CARDINAL INVARIANTS FOR THE G_{δ} TOPOLOGY

ANGELO BELLA AND SANTI SPADARO

ABSTRACT. We prove upper bounds for the spread, the Lindelöf number and the weak Lindelöf number of the G_{δ} topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juhász and van Mill regarding the cardinality of a σ -countably tight homogeneous compactum.

1. INTRODUCTION

All spaces are assumed to be T_1 . The word *compactum* indicates a compact Hausdorff space.

Given a topological space X we can consider a finer topology on X by declaring countable intersections of open subsets of X to be a base. The new space is called the G_{δ} topology of X and is denoted with X_{δ} .

There are various papers in the literature investigating what properties of X are preserved when passing to X_{δ} and presenting bounds for cardinal invariants on X_{δ} in terms of the cardinal invariants of X (see for example [15], [13], [21], [18]). Moreover, results of that kind have found applications to central topics in general topology like the study of covering properties in box products (see, for example, [19]), cardinal invariants for homogeneous compacta (see, for example [2], [7], [8] and [23]) and spaces of continuous functions (See [1]).

Two of the early results on this topic are Juhász's bound $c(X_{\delta}) \leq 2^{c(X)}$ for every compact Hausdorff space X, where c(X) denotes the *cellularity* of X and Arhangel'skii's result that the G_{δ} topology on a Lindelöf regular scattered space is Lindelöf. Juhász's bound is tight in the sense that it's not possible to prove that $c(X_{\delta}) \leq c(X)^{\omega}$ for every compact space X (see [12]) and the scattered property is essential in Arhangel'skii's result because there are compact Hausdorff spaces whose G_{δ} -topology even has (weak) Lindelöf number \mathfrak{c}^+ (see [23]).

In this paper we prove various new bounds for cardinal invariants on the G_{δ} topology. For example we prove that $s(X_{\delta}) \leq 2^{s(X)}$ for every space

²⁰¹⁰ Mathematics Subject Classification. Primary: 54A25, Secondary: 54D20, 54G20. Key words and phrases. cardinal invariant, G_{δ} -topology, weak Lindelöf number, Lindelöf degree, homogeneous space.

X, where s(X) is the spread of X (that is, the supremum of the cardinalities of the discrete subsets of X). For a regular space we prove that $L(X_{\delta}) \leq \min \{psw(X)^{d(X)}, 2^{s(X)}\}$, where L(X) denotes the Lindelöf degree of X, psw(X) denotes the point-separating weight of X and d(X) denotes the density of X.

Many questions are left open. For example we don't know whether the inequality $t(X_{\delta}) \leq 2^{t(X)}$ is true, where t denotes the *tightness*, even when X is a compact space.

Finally, we exploit a few of our results to give a short proof of a recent result of Juhász and van Mill on the cardinality of homogeneous compacta.

Our notation regarding cardinal functions follows [16]. The remaining undefined notions can be found in [11].

In our proofs we often use elementary submodels of the structure $(H(\mu), \epsilon)$. Dow's survey [10] is enough to read our paper, and we give a brief informal refresher here. Recall that $H(\mu)$ is the set of all sets whose transitive closure has cardinality smaller than μ . When μ is regular uncountable, $H(\mu)$ is known to satisfy all axioms of set theory, except the power set axiom. We say, informally, that a formula is satisfied by a set S if it is true when all existential quantifiers are restricted to S. A set $M \subset H(\mu)$ is said to be an elementary submodel of $H(\mu)$ (and we write $M \prec H(\mu)$) if a formula with parameters in M is satisfied by $H(\mu)$ if and only if it is satisfied by M.

The downward Löwenheim-Skolem theorem guarantees that for every $S \subset H(\mu)$, there is an elementary submodel $M \prec H(\mu)$ such that $|M| \leq |S| \cdot \omega$ and $S \subset M$. This theorem is sufficient for many applications, but it is often useful (especially in cardinal bounds for topological spaces) to have the following closure property. We say that M is κ -closed if for every $S \subset M$ such that $|S| \leq \kappa$ we have $S \in M$. For large enough regular μ and for every countable set $S \subset H(\mu)$ there is always a κ -closed elementary submodel $M \prec H(\mu)$ such that $|M| = 2^{\kappa}$ and $S \subset M$.

The following theorem is also used often: let $M \prec H(\mu)$ such that $\kappa + 1 \subset M$ and $S \in M$ be such that $|S| \leq \kappa$. Then $S \subset M$.

2. Cardinal invariants for the G_{δ} topology

Let's start by listing the simplest bounds for cardinal functions of the G_{κ} topology. They are probably folklore, and we include them just for the convenience of the reader.

Proposition 2.1.

- (1) $w(X_{\kappa}) \leq (w(X))^{\kappa}$. (2) $\chi(X_{\kappa}) \leq (\chi(X))^{\kappa}$.
- (3) If X is regular then $d(X_{\kappa}) \leq 2^{d(X) \cdot \kappa}$.
- (4) If X is regular, then $\pi w(X_{\kappa}) \leq 2^{\pi w(X) \cdot \kappa}$.

Proof. The first two items are easy.

As for the third item, recalling that $w(X) \leq 2^{d(X)}$ for regular spaces, we have that $d(X_{\kappa}) \leq w(X_{\kappa}) \leq w(X)^{\kappa} \leq 2^{d(X) \cdot \kappa}$.

To prove the fourth item, recall that $w(X) \leq (\pi w(X))^{c(X)}$ for every regular space X. Hence $\pi w(X_{\kappa}) \leq w(X_{\kappa}) \leq w(X)^{\kappa} \leq (\pi w(X))^{c(X) \cdot \kappa} \leq (\pi w(X))^{\pi w(X) \cdot \kappa} \leq 2^{\pi w(X) \cdot \kappa}$.

Regularity is essential in both the third and the fourth item, as the following example shows.

Example 2.2. A Hausdorff space X such that:

$$\pi w(X_{\delta}) \ge d(X_{\delta}) > 2^{\pi w(X)} \ge 2^{d(X)}$$

Proof. Let $X = \beta \omega$, provided with the following topology: every principal ultrafilter is isolated. A basic neighbourhood of a non-principal ultrafilter p has the form $\{p\} \cup A \setminus F$, where $A \in p$ and F is a finite set. The space X has a countable π -base, but X_{δ} is a discrete set of cardinality $2^{\mathfrak{c}}$.

The following example shows that, unlike in the case of the π -weight, there is no bound on the π -character of the G_{δ} -topology on a regular space of countable π -character.

Example 2.3. For every cardinal κ , there is a hereditarily normal space of countable π -character $X(\kappa)$ such that $\pi \chi(X(\kappa)_{\delta}) \geq \kappa$.

Proof. Let $X(\kappa)$ be the space obtained by taking the sum of a convergent sequence and the one-point compactification of a discrete set of size κ and then collapsing the limit points to a single point ∞ . In the resulting space, every point is isolated except for ∞ , which nevertheless has a countable π base. So $\pi \chi(X(\kappa)) = \omega$. However, $X(\kappa)_{\delta}$ is homeomorphic to the one-point Lindelöfication of a discrete set of size κ . So its π -character is no smaller than κ .

One of the early results regarding cardinal invariants for the G_{δ} topology was proved by Juhász in [15] and was originally motivated by a problem of Arhangel'skii regarding the weak Lindelöf number of the G_{δ} topology on a compactum. Its proof is an application of the Erdös-Rado theorem from infinite combinatorics.

Theorem 2.4. (Juhász, [15]) Let X be a countably compact regular space. Then $c(X_{\delta}) \leq 2^{c(X)}$.

Note that regularity is essential in the above theorem as Vaughan [25] constructed a countably compact Hausdorff space with points G_{δ} and cardinality larger than the continuum which is even separable.

We also exploit the Erdös-Rado theorem in our next result. Recall that $s(X) = \sup\{|D| : D \text{ is a discrete subset of } X\}.$

Theorem 2.5. Let X be any space and κ be a cardinal. Then $s(X_{\kappa}) \leq 2^{s(X) \cdot \kappa}$.

Proof. Without loss of generality we can assume that $s(X) \leq \kappa$. Suppose by contradiction that there is a discrete set $D \subset X_{\kappa}$ of cardinality $\geq (2^{\kappa})^+$. For every $x \in D$ we can find a G_{κ} set G_x in X such that $G_x \cap D = \{x\}$. Let $\{U_{\alpha}^x : \alpha < \kappa\}$ be a sequence of open sets such that $G_x = \bigcap\{U_{\alpha}^x : \alpha < \kappa\}$. Let \prec be a linear ordering on X. For every $\alpha, \beta < \kappa$ let $C_{\alpha,\beta} = \{\{x,y\} \in [D]^2 : x \prec y \land x \notin U_{\alpha}^y \land y \notin U_{\beta}^x\}$. Then $\{C_{\alpha,\beta} : (\alpha,\beta) \in \kappa^2\}$ is a coloring of $[D]^2$ into κ many colors. By the Erdös-Rado theorem we can find a set $T \subset D$ of cardinality κ^+ and a pair of ordinals $(\gamma, \delta) \in \kappa^2$ such that $[T]^2 \subset C_{\gamma,\delta}$. Note now that $U_{\gamma}^x \cap U_{\delta}^x \cap T = \{x\}$ for every $x \in T$. Hence T is a discrete subset of X of cardinality κ^+ , which contradicts $s(X) = \kappa$.

Corollary 2.6. (Hajnal and Juhász) Let X be a T_1 space. Then $|X| \leq 2^{s(X) \cdot \psi(X)}$.

Proof. Set $\kappa = s(X) \cdot \psi(X)$. By the above theorem we have $s(X_{\kappa}) \leq 2^{\kappa}$, but since X_{κ} is discrete we must have $|X| \leq 2^{\kappa}$.

The next example shows that $2^{s(X)\cdot\kappa}$ cannot be replaced with $s(X)^{\kappa}$ in Theorem 2.5, even for compact LOTS.

Example 2.7. There is a compact linearly ordered space L such that $s(L_{\delta}) > s(L)^{\omega}$.

Proof. Fleissner constructed in [12] a compact linearly ordered space L such that $c(L) \leq \mathfrak{c}$ and L has a \mathfrak{c}^+ -sized subset S consisting of G_{δ} points. Since c(X) = s(X) for every linearly ordered space X we must have $s(L) \leq \mathfrak{c}$, but it's clear that $s(L_{\delta}) \geq \mathfrak{c}^+$.

Recall that the Lindelöf degree of a topological space X(L(X)) is defined as the minimum cardinal κ such that for every open cover of X has a κ -sized subcover.

The weak Lindelöf degree of X (wL(X)) is defined as the minimum cardinal κ such that, for every open cover \mathcal{U} of X there is a κ -sized subcollection $\mathcal{V} \subset \mathcal{U}$ such that $X \subset \overline{\bigcup \mathcal{V}}$.

At the 1970 International Congress of Mathematicians in Nice, France, Arhangel'skii asked whether the weak Lindelöf degree of a compact space with its G_{δ} topology is always bounded by the continuum. A counterexample has recently been given in [23] but various related bounds for the (weak) Lindelöf number of the G_{δ} topology have been presented in the literature (see, for example [13], [21], [15] and [8]).

A set $G \subset X$ is called a G_{κ}^c set if there is a family $\{U_{\alpha} : \alpha < \kappa\}$ of open subsets of X such that $G = \bigcap \{U_{\alpha} : \alpha < \kappa\} = \bigcap \{\overline{U_{\alpha}} : \alpha < \kappa\}$.

Given a space X, we denote with X_{κ}^{c} the topology generated by the G_{κ}^{c} subsets of X. Obviously if X is regular, then $X_{\kappa} = X_{\kappa}^{c}$.

Theorem 2.8. Let X be any space and κ be a cardinal. Then $L(X_{\kappa}^{c}) \leq 2^{s(X) \cdot \kappa}$.

Proof. Without loss we can assume $s(X) \leq \kappa$. Fix a cover \mathcal{F} of X by G_{κ}^{c} sets.

Let θ be a large enough regular cardinal and M be a κ -closed elementary submodel of $H(\theta)$ such that $X, \mathcal{F} \in M, 2^{\kappa} + 1 \subset M$ and $|M| = 2^{\kappa}$.

For every $F \in \mathcal{F}$ choose open sets $\{U_{\alpha}(F) : \alpha < \kappa\}$ witnessing that F is a G_{κ}^{c} -set. Note that when $F \in \mathcal{F} \cap M$ we can assume that $\{U_{\alpha}(F) : \alpha < \kappa\} \in M$ and hence $\{U_{\alpha}(F) : \alpha < \kappa\} \subset M$.

Claim 1. $\mathcal{F} \cap M$ covers $\overline{X \cap M}$.

Proof of Claim 1. Suppose this is not true and let $p \in \overline{X \cap M} \setminus \bigcup (\mathcal{F} \cap M)$. For every $x \in X \cap M$ we can find $F_x \in \mathcal{F} \cap M$ such that $x \in F_x$. Moreover, there must be $\alpha(x) < \kappa$ such that $p \notin U_{\alpha(x)}(F_x)$. Now, $\mathcal{O} = \{U_{\alpha(x)}(F_x) : x \in X \cap M\}$ is an open cover of $X \cap M$. By Shapirovskii's Lemma (see [16]) there is a discrete set $D \subset X \cap M$ and a subcollection $\mathcal{U} \subset \mathcal{O}$ with $|\mathcal{U}| = |D| \le \kappa$ such that $X \cap M \subset \overline{D} \cup \bigcup \mathcal{U}$. By κ closedness of M we have $D, \mathcal{U} \in M$ hence $M \models X \subset \overline{D} \cup \bigcup \mathcal{U}$. Therefore by elementarity $H(\theta) \models X \subset \overline{D} \cup \bigcup \mathcal{U}$. Since $p \notin \bigcup \mathcal{U}$ we must have $p \in \overline{D}$.

Let now F be an element of \mathcal{F} such that $p \in F$. We have $p \in \overline{U_{\alpha}(F) \cap D}$ for every $\alpha < \kappa$ and $\overline{U_{\alpha}(F) \cap D} \in M$, by κ -closedness of M. Define $B = \bigcap\{\overline{U_{\alpha}(F) \cap D} : \alpha < \kappa\}$. Then $B \in M$. Note that we have $H(\theta) \models (\exists G \in M)$ $\mathcal{F}(B \subset G)$, hence by elementarity $M \models (\exists G \in \mathcal{F})(B \subset G)$, which implies the existence of $H \in \mathcal{F} \cap M$ such that $p \in B \subset H$. But this contradicts the fact that $p \notin \bigcup (\mathcal{F} \cap M)$. Hence $\mathcal{F} \cap M$ covers $\overline{X \cap M}$ and the claim is proved.

 \triangle

Claim 2. $\mathcal{F} \cap M$ covers X.

Proof of Claim 2. Suppose this is not true and let p be a point of $X \setminus \bigcup (\mathcal{F} \cap M)$. For every $F \in \mathcal{F} \cap M$ we can find $\beta(F) < \kappa$ such that $p \notin U_{\beta(F)}(F)$.

It follows from Claim 1 that the family $\mathcal{V} := \{U_{\beta(F)}(F) : F \in \mathcal{F} \cap M\}$ is an open cover of $\overline{X \cap M}$. By Shapirovskii's Lemma we can find a discrete $D \subset \overline{X \cap M}$ and a family $\mathcal{W} \subset \mathcal{V}$ such that $|\mathcal{W}| = |D| < \kappa$ and $X \cap M \subset$ $\overline{X \cap M} \subset \overline{D} \cup \bigcup \mathcal{W}$. Note that $D, \mathcal{W} \in M$, by $< \kappa$ -closedness of M. This implies that $M \models X \subset \overline{D} \cup \bigcup \mathcal{W}$ and hence $H(\theta) \models X \subset \overline{D} \cup \bigcup \mathcal{W}$ by elementarity. But this is a contradiction because $p \notin W$, for every $W \in \mathcal{W}$ and since $\overline{D} \subset \overline{X \cap M}$ we also have that $p \notin \overline{D}$.

Since $|M| \leq 2^{\kappa}$ it follows that $\mathcal{F} \cap M$ is a 2^{κ} -sized subfamily of \mathcal{F} covering X and hence we are done.

It's not possible to replace X_{δ}^c with X_{δ} in the above result, as the following example shows.

Example 2.9. There are T_1 spaces X of countable spread where $L(X_{\delta})$ can be arbitrarily large.

Proof. Let κ be a cardinal of uncountable cofinality and $\mu = cf(\kappa)$. Define a topology on $X = \kappa$ by declaring sets of the form $[0, \alpha] \setminus F$ to be a base, where α is an ordinal less than κ and F is a finite set. It is easy to see that $s(X) = \omega$. Moreover $\{[0, \alpha] : \alpha < \kappa\}$ is an open cover of X without subcovers of cardinality less than μ and hence $L(X_{\delta}) \geq \mu$. \Box

However, for regular spaces, the G_{δ} modification and the G_{δ}^c modification coincide, so we obtain the following result:

Theorem 2.10. Let X be a regular space. Then $L(X_{\kappa}) \leq 2^{s(X) \cdot \kappa}$.

Recall that the tightness of a point x in the space X(t(x, X)) is defined as the minimum cardinal κ such that for every subset A of X with $x \in \overline{A} \setminus A$ there is a subset $B \subset A$ such that $|B| \leq \kappa$ and $x \in \overline{B}$. The tightness of the space X is then defined as $t(X) = \sup\{t(x, X) : x \in X\}$. A space of countable tightness is also called *countably tight*. Recall that for a topological space X, the cardinal invariant $wL_c(X)$ is defined as the minimum cardinal κ such that, for every closed set $F \subset X$ and for every open family \mathcal{U} covering F there is a κ -sized subfamily $\mathcal{V} \subset \mathcal{U}$ such that $F \subset \bigcup \mathcal{V}$.

Theorem 2.11. Let X be a countably compact space with a dense set of points of countable character. Then $wL(X^c_{\kappa}) \leq 2^{t(X) \cdot wL_c(X) \cdot \kappa}$.

Proof. Without loss of generality we can assume that $wL_c(X) \cdot t(X) \leq \kappa$. Fix a cover \mathcal{F} of X by G_{κ}^c sets

Let θ be a large enough regular cardinal and M be a κ -closed elementary submodel of $H(\theta)$ such that $X, \mathcal{F} \in M$ and $|M| = 2^{\kappa}$.

For every $F \in \mathcal{F}$ choose open sets $\{U_{\alpha} : \alpha < \kappa\}$ witnessing that F is a G_{κ}^{c} set.

Claim 1. $\mathcal{F} \cap M$ covers $\overline{X \cap M}$.

Proof of Claim 1. Let $x \in \overline{X \cap M}$ and use $t(X) \leq \kappa$ to fix a κ -sized set $A \subset X \cap M$ such that $x \in \overline{A}$. Note $A \in M$. Let $F \in \mathcal{F}$ be such that $x \in F$ and let $\{U_{\alpha} : \alpha < \kappa\}$ be a sequence of open sets witnessing that F is a G_{κ}^{c} set.

Note that the set $B = \bigcap \{\overline{A \cap U_{\alpha}} : \alpha < \kappa\}$ is in M and $x \in B \subset F$. Now $H(\theta) \models (\exists F \in \mathcal{F})(B \subset F)$. Hence $M \models (\exists F \in \mathcal{F})(B \subset F)$. Therefore we can find $G \in \mathcal{F} \cap M$ such that $x \in B \subset G$, which is what we wanted. \bigtriangleup

Claim 2. $\mathcal{F} \cap M$ has dense union in X.

Proof of Claim 2. Suppose not and let $p \in X \setminus \overline{\bigcup \mathcal{F} \cap M}$ be a point of countable character. Fix a local base $\{V_n : n < \omega\}$ at p.

For every $x \in \overline{X \cap M}$ pick $F_x \in \mathcal{F} \cap M$ such that $x \in F_x$ and let $\{V_{\alpha}^x : \alpha < \kappa\} \in M$ be a sequence of open sets witnessing that F_x is a G_{κ}^c set. Since $p \notin F_x$, there must be $\alpha < \kappa$ such that $p \notin \overline{V_{\alpha}^x}$. Hence there must be $n_x < \omega$ such that $V_{n_x} \cap V_{\alpha}^x = \emptyset$. let $U_n = \bigcup \{V_{\alpha}^x : n_x = n\}$. Then $\{U_n : n < \omega\}$ is a countable open cover of the countably compact space $\overline{X \cap M}$. So there is $k < \omega$ such that $\{U_n : n < k\}$ covers $\overline{X \cap M}$. Let now $\mathcal{U} = \{U_{\alpha}^x : n_x < k\}$. Then \mathcal{U} covers $\overline{X \cap M}$, hence $wL_c(X) \leq \kappa$ implies the existence of $\mathcal{V} \in [\mathcal{U}]^{\kappa}$ such that $\overline{X \cap M} \subset \bigcup \mathcal{V}$. But that implies $M \models X \subset \bigcup \mathcal{V}$ and hence $H(\theta) \models X \subset \bigcup \mathcal{V}$, which contradicts $V_k \cap (\bigcup \mathcal{V}) = \emptyset$.

Corollary 2.12. (Alas, [3]) Let X be a countably compact T_2 space with a dense set of points of countable character. Then $|X| \leq 2^{\psi_c(X)t(X)wL_c(X)}$.

Corollary 2.13. Let X be a regular countably compact space with a dense set of points of countable character. Then $wL(X_{\kappa}) \leq 2^{wL_c(X) \cdot t(X) \cdot \kappa}$.

Corollary 2.14. Let X be a normal countably compact space with a dense set of points of countable character. Then $wL(X_{\kappa}) \leq 2^{wL(X) \cdot t(X) \cdot \kappa}$.

In a similar way we can prove the following theorem:

Theorem 2.15. Let X be a space with a dense set of isolated points. Then $wL(X_{\kappa}^{c}) \leq 2^{wL_{c}(X) \cdot t(X) \cdot \kappa}$.

Question 1. Is it true that $wL(X_{\kappa}^{c}) \leq 2^{wL_{c}(X) \cdot t(X) \cdot \kappa}$ for any Hausdorff space X?

The referee pointed out that a positive answer to the above question would lead to a common generalization of the Hajnal-Juhász inequality $|X| \leq 2^{c(X) \cdot \chi(X)}$ and the Arhangel'skii-Shapirovskii bound $|X| \leq 2^{L(X) \cdot \psi(X) \cdot t(X)}$. No such generalization is known at the moment.

We call a cover \mathcal{U} of a space X, strongly point-separating if $\bigcap \{\overline{U} : U \in \mathcal{U} \land x \in U\} = \{x\}.$

We define $psw_s(X)$ to be the least cardinal κ such that X admits a strongly point-separating open cover of order κ . Obviously $psw_s(X) = psw(X)$ for every regular space X.

Theorem 2.16. Let X be a T_2 space. Then $L(X_{\kappa}) \leq psw_s(X)^{L(X) \cdot \kappa}$.

Proof. Let $\lambda = psw_s(X)$ and fix a strongly point-separating open cover \mathcal{U} of X of order $\leq \lambda$. We can assume $L(X) \leq \kappa$. Let \mathcal{F} be a G_{κ} cover of X. Since $L(X) \leq \kappa$ we can assume that \mathcal{F} is made up of κ -sized intersections of elements of \mathcal{U} . Let M be a κ -closed elementary submodel of $H(\theta)$ such that $\lambda^{\kappa} \subset M, X, \mathcal{U}, \mathcal{F} \in M$ and $|M| = \lambda^{\kappa}$. Claim 1. $\mathcal{F} \cap M$ covers $\overline{X \cap M}$.

Proof of Claim 1. Let $p \in \overline{X \cap M}$. Let $F \in \mathcal{F}$ be such that $p \in F$. Let $\{U_{\alpha} : \alpha < \kappa\} \subset \mathcal{U}$ be a family of open sets such that $F = \bigcap \{U_{\alpha} : \alpha < \kappa\}$. Let x_{α} be any point in $U_{\alpha} \cap M$. Note that for every $\alpha < \kappa$ we have that $\{U \in \mathcal{U} : x_{\alpha} \in U\}$ is an element of M of cardinality λ . Therefore $\{U \in \mathcal{U} : x_{\alpha} \in U\} \subset M$ and hence $U_{\alpha} \in M$, for every $\alpha < \kappa$. By κ -closedness of M we have $F = \bigcap \{U_{\alpha} : \alpha < \kappa\} \in M$, as we wanted. \bigtriangleup

Claim 2. $\mathcal{F} \cap M$ actually covers X.

Proof of Claim 2. Suppose that is not true and let $p \in X \setminus \bigcup (\mathcal{F} \cap M)$. For every $x \in \overline{X \cap M}$, let $F_x \in \mathcal{F} \cap M$ such that $x \in F_x$ and let $\{U^x_\alpha :$ $\alpha < \kappa \} \in M$ be a sequence of open sets such that $\bigcap \{U_{\alpha}^{x} : \alpha < \kappa\} = F_{x}$. We again have that $\{U_{\alpha}^{x} : \alpha < \kappa\} \subset M$ and hence, for every $x \in \overline{X \cap M}$ we can find an open neighbourhood $U_{x} \in M$ of x such that $p \notin U_{x}$. The family $\mathcal{V} := \{U_{x} : x \in \overline{X \cap M}\}$ is an open cover of the space $\overline{X \cap M}$, which has Lindelöf number at most κ and hence we can find $\mathcal{C} \in [\mathcal{V}]^{\kappa}$ such that $X \cap M \subset \overline{X \cap M} \subset \bigcup \mathcal{C}$. By κ -closedness of M we have $\mathcal{C} \in M$ and hence the previous formula implies $M \models X \subset \bigcup \mathcal{C}$. By elementarity we get that $H(\theta) \models X \subset \bigcup \mathcal{C}$, which contradicts the fact that $p \notin \bigcup \mathcal{C}$.

Corollary 2.17. Let X be a regular space. Then $L(X_{\kappa}) \leq psw(X)^{L(X) \cdot \kappa}$.

Question 2. Is $t(X_{\delta}) \leq 2^{t(X)}$ true for every (compact) T_2 space X?

3. An application to homogeneous compacta

Definition 3.1. Let X be a topological space. A set $S \subset X$ is called *subseparable* if there is a countable set $C \subset X$ such that $S \subset \overline{C}$.

Since $w(X) \leq 2^{d(X)}$ for every regular space X and the weight is hereditary, every subseparable subspace of a regular topological space has weight at most continuum.

Lemma 3.2. (Juhász and van Mill, [17]) Let X be a σ -countably tight homogeneous compactum. Then X contains a non-empty subseparable G_{δ} subset and has a point of countable π -character.

Corollary 3.3. Every σ -countably tight homogeneous compactum has character at most continuum.

Proof. Let $x \in X$ be any point. By homogeneity we can find a subseparable G_{δ} set G containing x. Then $w(G) \leq 2^{\omega}$. So we can fix a continuum-sized family \mathcal{U} of open neighbourhoods of x such that $G \cap \bigcap \mathcal{U}_x = \{x\}$. Let $\{U_n : n < \omega\}$ be a countable family of open sets such that $G = \bigcap \{U_n : n < \omega\}$. Then $\mathcal{V} = \{U_n : n < \omega\} \cup \mathcal{U}$ is a continuum sized family of open subsets of X such that $\bigcap \mathcal{V} = \{x\}$. Since X is compact, this implies that $\chi(x, X) \leq 2^{\omega}$.

Theorem 3.4. Let X be a homogeneous compactum which is the union of countably many countably tight dense subspaces. Then $L(X_{\delta}) \leq 2^{\omega}$.

Proof. Let $\{X_n : n < \omega\}$, be a countable family of countably tight subspaces covering X. Let \mathcal{U} be a G_{δ} -cover of X. Without loss we can assume that

for every $U \in \mathcal{U}$ there are open sets $\{O_n(U) : n < \omega\}$ such that $\overline{O_{n+1}(U)} \subset O_n(U)$, for every $n < \omega$ and $U = \bigcap \{O_n(U) : n < \omega\}$.

Let θ be a large enough regular cardinal and let M be an ω -closed elementary submodel of $H(\theta)$ such that $|M| = 2^{\omega}$ and M contains everything we need.

Claim. $\mathcal{U} \cap M$ covers $\overline{X \cap M}$.

Proof of Claim. Let $x \in \overline{X \cap M}$.

We claim that $x \in \overline{X_n \cap M}$, for every $n < \omega$. Indeed, fix $n < \omega$ and let V be a neighbourhood of x. Pick $y \in V \cap (X \cap M)$. Then y has a local base $\mathcal{U}_y \in M$ having cardinality continuum. By the assumptions on $M, \mathcal{U}_y \subset M$. Since X_n is dense in X, M reflects this and therefore for every $U \in \tau \cap M$ we have $U \cap X_n \cap M \neq \emptyset$. Hence for every $U \in \mathcal{U}_y$ we have $U \cap X_n \cap M \neq \emptyset$. It turns out that $V \cap X_n \cap M \neq \emptyset$, for every open neighbourhood V of x, as we wanted.

Let $k < \omega$ be such that $x \in X_k$. Using the fact that X_k has countable tightness we can choose a countable set $C_k \subset X_k \cap M$ such that $x \in \overline{C_k}$. Note that, since M is countably closed, every subset of C is an element of M. Since \mathcal{U} covers X there is $U \in \mathcal{U}$ such that $x \in U$. Note that $x \in \overline{O_i(U) \cap C}$, for every $i < \omega$. Let $B = \bigcap \{\overline{O_i(U) \cap C} : i < \omega\}$ and note that $B \in M$. We have $H(\theta) \models (\exists U \in \mathcal{U})(B \subset U)$. Since every free variable in the previous formula belongs to M, by elementarity we have $M \models (\exists U \in \mathcal{U})(B \subset U)$ and hence there is $U \in \mathcal{U} \cap M$ such that $x \in B \subset U$, which finishes the proof of the Claim. \bigtriangleup

Let us now prove that $\mathcal{U} \cap M$ actually covers X, which will finish the proof.

Suppose this is not the case and let $p \in X \setminus \bigcup (\mathcal{U} \cap M)$. By the claim, for every $x \in \overline{X \cap M}$ we can pick a $U_x \in \mathcal{U} \cap M$ containing x. Then we can choose $m < \omega$ such that $p \notin O_m(U_x) \in M$. This means that we can cover $\overline{X \cap M}$ by an open family $\mathcal{V} \subset M$ such that $p \notin \bigcup \mathcal{V}$. By compactness we can then take a finite subfamily \mathcal{F} of \mathcal{U} such that $X \cap M \subset \bigcup \mathcal{F}$. Since $\mathcal{F} \in M$ this is equivalent to $M \models X \subset \bigcup \mathcal{F}$, which implies, by elementarity, $H(\theta) \models X \subset \bigcup \mathcal{F}$, and that is a contradiction because $p \in H(\theta) \setminus \bigcup \mathcal{F}$.

Lemma 3.5. Let X be a compact homogeneous space which is the union of finitely many countably tight subspaces. Then $L(X_{\delta}) \leq 2^{\omega}$.

Proof. Let \mathcal{F} be a finite cover of X by countably tight subspaces. We can find a non-empty open subset V of X such that $V \cap F$ is dense in V, whenever

 $V \cap F \neq \emptyset$ and $F \in \mathcal{F}$. Applying the argument proving Lemma 3.4 to \overline{V} we obtain that $L(\overline{V}_{\delta}) \leq 2^{\aleph_0}$. Using the homogeneity of X we can find an open cover \mathcal{V} of X such that $L(\overline{V}_{\delta}) \leq 2^{\aleph_0}$, for every $V \in \mathcal{V}$. Choosing a finite subcover of \mathcal{V} we see that $L(X_{\delta}) \leq 2^{\omega}$:

The following lemma was noted independently by de la Vega and Ridderbos (see [6] and [22] for the proof of much more general statements).

Lemma 3.6. Let X be a homogeneous space. Then $|X| \leq d(X)^{\pi\chi(X)}$.

Theorem 3.7. (Juhász and van Mill) Let X be a compact homogeneous space which is the union of countably many dense countably tight subspaces or of finitely many countably tight subspaces. Then $|X| \leq 2^{\omega}$.

Proof. Use homogeneity to fix, for every $x \in X$, a subseparable G_{δ} set G_x containing x. We have $w(G_x) \leq 2^{\omega}$. Note that $\mathcal{U} = \{G_x : x \in X\}$ is a G_{δ} cover of X, so there is $C \in [X]^{2^{\omega}}$ such that $X \subset \bigcup \{G_x : x \in C\}$. For every $x \in C$, we can fix a continuum-sized $D_x \subset G_x$, dense in G_x . Then $D = \bigcup \{D_x : x \in C\}$ is a dense subset of X having cardinality at most continuum, proving that $d(X) \leq 2^{\omega}$. Using the above lemmas we obtain that $|X| \leq 2^{\omega}$.

References

- A.V. Arhangel'skii, *Topological function spaces*, Kluwer Academic Publishers, Mathematics and its Applications, vol. 78, Dordrecht, Boston, London, 1992.
- [2] A.V. Arhangel'skii, G_{δ} -modification of compacta and cardinal invariants, Commentationes Mathematicae Universitatis Carolinae **47** (2006), 95–101.
- [3] O.T. Alas, More topological cardinal inequalities, Colloquium Mathematicae 65 (1993), pp. 165–168.
- [4] A. Arhangel'skii, J. van Mill and G.J. Ridderbos A new bound on the cardinality of power-homogeneous compacta, Houston Journal of Mathematics 33 (2007), 781–793.
- [5] A. Bella, On two cardinal inequalities involving free sequences, Topology and its Applications 159 (2012), 3640–3643.
- [6] A. Bella and N. Carlson, On cardinality bounds involving the weak Lindelöf degree, Quaestiones Mathematicae 41 (2018), 99-113.
- [7] N. Carlson, The weak Lindelöf degree and homogeneity, Topology and its Applications 160 (2013), 508–512.
- [8] N. Carlson, J. Porter and G.J. Ridderbos, On cardinality bounds for homogeneous spaces and the G_κ-modification of a space, Topology and its Applications 159 (2012), 311–332.

- [9] R. de la Vega, A new bound on the cardinality of homogeneous compacta, Topology Appl. 153 (2006), 2118-2123.
- [10] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proceedings 13 (1988), 17–72.
- [11] R. Engelking, General Topology, PWN, Warsaw, 1977.
- [12] W. G. Fleissner, Some spaces related to topological inequalities proven by the Erdös-Rado Theorem, Proceedings of the American Mathematical Society 71 (1978), 313– 320.
- [13] W. Fleischmann and S. Williams The G_{δ} -topology on compact spaces, Fundamenta Mathematicae 83 (1974), 143–149.
- [14] M.E. Gewand, The Lindelöf degree of scattered spaces and their products, Journal of the Australian Mathematical Society (series A), 37 (1984), 98–105.
- [15] I. Juhász, On two problems of A.V. Archangel'skii, General Topology and its Applications 2 (1972) 151-156.
- [16] I. Juhász, Cardinal Function in Topology Ten Years Later, Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980.
- [17] I. Juhász and J. van Mill, On σ -countably tight spaces, Proc. Amer. Math. Soc. 146 (2018), 429–437.
- [18] M. Kojman, D. Milovich and S. Spadaro, Noetherian type in topological products, Israel Journal of Mathematics 202 (2014), 195–225.
- [19] K. Kunen, Paracompactness of box products of compact spaces, Transactions of the American Mathematical Society 240 (1978), 307–316.
- [20] R. Levy and M.D. Rice, Normal P-spaces and the G_δ-topology, Colloquium Mathematicum 44 (1981), 227–240.
- [21] E.G. Pytkeev, About the G_λ-topology and the power of some families of subsets on compacta, Colloq. Math. Soc. Janos Bolyai, 41. Topology and Applications, Eger (Hungary), 1983, pp.517-522.
- [22] G.J. Ridderbos, On the cardinality of power-homogeneous Hausdorff spaces, Fundamenta Mathematicae 192 (2006), 255–266.
- [23] S. Spadaro and P. Szeptycki, G_{δ} covers of compact spaces, Acta Math. Hungar. **154** (2018), 252–263.
- [24] S. Spadaro, Infinite games and chain conditions, Fundamenta Mathematicae 234 (2016), 229–239.
- [25] J. Vaughan, Countably compact locally countable T₂ spaces, Proceedings of the American Mathematical Society 80 (1980), 147–153.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CATA-NIA, CITTÁ UNIVERSITARIA, VIALE A. DORIA 6, 95125 CATANIA, ITALY *E-mail address*: bella@dmi.unict.it

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CATA-NIA, CITTÁ UNIVERSITARIA, VIALE A. DORIA 6, 95125 CATANIA, ITALY *E-mail address:* santidspadaro@gmail.com