ⊂
⋃
C. By elementarity we get that

H(θ) |= X ⊂
⋃
C, which contradicts the fact that p /∈

⋃
C. 4

�

Corollary 2.17. Let X be a regular space. Then L(Xκ) ≤ psw(X)L(X)·κ.

Question 2. Is t(Xδ) ≤ 2t(X) true for every (compact) T2 space X?

3. An application to homogeneous compacta

Definition 3.1. Let X be a topological space. A set S ⊂ X is called
subseparable if there is a countable set C ⊂ X such that S ⊂ C.

Since w(X) ≤ 2d(X) for every regular space X and the weight is heredi-
tary, every subseparable subspace of a regular topological space has weight
at most continuum.

Lemma 3.2. (Juhász and van Mill, [17]) Let X be a σ-countably tight
homogeneous compactum. Then X contains a non-empty subseparable Gδ-
subset and has a point of countable π-character.

Corollary 3.3. Every σ-countably tight homogeneous compactum has char-
acter at most continuum.

Proof. Let x ∈ X be any point. By homogeneity we can find a subseparable
Gδ set G containing x. Then w(G) ≤ 2ω. So we can fix a continuum-sized
family U of open neighbourhoods of x such that G ∩

⋂
Ux = {x}. Let

{Un : n < ω} be a countable family of open sets such that G =
⋂
{Un :

n < ω}. Then V = {Un : n < ω} ∪ U is a continuum sized family of open
subsets of X such that

⋂
V = {x}. Since X is compact, this implies that

χ(x,X) ≤ 2ω. �

Theorem 3.4. Let X be a homogeneous compactum which is the union of
countably many countably tight dense subspaces. Then L(Xδ) ≤ 2ω.

Proof. Let {Xn : n < ω}, be a countable family of countably tight subspaces
covering X. Let U be a Gδ-cover of X. Without loss we can assume that
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for every U ∈ U there are open sets {On(U) : n < ω} such that On+1(U) ⊂
On(U), for every n < ω and U =

⋂
{On(U) : n < ω}.

Let θ be a large enough regular cardinal and let M be an ω-closed ele-
mentary submodel of H(θ) such that |M | = 2ω and M contains everything
we need.
Claim. U ∩M covers X ∩M .

Proof of Claim. Let x ∈ X ∩M .
We claim that x ∈ Xn ∩M , for every n < ω. Indeed, fix n < ω and let

V be a neighbourhood of x. Pick y ∈ V ∩ (X ∩M). Then y has a local base
Uy ∈M having cardinality continuum. By the assumptions on M , Uy ⊂M .
Since Xn is dense in X, M reflects this and therefore for every U ∈ τ ∩M
we have U ∩Xn∩M 6= ∅. Hence for every U ∈ Uy we have U ∩Xn∩M 6= ∅.
It turns out that V ∩ Xn ∩M 6= ∅, for every open neighbourhood V of x,
as we wanted.

Let k < ω be such that x ∈ Xk. Using the fact that Xk has countable
tightness we can choose a countable set Ck ⊂ Xk∩M such that x ∈ Ck. Note
that, since M is countably closed, every subset of C is an element of M .
Since U covers X there is U ∈ U such that x ∈ U . Note that x ∈ Oi(U) ∩ C,
for every i < ω. Let B =

⋂
{Oi(U) ∩ C : i < ω} and note that B ∈ M . We

have H(θ) |= (∃U ∈ U)(B ⊂ U). Since every free variable in the previous
formula belongs to M , by elementarity we have M |= (∃U ∈ U)(B ⊂ U)

and hence there is U ∈ U ∩M such that x ∈ B ⊂ U , which finishes the
proof of the Claim. 4

Let us now prove that U ∩M actually covers X, which will finish the
proof.

Suppose this is not the case and let p ∈ X \
⋃
(U ∩M). By the claim,

for every x ∈ X ∩M we can pick a Ux ∈ U ∩M containing x. Then we
can choose m < ω such that p /∈ Om(Ux) ∈ M . This means that we can
cover X ∩M by an open family V ⊂M such that p /∈

⋃
V . By compactness

we can then take a finite subfamily F of U such that X ∩M ⊂
⋃
F . Since

F ∈M this is equivalent toM |= X ⊂
⋃
F , which implies, by elementarity,

H(θ) |= X ⊂
⋃
F , and that is a contradiction because p ∈ H(θ) \

⋃
F .

�

Lemma 3.5. Let X be a compact homogeneous space which is the union of
finitely many countably tight subspaces. Then L(Xδ) ≤ 2ω.

Proof. Let F be a finite cover of X by countably tight subspaces. We can
find a non-empty open subset V ofX such that V ∩F is dense in V , whenever
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V ∩F 6= ∅ and F ∈ F . Applying the argument proving Lemma 3.4 to V we
obtain that L(V δ) ≤ 2ℵ0 . Using the homogeneity of X we can find an open
cover V of X such that L(V δ) ≤ 2ℵ0 , for every V ∈ V . Choosing a finite
subcover of V we see that L(Xδ) ≤ 2ω: �

The following lemma was noted independently by de la Vega and Rid-
derbos (see [6] and [22] for the proof of much more general statements).

Lemma 3.6. Let X be a homogeneous space. Then |X| ≤ d(X)πχ(X).

Theorem 3.7. (Juhász and van Mill) Let X be a compact homogeneous
space which is the union of countably many dense countably tight subspaces
or of finitely many countably tight subspaces. Then |X| ≤ 2ω.

Proof. Use homogeneity to fix, for every x ∈ X, a subseparable Gδ set Gx

containing x. We have w(Gx) ≤ 2ω. Note that U = {Gx : x ∈ X} is a
Gδ cover of X, so there is C ∈ [X]2

ω such that X ⊂
⋃
{Gx : x ∈ C}. For

every x ∈ C, we can fix a continuum-sized Dx ⊂ Gx, dense in Gx. Then
D =

⋃
{Dx : x ∈ C} is a dense subset of X having cardinality at most

continuum, proving that d(X) ≤ 2ω. Using the above lemmas we obtain
that |X| ≤ 2ω. �
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