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Clickstream Data Analysis: A Clustering Approach

Based on Mixture Hidden Markov Models

Abstract

Nowadays, the availability of devices such as laptops and cell phones enables one to

browse the web at any time and place. As a consequence, a company needs to have a

website so as to maintain or increase customer loyalty and reach potential new customers.

Besides, acting as a virtual point-of-sale, the company portal allows it to obtain insights on

potential customers through clickstream data, web generated data that track users accesses

and activities in websites. However, these data are not easy to handle as they are complex,

unstructured and limited by lack of clear information about user intentions and goals.

Clickstream data analysis is a suitable tool for managing the complexity of these datasets,

obtaining a cleaned and processed sequential dataframe ready to identify and analyse

patterns.

Analysing clickstream data is important for companies as it enables them to under-

stand differences in web user behaviour while they explore websites, how they move

from one page to another and what they select in order to define business strategies tar-

geting specific types of potential costumers. To obtain this level of insight it is pivotal to

understand how to exploit hidden information related to clickstream data.

This work presents the cleaning and pre-processing procedures for clickstream data

which are needed to get a structured sequential dataset and analyses these sequences by

the application of Mixture of discrete time Hidden Markov Models (MHMMs), a statisti-

cal tool suitable for clickstream data analysis and profile identification that has not been

widely used in this context. Specifically, hidden Markov process accounts for a time-

varying latent variable to handle uncertainty and groups together observed states based

on unknown similarity and entails identifying both the number of mixture components re-

lating to the subpopulations as well as the number of latent states for each latent Markov

chain.

However, the application of MHMMs requires the identification of both the number

of components and states. Information Criteria (IC) are generally used for model selec-
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tion in mixture hidden Markov models and, although their performance has been widely

studied for mixture models and hidden Markov models, they have received little attention

in the MHMM context. The most widely used criterion is BIC even if its performance for

these models depends on factors such as the number of components and sequence length.

Another class of model selection criteria is the Classification Criteria (CC). They were

defined specifically for clustering purposes and rely on an entropy measure to account for

separability between groups. These criteria are clearly the best option for our purpose, but

their application as model selection tools for MHMMs requires the definition of a suitable

entropy measure.

In the light of these considerations, this work proposes a classification criterion based

on an integrated classification likelihood approach for MHMMs that accounts for the two

latent classes in the model: the subpopulations and the hidden states. This criterion is

a modified ICL BIC, a classification criterion that was originally defined in the mixture

model context and used in hidden Markov models. ICL BIC is a suitable score to identify

the number of classes (components or states) and, thus, to extend it to MHMMs we de-

fined a joint entropy accounting for both a component-related entropy and a state-related

conditional entropy.

The thesis presents a Monte Carlo simulation study to compare selection criteria per-

formance, the results of which point out the limitations of the most commonly used infor-

mation criteria and demonstrate that the proposed criterion outperforms them in identify-

ing components and states, especially in short length sequences which are quite common

in website accesses. The proposed selection criterion was applied to real clickstream data

collected from the website of a Sicilian company operating in the hospitality sector. Data

was modelled by an MHMM identifying clusters related to the browsing behaviour of

web users which provided essential indications for developing new business strategies.

This thesis is structured as follows: after an introduction on the main topics in Chapter

1, we present the clickstream data and their cleaning and pre-processing steps in Chapter

2; Chapter 3 illustrates the structure and estimation algorithms of mixture hidden Markov

models; Chapter 4 presents a review of model selection criteria and the definition of the

proposed ICL BIC for MHMMs; the real clickstream data analysis follows in Chapter 5.
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Chapter 1

Introduction

The interaction between business and consumer has changed dramatically over the past

few decades as a result of new technology; in the present era, every company is online

or exists virtually completely online, selling goods and services to customers directly

through the Internet. The more established businesses understand the value of bolstering

their marketing plans by setting up online sales channels, though. The digitalization of

transactions, an online presence through web portals, social media advertising opportuni-

ties, and real-time product and person traceability give businesses access to new, highly-

generated streams of data. If properly handled, this enormous volume of data can serve

as a vital source of knowledge for developing timely and successful business strategies,

particularly in industries where there is fierce competition, like retail and services. Web

generated data such as clickstream data is specifically used to gather customer informa-

tion from a company’s website and can be used to explore browsing habits, track online

purchases, enhance website functionality, and identify profiles or clusters so as to define

strategic and operative marketing actions aimed at boosting business competitiveness and

profitability as a result. Identifying user browsing behaviour profiles is the main focus of

this thesis; to do that are both necessary techniques to manage web data and sequential

analysis methods that enable to cluster user paths in the website. However, cluster iden-

tification for sequential data is not easy to perform and requires model-based approaches

that takes into account web data limitations such as lack of information, handled via latent

variables; moreover, it requires the definition of an adequate selection criterion.

As regards web data, web Usage Mining (WUM) is a branch of Web Mining (WM)

and is essential for managing and analysing web related data in order to identify unknown
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patterns and relationships. WM is generally divided into three branches: structure mining,

content mining and usage mining. The aim of web structure mining is to obtain knowledge

from the hypertexual structure representing the connections of the web. Web content

mining information to be extracted directly from the content of the pages and to classify

web pages according to similarity related to their purpose, key words, web media and

text files. Web usage mining is the analysis of access patterns through website log files.

Specifically, it focuses on the analysis of sequences of clicks made by users exploring

websites. It requires long and time-consuming data pre-processing in order to obtain

usable dataset.

Traces left by users interacting with the website, may allow managers to obtain in-

formation on purchase purposes, for example. Moreover, an important task concerns the

classification of users according to a certain characteristic or different exploratory motiva-

tions. Some users, in the initial stages of browsing the website, focus on finding product

information (Pavlou & Fygenson, 2006). In this phase users view product features and

compare alternative products before making a purchase decision. After an information-

gathering phase they switch to a buying phase. However, the collection of information

is not always followed by the actual purchase of the product: it could be out of simple

amusement or curiosity (Y.-H. Park & Fader, 2004). Sometimes users explore a website

only for their information content in order to make comparisons with other portals that

sell similar products. Users exploring websites behave in a similar way to consumers

visiting retail stores; moving directly and quickly towards their goal with little time spent

checking each product or moving slowly, spending more time analysing different brands

and exploring every corner of the store (see Titus & Everett, 1995).

Understanding and classifying users by both movements and goals is one of the most

important results that can be obtained from clickstream data analysis. However, although

the amount web data is generally enormous, it is not simple to handle and does not re-

port enough information to identify objectively the clusters or understand exploration

behaviour. User’ actions in website are recorded by log-files. They track in chronological

order every web resource that is requested by web users while they access a web page.

Specifically, these resources can be page HTML files, images, audio and video files, JAVA

codes, etc, that are necessary to download the page.

Accurate analysis of clickstream data requires understanding how to clean and process

them to obtain a sequential dataframe, then defining how to extract information from
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them and identifying profiles. The cleaning process generally involves removing useless

information such as page elements that are not the focus of the analysis. One of the main

issues is identifying web users because IP addresses are insufficient, being assigned to

users by the web server. Moreover, web programs known as bots, spiders and crawlers

which scan websites to update recommendations in search engines, need to be removed.

Unfortunately, their identification is not always simple to do.

Cleaned and processed sequential data is configured as a list of subjects to which one

or more sets of ordered objects are assigned (the web pages). The selected object and

the order of selection both represent the subjects’ underlying motivations and desires.

The only information available is generally related to the characteristics of the selected

items/page (information about users may be limited or absent in log-files) and it is not

clear which of these has the most significant influence on the selection and why.

That being said, as for the identification of consumer profiles, there is a lack of avail-

able information in clickstreams related to user characteristics and hidden goals and mo-

tivations. The only information available about consumers is their movements in the

website as shown by the web sequences. Thus, the clustering approach is mostly based

on the differences in sequence patterns. These differences may represent a heterogeneous

population, with groups of subjects exhibiting similar behaviour. In order to identify

user clusters we can rely on sequential clustering based on similarity measures between

sequences. This approach is widely used to cluster static categorical sequences such as

genetic sequences. However, its extension to a dynamic process is not simple, particularly

as regards the definition of a similarity measure.

Another approach used to identify groups of sequences is model-based clustering,

accounting for the evolution of sequences over time.

Given the discrete nature of web data, statistical models such as discrete- time Mixture

Markov Models (MMMs) are becoming increasingly popular in analysing clickstreams as

they can model sequences based on Markov processes and take into account categorical

latent variables representing subgroups within the population.

Models based on mixture Markov models (MMMs) are used to identify clusters by

assuming that users in the same group move similarly between web pages, i.e., that the

sequences evolve according to the same Markovian process. This approach is an in-

termediate one between assuming that all sequences follow a single Markov model and

assuming transition probabilities that vary for each sequence, which is rarely used due to
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model complexity.

It is important to keep in mind that our goal is to identify browsing profiles to gain in-

sight into user behavior. However, MMMs cannot capture similarities between sequences

related to groups of pages responding to specific user needs, which may be crucial in

understanding why certain pages are selected. For instance, web pages or thematic areas

in the site may serve similar goals and needs during user website exploration. For exam-

ple, different pages may be selected by users who are in a “mental state” of information

search, or different pages or thematic areas in the site may be perceived as less important

auxiliary pages and are selected in the advanced stages of exploration.

MMMs do not capture similarities between pages and instead perceive each page as an

observed state completely unrelated to others. This results in high inter-sequence variabil-

ity, leading MMMs to identify more behaviour profiles than necessary. While similarities

between web pages can sometimes be deduced from the site itself, this is not always the

case. The identification of behaviour profiles requires methods able to take into account

the underlying reasons why a user accesses one page over another and this information is

hidden and not present in the log files.

That being said, statistical models with hidden variables such as Mixture Hidden

Markov Models (MHMMs, Vermunt et al., 2008) are particularly suitable for explor-

ing web sequences and reveal unknown variables influencing browsing behaviour, even

though they have received little attention from the empirical literature. MHMMs enable

us to take two levels of uncertainty into account; the evolution of a latent process which

explains why a subject moves from one item to another and a hidden variable related

to the presence of clusters representing selection behaviour profiles. Specifically, such

a model-based clustering approach enables us to objectively identify consumer groups

accounting for dynamic sequence behaviour. However, using MHMMs to find clusters

of sequences requires methods of model selection to identify the unknown number of

clusters and hidden states.

Model selection criteria are generally based on scores derived from Information Crite-

ria (IC), which, however, cannot select the correct number of components and states (see

e.g. Celeux & Durand, 2008; Costa & Angelis, 2010; Dias, 2006; Helske et al., 2018).

Biernacki et al. (2000) showed that IC, such as BIC, can identify the correct number of

components in the context of mixture models if the latter show a high degree of sepa-
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ration.1 On the other hand, in identifying the number of latent states in hidden Markov

models, Costa and Angelis (2010) showed that BIC tend to underestimate their number

for short sequences. When we deal with mixture hidden Markov models, IC should be

used carefully and their behaviour needs to be explored. It is worth noting that IC does

not consider the degree of separation between latent classes, which may lead to selecting

a model that identifies a low-quality data partition, thus making interpretation more diffi-

cult.2 Another approach to model selection is based on Classification Criteria (CC), which

refer to complete-data log-likelihood and produce a model selection that accounts for the

classification quality of the latent classes through a measure of entropy. However, this

approach has received little attention in the literature on mixture hidden Markov models.

Starting from the literature on model selection for mixture hidden Markov models, the

main contribution of this thesis is the proposal of a classification criterion in the MHMM

context based on a joint entropy measure that accounts for both mixture components and

hidden states.

Finally, an application to real clickstream data is presented in the final chapter and

aims to analyse web user accesses relating to the PalermoTravel3 website in order to ex-

plore the browsing behaviour of its users. This is the website of a Sicilian company that

offers hospitality services and information related to the province of Palermo. The portal

is divided into thematic areas which can be accessed via a menu on the home page of

the site. The Attraction area provides information on seaside and landscape areas, mu-

seums, monuments, gastronomy or general information on Sicily. The Accommodation

area allows users to view pages of holiday apartments for rent and to carry out thematic

research, based on the chosen city of destination, the period of interest, the number of

guests, the preferred price range and other additional features such as the presence of cer-

tain services. The Service area is designed to meet the needs of tourists by offering the

possibility of obtaining transport, special equipment or food products. The Experience

area is for booking activities such as sports courses, food and wine experiences, guided

tours or cultural activities. The Event area provides an overview of upcoming concerts,

1However, “if the correct model is not in the family of considered models, BIC criterion will tend to

overestimate the correct size regardless of the separation of the clusters ”, see Biernacki et al. (2000).
2A high-quality data partition is obtained when the class membership of each unit (probability of be-

longing to a class) is high in correspondence with a given class and low compared to the other classes. On

the other hand, if the class memberships for a unit are close to each other, the classification quality is low.
3This name is a pseudonym
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festivals, theatrical performances or other activities and is updated monthly. In addition,

the site provides general information on the company and its staff, on partners and access

to bloggers and user reviews. The web server log data is in IIS-W3Cex Extendend for-

mat and was collected over a period of four months: September, October, November and

December 2017.

In summary, the goal of this thesis is to explore clickstream data used in business

contexts to support the decision-making process of management by identifying browsing

profiles based on both similarity between patterns in web sequences and between subject

characteristics, understanding how similarities and differences affect their browsing be-

haviour. To identify behavioural profiles, we propose model-based sequential clustering

via mixture Markov models. However, the lack of information related to log files makes

it difficult to understand users’ hidden goals and “mental states” behind their movements.

For example, during their exploration, users may select different web pages to satisfy the

same hidden need, such as informative or purchase-related, and mixture Markov mod-

els may miss this information, leading to a higher number of profiles to handle sequence

variability. To address this issue, we apply mixture hidden Markov models that take into

account unknown “mental states” affecting navigation and identify profiles based on what

users want, rather than what they click. However, these models require selecting both

clusters and hidden states, which we address by proposing to adapt existing likelihood- or

entropy-based information criteria. Our contribution is an entropy-based criterion, which

is a novelty in MHMMs for categorical series. We illustrate the behaviour of our criterion

on simulated and real data.

The thesis is organized as follows. Chapter 2 illustrates clickstream data structure and

their main issues in handling complexity. Specifically, the cleaning and pre-processing

phases are presented in order to generate a sequential dataset. Sequence analysis tech-

niques for data modelling and clustering are also introduced. Chapter 3 presents Markov

models and their extension to mixture Markov models and hidden Markov models. Fur-

thermore, the Estimation-Maximization algorithm for mixture hidden Markov models is

illustrated. Chapter 4 focuses on the issue of model selection related to the identification

of both number of mixture components and hidden states. Classic information criteria

are presented in a literature review, and then a classification criterion based on entropy is

proposed for MHMMs. The chapter ends with an assessment of the proposed criterion

performance through a Monte Carlo simulation study. Chapter 5 presents an empiri-
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cal study. Clickstream data from the PalermoTravel website are cleaned and processed.

Profile identification is carried out by both mixture Markov models and mixture hidden

Markov models. Finally, conclusions and future developments are presented.
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Chapter 2

Clickstream data

The continuous global growth of eCommerce and online information services creates a

continuous flow of massive amounts of data that represent user interactions with websites,

such as how users navigate through a website while browsing, which pages they choose

to access, what they purchase, the personal information they share in subscriptions, etc.

By collecting and analysing this data, companies are able to obtain important information

about their website users (and potential customers, if we consider eCommerce portals),

classify them in behaviour categories, evaluate the effectiveness of the website and im-

prove the structure and design of the portal, customize their products and services and

adapt their business strategies. Such results can be obtained by means of Web Usage

Mining (WUM), which is the identifying and analysing of the patterns in the flow of

clickstreams (the sequential list of access requests to web resources) so as to model the

browsing behaviour of web users identifying browsing profiles (Cooley et al., 1997). The

web resources mentioned above refer to web pages, images, links and so on.

The web usage mining process can be divided into three phases (B. Liu, 2007); i)

the data collection and pre-processing phase, ii) the pattern identification phase and the

pattern analysis phase.

In the first phase, data is cleaned by eliminating the resources not relevant for the analysis,

obtaining new information (e.g. by extracting the geographical positions of users from

the IPs) and defining the sessions, i.e. the sequences of resources displayed by the same

user in a defined period of time. In this preliminary phase it is possible to use other

information, such as the contents and the structure of the site, to enrich the data.

In the second phase the data is processed using data mining techniques and the hidden
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patterns reflecting user browsing behaviour are identified. Furthermore, indices are cal-

culated that are representative of website users and their sessions.

In the final phase the obtained patterns are further processed, aggregated and analysed in

order to identify hidden browsing motivations. WUM data sources are the server log files.

In some cases it is also possible to have access to additional data obtained from external

clickstreams or from demographic data sources collected from specific sites. Huang et al.

(2009), Johnson et al. (2004) and Y.-H. Park and Fader (2004) have focused on navigation

between websites while Bucklin and Sismeiro (2009), Moe (2003) and Olbrich and Hols-

ing (2011) on that within a specific site. Resul et al. (2007) analysed secondary web data

such as web server access logs, proxy server logs, browser logs, user profile registration

data, user session data, cookies, user queries, bookmark data, mouse clicks and mouse

scrolls.

The analysis of clickstream data is a precious resource for companies and can be used

for a variety of purposes. For example, it is useful in a business context as a tool of

purchasing prediction. Furthermore, it allows companies to evaluate how users react to

the design of the site and how they interact with the structure, understood as a network

of hypertext links. The second type of analysis is done through engagement measures

that estimate the level of interest of users during navigation: examples are the duration

of the visit in the website (Ghose et al., 2013), average number of pages viewed and

average time spent in each page (Huang et al., 2009) and depth of search (Johnson et al.,

2004). Olbrich and Holsing (2011) highlighted the positive correlation between these

engagement measures and purchase intention, and that the sequence of pages viewed

before a purchase is the best browsing behaviour predictor.

Looking at the sequences of pages that make up the navigation path, Canter et al. (1985)

identified four types of behaviour/route-shape: a) the path, in which the same page is not

visited more than once, b) the ring, a path that go back to the starting page, c) the loop,

a path that revisits the same page several times and d) the spike, a path that at a certain

point repeats the sequence backwards. The authors associated these types of behaviour

with purchase intention.

Finally, Drott (1998) treated several methods of web server log mining in order to improve

the design of the site and Sarukkai (2000) worked on link prediction and path analysis to

improve user navigation.

In the light of these considerations, Section 1 of this chapter presents the data relating
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to the accesses of a website i.e. log files and illustrates the cleaning and pre-processing

procedures to recognize user accesses and obtain a structured sequential dataset repre-

senting user visits in the site. The next sections present web usage mining processes and

techniques such as association analysis and Markov chains. Section 2 illustrates how the

application of the association rules allows the possible links between different pages and

sections of the website to be analysed. Section 3 presents Markov chains which allow the

user path to be traced in terms of the probability of transitions from one page or section

to another. Finally, Section 4 focuses on sequential clustering as a tool for identifying

groups of sequences with similar patterns.

2.1 Data cleaning and pre-processing

Web usage data sources are log-files extracted from websites which are typically ASCII

text files. Every time users have an interaction with a website, for example they click on

a link to visualize a page, the browser sends the visualization request to the server and the

server responds by sending the browser a large amount of different web resources needed

to access the aforementioned page. Each of these web resources are cited in the individual

lines of a log file.

These log-files register all the received requests in chronological order and the log lines

are structured in fields containing information related to the requested web resource such

as the IP address that sent the request, the time and day of the request, the URL of the

requested resource (.html files, .jpeg files, .jv files etc.), the notification of the successful

upload of a resource as a code, the number of bytes sent and received by the server, the

user-agent field, the referrer field and the user ID if the site requires registration. The

user-agent log field is one of the most important sources of information as it is a character

string that contains codes related to the browser, software and device used by the IP to

access the website,while the referrer field contains the URL of the web resource that was

requested in the previous step of the same IP.

An example of a log file is shown in the box below and a scheme of the main log fields is

presented in Table 2.2.

Log files are complex and unstructured and require cleaning and pre-processing opera-

tions before proceeding with a statistical analysis. Data cleaning involves the elimination

of all the log lines not useful for the analysis to be carried out, for example by focusing
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only on the pages viewed by the user, we exclude the information referring to images,

structural and graphics elements of the site, elements that have loading errors and so on.

Then, we remove the log fields that will not be used (for example bytes loaded).

Once the data has been cleaned, we proceed to the elimination of bots1 as explained in

the next sub-section.

Date: 2017-12-01 00:00:14 /Fields: date time c-ip cs-username s-ip cs-method cs-uri-stem cs-uri-query sc-status sc-bytes cs-bytes

time-taken cs-version cs-host cs(User-Agent) cs(Cookie) cs(Referer)

2017-12-01 00:00:14 217.182.132.1 - 31.11.32.56 - /fr/appartements/appartamenti-

e-case-vacanza-in-sicilia/casa-design-a-palazzo-

merlo-245.html - 200 156155 261 947 - - Mozilla/5.0+(compatible;+AhrefsBot/5.2;

++http://ahrefs.com/robot/) - -

2017-12-01 00:00:38 207.46.13.1 - 31.11.32.56 - /vp-tour.asp - 500 878 298 522 - - Mozilla/5.0+(compatible;+bingbot/2.0;++

http://www.bing.com/bingbot.htm) - -

2017-12-01 00:00:55 40.77.167.1 - 31.11.32.56 - /public/Passaggio.jpg - 200 82970 294 579 - - Mozilla/5.0+(compatible;+bingbot/2.0;

++http://www.bing.com/bingbot.htm) - -

2017-12-01 00:01:31 216.244.66.1 - 31.11.32.56 - /casa-style.asp id-casa=434 hl=fr 301 1647 248 455 - -

Mozilla/5.0+(compatible;+DotBot/1.1;+

http://www.opensiteexplorer.org/dotbot,+help@moz.com) - -

2017-12-01 00:01:47 66.249.70.1 - 31.11.32.56 - / - 200 118273 296 1156 - - Mozilla/5.0+(compatible;+Googlebot/2.1;++http://

www.google.com/bot.html) - -

2.1.1 Bots and spiders filtering

A web crawler, spider, or search engine bot is a program that downloads and indexes

content from every corner of the Internet, registering information about web pages and

classifying them by content and keywords so that they can easily be retrieved. These bots

are also called web crawlers or spiders as crawling is the technical term used to refer to

accessing a website and retrieving data obtained through a computer program. These bots

are almost always run by search engines. By applying a search algorithm to data collected

by crawlers, search engines are able to provide useful links in response to user queries.

So a search engine such as Google or Bing is able to generate a list of web pages every

time a user send a request.

In some cases the server is able to recognize bots and spiders but their identification

is not always simple and usually requires heuristics that are defined to take into account

the website type and structure (Kohavi, 2001; Suchacka, 2014). If the server recognizes

them a string “Bot” or “Spider” is present in the user-agent field. Sometime the bots start

their activity in the website by accessing a txt file called “robot.txt”. This file specifies

the rules that these programs have to follow to access the hosted website such as which

pages they can crawl and which link to use. A “robot.txt” file is recorded in the log as the

1Programs that scan websites
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Table 2.1: Log fields example

Users A B

date 2017-10-20 2017-10-20

time 00:00:23 00:38:37

c.ip 157.55.39.1 121.235.159.1

cs.username - -

s.ip 31.11.32.56 31.11.32.56

cs.method - -

cs.uri.stem /robots.txt /palermo eng.asp

cs.uri.query - -

sc.status 200 200

sc.bytes 317 119197

cs.bytes 252 227

time.taken 175 5979

cs.version - -

cs.host - -

cs.User.Agent. Mozilla/5.0+(compatible;+bingbot/2.0; Mozilla/5.0+(Windows+NT+10.0;

++http://www.bing.com/bingbot.htm) +Win64;+x64)+AppleWebKit/537.36+(KHTML,+like+Gecko)

+Chrome/51.0.2704.106+Safari/537.36

cs.Cookie. - -

cs.Referrer. - -
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first page of bot exploration. If the bot is not easy to spot, we need to define identification

criteria. For example, it is possible to define time-based heuristics that identify a bot if an

IP address accesses pages too quickly by changing user-agent at high speed.

The bot-filtering step leads to a further issue: how to recognize users exploring the

site based on the list of accessed resources in the log-files.

2.1.2 User identification

The next step of pre-processing is to identify the users who access the website. Although

a user can make multiple visits to the same site, assigning multiple accesses to the same

user is almost impossible. What can be done to identify multiple accesses from the same

user? If users register and log-in before exploring the site, we will have a personal id

in the log field and their activity can be tracked over time. However, many users do

not log-in. An alternative is to request that a client-side cookie be accepted during the

initial exploration of the website, which allows the website to recognize subsequent visits

without requiring additional information. Unfortunately, these cases are limited compared

to users who browse anonymously.

Commonly, different accesses are identified by the IP address alone, which are not

sufficient to identify a user. Actually, since the number of IPs are limited, they are as-

signed in rotation by the ISP proxy server and the same address at different times will

correspond to different users (B. Liu, 2007). Techniques to recognize users accessing in

close proximity on the basis of the IP include the user-agent field which identifies charac-

teristics of the device and the referrer field which records the pre vious action of an IP. By

cross-referencing the information (see Table 2.2), it is possible to distinguish users during

exploration, though still with some uncertainty (Cooley et al., 1999).

2.1.3 Sessionization

Once the users have been identified by using log fields, their activity is divided into a

set of website interactions S = {S1,S2, . . . ,Sn}. As previously mentioned, if the user

is registered or has accepted the cookies it is possible to define sessions as the ni visits

made by the same i-th user at different moments in time Si = {Si,1,Si,2, . . . ,Si,ni} with

Si, j the sequence of ordered web pages selected by i-th user at their j-th visit. If this is

not possible, and therefore there is no certain correspondence between an IP address and
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Table 2.2: User identification through IP, user-agent and referrer

Time IP URL Referer User Agent
13:00 1.100.3 Page 1 - Agent1

13:01 1.100.3 Page 2 Page 1 Agent1

13:20 1.100.3 Page 3 Page 2 Agent1

13:29 1.100.3 Page 1 - Agent2

13:33 1.100.3 Page 5 Page 3 Agent1

13:35 1.100.3 Page 3 Page 1 Agent2

13:38 1.100.3 Page 2 Page 3 Agent2

13:42 1.100.3 Page 4 Page 2 Agent2

13:45 1.100.3 Page 5 Page 4 Agent2

13:51 1.100.3 Page 1 - Agent3

13:57 1.100.3 Page 3 Page 1 Agent3

14:07 1.100.3 Page 6 Page 3 Agent3

14:09 1.100.3 Page 2 Page 6 Agent3

14:13 1.100.3 Page 4 Page 2 Agent3

a real person, the sessions will be obtained by dividing the activity of the same IP on the

basis of structure or time heuristic.

As far as a structure heuristic is concerned, it uses the referrer field to track the user’s

journey through the site from the first page logged-in, and it uses this field’s missing

values to separate sessions (if this information is available). Another option is to take

into account the structure of the website and the links. If an IP moves from one page to

another where there is no direct link then the second access will be a different user.

A time heuristic can be based on session-duration or time-of-stay. By using session-

duration, we define a threshold τ as the maximum time for the same session S and the

time of the first click in a session is denoted as t0. We assign to this session every web

paged requested by the same IP at time t such that |t − t0| ≤ τ . When using time-of-stay,

we define a threshold ζ as the maximum time to spend in a page and times t1 and t2 the

ones related to consecutive pages requested by the same IP. We assign these two selected

pages to the same session S if |t2 − t1| ≤ ζ .

While the time-of-stay approach is the most common, it does have limitations that

when the IP associated at a user remains on the same page for long time, i.e. a period

greater than a conventional fixed time, the browsing is considered ended and the possible

next page, which is explored by the same IP, starts a new session. This procedure is known
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as sessionization. Although it is not possible to identify users, sessions obtained splitting

the same IP address’s activity cannot be considered related and, conventionally, they are

treated as separate sequences. Thus, we obtain a sequential dataset S = {S1,S2, . . . ,Sn}
and each element is assumed to represent a singular user visit and interaction in the web-

site.

Table 2.3 shows an example of sessionization of user activity in a website via a Path

Matrix.

The Path matrix can be analysed by applying well known techniques of data mining

such as association rules to understand relationships between different web pages, statisti-

cal models such as Markov models to estimate probabilities related on users’ movements

in the website and sequential clustering techniques that reflect similarity between web

sequences and different browsing behaviour (Liu 2007).

Table 2.3: an example of Path matrix. Each line refers to an IP address and each column

is a click

S Click 1 Click 2 Click 3 Click 4 Click 5 · · ·
S1 Page 1

S2 Page 1 Page 2 Page 5

S3 Page 1 Page 4 Page 3

S4 Page 1 Page 2

S5 Page 4

S6 Page 1 Page 3 Page 2 Page 5 Page 4

S7 Page 1
...

...
...

...
...

2.2 Association rules

Association rules analysis is one of the fundamental techniques of data mining. Intro-

duced by Agrawal et al. (1993), it allows relationships between items of a dataset to be

identified, and in the context of clickstream analysis it is used to identify groups of web

resources/pages where access has been requested by the same users. Understanding rela-

tionships between web pages enables a company to have information about the tastes of

users and also to monitor the efficiency of the site structure and to consider on the basis
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of the browsing paths whether to introduce shortcuts (links) between products and pages

associated with each each other.

Let I = {i1, i2, . . . , im} be a set of items and S = {s1,s2, . . . ,sn} a set of transactions

where the element t j = {i j1, i j2, . . . , i js} is a subset of items such that t j ⊆ I. For example,

let us consider the set of 5 items I and a set of 4 transactions T represented in Table 2.4.

Table 2.4: Set of transactions in binary matrix

T i1 i2 i3 i4 i5
t1 1 1 0 1 0

t2 0 0 1 1 0

t3 1 1 1 1 0

t4 1 0 1 0 1

An association rule is an implication of the form:

X → Y, (2.1)

where

X ⊂ I,Y ⊂ I,X ∩Y = Ø

Sets X and Y are known as the antecedent and consequent of the rule. It is possible to

measure the effectiveness of the rule by computing its support and confidence.

The support of a rule is the percentage of transactions in T that contains X ∪Y , and can be

seen as an estimate of the probability P(X ∪Y ). So, it is a measure of the rule reliability

in the transaction set T . Let n be the number of transactions in T . The support of the rule

X → Y is computed as follows:

support(X → Y ) =
(X ∪Y )count

n
(2.2)

The confidence of a rule is a percentage value that measures how many of the transac-

tions in T , that contain X , also contain Y . It can be seen as an estimate of the conditional

probability P(Y |X), and it is computed as follows:

con f idence(X → Y ) =
(X ∪Y )count

Xcount
(2.3)

So, confidence determines the predictability of the rule and if the confidence value of

a rule is low it is not possible to predict Y from X with enough reliability.
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Among the data mining algorithms developed for association rules the best known is

the apriori algorithm (Agarwal, Srikant, et al., 1994). This method determines the rules

by firstly identifying the sets of items satisfying a minimum threshold of support, then

identifying rules that satisfy a minimum threshold of confidence.

In the context of the association rules, the calculation of lift values is interesting.

These are indices used to check whether the association rules are effective in predicting

user behaviour. Given a sequence, the lift measure is calculated as the ratio between

the conditional probability of an event and the probability of the event occurring in the

absence of the sequence. The index provides an estimate of the improvement of the

predictive capacity of the rule. Thus, if we consider as items the web pages belonging

to different categories, the lift is the ratio between the probability of accessing a page in

category Y conditional on the display of other category pages, and the probability that a

page in category Y is accessed; that is

li f t(X → Y ) =
con f idence(X → Y )

P(Y )
(2.4)

Lift values greater than 1 indicate that when the probability of displaying the goal page

increases so does the number of the user’s display of other page categories. When lift

values are lower than one, this indicates that the display of the other categories decreases

the probability of visualization.

2.3 The statistical Markov models

The association rules presented in the previous section are simple tools to understand

how certain items/pages can increase or decrease the visualization of others. However,

a statistical approach would allow us to exploit additional information as covariates of a

regression model and to predict certain outcomes. Generally, in clickstream data analysis

regression models have been used to predict a purchase event in eCommerce websites

through generalized linear models (see e.g. Moe et al., 2002; Moe & Fader, 2004; Sis-

meiro & Bucklin, 2004) and also to estimate session duration (Bucklin & Sismeiro, 2003).

Association rules consider the set of pages as a static object, ignoring the se- lection order

as users explore the website whereas Markov processes allow patterns to be analysed,

taking into account the probabilistic nature of users’ movements. Markov models are

designed to catch the evolution of a sequence of random variables corresponding to the
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states of a system, where the probability of a state depends only on some of the previous

states in the sequence. Markov chains can be used for the analysis of clickstreams and

browsing behaviour considering the different pages of the website as the system states and

predicting the probability of being on a particular page given the previous one (or given

a set of previous pages). Sarukkai (2000) used first-order Markov models to clickstream

data adapting a different model for each web user. Eirinaki et al. (2005) proposed adding

information about the structure of the website by considering the application of Markov

model on a graph structure accounting for web pages links. Montgomery et al. (2004)

considered a multinomial probit model accounting for the dynamic nature of clickstream

through a hidden Markov process.

To be precise, a discrete-time Markov chain is a stochastic process Yt satisfying the

Markov property that at each time t takes state yt from a countable set R with probability

that depends only on the previous states. If the probability of being in a state does not

depend on time t then it is a time-homogeneous Markov chain. Moreover, a Markov chain

is said to be “of order g” if the transition probability depends on the previous g states. If

the state space is finite, the process can be described by transition matrices A(g), where the

generic element a(g)h j is the probability of transitioning from state h at time t −g to state j

at time t.

In the WUM context, the probability of users moving to a web page depends on their

navigation behaviour, represented by the previous g visited pages (Moe, 2003). The pa-

rameters of a time-homogeneous Markov chain of the order g can be estimated using the

model proposed by Raftery (1985) based on an approximation of the distribution of state

probabilities obtained as a weighted sum of g previous state probabilities.

A = [ah j] =

Page 1 . . . Page j . . . Page R



a11 . . . a1,R Page 1
...

... . . . ... Page h
...

aR,1 . . . aR,R Page R

Where A is an R × R transition probability matrix. Markov chains allow one to estimate

transition probabilities that represent the whole dataset and, thus, they assume that all
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users behave similarly when they access the site. However, this is clearly far from real-

ity, and we are interested in understanding the differences in users’ browsing attitudes.

In the next section, we focus on sequential clustering as a tool to partition clickstream,

identifying different patterns of behaviour.

2.4 Clustering web sequences

Clustering is a technique for grouping a set of elements based on similar characteristics

and in the context of web usage mining it is about identifying groups of users based on

behavioural similarities. Identifying behavioural clusters is particularly useful for man-

agement in deciding marketing strategies for different website user profiles.

As user behaviour is represented by categorical sequences, identifying such groups

relies on sequential data analysis techniques to discover statistically relevant temporal

structures and common patterns in sequences.

Identifying these patterns in sequential data is generally based on measures of similarity

used to define distance matrices between sequences (Abbott & Forrest, 1986; Abbott &

Tsay, 2000) or on model-based sequential clustering techniques such as mixture Markov

models and their extensions (Vermunt et al., 1999).

As regards the former approach, defining what one means by similarity between cate-

gorical sequences is vital in sequence data analysis. Once a similarity measure or criterion

is identified the sequential data can be partitioned in groups and further explored with re-

spect to information from additional sequences.

Generally, similarities between sequences are measured by counting the matching at-

tributes. Some examples of these are the Longest Common Prefix or LCP (Elzinga, 2006)

based on the number of common elements in the same position and the Hamming measure

(Hamming, 1950), which is based on a number of different elements. These two measures

require that each sequence is of the same length.

Another way to define similarity accounts for a cost function, used to measure the minimal

cost of transforming one sequence into another, e.g the Dynamic Hamming Distance or

DHD (Lesnard, 2006). The previous measures, however, do not account for shifting, i.e.,

considering two sequences to be similar if they have the same elements but shifted by one

or more positions. Measures such as the Optimal Matching distance OM (Levenshtein et

al., 1966) allow for sequences of different lengths as when they transform one sequence
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into another, they account for both the cost of changing elements and the cost of adding

or deleting elements shifting their position.

Similarity measures between sequences allow groups of web sequences to be identified by

defining distance matrices and applying classic clustering techniques (see e.g. Banerjee

& Ghosh, 2000; Wei et al., 2012). A common clustering technique for categorical data

is K-medoids (H.-S. Park & Jun, 2009), which is based on the most centrally located ele-

ments. However this approach is computationally intensive and requires a known number

of clusters. A more efficient algorithm is the leader clustering algorithm which randomly

selects medoids and assigns the other elements by similarity (Yu & Luo, 2011). Addi-

tional information can also be used in identifying clusters of web sequences. Banerjee

and Ghosh (2001), for example, clustered web users by defining an algorithm based on

the longest Common sequences that also account for time spent inside pages.

However, clustering methods based on distance and similarity cannot always be ex-

tended to time series as the definition of such a distance measure is not unimportant,

unless we ignore the dynamic nature of the phenomenon by treating sequences as static.

This approach, when applied to clickstream data, does not give any insight into web user

behaviour.

It is clear, therefore, that the model-based sequential clustering approach is to be preferred

and by adopting Mixture Markov Models (MMMs), it is possible to catch different sub-

populations in the data. Each subpopulation has its Markov model so that they may differ

for the initial probabilities, transition matrices or both.

In the context of clickstream data, these differences mean that sequences belonging to the

same cluster describe different browsing behaviour, such as starting the web path from a

specific page or the web pages they select while exploring a website.

Markov models have been used on clusters of web sequences Sarukkai (2000) used

first-order Markov models to clickstream data adapting a different model for each web

user. However, since the number of users in a real application is extremely high this

approach is not feasible. Cadez, Heckerman, et al. (2000) focused on the problem of

sequence classification for web data, applying a mixture of first-order Markov models

to identify clusters of users by considering the web page categories accessed as states

of the Markov chain (see also Cadez, Gaffney, et al. (2000)). Dias and Vermunt (2007)

highlighted the usefulness of mixture Markov models for the analysis of web models as

they adapt both to heterogeneity between sequences and to serial dependencies. Mel-
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nykov (2016) implemented a bi-clustering approach with a reduced number of categories

to avoid the issue of increasing the number of parameters.

However, it is worth noting that classic Markov models do not take into account the

unobserved heterogeneity related to lack of information about navigation purposes. They

consider users’ movements from one page to another, but do not clarify the reason for

these movements. It is legitimate to assume that the pages clicked on by users exploring

the site are just the expression of “mental states ”that change while browsing the site. For

example, the user could start from a preliminary phase in which he selects generic pages,

then moves on to an exploratory phase in which he clicks on information pages and finally

moves on to a purchase phase and selects product pages. This assumes that the transitions

actually happen between these hidden “mental states ”and the probabilities of accessing

the pages depend on them. Thus, if we extend to hidden Markov models, we suppose that

sequences evolve according to a hidden Markov process.

The difference between mixture hidden Markov models and mixture Markov models is

that MMMs cluster based on observed sequence similarity, whereas MHMMs cluster

based on the hidden sequences representing attitude changes. Furthermore, the use of

a HMM allows for the clustering of web pages as well as sequences using the latent states

of the Markov process. Specifically, if a subset of observed states (i.e. clicks on web

pages) has high probabilities only conditioned to a specific latent state and low probabili-

ties to other latent states, that state reveals the similarity of intention and “value ”attributed

by users to that group of pages. This leads to clusters of sequences of similar hidden user

motivations. Furthermore, hidden states will also account for part of sequence variability,

allowing a smaller number of clusters to represent user behaviour.

Nevertheless, there are very few applications of mixture hidden Markov models to

identify subpopulations in clickstream data. One interesting study was that of Smyth

(1997), who used these models as a clustering technique to classify generic sequences of

observations. Smyth (1999) indicated web browsing behaviour as an interesting applica-

tion. Later, Scott and Hann (2006) presented an application to multiple web sequences

related to different web sessions for each user. Another application for clickstream data

was provided by Ypma and Heskes (2002)), who classified users assuming prior informa-

tion on the hidden states.

An advantage in analysing and clustering web sequences by using mixture hidden

Markov models instead of mixture Markov models is that a latent Markov structure can
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take into account sequence uncertainty and identify less components while the MMMs

would need a higher number of components to represent homogeneous browsing be-

haviour.

2.5 Discussion

Over the past few years the speed with which it is possible to carry out commercial trans-

actions on the world wide web has led to an exponential growth of online business. We

are able to follow the browsing behaviour of users by identifying the paths taken in the

form of sequences of pages viewed. Analysis of user behaviour allows website owners to

gain in-depth knowledge about their potential online shoppers and to customize product

messages. The tool for obtaining this level of information is web usage mining, defined as

the process of applying data mining techniques in order to discover the browsing patterns

of users from web data.

This chapter presented clickstream data and its source of information, i.e. log-files.

We illustrated how to clean this data by recognizing bots, identifying web users and their

activity in the website. Then we explained how to process clickstream data to obtain a

structured sequential dataset that can be used to identify patterns, applying data mining

techniques such as association rules.

Furthermore, we illustrated sequential modelling by using Markov models that allow us to

understand users’ movements by estimating transition probabilities between web pages.

Finally, we presented sequential clustering techniques based on similarity measures and

model-based clustering. In particular, we focused on the model-based approach present-

ing mixture Markov models.

However, since classic Markov models do not take into account the unobserved het-

erogeneity related to clickstream data, statistical models with hidden variables are to be

preferred in analysing web sequences. Among them, Hidden Markov Models (HMMs)

are the most suitable to explore sequences and reveal the unknown variables influencing

browsing behaviour.

HMMs take into account how the sequence of clicks that represent the user’s path depends

on a latent Markov chain in which latent states allow us to classify sequence observations

(web pages) into page groups. These groups reflect similarities between pages that may

be related to unknown “states of mind ”that influence navigation choices and reveal users’
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goals as they navigate the site. That being said, sequential clustering by means of mix-

ture hidden Markov models would enable us to identify profiles that better reflect user

behaviour since sequences are clustered by hidden goals rather than just accessed pages.

In the next chapter we will focus on the modelling aspect of sequence analysis and

we will present the Markov models and their extension to mixture Markov models and

mixture hidden Markov models. MHMMs are the modelling approach we selected for

clustering clickstream and we will present parameter estimation algorithms such as the

Estimation-Maximization and forward-backward.
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Chapter 3

Mixture hidden Markov models

3.1 Introduction

As pointed out in previous chapters, clickstream data is an essential source of information

that businesses exploit to explore user behaviour on the web and determine prompt and

effective business strategies (Cooley & Srivastava, 2000; Das & Turkoglu, 2009; H. Liu

& Kešelj, 2007). This data, collected in log files, enables user activity inside websites

to be tracked as sequences of pages. Each sequence element corresponds to a web page

visited by a user (identified by an IP address) at time t (a click).

A severe limitation in using clickstream data is related to the lack of information about

browsing behaviour. This sequential data shows which pages users access but does not ex-

plain why they navigate from page to page or exactly what they are looking for. Sequences

that are similar in their order can actually represent different exploratory behaviour and

goals on the website. There is a need to understand the hidden motivations of users in

navigating the site as they can indicate the presence of sub-populations related to different

patterns of behaviour. Extracting this type of information from the data would allow for

the identification of differences in browsing behavior and sub-populations and this would

be extremely useful for companies in choosing suitable web marketing strategies.

To this end, Mixture Hidden Markov Models (MHMMs) can be used to detect under-

lying structures and cluster data into homogeneous subsets representing similar browsing

behaviour and identify different profiles of users.

Starting from Markov models and hidden Markov models for categorical sequences, in

this chapter Mixture Hidden Markov models will be presented. Specifically, we focus
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on mixture of first-order hidden Markov models with time-constant covariates and ob-

served sequences generated by a discrete random variable. In these models, a discrete

latent variable reflects different longitudinal patterns in the sequences. These patterns re-

flect different unknown subpopulations called latent classes, which, in turn, are obtained

through sequences assigned to them with specific probabilities (Van de Pol & Langeheine,

1990).

The chapter is structured as follows. Section 2 introduces Markov models and their ex-

tension to mixture Markov models. Then it presents hidden Markov models and mixture

hidden Markov models. Section 3 focuses on parameter estimation for MHMMs present-

ing the Estimation-Maximization and forward-backward algorithms.

3.2 Markov Models and extensions

Markov models are statistical tools for randomly changing systems and are commonly

used for modelling sequential data. The main assumption of these models is that the

dynamic behaviour of time series depends on a process that evolves according to a Markov

chain (Ching & Ng, 2006).

Let Yi = (Yi1,Yi2, . . . ,YiTi) be the generic i-th sequence of length Ti with card|Yi| = R

and assume n independent sequences. Let π = {πr}r∈R be the probability of initial state

and A= {a j,h} j∈R,h∈R is the R×R transition probability matrix. The element a j,h indicates

the probability of making a transition from state j at time t − 1 to state h at time t. The

log-likelihood for a Markov model is

ℓ(Θ;y) =
n

∑
i=1

log

(
πyi,1

Ti

∏
t=2

ayi,t−1,yit

)
,

Where Θ = {π,A} is the set of parameters. In this chapter, we consider time-discrete

homogeneous Markov models in which the state at time t only depends on the state at

previous time (t − 1) and does not depend on the time. Markov models assume that the

population is homogeneous and that the model parameters are the same for all sequences.

However, we can account for a heterogeneous population through a time-constant latent

variable, defining the mixture Markov model.
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3.2.1 Mixture Markov Models

Let M = {M1,M2, . . . ,MK} be a set of Markov models, C = {C1,C2, . . . ,Cn} is a vector

such that the variable Ci = k is a cluster membership indicator for unit i = 1,2, . . . ,n,

Θk = {πk,Ak} the set of parameters for each sub-model Mk related to each subpopulation,

for k = 1, . . . ,K. For each sequence yi, we can define the prior cluster probabilities as ωk.

Specifically, P(Ci = k|Θ) = ωk is the probability that the model parameters are those

related to the k-th Markov model Mk in the k-th component.

Let Xi = (Xi1, . . . ,XiQ) be a vector of Q time-constant covariates for the i-th sequence

and γk the vector of regression coefficients corresponding to cluster k. This set of covari-

ates can be used to estimate cluster memberships ωk
i of each sequence according to the

following multinomial logistic regression model:

ω
k
i = P(Ci = k|Xi) =

eγk·Xi

1+ΣK
j=2eγ j·Xi

, (3.1)

where γk is the set of coefficients associated with the vector of covariates Xi for obser-

vation i and the k-th class, and ∑
K
k=1 ωk

i = 1.

The log-likelihood for mixture Markov models with covariates is

ℓ(Θ;y,X) =
n

∑
i=1

logP(yi|Θ,Xi) =
n

∑
i=1

log

(
K

∑
k=1

P(yi,Ci = k, |Θk,Xi)

)

=
n

∑
i=1

log

(
K

∑
k=1

ω
k
i P(yi|Θk)

)

=
n

∑
i=1

log

(
K

∑
k=1

ω
k
i ∑

u
π

k
yi1

Ti

∏
t=2

ak
yi,t−1,yi1

)
.

(3.2)

Finally, the cluster posterior probabilities P(Ci = k|yi,Xi) are obtained as

P(Ci = k|yi,Xi) =
P(yi|Ci = k,Xi)P(Ci = k|Xi)

P(yi|Θ,Xi)
,

where P(Ci = k|Xi) are the cluster memberships defined in Eq. and P(yi|Ci = k,Xi)

are conditional probabilities of the observed sequences in cluster k. P(yi|Θ,Xi) is the

likelihood of a MMM for a sequence i and the product P(yi|Ci = k,Xi)P(Ci = k|Xi) is

the likelihood for sequence i given that we are in cluster k. These two quantities are



27

computed by using the forward-backward algorithm. Figure 3.1 schematizes mixture

Markov models with time-constant covariates.




Figure 3.1: Structure of a mixture Markov model with covariates. The variables Yt

and X time-constant covariates are observable, Mk identify the k-th Markov model with

k = 1,2, . . . ,K and K indicates the number of mixture components, ωk are the mixture co-

efficients, Θk = {πk,Ak} are the model parameters representing initial probabilities and

transition matrix, respectively, for each component k

3.2.2 Hidden Markov Models

Let Yi = (Yi1,Yi2, . . . ,YiTi) be a discrete random vector representing a sequence of length

Ti with card|Yi j| = R, Ui = (Ui1,Ui2, . . . ,UiTi) the i-th hidden random sequence, with

card|Ui j| = S. Let π = {πs}s∈S be the probability vector of initial hidden states and

A = {ah j}h∈S, j∈S a S×S transition probability matrix. An element ah j indicates the prob-

ability of making a transition from state h at time t − 1 to state j at time t. Finally,

a S ×R emission matrix B = {bsr}s∈S,r∈R connects the hidden states and the observed

states, where bsr = bs(r) is a probability of hidden state s emitting observed state r. Let us

assume that we collect n independent sequences y = (y1,y2, . . . ,yn) generated by the same

hidden Markov model. The model parameter Θ = {π,A,B} is estimated by maximising

the log-likelihood
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ℓ(Θ;y) =
n

∑
i=1

logP(yi|Θ) =
n

∑
i=1

log
(
∑
u

P(yi|u,Θ)P(u|Θ)
)

=
n

∑
i=1

log

(
∑
u

P(ui1|Θ)P(yi1|ui1,Θ)
Ti

∏
t=2

P(uit |ui,t−1,Θ)P(yit |uit ,Θ)

)

=
n

∑
i=1

log

(
∑
u

πui1bui1(yi1)
Ti

∏
t=2

aui,t−1,uit buit (yit)

)
,

where the hidden state sequences ui = (ui1,ui2, . . . ,uiTi) take all possible combinations of

values in the hidden state space S, and where yit are the observations of unit i at time t,

πi1 = P(Ui1 = s) ∀i ∈ {1,2, . . . ,n} and s ∈ {1, . . . ,S} is the initial probability of the hid-

den state at time t = 1 in sequence ui; aui,t−1,uit = P(Uit = j|Ui,t−1 = h) ∀i ∈ {1,2, . . . ,n}
and h, j ∈ {1, . . . ,S} is the transition probability from the hidden state at time t −1 to the

hidden state at t; and buit (yit) = P(Yit = r|Uit = s) with s ∈ {1, . . . ,S} and r ∈ {1, . . . ,R}
is the probability that the hidden state of subject i at time t emits the observed state at t,

in other words the state-dependent conditional probabilities.

3.2.3 Mixture Hidden Markov Models

Let M = {M1,M2, . . . ,MK} be a set of HMMs, C = {C1,C2, . . . ,Cn} is a vector such

that the variable Ci = k is a cluster membership indicator for unit i = 1,2, . . . ,n, Θk =

{πk,Ak,Bk} is the set of parameters for each sub-model Mk, related to each subpopulation

k = 1, . . . ,K. For each observed sequence yi, we can define the prior cluster probabilities

that the model parameters are those related to the k-th sub-model Mk as P(Ci = k) = ωk.

Let Xi = (Xi1, . . . ,XiQ) be a vector of Q time-constant covariates for the i-th sequence and

γk the vector of regression coefficients corresponding to cluster k. This set of covariates

can be used to estimate cluster memberships ωk
i as seen for mixture Markov models in

equation 3.1.
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The log-likelihood for MHMMs is

ℓ(Θ;y,X) =
n

∑
i=1

logP(yi|Θ,Xi) =
n

∑
i=1

log

(
K

∑
k=1

P(yi,Ci = k|Θk,Xi)

)

=
n

∑
i=1

log

(
K

∑
k=1

ω
k
i P(yi|Θk)

)

=
n

∑
i=1

log

(
K

∑
k=1

ω
k
i ∑

u
π

k
ui1

bk
ui1
(yi1)

Ti

∏
t=2

ak
ui,t−1,ui1

bk
uit
(yit)

)
.

(3.3)

Cluster posterior probabilities P(Ci = k|yi,Xi) are obtained as in subsection 3.2.1, equation

3.1.

Figure 3.2 schematizes mixture hidden Markov models with time-constant covariates.




Figure 3.2: Structure of a mixture hidden Markov model with covariates. The variables

Yt and X time-constant covariates are observable, the Ut are hidden variables, Mk identify

the k-th hidden Markov model with k = 1,2, . . . ,K and K indicates the number of mixture

components, ωk are the mixture coefficients, Θk = {πk,Ak,Bk} are the model parameters

representing initial probabilities, transition matrix and emission matrix, respectively, for

each component k
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3.3 Inference

The log-likelihood of MHMM complexity does not allow us to obtain an estimator in

closed form. To overcome this problem, the estimation of parameters can be carried

out through the expectation-maximization algorithm (Baum et al., 1970) jointly with the

forward-backward algorithm (Paas et al., 2007; Rabiner, 1989).

Firstly, we need to understand how to maximize the log-likelihood of MHMMs. In

these models the cluster label variable Ci and hidden sequence ui are latent. Therefore,

to obtain the maximization we will consider the complete-data log-likelihhod ℓ(Θ,u,C;y)

instead, assuming that the clusters and hidden states are known. We define the indicator

functions as follows

wi,k =

1 if Ci = k

0 if Ci ̸= k,
(3.4)

pi,k
t (h) =

1 if ui,t = h and Ci = k

0 if ui,t ̸= h ,
(3.5)

zi,k
t (h, j) =

1 if ui,t−1 = j and ui,t = h and Ci = k

0 if ui,t−1 ̸= j or ui,t ̸= h, and Ci = k .
(3.6)

Thus, wi,k takes value equal to one if the i-th hidden sequence is generated by the k-th

component, pi,k
t (h) takes value equal to one if the i-th hidden sequence at the t-th click

from the k-th component takes hidden state h, and zi,k
t (h, j) takes value equal to one if

in the i-th hidden sequence from k-th component there is a movement from state j at the

(t − 1)-th click to state h at the t-th click. The complete-data log-likelihood is defined

by using these indicator functions for the hidden variables. Specifically, the complete

log-likelihood is obtained as the sum of three elements related to initial, transition and

emission probabilities as follows
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ℓ(Θ,u,C;y) =
n

∑
i=1

wi,k
∑
h

pi,k
1 (h) logπ

k
ui1=h

+
n

∑
i=1

wi,k
∑
h, j

( Ti

∑
t=2

zi,k
t (h, j)

)
logak

ui,t−1= j,uit=h

+
n

∑
i=1

wi,k
∑
h

Ti

∑
t=1

pi,k
t (h) logbk

uit=h(yit).

(3.7)

It is possible to maximize the aforementioned complete log-likelihood by maximizing

these three expressions.

3.3.1 Expectation-Maximization algorithm

The expectation-maximization algorithm is used to compute maximum likelihood esti-

mates of parameters where there are unknown latent variables. This algorithm is a two-

step procedure. Firstly, since the hidden sequence is not observed, the algorithm consid-

ers it as missing data and estimates the expected value of the complete-data log-likelihood

ℓ(Θ,u,C;y) seen in equation (3.7), given the observed sequences and parameters obtained

in a previous step. Secondly, in the maximization step, the expected complete-data log-

likelihood is maximized, and latent Markov model parameters Θk = {πk,Ak,Bk} are es-

timated to be used in a new expectation step (Muthen & Shedden, 1999). Thus, the

estimation consists of two steps, i.e. E-step and M-step.

As far as the first step is concerned (i.e. E-step), we select initial values for Θk in each

cluster to start the iterations. We estimate wi,k, pi,k
t (h) and zi,k

t (h, j) (defined in equations

3.4, 3.5 and 3.6) as conditional expectations given current estimates of parameter Θk

obtained in the M-step
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ŵi,k = E
[
wi,k]

=
ωkP(yi|Ci = k,Θk)

K
∑

k=1
ωkP(yi|Ci = k,Θk)

(3.8)

p̂i,k
t (h) = E

[
st(h)|Θ̂k]

= P(Ui,t = h|Yi = yi,Ci = k,Θ̂k)

=
αk

it(h)β
k
it(h)

L (Θ̂k,ui;yi)

(3.9)

ẑi,k
t (h, j) = E

[
zi,k
t (h, j)|Θ̂k]

= P(Ui,t−1 = j,Ui,t = h|Yi = yi,Ci = k,Θ̂k)

=
âk

ui,t−1= j,uit=hαk
i,t−1(h)b̂

k
uit=h(yit)β

k
it(h)

L (Θ̂k,ui;yi)

(3.10)

where estimates ŵi,k, p̂i,k
t (h) and ẑi,k

t (h, j) take values between 0 and 1.

L (Θ̂k,ui;yi) is the complete likelihood evaluated at a sequence i with parameter esti-

mate Θ̂k as

L (Θ̂k,ui;yi) = π̂
k
ui1

Ti

∏
t=2

âk
ui,t−1,uit

Ti

∏
t=1

b̂k
uit
(yit)

and αk
it and β k

it are the forward and backward probabilities presented in the next sub-

section.

Regarding the M-step, we substitute previous values in equation (3.7) to maximize

the complete log-likelihood (Harte, 2006; Jamalzadeh, 2011). We obtain new parameter

estimate for each Θ̂k with k = 1,2, . . . ,K.

In the next paragraphs related to parameter estimation, we will use the simplified no-

tations πk
h instead of πk

ui1=h to identify initial probabilities, ak
j,h instead of ak

ui,t−1= j,uit=h to

identify transition probabilities and bk
h(r) instead of bk

uit=h(yit = r) to identify emission

probabilities.
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1. The first element to maximize in equation (3.7) is

n

∑
i=1

wi,k
∑
h

pi,k
1 (h) logπ

k
h .

under the constraint ∑
h

πk
h = 1. Let define the function f1

f1 =
n

∑
i=1

wi,k
∑
h

pi,k
1 (h) logπ

k
h +λ1

[
1−∑

h
π

k
h

]
with λ1 the Lagrange multiplier. Then the derivative is

∂ f1

∂πk
h
=

n
∑

i=1
wi,k pi,k

1 (h)

πk
h

−λ1,

for h = 1,2, . . . ,Sk. Finally, we obtain

π̂
k
h =

n
∑

i=1
ŵi,k p̂i,k

1 (h)

n
∑

i=1
ŵi,k ∑

h′
p̂i,k

1 (h′)
, (3.11)

2. The second element to maximize in equation (3.7) is

n

∑
i=1

wi,k
∑
h, j

( Ti

∑
t=2

zi,k
t (h, j)

)
logak

j,h

under Sk constraints ∑
j

ak
j,h = 1. Let define the function f2

f2 =
n

∑
i=1

wi,k
∑
h, j

( Ti

∑
t=2

zi,k
t (h, j)

)
logak

j,h +∑
h

λh,2

[
1−∑

j
ak

j,h

]
with λh,2 such that h = 1,2, . . . ,Sk the Lagrange multipliers. Then we compute the

derivatives by each ak
j,h with h, j = 1,2, . . . ,Sk

∂ f2

∂ak
j,h

=

n
∑

i=1
wi,k

Ti
∑

t=2
zi,k
t (h, j)

ak
j,h

−λh,2,

setting the derivatives equal to 0 and knowing that
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∑
j

[ n

∑
i=1

wi,k
Ti

∑
t=2

zi,k
t (h, j)−λh,2ak

j,h

]
= 0,

Thus, λh,2 = ∑
j

n
∑

i=1
wi,k

Ti
∑

t=2
zi,k
t (h, j) because ∑

j
ak

j,h = 1 as it is the sum of elements of a

transition matrix row.

Finally, the estimates are

âk
j,h =

n
∑

i=1
ŵi,k

Ti
∑

t=2
ẑi,k
t (h, j)

∑
j

n
∑

i=1
ŵi,k

Ti
∑

t=2
ẑi,k
t (h, j)

, (3.12)

3. The third element to maximize in equation (3.7) is

n

∑
i=1

wi,k
∑
h

Ti

∑
t=1

pi,k
t (h) logbk

h(y) =
n

∑
i=1

wi,k
∑
h

Ti

∑
t=1

∑
r

oi,k
t (h,r) logbk

h(r)

Where the formula is modified by using the new indicator function

oi,k
t (h,r) =

1 if ui,t = h and yi,t = r and Ci = k

0 if ui,t ̸= h or yi,t ̸= r, and Ci = k ,

such that oi,k
t (h,r) takes value equal to one if in the i-th observed sequence from the

k-th component at the t-th click, the hidden state h emits the observed state r. Let define

the function f3 as

f3 =
n

∑
i=1

wi,k
∑
h

Ti

∑
t=1

∑
r

oi,k
t (h,r) logbk

h(r)+
Sk

∑
h=1

λh,3

[
1−

R

∑
r=1

bk
h(r)

]
with λh,3 such that h = 1,2, . . . ,Sk the Lagrange multipliers. Then, we compute the

derivatives for each bk
h(r) with h = 1,2, . . . ,Sk and r = 1,2, . . . ,R as

∂ f3

∂bk
h(r)

=
n

∑
i=1

wi,k
Ti

∑
t=2

oi,k
t (h,r)
bk

h(r)
−λh,3,

setting the derivatives equal to 0 and knowing that

R

∑
r=1

[ n

∑
i=1

wi,k
Ti

∑
t=2

oi,k
t (h,r)−λh,3bk

h(r)
]
= 0,
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Thus, λh,3 =
R
∑

r=1

n
∑

i=1
wi,k

Ti
∑

t=2
oi,k

t (h,r) because
R
∑

r=1
bk

h(r) = 1 as it is the sum of elements

of an emission matrix row. Finally, noticing that the count
R
∑

r=1
oi,k

t (h,r) = pi,k
1 (h), the

parameter estimate is

b̂k
h(r) =

n
∑

i=1
ŵi,k

Ti
∑

t=1Λyt=r
p̂i,k

1 (h)

n
∑

i=1
ŵi,k

Ti
∑

t=2
p̂i,k

t (h)
. (3.13)

4. Moreover, the new estimates for mixture coefficients ω̂k are computed as

ω̂
k =

[ n

∑
i=1

ŵi,k
]
/n

These new parameter estimates are substituted in the complete log-likelihood for the

following E-step. Expectation and maximization steps are iterated till convergence.

3.3.2 Forward-backward algorithm

The EM algorithm requires computing the model likelihood, for example, at each iteration

to obtain estimates in equations 3.9 and 3.10. Since this can be computationally intensive,

recursive procedures are used. The forward-backward algorithm allows the likelihood and

the posterior probabilities of latent states to be calculated.

Let us focus on the algorithm for HMM (Vermunt et al., 2008), its extension to

MHMM being obtained by combining the K models in an HMM having S = ∑
K
k=1 Sk hid-

den states, initial probabilities πi = (ωi1π1,ωi2π2, . . . ,ωiKπK) and transition and emis-

sion matrices as block diagonal matrices where the blocks are given by Ak, Bk for k =

1,2, . . . ,K.

Let αit(s) be the forward probability defined as

αit(s) = P(yi1,yi2, . . . ,yit ,uit = s|Θ),

i.e., the joint probability of the observed sequence i-th up to time t and the hidden

state at time t given model parameter Θ. Forward probabilities are solved recursively for

i = 1,2, . . . ,n and s = 1,2, . . . ,S starting as
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αi1(s) = P(yi1,ui1 = s|Θ)

= P(yi1|ui1 = s,Θ)P(ui1 = s|Θ)

= bs(yi1)π(s),

(3.14)

where π(s) are initial probabilities and bs(yi1) are emission probabilities.

αi2(s) = P(yi1,yi2,ui2 = s|Θ)

=
S

∑
z=1

P(yi1,yi2,ui1 = z,ui2 = s|Θ)

=
S

∑
z=1

P(yi1|ui1 = z,Θ)P(yi2|ui2 = s,Θ)×

P(ui2 = s|ui1 = z,Θ)P(ui1 = z|Θ)

=
S

∑
z=1

αi1(z)azsbs(yi2),

Then, if we generalize for t = 1,2, . . . ,T −1

αi,t+1(s) = P(yi1,yi2, . . . ,yi,t+1,ui,t+1 = s|Θ)

=

[ S

∑
z=1

αit(z)azs

]
bs(yi,t+1),

where s = 1,2, . . . ,S

where azs are transition probabilities from state z to state s.

The likelihood function can then be computed in the last step as

L (Θ;y) =
n

∑
i=1

S

∑
z=1

αi,T (z).

The backward probabilities βit(s) are defined as

βit(s) = P(yi,t+1,yi,t+2, . . . ,yiT |uit = s,Θ),



37

the probability of the observed sequence from t +1 to T given the hidden state at time

t and the model parameter Θ.

Backward recursion is initialized starting with βiT (s) = 1 for i = 1,2, . . . ,n, and s =

1,2, . . . ,S.

Then, for t = T −1,T −2, . . . ,1

βit(s) =
S

∑
z=1

[
aszbz(yi,t+1)βi,t+1(z)

]
,

The likelihood function can also be computed by using both the forward and backward

probabilities as

L (Θ;y) =
n

∑
i=1

S

∑
z=1

αi,t(z)βi,t(z).

for any t = 1,2, . . . ,T .

Furthermore, forward and backward probabilities are used to compute the posterior

state probabilities as

Lit(s) = P(uit = s|yi,Θ) =
αi,t(s)βi,t(s)

S
∑

z=1
αi,t(z)βi,t(z)

, (3.15)

Forward and backward probabilities are often scaled to avoid numerical instability.

Thus, forward probabilities become α̂it(s) = Nitαit(s) where Nit = 1/∑
S
z=1 αit(z).

3.4 Discussion

This chapter presented mixtures of Markov models and how they are used to identify

clusters of sequences based on the assumption that the sequences in a cluster follow the

same Markov process. We then moved on to hidden Markov models characterized by

the presence of latent Markov processes in which states emit the observations, i.e. the

observed states on the basis of emission probabilities. The forward-backward algorithm

combined with the EM were presented as a parameter estimation method. However, these

models and estimation techniques assume that the number of mixture components and

the number of hidden states is known a priori. In reality, these numbers are unknown, so

we need model selection techniques to identify them. The next chapter illustrates model
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selection criteria for MHMMs and points out their limitations. Then we present a proposal

of a classification criterion based on a joint entropy measure defined to account for both

component and hidden states. The performance of this criterion is compared with the

most widely used information criteria.
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Chapter 4

Model selection for mixture hidden
Markov models

As argued in the previous chapter, MHMM is a combination of mixture and hidden

Markov models; hence, estimating parameters is constrained to identify the number of

hidden states and subpopulations (i.e. the components) of the models. MMs and HMMs

usually identify the number of components and hidden states, respectively, assuming prior

information. If there is no such prior knowledge, identifying the components and hidden

states becomes more difficult.

In this chapter, after providing a brief overview of the main studies on model selection

for MMs and HMMs, in Section 1 we point out the main gaps in the literature on model

selection for MHMMs. In Section 2, an entropy-based model selection criterion defined

as an ICL BIC with a joint entropy measure is proposed. Finally, Section 3 presents a

Monte Carlo simulation study to assess the performance of the criterion.

4.1 Profile identification: Components and states

One of the main issues in applying MHMMs actually concerns selecting the unknown

number of mixture components and states in grouping sequences. Generally, the selec-

tion of the number of components and states is based on a priori information about the

problem under analysis. In such cases, researchers can perform the model selection pro-

cedure under the assumption that the number of components or the number of states is

fixed. However, a priori information is not always known.
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Classic Information Criteria (IC) have been widely employed for mixture models or

Markov models, and their use has been extended to MHMMs even if the limits of its ap-

plication have received little attention in the literature. Commonly, the BIC is used under

the assumption that either the number of hidden states or the number of clusters is known.

Being simple to use, BIC (Bayesian Information Criterion) is also chosen in cases where

both these numbers are unknown, but the performance of this criterion is not satisfactory

and depends on the length of the sequence and the number of clusters. In the light of

these considerations, selection measures taking into account the latent levels of MHMMs

should be defined. Thus, the aim of this chapter is to enrich this stream of literature and to

propose a new selection measure for MHMMs based on an integrated classification like-

lihood approach that outperforms traditional criteria in identifying components and states

simultaneously.

This criterion enables us to group similar sequences (i.e., web sessions) in order and

time, under the assumption that they have been generated by a hidden Markov model

(HMM) having a specific number of states. Therefore, we will assume that sequences

related to different HMMs (i.e. the mixture components) define well-separated clusters of

sequences with a high level of dissimilarities among them.

As regards the model used, we refer to time-constant covariates, single-channel and

single response MHMMs (see Vermunt et al., 2008) because they are particularly appro-

priate in managing clickstream data, and we consider a single web-page sequence for

each user with the only available covariates being features related to IP addresses. In the

next subsections we present model selection procedures. We start with mixture models

identifying the number of components, then move on to HMMs and the identification of

the number of hidden states. In the final subsection, we summarize what we presented

for MMs and HMMs and focus on MHMMs, where both components and hidden states

must be identified, and we emphasize how identifying component and state numbers is a

difficult task that requires a suitable criterion.

4.1.1 Selecting the number of components in mixture models

As mentioned in the previous chapter, mixture models are a class of latent variable mod-

elling which allows us to deal with situations where some of the variables are unobserved.

Depending on the domain of the random variables, MMs are called latent class (discrete
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random variables) or latent profile models (continuous random variables). The main con-

cern is selecting the number of components or subpopulations (McLachlan & Basford,

1988). Model selection for MMs is commonly performed by using information and clas-

sification criteria. The former tends to estimate the best approximating mixture model

in terms of log-likelihood, whereas the latter should be the best way of determining the

number of clusters (Biernacki & Govaert, 1997; McLachlan & Peel, 2004).

As far as the information criterion approach is concerned, Dias (2006) compared its

performance in identifying the number of classes in a latent class model, using a modified

AIC (Akaike Information Criterion) 1 which performed better than other IC but had a

tendency to overfit. Nylund et al. (2007) examined the performance of information criteria

in identifying the number of components in different MMs, varying the sample size. Their

study highlighted that, in both latent class and profile models, BIC performs better than IC

indices such as AIC , CAIC (the consistent AIC, (Bozdogan, 1987)) and ssBIC (sample

size adjusted BIC, (Rissanen, 1978)).

Fonseca (2008) showed that BIC behaves similarly to AIC3, and AICu (i.e. a bias cor-

rection of AIC proposed by McQuarrie et al. (1997)) and performs very well with several

sample sizes. Lukociene and Vermunt (2009) argued that AIC worked better with small

sample sizes and that CAIC performs almost as well as BIC. Biernacki et al. (2000) ar-

gued that the goal of clustering is not the same as that of estimating the best approximating

mixture model. Therefore, IC-based measures may not be the best way of determining

the number of clusters, even though they can perform well in selecting the number of

components. The authors pointed out that there is generally no actual correspondence

between the number of components of a mixture and the number of clusters and also that

more than one mixture component could represent a cluster, e.g. with a mixture of nor-

mal distributed data two components could have close means and standard deviations and

identify a singular cluster.

In the light of that, classification criteria, which consider the quality of the data parti-

tion in selecting the optimal number of groups, have been introduced to perform model-

based clustering. These classification criteria measure the degree of class separation by

entropy-based approaches (Ramaswamy et al., 1993). The most widely used classification

methods for mixture models are the classification likelihood criteria (CLC) (Biernacki &
1Specifically, the author used the AIC3, defined by Bozdogan (1994) as an AIC with 3 as the penalising

factor.
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Govaert, 1997), and an approximation of the integrated completed likelihood based on

BIC, the ICL BIC (Biernacki et al., 2000).

Baudry et al. (2010) provided a further approach to identify clusters from the com-

ponents of a mixture model. In their two-step procedure, they initially identify the com-

ponents of a Gaussian mixture using BIC, but they then used a classification criterion

(the entropy criterion to be precise) to combine pairs of components hierarchically by

comparing the degree of separation before and after the aggregation. Summing up, the

choice of a suitable selection approach depends on whether the aim is to identify mix-

ture components or clusters and on the sample size or on other model features. However,

the literature shows that the BIC index is generally to be preferred to other information

criteria since it performs better and produces similar results to the AIC index in small

samples. Nevertheless, the CC is to be preferred if the aim is to recover the number of

clusters rather than the number of mixture components.

4.1.2 Selecting the number of states in hidden Markov models

In the previous subsection, we presented model selection in mixture models. MMs are

defined by assuming a time-constant latent variable in which classes represent the mixture

components, so the target of model selection is to identify the number of components.

Now we will focus on latent class models, those with a latent variable that depends over

time, that is the hidden Markov models. In HMM framework, model selection plays a

prominent role since it corresponds to the choice of the number of latent states of the

unobserved Markov chain underlying the observed data. The number of states should be

chosen to enable the model to account for the dynamic pattern and covariance structure

of the observed time series (Costa & Angelis, 2010).

Identifying a suitable number of hidden states is usually carried out through IC mea-

sures for HMMs, although none could be considered preferable. Costa and Angelis (2010)

applied information criteria to HMMs showing that AIC and AICc (a bias correction of

AIC proposed by Hurvich and Tsai (1989)) outperform BIC in identifying the correct

number of hidden states for shorter time series. Moreover, they show that BIC and CAIC

seriously underestimate the number of hidden states when the number of observations

is small. By performing a simulation study, Celeux and Durand (2008) showed that

AIC, BIC and the Integrated Classification Likelihood (ICL) behave similarly to MMs
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(McLachlan & Peel, 2004) and that ICL performs better than BIC when it comes to

identifying the number of hidden states. They also proposed a new criterion based on

cross-validated likelihood, which, although accurate, tends to overestimate the number of

states and is more time consuming than traditional criteria. Furthermore, Boucheron and

Gassiat (2007) proved the consistency of BIC in retrieving the number of hidden states

in HMMs, and for this reason it is often used to identify the number of states when the

sequence length is large (Costa & Angelis, 2010; Paas et al., 2007).

As far as classification criteria are concerned, their application in HMMs has received

little attention. An interesting attempt is the study of Bacci et al. (2014), which proposed a

modified Normalized Entropy Criterion (NEC; Biernacki and Govaert (1999)) to HMMs

defining a simplified entropy measure, obtained as an approximation of the measure pro-

posed by Hernando et al. (2005). Their approximation is based on the assumption that

the hidden variables are independent given the observed ones, and thus they obtained a

normalized entropy measure considering marginal entropy profiles for each state. How-

ever, their results indicate that NEC is outperformed by other classification or information

criteria. More recently, Pohle et al. (2017) suggested a stepwise procedure to select the

correct number of states. However, since their empirical criterion is based on a priori

information from the theoretical framework underlying the analysed problem, their pro-

posal cannot be used in cases where there is no such information about the hidden states.

In a nutshell, the literature shows that classification criteria and AIC are to be preferred to

BIC for multiple short sequences, while BIC is the preferable criterion for long series.

4.1.3 Model selection in mixture hidden Markov models

Mixture hidden Markov models combine mixture and hidden Markov models by assum-

ing several HMMs generated by different subpopulations related to a number of covariates

(Bartolucci & Pandolfi, 2015; Helske & Helske, 2017; Van de Pol & Langeheine, 1990;

Vermunt et al., 2008). MHMMs have been used to model longitudinal sequences relaxing

single population assumptions of classic HMMs (Vermunt et al., 2008). We point out that

unlike mixture models, where there is no correspondence between clusters and compo-

nents, in the context of MHMMs we assume that each component of the mixture identifies

a cluster of sequences generated by the same HMM.

Model selection for MHMMs involves finding both the number of clusters and the
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number of latent states. To the best of our knowledge, model selection criteria related to

these MHMMs are only based on information criteria (Du et al., 2011; Marino & Alfo,

2020) and have the same limitations as model selection for MMs and HMMs. Helske

et al. (2018) suggested a BIC score to select the number of clusters and states analysing

short-length categorical sequences, but the information criterion “kept suggesting models

with more and more states” (Helske et al., 2018, p.192). Dias et al. (2009) applied an

MHMM to analyse continuous financial sequences and identified the number of clusters

using BIC, with the authors assuming they knew the number of states a priori. In a later

work, they relaxed that assumption and used MHMM to classify financial series identi-

fying clusters and states by using BIC (Dias et al., 2015). Crayen et al. (2012) analysed

categorical sequences and noted that using BIC or AIC3 leads to similar results as regards

the number of clusters and states. Unlike MMs and HMMs, as far as we know, no at-

tempt has been made in the literature to apply classification criteria based on entropy in

the context of MHMMs, although they seem particularly suitable given the structure of

these models characterized by latent classes on two levels. Thus, it would be very useful

to define a model selection procedure that focuses on the identification of the number of

states and clusters taking into account two levels of entropy, the first related to hidden

states classifying sequence elements; and the second related to clusters classifying the

sequences.

An interesting proposal along these lines is the study presented by Volant et al. (2014).

The authors referred to an HMM presenting mixture components in the emission probabil-

ities of the chain, which are added to a classic HMM for a continuous-valued sequence.

They identified groups of observations by combining the components in the emission

probabilities and, to determine the number of groups, and proposed an ICL BIC that in-

volves only a measure of entropy related to the hidden states.2

Following Volant et al. (2014), this thesis aims to enrich the literature on model se-

lection for MHMMs by proposing an approach that uses an integrated classification like-

lihood obtained by defining a joint entropy measure taking into account the latent classes

of clusters and hidden states. Unlike the authors, however, the model used in this thesis

presents mixtures of HMMs each having a different number of latent states and we define

an ICL BIC to identify both clusters and states (not only the number of states).

2Their proposal is based on Baudry et al. (2010). The authors outlined a procedure for combining

components of a mixture model into clusters measuring the classification quality through an entropy index
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Previous subsections are schematized in Table 4.1. Summing up, the literature suggests

that CC are the best performers when the aim is to identify clusters in MMs or hidden

states in HMMs for short time series, while IC such as BIC outperform other criteria in

identifying hidden states in HMMs for long time series. The use of ICL BIC in the context

of MHMMs does seem to be the best choice as the aim is to identify both hidden states

and clusters of sequences and this criterion, being a CC computed as an entropy-penalized

BIC, takes into account both tasks. In the next section the hidden Markov models will be

presented in order to introduce the issue of model selection in the context of MHMMs.

Table 4.1: Model selection criteria for MMs, HMMs and MHMMs; key papers and best

criteria

key papers criteria

MM

Dias (2006) AIC3

Nylund et al. (2007) BIC

Fonseca (2008) BIC, AIC3, AICu

Lukociene and Vermunt (2009) BIC and CAIC (AIC for small sample size)

Biernacki et al. (2000) ICL

Baudry et al. (2010) Entropy

HMM

Costa and Angelis (2010) AIC and AICc (short sequence)

Celeux and Durand (2008) ICL

Boucheron and Gassiat (2007) BIC for long sequence

Bacci et al. (2014) modified NEC

MHMM

Helske et al. (2018) BIC

Dias et al. (2009) BIC (states known)

Crayen et al. (2012) BIC and AIC3

Volant et al. (2014) ICL BIC

4.1.4 Model selection: Information criteria for MHMMs

As highlighted in the previous sections, MHMMs can detect underlying latent structures

and enable clustering sequences to be arranged into homogeneous subpopulations. The

model selection process in MHMMs can be performed by fitting models to the data vary-

ing the number of subgroups and states and comparing them using information criteria.

The most widely used information criteria for MHMMs are
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AIC =−2ℓ̂+2df, AIC3 =−2ℓ̂+3df,

CAIC =−2ℓ̂+
(
1+ logN

)
df, BIC =−2ℓ̂+

(
logN

)
df,

ssBIC =−2ℓ̂+ log
(

2+N
24

)
df, (4.1)

where ℓ̂ denotes the maximum of the log-likelihood related to the MHMM with Q

categorical time-constant covariates in equation (3.3), df denotes the number of free pa-

rameters computed as

df =
K

∑
k=1

[Sk(R−1)+Sk −1+Sk(Sk −1)]+(K −1)
Q

∏
q=1

xq, (4.2)

where K is the number of components, Sk is the number of hidden states in component

k, R is the number of observed states and xq is the number of values of the categorical

covariates. N = ∑
n
i=1 ∑

Ti
t=1 I(yit), where I is the indicator function equal to 1 if yit is

observed. This summation is equal to n×T if all sequences have the same length.

4.2 Entropy-based model selection

As highlighted in the previous chapter, MHMMs can detect underlying latent structures

and enable clustering sequences to be arranged into homogeneous subpopulations whose

evolution follows the same hidden Markov process having specific parameters and num-

ber of states. Therefore, a model selection criterion based on a measure of separability

(i.e. an entropy measure) is to be preferred in order to identify the number of components

and hidden states simultaneously.

To use an entropy-based criterion enables us to identify latent states so that the distri-

butions of the observations (i.e. the elements in the sequences) conditional to the latent

states, will have a high degree of separability and consequently each latent state will be

identified in groups of observations seizing the unknown similarities among the observa-

tions. In the next subsection, the proposed entropy measure (i.e. ICL BIC) for MHMMs

is presented.
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4.2.1 Proposed model selection criterion: ICL BIC for MHMMs

As mentioned above, from a model-based clustering perspective, the separability among

possible clusters should be taken into account when selecting the correct model. In this

regard, Biernacki et al. (2000) proposed an Integrate Complete Likelihood (ICL), approxi-

mated by means of a Bayesian information criterion, to assess a mixture model in a cluster

analysis setting.

Following Biernacki et al. (2000), we define an ICL criterion in the context of MHMMs

by maximizing the integrated complete likelihood (ICL) instead of the observed one so

as to account for the degree of separation between latent classes. More precisely, the

ICL criterion can be approximated as an entropy-penalized BIC3 obtaining the so-called

ICL BIC (McLachlan & Peel, 2000).

To define the ICL BIC for MHMMs, we have to consider two latent variables, the

time-varying variable U of the latent Markov process; and the time-constant latent vari-

able C related to components.4

Generally, in a Bayesian context, given a model m ∈ M , where M is the set of possi-

ble models, we select m by maximizing the posterior probability defined as

P(m|y) = P(y|m)P(m)

P(y)

where y are the data and P(m) the model prior distribution. Under the assumption

of non-informative prior for m, we can identify the model by directly maximizing the

integrated likelihood P(y|m).

As pointed out by Biernacki, when the target is to identify an unknown number of la-

tent classes, we should consider the Integrated Complete Likelihood (ICL) instead, related

to complete data that in the MHMM context are (y,U,C) .

The ICL for MHMMs is defined as

P(y,C,U |m) =
∫

P(y,C,U |m,Θ)π(Θ|m)dΘ. (4.3)

3This derivation was obtained approximating the complete log-likelihood as the sum of two elements,

the observed log-likelihood and the data entropy; see Biernacki et al. (2000) for its derivation.
4A similar proposal was made by Volant et al. (2014). However, they considered a different model

structure characterized by a singular hidden Markov process with a mixture of the conditional distribution

of emission probabilities.
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The quantity 2 logP(y,C,U |m) can be approximated as

logP(y,Ĉ,Û |m,Θ̂)− (logN)
df
2
,

where Ĉ and Û are posterior modes. Then, Ĉ and Û are replaced by considering the

conditional expectation given the observation y of the previous approximated quantity

(see McLachlan and Peel (2000)), leading to

ICL = EY [logP(y,C,U |m,Θ̂)]− (logN)
df
2

= EY [log{P(U |C,y,m,Θ̂)P(C|y,m,Θ̂)P(y|m,Θ̂)}]− (logN)
df
2

= EY [logP(y|m,Θ̂)]+EY [logP(C|y,m,Θ̂)]+EY [logP(U |C,y,m,Θ̂)]− (logN)
df
2

= logP(y|m,Θ̂)−H(C|y)−H(U |C,y)− (logN)
df
2
.

Here, H(C|y) is the entropy measure related to the number of components, given by

H(C|y) =−
n

∑
i=1

K

∑
k=1

P(Ci = k|yi) logP(Ci = k|yi), (4.4)

where P(Ci = k|yi) are component posterior probabilities, i.e. the probability that given

the i-th observed sequence, the latter was generated by the k-th model. Furthermore,

H(U |C,y) is the entropy related to the sequence of hidden states given by

H(U |C,y) =−
n

∑
i=1

K

∑
k=1

P(Ci = k|yi)

[
H(Ui1|yi,Ci = k)+

Ti

∑
t=2

H(Uit |Ui,t−1,yi,Ci = k)
]
,

(4.5)

where the t = 1 elements H(Ui1|yi,Ci = k) and the H(Uit |Ui,t−1,yi,Ci = k), i.e. the

conditional entropy profiles, are computed as proposed by (Durand & Guédon, 2016)

based on the Hernando et al. (2005) conditional entropy definition for HMM. Specifically,

H(Uit |Ui,t−1,yi,Ci = k) =

= ∑
s,z∈Sk

P(Uit = s,Ui,t−1 = z|yi,Ci = k) logP(Uit = s|Ui,t−1 = z,yi,Ci = k),
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where

P(Uit = s,Ui,t−1 = z|yi,Ci = k) = Lk
it(s)a

k
zsα̂

k
i,t−1(z)/Gk

it(s),

and

P(Uit = s|Ui,t−1 = z,yi,Ci = k) = Lk
it(s)a

k
zsα̂

k
i,t−1(z)/{Gk

it(s)L
k
i,t−1(z)}.

Here, ak
zs are transition probabilities from state z to state s in cluster k, αk

it(s) are the

forward probabilities, the posterior state probabilities Lk
it(s) = P(Uit = s|yi,Ci = k) being

obtained in the forward-backward algorithm. The Gk
it(s) are called predicted probabilities

and are computed from the forward probabilities as

Gk
i,t+1(s) = P(Ui,t+1 = s|yi1,yi2, . . . ,yit ,Ci = k) =

Sk

∑
z=1

ak
zsα̂

k
it(z).

Finally, the ICL BIC for MHMMs is obtained by multiplying ICL by a constant of

minus two

ICL BIC =−2ℓ̂+2H(C,U |y)+(logN)df, (4.6)

where ℓ̂ denotes the maximum of the log-likelihood (see equation (3.3)), df is the

number of free parameters in equation (4.2), the joint entropy is H(C,U |y) = H(C|y)+
H(U |C,y), N = ∑

n
i=1 ∑

Ti
t=1 I(yit), where I is the indicator function equal to 1 if yit is ob-

served. This summation is equal to n×T if all sequences have the same length.

4.3 Simulation Study

To assess the quality of this proposed model selection criterion (ICL BIC in equation

(4.6)), a Monte Carlo study, with different model features, has been performed. First,

we simulate longitudinal datasets from six different MHMMs with a known number of

components K and latent states (S1,S2, . . . ,SK). We generate the datasets by consider-

ing the sample size n ∈ {300,500} (n refers to the number of sequences), creating se-

quences of length T ∈ {10,20} the elements of which can take one of four observed

states (card|Y | = 4). Table 4.2 reports the number of components K and hidden states
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(S1,S2, . . . ,SK) for each MHMM Oh with h ∈ {2,3,4,5,6,7}, used to generate the se-

quences (h refers to the number of components).

Table 4.2: MHMMs component and hidden state numbers

Model K (S1,S2, . . . ,SK)

O2 2 (3,4)

O3 3 (2,3,4)

O4 4 (2,3,4,2)

O5 5 (2,3,4,2,4)

O6 6 (2,3,4,2,4,3)

O7 7 (2,3,4,2,4,3,4)

Varying the length of the sequences T and the number of components and states, we

investigate 14 different scenarios to assess the effect of different design features. We

generate 70 datasets for each scenario and evaluate which information and classification

criteria are able to identify the correct numbers of states and components.

Parameters Θk = {πk,Ak,Bk} are used to generate the sequences, varying the number

of components and hidden states.

1. The initial probabilities of hidden states for each component:

π
1 = (0.30,0.70); π

2 = (0.40,0.20,0.40); π
3 = (0.30,0.30,0.20,0.20);

π
4 = (0.40,0.60); π

5 = (0.20,0.30,0.15,0.35); π
6 = (0.10,0.40,0.50)

π
7 = (0.40,0.10,0.20,0.30).

2. Hidden states transition matrices for each component:

A1 =

[
0.80 0.20

0.20 0.80

]
; A2 =


0.10 0.80 0.10

0.70 0.10 0.20

0.30 0.10 0.60

 ; A3 =


0.50 0.20 0.10 0.20

0.00 0.60 0.20 0.20

0.10 0.30 0.00 0.60

0.20 0.00 0.20 0.60


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A4 =

[
0.20 0.80

0.80 0.20

]
; A5 =


0.10 0.20 0.10 0.60

0.20 0.10 0.50 0.20

0.10 0.10 0.60 0.20

0.70 0.00 0.10 0.20

 A6 =


0.35 0.50 0.15

0.40 0.30 0.30

0.50 0.20 0.30



A7 =


0.30 0.35 0.05 0.30

0.30 0.20 0.00 0.50

0.00 0.30 0.60 0.10

0.10 0.50 0.30 0.10

 .
3. Observed States emission matrices for each component:

B1 =

[
0.10 0.20 0.10 0.60

0.50 0.05 0.20 0.25

]
; B2 =


0.10 0.10 0.60 0.20

0.20 0.50 0.20 0.10

0.15 0.15 0.10 0.60



B3 =


0.00 0.10 0.30 0.60

0.20 0.60 0.20 0.00

0.55 0.00 0.10 0.35

0.25 0.00 0.60 0.15

 ; B4 =

[
0.10 0.60 0.10 0.20

0.20 0.10 0.45 0.25

]

B5 =


0.20 0.65 0.15 0.00

0.50 0.00 0.25 0.25

0.05 0.00 0.35 0.60

0.15 0.00 0.70 0.15

 ; B6 =


0.30 0.40 0.10 0.20

0.00 0.40 0.30 0.30

0.35 0.00 0.25 0.40



B7 =


0.00 0.35 0.35 0.30

0.10 0.30 0.60 0.00

0.30 0.00 0.30 0.40

0.20 0.40 0.10 0.30


Results presented are success rates and are defined as the identification of correct num-

bers of components and states or an approximation (defined by using Manhattan distance,

see equation (4.7)). Once the sequences are generated for a specific scenario, we fitted
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to this data a model having the correct number of components and states and 29 other

models having these numbers randomly generated:

• The number of components K from a discrete uniform distribution taking values

between 1 (no mixture) and 7 i.e. K ∼ U (1,7)

• The number of hidden states Sk for each components from a discrete uniform dis-

tribution taking values between 2 and 6 i.e. Sk ∼ U (2,6)

This restriction is due to the number of models that should be considered, e.g. if

K ∈ {1,2, . . . ,7} and Sk ∈ {2,3, . . . ,6} for each component k, the number of models can

be computed as a sum of K combinations with repetition:

K

∑
k=1

(5+ k−1)!
k!(n−1)!

,

where 5 represents the Sk alternatives. Thus, there are 791 combinations of clusters

and states for our setting.

Simulation study was carried out by using R package “seqHMM” (Helske & Helske,

2017). To assess criteria performance, we consider the success rate (correct model identi-

fication) of BIC, AIC, ssBIC and the ICL BIC for MHMM. The simulations demonstrate

how difficult it is to identify the correct number of components and hidden states in MH-

MMs, with all indices at zero or meagre success rates. So, we investigate whether the

criteria are able to identify the correct number of components K and numbers of hidden

states equal or close enough to the correct ones, where close enough is defined as the

minimal Manhattan distance between the correct vector of states and any permutation of

the selected vector of states is less than 3. Thus, let sc = (S1
c ,S

2
c , . . . ,S

Kc
c ) be the correct

hidden states and ssl = (S1
sl,S

2
sl, . . . ,S

Kc
sl ) the selected ones, the selection is a success if

min
η [ssl(k)]

Kc

∑
k=1

|sc(k)− ssl(k)|< 3, (4.7)

where η [ssl(k)] is a permutation of the selected numbers of states.

Furthermore, due to the number of possible models that could be investigated, we re-

strict the simulation study to a scenario in which a certain amount of prior information

about the problem under analysis is available. Specifically, we compared criteria perfor-

mance results related to ten models with a number of components close to the correct
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one. ICL BIC performance is compared with the most widely used information criteria

for MHMMs such as AIC, BIC and ssBIC.

The results are displayed in Tables 4.3 and 4.5; the best performances are in bold. In

Tables 4.4 and 4.6, we highlight criteria proportions related to overestimation and under-

estimation of the number of components.

In Tables 4.3 and 4.4 we fixed the number of sequences at n= 300. Focusing on Table 4.3,

when T = 10 the proposed ICL BIC outperforms the classic information criteria which

struggle to identify even an approximation of the model. The IC seem to systematically

underestimate the number of components and select models with no mixtures if the option

is available. When the number of components is high (K ∈ {6,7}) all criteria struggle.

Overall, the ICL BIC performs best. As the sequence length is increased to T = 20,

we note that the previous results are confirmed and ICL BIC have a higher success rate.

Comparing AIC and ICL BIC, the two criteria have similar results when T = 20 even

though the latter seems to outperform the former. Increasing the number of sequences to

n = 500 does not seem to change the results, confirming the limitations of classic IC and

ICL BIC performance.

Table 4.3: Results of the Monte Carlo study for n = 300, T ∈ {10,20}. Success rate of

identifying the correct model or an approximation of the model; best results are in bold;

standard errors are shown in parentheses

AIC BIC ssBIC ICL BIC

n = 300

T = 10

O2 0.51 (0.060) 0.19 (0.047) 0.22 (0.049) 0.62 (0.058)

O3 0.46 (0.059) 0.31 (0.055) 0.36 (0.057) 0.55 (0.059)

O4 0.58 (0.060) 0.41 (0.059) 0.46 (0.059) 0.73 (0.053)

O5 0.38 (0.058) 0.34 (0.057) 0.36 (0.057) 0.60 (0.058)

O6 0.20 (0.048) 0.14 (0.041) 0.16 (0.044) 0.48 (0.060)

O7 0.12 (0.039) 0.08 (0.032) 0.08 (0.032) 0.40 (0.058)

T = 20

O2 0.60 (0.058) 0.24 (0.051) 0.29 (0.054) 0.69 (0.055)

O3 0.49 (0.060) 0.32 (0.056) 0.34 (0.057) 0.53 (0.060)

O4 0.59 (0.058) 0.42 (0.058) 0.46 (0.059) 0.73 (0.052)

O5 0.32 (0.056) 0.28 (0.054) 0.28 (0.054) 0.44 (0.059)

O6 0.35 (0.057) 0.10 (0.037) 0.15 (0.043) 0.41 (0.059)

O7 0.24 (0.051) 0.20 (0.048) 0.20 (0.048) 0.58 (0.059)
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Table 4.4: Results of the Monte Carlo study for n = 300, T ∈ {10,20}. Rates related to

an underestimation (U) or an overestimation (O) of the number of components

AIC BIC ssBIC ICL BIC

n = 300

T = 10

O2 U 0.49 0.81 0.78 0.00

O 0.00 0.00 0.00 0.38

O3 U 0.44 0.66 0.61 0.21

O 0.10 0.03 0.03 0.24

O4 U 0.42 0.59 0.54 0.25

O 0.00 0.00 0.00 0.02

O5 U 0.62 0.66 0.64 0.38

O 0.00 0.00 0.00 0.02

O6 U 0.80 0.86 0.84 0.46

O 0.00 0.00 0.00 0.06

O7 U 0.88 0.92 0.92 0.55

O 0.00 0.00 0.00 0.05

T = 20

O2 U 0.36 0.76 0.71 0.00

O 0.04 0.00 0.00 0.31

O3 U 0.48 0.76 0.74 0.42

O 0.03 0.02 0.02 0.05

O4 U 0.41 0.58 0.54 0.25

O 0.00 0.00 0.00 0.2

O5 U 0.66 0.72 0.72 0.40

O 0.02 0.00 0.00 0.16

O6 U 0.65 0.90 0.85 0.50

O 0.00 0.00 0.00 0.09

O7 U 0.76 0.80 0.80 0.32

O 0.00 0.00 0.00 0.10
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Table 4.5: Results of the Monte Carlo study for n= 500, T = 10. Success rate of identify-

ing the correct model or an approximation of the model; best results are in bold; standard

errors are shown in parentheses

AIC BIC ssBIC ICL BIC

n = 500

T = 10

O2 0.47 (0.059) 0.17 (0.042) 0.19 (0.046) 0.67 (0.053)

O3 0.68 (0.056) 0.64 (0.057) 0.62 (0.058) 0.70 (0.055)

O4 0.48 (0.060) 0.35 (0.057) 0.35 (0.057) 0.61 (0.058)

O5 0.49 (0.060) 0.35 (0.057) 0.35 (0.057) 0.65 (0.057)

O6 0.26 (0.052) 0.10 (0.036) 0.12 (0.039) 0.62 (0.058)

O7 0.20 (0.048) 0.14 (0.041) 0.14 (0.041) 0.46 (0.059)

T = 20

O2 0.68 (0.055) 0.54 (0.059) 0.54 (0.059) 0.75 (0.051)

O3 0.64 (0.057) 0.60 (0.058) 0.66 (0.057) 0.72 (0.054)

O4 0.50 (0.060) 0.38 (0.058) 0.34 (0.057) 0.66 (0.057)

O5 0.62 (0.058) 0.46 (0.059) 0.48 (0.060) 0.62 (0.058)

O6 0.42 (0.059) 0.06 (0.028) 0.06 (0.028) 0.48 (0.060)

O7 0.32 (0.056) 0.20 (0.048) 0.20 (0.048) 0.56 (0.059)



56

Table 4.6: Results of the Monte Carlo study for n = 500, T = 10. Rates related to an

underestimation (U) or an overestimation (O) of the number of components

AIC BIC ssBIC ICL BIC

n = 500

T = 10

O2 U 0.46 0.83 0.81 0.00

O 0.07 0.00 0.00 0.33

O3 U 0.24 0.36 0.38 0.10

O 0.08 0.00 0.00 0.20

O4 U 0.52 0.65 0.65 0.23

O 0.00 0.00 0.00 0.16

O5 U 0.51 0.65 0.65 0.21

O 0.00 0.00 0.00 0.14

O6 U 0.74 0.90 0.88 0.32

O 0.00 0.00 0.00 0.06

O7 U 0.80 0.86 0.86 0.46

O 0.00 0.00 0.00 0.08

T = 20

O2 U 0.32 0.46 0.46 0.00

O 0.00 0.00 0.00 0.25

O3 U 0.16 0.36 0.28 0.08

O 0.20 0.04 0.06 0.20

O4 U 0.50 0.62 0.66 0.12

O 0.00 0.00 0.00 0.22

O5 U 0.38 0.54 0.52 0.28

O 0.00 0.00 0.00 0.10

O6 U 0.58 0.94 0.94 0.40

O 0.00 0.00 0.00 0.12

O7 U 0.68 0.80 0.80 0.35

O 0.00 0.00 0.00 0.09

4.4 Discussion

Following the literature on model selection in mixture models and hidden Markov models,

which focuses on entropy-based measures, we propose a score based on classification

criteria, i.e. an ICL BIC. The most suitable model is selected, from a set of candidates, by

minimizing the ICL BIC. By employing the proposed criterion, we identify the number

of states and components with the best degree of class separation. We implemented a
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Monte Carlo simulation study to compare selection criteria (BIC, AIC and ssBIC) with

the new entropy-based criterion ICL BIC by varying sample size and sequence length.

Simulations demonstrate that with all the selection criteria, it is not straightforward to

identify the correct number of components and states; however, it is worth noting that

the proposed ICL BIC seems to outperform the other criteria. However, the ICL BIC

requirement of computing entropy is one of its drawbacks when compared to using the

BIC for MHMM. In particular, the conditional entropy associated with the HMMs is

computationally intensive and requires more processing as the sequence length increases.

However, as we will point out in the next chapter, since clickstream data has, on aver-

age, a short sequence length ICL BIC would be preferable, performing better than IC and

not requiring too much time for entropy computation. We considered, in our simulation

study, scenarios related to different numbers of components and states. A broader range of

scenarios should be considered in future studies, such as varying model state-dependent

conditional probabilities bk
ut
(yit). These probabilities represent the uncertainty in hidden

state classifications of observations. A situation of low uncertainty, for example, would be

when a hidden state has a probability of emitting an observed state greater than 0.9, while

the sum of the probabilities of emitting the other states is less than 0.1. On the other hand,

if a latent state emits the observed states with probabilities that are close to each other, we

would be in a high uncertainty scenario. The effect of different levels of uncertainty on

the performance of the selection criteria should be investigated.

Finally, further research is needed to improve the measure of entropy and the proce-

dure of modelling selection of MHMMs because of their increasing use in the analysis of

clickstream data from websites.
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Chapter 5

Case study: PalermoTravel website

To demonstrate the effectiveness of MHMMs in managing clickstream to identify cus-

tomer profiles, we propose an application to real data. We have analysed the website data

of a Sicilian company operating in the tourism sector.

eTourism, or the online tourism market, is a prime example of how consumers have

changed the way they make purchases by going from tourism organized by tour operators

and travel agencies to do-it-yourself tourism. The travelers’ need for informa tion on their

destination and the ability to compare different offers has pushed tourism companies to

improve websites to meet the needs of potential buyers. The tourism sector is an interest-

ing case study because consumers in Tourism 2.0 (Sparks et al., 2013) obtain information

anytime and anywhere to better plan their trips; hence, holiday packages must be cus-

tomizable and the site structure should be attractive and constantly improved. Providing

a well-structured and user- friendly website is obviously a strategic factor of marketing,

and could be achieved by exploiting the information on the browsing behaviour of users

obtained through web usage mining techniques.

Here, we consider the case study of PalermoTravel, a company that provides short-term

house rental. Recently, the company has diversified its business offering services related

to experiential holidays. Hence, it re-designed its website to offer tourists both apart-

ments for rent and a booking service for experiential holidays. To increase the website’s

appeal, the company decided to add general information on Sicilian tourist attractions

and activities, assuming that enriching the informative content would attract potential

new customers.

By using web usage mining descriptive measures and an MHMM, we aim here to investi-
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gate whether the management’s decision to use the website as a showcase for information

prompts users to explore the accommodation pages or if it actually distracts customers

and works against the goals of the business. We also apply our proposal of entropy based

selection criterion to identify the most suitable model.

The chapter is structured as follows. In Section 1 the data from the PalermoTravel web-

site is presented. Section 2 illustrates an exploratory analysis where association rules

and simple transition probabilities were obtained. In Section 3, behavioural profiles were

identified by means of MMM (selected via BIC) and MHMM where the number of com-

ponents and states are selected by using our proposed ICL BIC.

5.1 PalermoTravel dataset

Data from the website of PalermoTravel was collected from September to December

2017.

Original rough data consists of 2,487,802 observations arranged in chronological or-

der. This dataset was cleaned and pre-processed in order to obtain a functional dataset for

the application of statistical data mining techniques. After eliminating all the irrelevant

log lines and the likely bots, the new dataset contains only the resources with html exten-

sion (i.e. the pages viewed) and consists of 95,201 lines by IP address. We also extracted

information about user browsers, software and devices by using uaparserjs R package

(Rudis et al., 2021). After this the dataset was ready for the session identification pro-

cedure. The procedure chosen was time-oriented and differentiated the navigation path

of the individual user into sessions according to the time spent on the individual pages.

Taking into consideration the structure of the site and the content of the individual pages,

the time threshold of 10 minutes was chosen. Thus, if a user remains on the same page for

more than 600 seconds the current session is considered concluded and the pages visited

by the user in subsequent clicks are attributed to a new session. Using this methodology,

we obtained 43,182 user sessions, which allows us to follow the path of users within the

site in the form of a sequence of pages viewed. Figure 5.1 shows the empirical distribution

of the number of clicks, with an average number of clicks of 2.13 and standard deviation

of 4.14. Most of the accesses are actually accidental visits related to users who leave after

just one click.

Sessions having T = 1 clicks (i.e. short length sessions) have been removed and
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Figure 5.1: Number of clicks distribution; n = 43,182 sequences

the reduced dataset consists of n = 10,252 user sessions. Figure 5.2 shows the length

distribution.

Instead of considering web pages as observed states of the sequence we decided to

consider page categories. We made this decision both because the company wanted to

compare pages of different types (purchase-oriented and information-oriented) and be-

cause of the large number of pages on the site. In fact, during the reference period pages

with the same URL reported different information (replacing an apartment with another

located in the same neighbourhood). Reliable information in the four months was in fact

the only subject area of the pages concerned. These categories correspond to the thematic

areas on the site and are presented in Table 5.1.
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Figure 5.2: Number of clicks distribution; n = 10,252 sequences

Table 5.1: PalermoTravel website thematic areas

Area

Homepage The homepage contains several sheets. These pages

contain suggestions as image links to access other ar-

eas

Attraction This area contains information on tourist attractions

or general information on Sicily

Accommodation In this area, the user can access pages that offer apart-

ments and rooms for rent and use a search engine to

identify accommodation by time period, number of

guests and price

Event This area provides a calendar of the main seasonal

concerts and festivals in Sicily

Experience This area contains additional bookable tourist activ-

ities such as art and cuisine workshops, hiking, mu-

seum visits etc.

Service An area for additional services to add to your pack-

age. It is possible to find bookable transport, food

delivery services, childcare services etc.

Info This area provides general information on the com-

pany and its staff and business partners. Moreover

there are FAQ section and reviews

To summarise, the dataset contains sequences of pages visited by users, where a se-
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quence derives from a combination of seven basic observed states: Homepage, Attraction,

Accommodation, Event, Experience, Service and Info. This dataset can be considered as

an example of single-channel sequence data with seven categorical states.1 The maximum

sequence length in the considered data was T = 20 (the few sequences exceeding this

length were removed as outliers). Following Helske and Helske (2017), in the analysis the

sequences are set at the same length T = 20 by adding missing values and emission prob-

abilities buit (yit) = P(Yit = r|Uit = s) related to these clicks are set to 1 ∀s ∈ {1,2, . . . ,S}
and ∀r ∈ {1,2, . . . ,R}.

5.2 Exploratory analysis

To obtain preliminary information on browsing behaviour of users, an exploratory analy-

sis was performed on post-processed log-files. The distribution of variable “Area” (Figure

5.3) shows that over the course of the 4 months, in 27.3% of the cases the users of the

site viewed pages in the “Homepage” category, indicative of the simple access to the site

and the use of the personalized search menu. The most viewed areas are those relating

to “Attraction” in 33.5% of cases and to “Accommodation” in 22.3% of cases, indicating

that users are more interested in viewing information relating to the city of Palermo than

booking apartments. The other areas are considerably less popular; the “Experience” area

was visited 5.3% of the times and the “Event” area just 3.2% of the time.

The association rules were obtained through an apriori algorithm implemented in the

R arules (Hahsler et al., 2020) package. The threshold values for support and confidence

are 5% and 30%.

Tables 5.2 and 5.3 show the results obtained by considering all 43,182 sessions and

the “Attraction” and “Accommodation” areas as consequent.

It should be remembered that lift values greater than 1 mean that visualization of the

antecedent areas increases the probability of display for “Attraction” and “Accommoda-

tion” pages.

It should be noted in Table 5.2 that “Attraction” and “Accommodation” pages were

jointly accessed 20% of the time, the percentage of joint visualization of “Attraction”

1Multi-channel sequence data refers to the presence of multiple interdependent sequences for the same

subject, see Helske et al. (2018) as an example of three-channel data (partnership, parenthood, labour market

participation).
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Figure 5.3: Thematic areas distribution

and “Homepage” is equal to 28%. Except for the joint display of “Accommodation”,

“Homepage” and “Attraction” at 12%, all other rules have less than 10% support.

It is noteworthy that the confidence levels are higher than 50% highlighting the va-

lidity of the rules, the only exceptions being the rules relating to the “Accommodation-

Attraction” and “Homepage-Attraction” pairings.

Turning our attention the lift values, we notice that only 6% of sessions jointly vi-

sualized “Attraction” and “Service”. However, the visualization of a “Service” tends to

increase the probability of visualizing an “Attraction” with a lift value of 1,149. Sim-

ilarly, viewing “Service” and “Homepage” or “Experience” and “Homepage” increases

the probability of viewing “Attraction” with lifts equal to 1,199 and 1,111. The highest

lift value is 1,206 when sessions accessing “Accommodation” and “Service”, increase the

probability of selecting “Attraction”. However, these favorable cases correspond to less

than 10% support, while rules with more than 20% support have list values less than 1.

For example, the joint visualization of “Attraction” and “Accommodation” is present in

20% of sessions with a lift value of 0.889, i.e. users viewing an “Accommodation” have

a lower probability of visualizing an “Attraction”.

Regarding Table 5.3, as in the previous case, “Attraction” and “Experience” visu-

alizations, or those of “Experience” and “Homepage” have an increased probability of

displaying “Accommodation” with lift values of 1.579 and 1.713, respectively. The rules

with the highest support are those with a joint display of “Homepage” and “Accommo-
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Table 5.2: Association rules, attraction consequent

rule support confidence lift

{Event}→ {Attraction} 0.057 0.532 0.979

{Service}→ {Attraction} 0.066 0.625 1.149

{In f o}→ {Attraction} 0.069 0.552 1.017

{Experience}→ {Attraction} 0.091 0.569 1.048

{Accommodation}→ {Attraction} 0.207 0.483 0.889

{Homepage}→ {Attraction} 0.289 0.499 0.918

{Homepage,Service}→ {Attraction} 0.062 0.655 1.206

{Homepage, In f o}→ {Attraction} 0.051 0.563 1.036

{Accommodation,Experience}→ {Attraction} 0.062 0.655 1.206

{Experience,Homepage}→ {Attraction} 0.055 0.603 1.111

{Accommodation,Homepage}→ {Attraction} 0.129 0.546 1.011

Table 5.3: Association rules, accommodation consequent

rule support confidence lift

{Event}→ {Accommodation} 0.058 0.544 1.269

{Service}→ {Accommodation} 0.057 0.532 1.241

{In f o}→ {Accommodation} 0.052 0.419 0.977

{Experience}→ {Accommodation} 0.094 0.588 1.372

{Attraction}→ {Accommodation} 0.207 0.381 0.889

{Homepage}→ {Accommodation} 0.237 0.408 0.951

{Attraction,Experience}→ {Accommodation} 0.062 0.677 1.579

{Experience,Homepage}→ {Accommodation} 0.067 0.734 1.713

{Attraction,Homepage}→ {Accommodation} 0.129 0.447 1.042

dation” or “Attraction” and “Accommodation”; in both cases the probability of viewing

”Accommodation” decreases. Therefore, it seems that users visualize mostly “Accommo-

dation” or “Attraction” pages but accessing pages in one area decreases the probability of

accessing the other.

Association rules highlight relationships between thematic areas, but do not account

for the order of access in web sequences. Thus, to analyse the paths of the users exploring

the portal we apply Markov chains, as they allow us to represent users’ movements from

one page to another in probabilistic terms. We can see the graphs related to the Markov

chain transition probabilities of different orders in the succeeding graphs.

Figures 5.10, 5.11 and 5.12 show that users tend to stay in the same subject area in the

first clicks, and this behaviour persists even to the seventh click for the “Attraction” and

“Accommodation” areas. For example, let us focus on first order transition probabilities,
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Figure 5.6: Transition probabilities orders
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Fifth order transition probabilities
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Figure 5.8: Transition probabilities orders
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Sixth order transition probabilities
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Figure 5.9: Transition probabilities orders

6

the intensity of which is visible in Figure 5.4 (transition probabilities with a value less than

0.1 has been removed). Starting from the “Accommodation” category, a user has a 75%

chance of moving to a page from the same category. Similarly, a user on a page belonging

to the “Attraction” category has a 62% chance of remaining in the same category. Other

thematic areas have greater transition probabilities in case of a passage within the same

category, but to a lesser extent compared to the two previous categories (values between

38% and 54%).

In the “Homepage” category, users who access the site have a 38% transition prob-

ability of remaining in the same category interacting with custom search engines and a

23% chance of moving to “Accommodation” and 16% of moving to the “Attraction”. The

latter are the most visited areas coming from each of the categories. Let us now con-

sider the transition probability of going from an area to another. Users who are in the

“Accommodation” area have a 12.9% probability of viewing an “Attraction”, the tran-

sition probabilities to other areas being below 6%. Starting from an “Attraction” page,

we have a 14.6% probability of viewing an “Accommodation” and a probability less than

9% of viewing another area. From the “Experience” area, there is a 21.3% probability

of viewing an “Accommodation”, a 14.4% of viewing “Attraction” and 10% of viewing

the “Service” area. The other transition probabilities are less than 6%. The “Event” area

has a greater probability of moving into an “Attraction” (28.7%) compared to “Accommo-

dation” (10.7%). Similarly, the “Info” and “Service” areas are also more likely to make

the transition into “Attraction” (16.4% and 20.4%) than “Accommodation” (4.7% and
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5.1%). In addition, users who are on an “Info” page have a 20% probability of viewing

the homepage.

If we take into consideration higher order transition probabilities, the intensity of

which can be seen in Figures 5.5 - 5.9, we notice just a slight decrease in probabili-

ties related to movements in the same area. After a third click the transition probabilities

in the main diagonal (with the exception of “Accommodation” and “Attraction”) have

values below 36%, in addition, users in the “Service” category are more likely (30.6%)

to move to an “Attraction” than remain in the same category (24.6%). Both the “Ser-

vice” category and the “Event” category as the order increases have very high transition

probabilities towards the “Attraction” category while the probability of transitioning to

“Accommodation” decrease dramatically.

In the next sections, web sequences will be classified by using model-based approaches

(MMMs and MHMMs).
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Figure 5.10: Transition Matrices order 1 and 2
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Third order transition matrix
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Figure 5.11: Transition Matrices order 3 and 4
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5.3 Profiles identification

In the previous section, we estimated website users’ transition probabilities assuming a

homogeneous population and we obtained general indications on global navigation be-

haviour.

In this section, we will proceed to relax this assumption in order to identify clusters of

sequences representing different profiles of navigational behaviour by using two methods

of model-based clustering.

In the first case, we will apply an MMM, a method commonly used in the literature. The

identification of clusters will be based directly on the observed web sequences and the

method used to select the number of clusters is the BIC.

In the second case, we will use an MHMM, a method that takes into account the het-

erogeneity hidden in the clickstream data, assuming that users’ movements evolve on the

basis of a latent process. The states of this process identify latent “mental states” that in-

fluence users to select one page or another. To take into account two levels of uncertainty

and identify clusters and states, we used the selection criterion proposed in chapter 4.

In both cases additional information obtainable from clickstream data will also be

used as covariates in the mixture model (see Equation 3.1), i.e. the nationality extracted

from the IP addresses, the access device and the month of access.

5.3.1 Mixture Markov model

We applied MMMs in order to identify behavioural profiles across users. Different MMMs

are considered by varying the number of clusters and a K = 4 model was selected by com-

paring BIC scores.

The sizes of clusters are displayed in Figure 5.13 and are 23%, 46%, 24% and 7%.

The distribution of clusters according to geographic area, device and month of access

can be seen in Figures 5.14 - 5.24. The first cluster is mostly composed of Italian accesses

(62/%) followed by North American and North European (16% and 11%). The second

cluster (the largest one) consists of 43% of Italians, 23% of North Europeans and 19%

of North Americans. In the third cluster we find a more diverse composition, with 33%

Italians, 16% of North Europeans and 25% East Europeans; moreover 8% of the sessions

in this cluster are from Asians (indeed, 60% of the Asian accesses are classified in this

cluster). The last cluster, as regards nationality, is quite similar to the second one, with
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Figure 5.13: Mixture Markov model: Clusters sizes

40% of Italians, 29% of North Europeans and 16% of North Americans. Most website

accesses are from a Desktop computer, with 74% of them in first cluster, 69% in the

second, 83% in the third and 62% in the fourth. There are no clear preferences as regards

month of access with the exceptions of users in first cluster that accessed in September in

30% of cases and the fourth cluster that rarely explored the website that month.

Figures 5.17-5.18 and 5.19-5.20 show the different clusters initial probability vec-

tors and transition matrices representing different behaviour patterns while exploring the

website.

64% of users in Cluster 1 start from “Homepage” area and 16% from “Attraction”

area. They move from “Homepage” to “Attraction” and “Accommodation” with similar

probabilities (25% and 21%) or stay in the “Homepage” area with a 23% probability. If

users accessed pages in “Attraction” or “Accommodation”, they tend to stay in the same

areas with 49% and 47% probabilities. We notice probabilities > 40% of remaining in

“Service” and “Info” and a 38% probability of reaching “Accommodation” from “Expe-

rience”.

Moving to Cluster 2, 57% of users start from “Homepage” area, 15% from “Attrac-

tion” and 14% from “Experience”. There is a 75% probability they will stay on the home-

page and if they do reach other areas, they will stay in “Attraction” with a probability of

57% and move from “Accommodation” to “Attraction” with a probability of 51%.

As regards Cluster 3, 44% of users start from the “Attraction” area and 84% stay there.
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Figure 5.18: Initial probability vector πk for clusters 3 and 4
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Figure 5.19: Transition matrices Ak for clusters 1 and 2
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36% start from “Homepage”, with an 18.8% probability of staying in the same area, and

a probability of 63% of moving to the “Attraction” area.

In Cluster 4 45% start from “Accommodation” and 40% from “Homepage”. There is

a 58% probability they will move from “Homepage” to “Accommodation” and an 87%

probability they will stay there.

5.3.2 Mixture hidden Markov model

We consider MHMMs to explore if and how browsing behaviour differs across users ac-

counting for an additional level of complexity. Specifically, let us suppose the sequences

follow a latent Markov process. Prior cluster membership was estimated through a multi-

nomial logistic model (see equation (3.1)) having three time-constant covariates: IP ad-

dress geographic area (i.e., Africa, Asia, Eastern Europe, Italy, Latin America, the Middle

East, North America, Northern Europe, Oceania, Russia and Southern Europe), access

device (PC and mobile) and access month (September, October, November, December).2

Different MHMMs are considered by varying the number of components K ∈ {2,3,4,5},

and hidden states for each component Sk ∈ {2,3,4,5}.

To identify the number of components and states the proposed model selection score

ICL BIC was used. We selected the MHMM consisting of three components and hidden

states (3,2,4) (i.e. identifying three clusters/browsing profiles). The sizes of clusters are

displayed in Figure 5.21 and are 22%, 19%, and 59%.

Figures 5.22-5.24 show, for each cluster, the distribution of geographical area, access

device, and access month.

Figure 5.22 shows that users, from different geographical areas, differ as to their

browsing behaviour. For example, we observe that Italians are mostly assigned to cluster

3 (51% of the cluster) and cluster 2 (43%). Users from the North of Europe are mainly in

clusters 2 and 3 too (22% and 21%), while North Americans are primarily found in cluster

2 (25% of that cluster) and are less present in the other two (10% and 13%). They seem

interested in exploring Sicily’s attractions and tourist products (i.e., cultural, beach, expe-

riential holidays) as potential tourists. Asian and East European users, sparsely featured

in the data, are assigned to cluster 1 (10% and 30% of this cluster), while their presence

2Due to the significant percentage of Italian users in the dataset (44.9%), we decided to separate Italy

from the rest of Europe.
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in other clusters is below 3% and 5%, respectively. As concerns the access device, users

show a preference for the PC, with users in cluster 1 preferring it in 86% of cases and

those in cluster 2 in 59% of cases.

Finally, most users in cluster 1 visited the website in October (30.8%), and less during

December (17.9%). Users in cluster 2 accessed in October, November and December,

with just 2.6% of them accessing in September. Users in cluster 3 do not show any

particular preference, with all access probabilities at around 25%.

Figure 5.25 sketches the path of users in each profile (i.e. cluster). Each pie graph

represents a hidden state; the edges are the transitions between states (transition probabil-

ities displayed on the edges). The colour and size of the pie charts represent the emission

probabilities of the observed states (the thematic area of the page). Emission probabilities

lower than 0.05 are classified as “others”.

Focusing on the first cluster in Figure 5.25 top-left, we see that users start their web

navigation from state 2 (that emits the observed state “Homepage”with a probability of

0.98). Then they keep accessing Homepage pages with a probability of 0.73 or transition

to state 1 with a probability of 0.15 and state 3 with a probability of 0.12 and remain in

these states (with probabilities of 0.89 and 0.84 respectively). Specifically, state 1 tends

to emit “Service” with a probability of 0.34, “Attraction” with a probability of 0.22 and

“Accommodation” with a probability of 0.19. State 3 emits “Info ” with probability 0.78.

In cluster 2 (Figure 5.25 top-right), users have a higher probability of starting from

state 2 (0.66) and a 0.99 probability of staying there. State 2 emits “Attraction” with a

probability of 0.91. If they start from state 1 with a probability of 0.34 and remain there

with a probability of 0.96, they have a high probability (0.61) of accessing “Event” pages.

Finally, moving on to cluster 3 (see Figure 5.25 bottom), users start from state 3 with

a probability of 0.56 and move to state 1 with a probability of 0.43. Once users reach

state 1, the probability of them staying there is 0.85. State 1 emits “Attraction” with a

probability of 0.74. Another path is moving from state 3 to state 4 with a probability of

0.25 and staying in this state with a probability of 0.94. State 4 emits “Accommodation”

with a probability of 0.91.
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5.4 Discussion

In this chapter, web usage mining techniques have been used to handle and analyse click-

stream data from a Sicilian company’s website. Our empirical analysis concerned the

tourism sector and the data extracted from the website was used to understand user be-

haviour.

Association rules analysis showed that users seem to be more interested in obtaining

general information about the province of Palermo rather than viewing accommodation

offers. In fact, the “Attraction” area , unlike the items related to other thematic areas, are

shown to users directly in the homepage in the form of a link-image below the menu, with

clear intent of encouraging the exploration of the site using cultural information.

Then, we analysed how users explored the website through Markov chains, identifying

how they move between pages. As regards the order of the Markov chain, we computed

transition matrices of different orders (first to sixth), displaying little differences that sug-

gested a user behaviour of relatively homogeneous sessions in terms of the thematic areas

visited.

Since the length of the sessions quite short on average (most of them below 5 clicks),

we decided to consider a simpler model assumption. An application of Markov chains

allowed us to estimate the exit probability from the different areas of the site. The analysis

shows that users conclude navigation on a page of the “Attraction” category in 31.7% of

cases and on a page of the “Accommodation” category in 33.5% of cases, confirming that

these categories are the most attractive. The analysis of the Markov chains highlighted a

“single track” navigation behaviour. Users tend to view pages in the same thematic area

sequentially. As clicks increase, users who are viewing “Accommodation” or “Attraction”

continue browsing without changing areas, while those in another area begin to vary their

route. Taking into consideration what has been learned thanks to the rules of association,

at this level of the analysis there seem to be three predominant user paths: a) the consumer

has sessions browsing pages of apartments and accesses the site already as a potential

traveler; b) the missing consumer accesses the site to view the “Attractions” simply for

general cultural reasons and his failure to view “Services”, “Events” or “Experiences”

denotes the lack of interest in visiting the region; c) the explorer constitutes a minority

among users and the wealth of information in the website (with particular emphasis on

experiences) arouses their interest. They conclude their navigation by viewing one of the



80

two macro-areas “Attraction” and “Accommodation”.

The exploratory analysis carried out gave us insights on user behaviour and suggested

the presence of different behavioural profiles. Therefore, we applied sequential clustering

to explore user browsing behaviour and to identify clusters of sequences the evolution of

which reflects differences in interest and aims among users. Specifically, we compared

the profiles identified through a method commonly used in the literature, i.e. an MMM

with identification of the number of clusters via BIC, with those identified through an

MHMM and the proposed selection criterion.

Profile identification via MMM led to the selection of four clusters. The first cluster

seems to identify a rather mixed behavioural pattern, with users viewing the “Homepage”,

“Attraction” and “Accommodation” pages. The users of the second cluster on the other

hand, seldom leave the “Homepage” area, with a 75% probability of always selecting

a homepage sheet. The third cluster users tend to prefer to view the “Attraction” pages,

while the fourth cluster prefer viewing sequences of “Accommodation” pages. The cluster

composition as regards devices or nationalities does not provide particularly interesting

information apart from the fact that the majority of Asian users are in the third cluster

and that the first cluster is mainly made up of Italians. The model seems to have isolated

the users most interested in selecting “Accommodation” in cluster 4 which is the smallest

cluster with just 7% of users.

To account for hidden heterogeneity in clickstream we identified behavioural profiles

by adopting an MHMM, selected through the proposed ICL BIC. We identified three

user profiles of website browsing: the casual explorer/potential partner, the information

seeker and the potential tourist. The discriminant factors in these profiles seem to be the

geographical location of the IP address, the access device and the access month. It is

interesting that by using MHMMs we identified three components instead of four as in

the MMMs example, due to hidden states accounting for sequences variability. This is

because MMMs identify clusters having similar observed sequences and will need more

clusters to obtain relatively homogeneous groups. On the other hand, MHMMs identify

clusters based on hidden sequences. In this case a cluster will be identified by similar

hidden sequences representing the same hidden behaviour and will group pages into cat-

egories which reflect user goals and hidden “mental-states”.

The casual explorer or potential Partner (cluster 1): hidden states in this cluster iden-

tify three different “mental-states” and three sub-paths in this group. The first one is
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related to a lack of interest in the website or to an interest in general tourist information,

as this state emits pages in the “Homepage” area. A second hidden state emits different

areas and seem related to an exploratory attitude. Finally, there is a third hidden state that

emits “Info”, indicating that there is a specific subgroup of users which seems interested

in accessing information about the company and its partners. This group includes most

Asians and Eastern Europeans and has the lowest percentage of access via mobile. This

cluster makes up 22% of users.

The information seeker (cluster 2): users who are looking for tourist information

and primarily view “Attraction” and “Event”. This cluster has the highest percentage of

mobile access (although PC access is still the preferred one) and makes up 19% of users.

The potential tourist (cluster 3): users who view the website to search for both tourist

information and tourist products (59% of the sessions). Hidden states represent prelimi-

nary states related to “Homepage ” visualization, an exploratory state related to “Attrac-

tion” visualization and a buying state related to “Accommodation” visualization. There

is also a fourth state that accounts for the other thematic areas that are rarely accessed in

this cluster. Users in this cluster begin by selecting homepage sheets before moving on to

tourist attractions pages or bookable apartments. It is a cluster of Italian, North American

and Northern European users. Users with this profile preferred exploring the site using

their PC and logging in during November and December.
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Conclusions and future work

The study of browsing behaviour has become a fundamental component of online shop-

ping and an understanding of it allows companies to implement effective strategies in

order to increase customer relationships and sales. Browsing behaviour reveals the most

frequently taken paths, the most purchased products or simply the most visited pages. The

information obtained can be used to improve companies’ websites in terms of structure

and content, by improving the links preferred by users or by relocating the less viewed

pages. In highly competitive environments, it is therefore crucial to be able to adapt

websites to the needs of consumers, simplifying navigation and personalizing the service.

In this thesis we analysed real clickstream data from a Sicilian hospitality company

to highlight the usefulness of mixture hidden Markov models as a tool for identifying

and analysing behavioural profiles in a business context and to verify the effectiveness

of business decisions. To identify these profiles we operated a model-based sequential

clustering. We used MHMMs to analyse web sequences under assuming that there was a

heterogeneous population and that each subpopulation relates to cluster of web sequences

which evolve according to a specific hidden Markov model. In order to select a model

and so the number of clusters and states for each hidden Markov model, we defined an

entropy-based criterion that accounts for hidden heterogeneity in clickstream data.

The company had recently had the website modified by enriching the tourist information

provided and requested an analysis of the clickstream data so as to better understand their

users’ browsing behaviour, how many users selected purchase-oriented pages, how they

behaved before accessing the “Accommodation” pages, and the characteristics of potential

buyers.

The dataset consists in log-files extracted from the company website and refers to the

period September-December 2017. In Chapter 2, we presented clickstream data and their

main limitations. Firstly, the data does not have an analysis-ready structure and must
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undergo cleaning and restructuring procedures in order to obtain a sequential dataset.

Cleaning involves removing unnecessary web resources such as audio and video data. A

further issue is user identification. We have said that IP addresses are assigned in turn

and do not allow for the identification of a single user; commonly the analysis involves

assumptions on the identity of the users which is matched to those IP addresses that do not

change browsers and devices in a defined period of time (extracted from the user-agent

field) and that respect the path tracked in the referrer field. If previous information is not

available, the activity of the same IP is divided into sessions on the basis of temporal rules

such as the time spent on the same page i.e. if it exceeds 10 minutes the next page is part

of a new session.

The sessions obtained are the statistical units and are used as a basis for data mining

techniques such as association rules and sequential analysis.

After pre-processing, we analysed the clickstream data to identify browsing behavioural

profiles by using mixture hidden Markov models. In order to select the number of profiles

we had to choose the best criterion for MHMMs. However, a Monte Carlo simulation

study pointed out that the most common criteria used in literature for mixture models and

hidden Markov models do not perform satisfactorily if applied to MHMMs, where both

the number of components and states have to be identified. The main contribution of our

work is to enrich the literature from a methodological perspective by proposing a model

selection criterion based on an integrated classification likelihood approach that accounts

for the two latent classes in the model: subpopulations (i.e. mixture components) and

hidden states. We used a modified ICL BIC by defining a new entropy penalization i.e. a

joint entropy obtained as the sum of cluster-level entropy and state-level entropy, where

the former is the mixture model entropy and the latter is based on the Hernando et al.

(2005) conditional entropy definition.

The new criterion, although it requires a range of possibilities for the number of clusters

and states to be defined, outperformed the other information criteria. The BIC, which is

commonly used in literature, struggles to identify clusters and states, particularly when

the sequence length is short, which is a common scenario in web sequences.

As regards the analysis of the company’s clickstream data, the application of an

MHMM and the proposed criterion identified three behavioural profiles. We also used

a mixture of Markov models selecting the number of profiles based on BIC scores as is

commonly done in the literature.
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The MMM approach selected four profiles as it identifies similarities between observed

se quences and needs more clusters to handle variability.

The MHMM approach allows us to identify, through the hidden states, similarities be-

tween observed states (the thematic areas) accessed by users to achieve the same goals.

These hidden states identified the most accessed areas with hidden states and isolated the

least common accessed areas into one state. The MHMMs’ hidden states also provided a

better understanding of user movements as they highlight sub-behaviours inside clusters.

Our results have given the company management pause for thought. The homepage

offers the user a personalized search menu, links to different areas of the site and, at the

bottom, displays a list of image links relating to the “Attraction” area with the clear in-

tention of stimulating the user to explore the website further. Unfortunately, once the

exploration of the attractions has begun, the user is no longer encouraged to change area,

in fact the attraction pages only have links to other attractions, generating the aforemen-

tioned mono-thematic exploration. Furthermore, the links at the top of the page to other

areas are small making exploration of these areas difficult. This problem is exacerbated

even further on the small screen of a smartphone where the touch technology favours

image links as a means of moving around the website accentuating the navigation to

“separate tracks”.

One way of overcoming these problems would be to diversify the image links provided in

each area, thus improving site links. However, taking into consideration the company’s

main mission, it would be better to focus on the “Accommodation” area and include image

links relating to apartments adjacent to the tourist attraction described on each “Attrac-

tion” page. The same method could also be applied to the “Experiences” area which has

proved to be attractive to users.

Finally, it also seems that a change in the layout of the homepage menu would be use-

ful, enlarging the entries of individual areas in order to make browsing easier on mobile

phones. Profile identification results show that the website reaches two types of primary

users, involving two business models. One concerns the last two clusters and consists of

potential tourists interested in knowing about or buying tourist products or services. This

is to be expected since it reflects the business model B2C adopted by the firm, i.e. the

so-called business-to-consumer model. The second user target refers to cluster 1, which,

based on its characteristics, likely includes potential Asian and Eastern European busi-

ness partners who are interested in promoting outgoing tourism toward Italy. Since this



85

second group of users is not really catered for by PalermoTravel’s B2C business model,

the company will also need to focus on selling products and services to other companies

(i.e. the B2B, business-to-business model).

This would involve not only sales to other companies but also creating business partner-

ships to promote Sicily as a tourist destination. Furthermore, our findings have demon-

strated that MHMMs, although not commonly used for clickstream data, are very useful

in identifying user profiles with similar browsing behaviour.

Summing up, sequential data is a valuable resource in modern society and it is there-

fore necessary to have computationally efficient and reliable statistical tools that can be

applied to diversified phenomena. Such tools could be used to create routines that com-

panies could deploy in a variety of different projects. The statistical analysis of sequential

big data is extremely important in defining strategic market policies, targeted communi-

cation activities and marketing solutions.

It needs to be said , however, that this work does have its limitations. Representing

human behaviour, by means of Markov models, is clearly an approximation of reality.

It is common practice also to consider web sessions as time-discrete sequences of web

pages accessed by users. Cadez, Heckerman, et al. (2000) focused on sequence classifi-

cation for web data, applying a mixture of first-order Markov models to identify clusters

of users by considering the web pages accessed as states of the Markov chain (see Cadez,

Gaffney, et al., 2000). Dias and Vermunt (2007) highlighted the usefulness of mixture

Markov models in the analysis of web data as they adapt both to heterogeneity between

sequences and serial dependencies. However, Markov models do not consider the unob-

served heterogeneity related to the lack of information about navigation purposes. Thus,

statistical models with hidden variables are to be preferred in analysing clickstream data.

Among them, discrete-time Hidden Markov Models (HMMs) are the most suitable to

explore sequences and reveal the unknown variables that influence browsing behaviour.

Continuous-time HMMs can also be used to take into account how holding time affects

transitions between states. Xu et al. (2013) proposed a single Hidden semi-Markov model

to analyse clickstream data. However, due to the complexity of mixture hidden Markov

models and the number of parameters to estimate, we approximated user behaviour to

time-discrete sequences and the extension to continuous time sequences is the subject of

further research.

The study on model selection for MHMMs, conducted in this thesis, provides the basis
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for further developments. In our study, an Estimation-Maximization algorithm was used

to estimate model parameters, although an alternative approach would be to use Bayesian

approach based on MCMC sampler considering Dirichlet priors for transition matrices

rows. This approach would overcome a limitation of the EM algorithm that may struggle

during the M-step if there are no transitions between two states. Moreover, as we pointed

out, although the proposed entropy criterion outperformed previous ones, its ability to

identify clusters and states was still strongly influenced by different features such as the

number of clusters and the length of sequences.

However, a different technique would be to estimate the number of clusters along with

the other parameters considering a Bayesian framework and the reversible-jump Monte

Carlo Markov chain algorithm (RJMCMC), allowing this number to be inferred via their

posterior distribution. This approach was proposed for hidden Markov models by Robert

et al. (2000) and is based on Gibbs sampler algorithm. Each iteration considers splitting a

cluster into two or combining two clusters into one and is similar to the split/merge moves

of Richardson and Green (1997). Having fixed the number of clusters, we can update the

model parameters using standard MCMC moves.

The extension of the algorithm to MHMMs has recently been proposed by Luo and

Stephens (2021) and requires the following additional steps; a split/combine step to select

the number of clusters; then fixing these numbers and repeating the RJMCMC moves for

the number of states in each cluster. Although this algorithm was able to identify both

the number of clusters and states, it comes with several limitations: i) results were highly

affected by conditional distribution variability, ii) the analysis was carried out considering

continuous observations only. Thus, this estimation technique will need to be adapted to

categorical data in order to be applied in the context of clickstream analysis.

Another issue in applying RJMCMC is label switching. This refers to unidentifiable

models in data fitting if priors are invariant to relabelling. If K latent states/clusters are

present there are K! possible ways to label them and when we sample from posterior

density during RJMCMC iterations, state/cluster permutations can alternate. Several ap-

proaches have been proposed to solve this issue which are generally divided into two

categories. One is postprocessing (Marin et al., 2005)), which allows the algorithm to

explore all state and cluster permutations and provides Bayesian estimates by minimizing

posterior expectation of a suitable loss function. The other uses a data-driven identifiabil-

ity constraint on model parameters (Green and Richardson (2002); Frühwirth-Schnatter
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(2001); Robert et al. (2000)). In this case the algorithm fixes a single cluster/state permu-

tation, rejecting the split/combine move if the constraint is not satisfied.
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