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Abstract 23 

Environmental (e)DNA metabarcoding holds great promise for biomonitoring and ecotoxicological 24 

applications. However, few studies have compared the performance of eDNA versus eRNA 25 

metabarcoding in assessing organismal response to marine pollution, in experimental conditions.  26 

Here, we performed a chromium (Cr)-spiked mesocosm experimental test on benthic foraminiferal 27 

community to investigate the effects on species diversity by analysing both eDNA and eRNA 28 

metabarcoding data across different Cr concentrations in the sediment. 29 

Foraminiferal diversity in the eRNA data showed a significant negative correlation with the Cr 30 

concentration in the sediment, while a positive response was observed in the eDNA data. The  31 

foraminiferal OTUs exhibited a higher turnover rate in eRNA than in the eDNA-derived community. 32 

Furthermore, in the eRNA samples, OTUs abundance was significantly affected by the Cr gradient in 33 

the sediment (Pseudo-R2= 0.28, p = 0.05), while no significant trend was observed in the eDNA 34 

samples. The correlation between Cr concentration and foraminiferal diversity in eRNA datasets was 35 

stronger when the less abundant OTUs (<100 reads) were removed and the analyses were conducted 36 

exclusively on OTUs shared between eRNA and eDNA datasets. This indicates the importance of 37 

metabarcoding data filtering to capture ecological impacts, in addition to using the putatively active 38 

organisms in the eRNA dataset. The comparative analyses on foraminiferal diversity revealed that 39 

eRNA-based metabarcoding can better assess the response to heavy metal exposure in presence of 40 

subtle concentrations of the pollutant. Furthermore, our results suggest that to unlock the full potential 41 

for ecosystem assessment, eDNA and eRNA should be studied in parallel to control for potential 42 

sequence artifacts in routine ecosystem surveys. 43 

 44 
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1. Introduction 49 

Benthic foraminifera, single-celled eukaryotes, have been applied as proxies for 50 

paleoceanographic and paleoenvironmental reconstructions (Jorissen, Fontanier, and Thomas 2007). 51 

Their application has also been extended to biomonitoring in marine and transitional environments 52 

(Bouchet et al. 2018). Despite the recent advances in foraminiferal biomonitoring, the application of 53 

standard morphological technique is time-consuming, neglects important communities (i.e., 54 

monothalamids), and requires skilled specialists that make it impractical for large-scale biomonitoring 55 

surveys (Keeley et al. 2018; Pawlowski et al. 2014a, b, 2016). The development of high-throughput 56 

sequencing (HTS) technologies has deeply revolutionized the way of assessing biodiversity and 57 

biomonitoring (Guardiola et al. 2016; Cordier et al. 2020; Valentini et al. 2016; Cavaliere et al., 2021). 58 

In this context, metabarcoding of environmental DNA or RNA using specific gene region(s) amplified 59 

from sediment represents a complementary, possibly alternative, reliable, time- and cost-effective 60 

methodology to apply in routine biomonitoring surveys (Lejzerowicz et al. 2015; Pawlowski et al. 61 

2014b). The eDNA comprises intra- and extra-organismal DNA from living and dead organisms, 62 

while eRNA is generally considered to originate mainly from metabolically active organisms 63 

(Cristescu 2019; Wood et al. 2020). The preservation of eDNA is controlled by a set of environmental 64 

factors (i.e., organic matter content, oxygen availability, temperature, sedimentation rate) (Corinaldesi 65 

et al. 2018) and important fractions of extracellular DNA might escape degradation processes and be 66 

preserved in sediments (Dell’Anno and Danovaro 2005). The lower stability of eRNA has been related 67 

to its single-stranded and the presence of hydroxyl groups that enhanced the abiotic chemical 68 

breakdown (Li and Breaker 1999; Marshall et al. 2021). The higher-preservation capability of eDNA 69 

might therefore reduce the β-diversity (i.e., diversity across sites) and overestimate the α-diversity 70 

(i.e., diversity at a local site) by detecting unviable organisms. Indeed, Cristescu (2019) underlines 71 

the problematic high rates of false positives and negatives in the eDNA analyses (Veilleux et al. 2021). 72 

Diversity surveys based on eDNA would therefore be more biased, while analyses using eRNA better 73 

mirror metabolic active or dormant but viable organisms (Pochon et al. 2017) and reflect the real 74 
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community response to environmental conditions (Pawlowski et al. 2014; Adamo et al. 2020). 75 

Nevertheless, working with RNA rather than DNA is more complicated as well as economically 76 

(higher costs) and technically challenging (Laroche et al. 2017; Zaiko et al. 2018). 77 

Foraminiferal metabarcoding has been used for monitoring the impact of fish farms, and oil and 78 

gas drilling activities in the field (Pawlowski et al. 2014b; 2016; Pochon et al. 2015; Frontalini et al. 79 

2020; Cordier et al. 2019) and in laboratory experiments (Frontalini et al. 2018a). Some of these 80 

studies have simultaneously considered eDNA and eRNA (Pawlowski et al. 2014b; Pochon et al. 81 

2015; Laroche et al. 2018; Keeley et al. 2019) and documented a higher sensitivity of eRNA over 82 

eDNA for detecting environmental changes (Pawlowski et al. 2014b; Pochon et al. 2015). In contrast, 83 

evidence from other environmental impact studies have shown a better response of eDNA, but only 84 

in terms of β-diversity, when data were trimmed by shared OTUs with eRNA (Laroche et al. 2017, 85 

2018). This supports eDNA as a better molecular proxy of community turnover (β-diversity), and 86 

eRNA for species diversity (α-diversity) (Laroche et al. 2017). As suggested by Wood et al. (2020), 87 

the identification of a molecule (i.e., eRNA) characterized by a fast turnover rate could represent an 88 

essential proxy in monitoring populations (i.e., endangered or invasive species) but also for 89 

biomonitoring. Indeed, the application of eRNA in environmental biomonitoring might constrain the 90 

observed changes to a relatively higher spatial and temporal resolution (Veilleux et al. 2021; Yates et 91 

al. 2021).  92 

Laboratory experiments (e.g., microcosm or mesocosm) have been proven as an effective and 93 

direct method to assess the effect of a single parameter (i.e., pollutant at different concentrations and 94 

exposure time-length) on biota (Frontalini et al. 2018a,b; Chariton et al. 2014), but they might also 95 

enable to test the accuracy of eDNA and eRNA outcomes. In an innovative experimental study, Wood 96 

et al. (2020) revealed that DNA persisted in water longer (up to 94 h) than RNA (up to 13 h), after the 97 

organism removal, but both eDNA and eRNA were detected in biofilms after 21 days. To our 98 

knowledge, no laboratory experiment has been used to assess the effectiveness of eDNA and eRNA 99 

metabarcoding as indicators of heavy metal pollution in the sediments.  100 
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 Here, we evaluate the sensitivity of benthic foraminifera in a spiked-sediment toxicity test with 101 

subtle variations of chromium (Cr), a metal known to become toxic at high concentrations (Stankovic, 102 

Kalaba, and Stankovic 2014). To this end, we use a metabarcoding approach to parallelly assess the 103 

foraminiferal community response extracting both eDNA and eRNA from the sediment. We use the 104 

resulting molecular datasets to (i) compare the α-diversities response to Cr, (ii) investigate variation 105 

in β-diversities, and (iii) identify foraminiferal molecular operational taxonomic units (OTUs) with 106 

high indicator potential.  107 

 108 

2. Materials and Methods 109 

2.1 Sediment sampling 110 

Sediment samples were collected from a coastal site off Mt. Conero (central Adriatic Sea) in early 111 

autumn 2014. This site was chosen as it falls in a natural area and is considered in two previous studies 112 

(Frontalini et al. 2018a,b). At the collection site, temperature, pH, Salinity, Eh and dissolved oxygen 113 

of seawater were measured using a multiparametric probe. Sediment was sampled by Van Veen grab 114 

and only the uppermost part of the sediment (2 cm) was retained. Once on board, the collected 115 

sediment was immediately homogenized and sieved over a 500 µm mesh with natural seawater 116 

(NSW). The resulting <500 μm sediment-fraction was placed in an insulated box covered by NSW. 117 

 118 

2.2 Experimental set-up and subsampling 119 

Artificial Sea Water (ASW) was prepared following the methods of Ciacci et al. (2012), stored in 120 

the dark, aerated and mixed under in-situ temperature. Three Cr-ASW solutions with different metal 121 

concentrations (1 ppb, 100 ppb and 10 ppm that correspond to 1 μg L−1, 100 μg L−1 and 10 mg L−1, 122 

respectively) and control (no Cr added) were considered. Chromium (III) nitrate (Cr (NO3)3, CAS 123 

Number 13548-38-4, Sigma-Aldrich) 98% pure was used for preparing stock solutions. The details of 124 

the methodology have been reported in (Maccotta et al. 2016). 125 

Mesocosms (15 cm x 8 cm x 3 cm) containing 1 cm-thick sediment (i.e., <500 μm) were placed 126 
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inside 20-L-tank (60 cm x 40 cm x 20 cm) that reflects different Cr concentrations plus control. 127 

Sediment (2 mg) from each mesocosm was sampled after 1, 2, 4, 8 and 12 weeks for metabarcoding 128 

analyses, using disposable spoons (SteriPlast, Burkle). During each sampling event, two aliquots of 129 

sediment were collected, one for eRNA and the other for eDNA analyses. Samples were preserved in 130 

5 mL of LifeGuard Soil Preservation Solution (Qiagen), frozen at −20 °C and sent to the Department 131 

of Genetics & Evolution, University of Geneva (Switzerland). Additionally, one sediment aliquot (ca. 132 

40 cm3) was used for geochemical analysis at the Department of Earth and Marine Sciences 133 

(DISTEM), Palermo University (Italy). Details of geochemical characterizations and analyses are 134 

reported in Maccotta et al. (2016). The Cr concentration in the sediment at which foraminifera were 135 

exposed ranged from 33 to 43 ppb (i.e., 33 to 43 mg kg−1). 136 

 137 

2.3 eDNA and eRNA extraction, amplification and sequencing 138 

The total RNA and DNA content of sediment samples were extracted using the PowerSoil™ Total 139 

RNA Isolation Kit and DNA Elution Accessory Kit (MoBio, USA) in RNase- free conditions and 140 

following the manufacturer instructions. Extracted RNA was reverse transcribed as described in 141 

Langlet et al. (2015) using the SuperScript® III reverse transcriptase (Life Technologies). 142 

Amplification protocols and sequencing steps were described in (Frontalini et al. 2018a). Briefly, 143 

DNA and cDNA samples were amplified in triplicates using foraminiferal-specific forward primer 144 

s14F1 (5’ - AAGGGCACCACAAGAACGC - 3’) and reverse primer s17 (5’ – 145 

CGGTCACGTTCGTTGC - 3’) (Pawlowski et al. 2002). An additional, nested PCR step was 146 

performed using tagged versions of the same primers to label the PCR products of each of our samples 147 

to a combination of tag sequences. Every tag consists of a unique sequence of 8 nucleotides appended 148 

to the 5’-end of the specific amplification primer sequence. Tagged-primers combinations were 149 

selected following an optimized multiplexing design (Esling et al. 2015). Reactions were performed 150 

in a total volume of 25 μl including 1 Unit of Taq DNA polymerase (Roche), 2.5 μl of 10× PCR 151 

Reaction Buffer (Roche), 0.2 mM of each dNTP, 0.2 μM of each primer, and 1 μl of DNA / 5 μl of 152 
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cDNA extracts. The conditions for the first amplification consisted of a pre-denaturation step at 95°C 153 

for melting the complex genomic DNA mixture, followed by 20 cycles of denaturation at 94°C for 154 

30 s, annealing at 50°C for 30 s and extension at 72°C for 1:30 min, followed by a final extension 155 

step at 72°C for 5 min. From the first PCR products, 10 ng were used for the nested PCR. The nested 156 

PCR conditions consisted of pre-denaturation step at 95°C for 1 min, followed by 14 cycles of 157 

denaturation at 94°C for 30 s, annealing at 52°C for 30 s and extension at 72°C for 2 min, followed 158 

by a final extension step at 72°C for 5 min. The PCR products were then purified using High Pure 159 

PCR Cleanup Micro Kit (Roche) and then quantified using the fluorometric quantitation method 160 

based on the Qubit HS dsDNA Kit (Invitrogen). Successively, purified samples were pooled in equal 161 

amounts and the total volume was concentrated using a Speed Vac (30 min at medium temperature). 162 

The sequencing library was prepared using the reagents of the PCR-free TruSeq kit (Illumina) 163 

following manufacturer instructions. 164 

 165 

2.4. Sequence data pre-processing and taxonomic assignment 166 

The obtained raw reads for the DNA and RNA samples were analysed in parallel using a publicly 167 

available pipeline written in C language (https://github.com/esling/illumina-pipeline). Briefly, raw 168 

reads containing at least one ambiguous base (“N”), quality below 30, and more than 5 mismatches 169 

in an overlap region of at least 50 positions between the paired reads were filtered out. The 170 

demultiplexing step was performed based on the combination of tags associated with the forward and 171 

reverse primers. The clustering and assignment of the sequencing were preceded by a pre-clustering 172 

step based on the 30 positions of the 5′-end of the 37f hypervariable region based on which 173 

foraminiferal species can be determined (Pawlowski and Lecroq 2010). This step is followed by a 174 

complete linkage clustering based on the pairwise Needleman-Wunsch distances computed for the 175 

complete 37f sequences of each pre-cluster, using a floating taxon-specific threshold for each pre-176 

cluster, as extensively described in Lejzerowicz et al. (2014) and Pawlowski et al. (2014b). The 177 

resulting sequences were then clustered into OTUs and for each OTU, the sequence represented by 178 
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the highest number of reads was assigned a taxonomy based on a manually-curated database 179 

comprising 1069 non-redundant foraminiferal species sequences, as described in Pawlowski et al. 180 

(2014b). Chimeric OTUs originating from the artificial recombination of different sequences during 181 

the PCR steps were detected using Uchime v.4.232 based both on comparisons of OTUs sequences 182 

amongst them or against the reference database, and every detected candidate OTU was removed from 183 

the dataset. 184 

The resulting OTU tables were explored using six different read abundance thresholds in both 185 

DNA and RNA datasets: Total, Filter 1, Filter 10, Filter 100, Filter 500 and Filter 1000. The Total 186 

dataset considers all sequences in DNA and RNA samples also including those represented by only 187 

one read (singletons) in the entire dataset. The Filter 1 dataset was obtained removing the singletons. 188 

Analogously, in the datasets Filter 10, Filter 100, Filter 500, and Filter 1000, all sequences represented 189 

in the entire dataset by less than 10, 100, 500, or 1000 reads were removed, respectively. As a result, 190 

twelve datasets (six for the DNA samples and six for the RNA samples) were generated. 191 

  192 

2.5 Biostatistics  193 

Alpha diversity indexes were calculated for each sample of the twelve datasets using the abdiv 194 

package (https://github.com/kylebittinger/abdiv) in R version 4.0.2 (R core Team, 2017). To test for 195 

differences in diversity between the two molecular proxies (eDNA and eRNA), Wilcoxon tests were 196 

performed on each dataset pair and results were visualised using the R package ggpubr 197 

(https://github.com/kassambara/ggpubr). 198 

 The α diversity response of the benthic foraminiferal community to Cr concentrations in the 199 

sediment was explored with Spearman correlation using the rcorr function from the Hmisc R package 200 

(https://github.com/harrelfe/Hmisc/).  201 

Next, we investigated the response of the benthic community captured by the eDNA and eRNA 202 

in terms of β-diversity. To this end, we analysed the dataset pair at Filter 100 and in parallel, tested 203 

the effect of analysing only taxa present in the eDNA and eRNA from the same environmental sample 204 

https://github.com/kassambara/ggpubr
https://github.com/harrelfe/Hmisc/
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(trimming by shared OTUs). The OTU turnover rate for each of the datasets obtained was assessed 205 

by calculating Jaccard distance matrices based on OTU presence/absence with the vegdist function 206 

from the R package vegan (Oksanen et al. 2018). Changes in the community structure of foraminiferal 207 

OTUs in the eDNA and eRNA dataset pairs were then analysed performing a non-metric 208 

multidimensional scaling (NMDS) using the metaMDS function from the R package vegan. The 209 

obtained ordination was used to assess the response of foraminiferal OTUs to Cr gradient by 210 

performing BIOENV analysis that allows to link multivariate community structure and environmental 211 

variables by calculating a correlation coefficient that is then subjected to a permutation test to 212 

determine its significance (Clarke and Ainsworth 1993). Based on the results of this analysis, we 213 

selected the dataset that performed best (BIOENV significance level) and extracted the individual 214 

sample scores on the NMDS axis parallel to the observed pollutant gradient. To identify potential 215 

ecologically important OTUs, the sample scores were used to perform a differential abundant analyses 216 

with the R package DESeq2 using unrarefied data and parametric estimation of the count-variance 217 

relationship (Love, Huber, and Anders 2014). We used a threshold of p < 0.05 to select significantly 218 

different taxa. To visualize differences in response to the pollutant gradient of different OTUs, raw 219 

counts were normalized (log2 (x+1)) and heatmaps were created with the pheatmap R package (Kolde 220 

2019). 221 

 222 

3. Results 223 

3.1. Sequence data and taxonomic composition 224 

The final amount of reads and taxonomic composition of each of the obtained datasets are 225 

summarized in Table 1. In total 567,209 high-quality reads have been obtained. They were clustered 226 

into 2562 OTUs for eDNA and 2057 OTUs for eRNA. By applying different filters, the number of 227 

OTUs was progressively decreasing to 40 and 43, for Filter 1000 of eDNA and eRNA, respectively 228 

(Table 1).  For further analyses, we selected Filter 100, for which the OTUs number was reduced to 229 

141 and 156 for eDNA and eRNA datasets, respectively. At the same time, the number of reads was 230 
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reduced by about 5-7% suggesting that the majority of OTUs were represented by less than 100 reads. 231 

A great percentage of the OTUs retrieved could not be assigned to any known reference sequence, 232 

particularly in the eDNA datasets, where the observed proportion of unassigned reads was higher than 233 

55% (Table 1). Among assigned OTUs, Monothalamea class dominated the community in both eDNA 234 

and eRNA datasets accounting for more than 30% and 50% of the total assemblage, respectively 235 

(Table 1). The most represented monothalamid OTUs in the eDNA datasets belonged to the clades 236 

ENFOR6 (25-27%) and Clade Y (24-25%), while in the eRNA datasets OTUs from BM 237 

(Bathysiphon/Micrometula) Clade were predominant (56-58%). Less than 5% of the reads in both 238 

eDNA and eRNA datasets were assigned to the classes Globothalamea and Tubothalamea (Table 1). 239 

Indeed, within these two classes, the composition varied greatly among datasets. OTUs belonging to 240 

the family Buliminidae were dominant in the eDNA datasets (61-100%), whereas OTUs assigned to 241 

order Textulariida made up to 93% of the Globothalamea reads in the eRNA datasets. The quasi 242 

totality of the Tubothalamea reads (82-100%) were assigned to Hauerinidae, but none of 243 

Tubothalamea OTU passed the abundance threshold in the eDNA Filter 100, 500 and 1000 datasets 244 

(Table 1).  245 

 246 

3.2. Foraminiferal diversity and Cr concentration 247 

The observed response of foraminiferal diversity to Cr concentration was not univocal in eDNA 248 

and eRNA datasets. Spearman correlation between Cr in the sediment and diversity measured in 249 

eDNA datasets yielded positive but not significant relationships (Fig. 1). The opposite response was 250 

observed in the eRNA datasets where benthic foraminiferal diversity decreased with increasing Cr 251 

concentrations. However, the correlation in the eRNA datasets was significant for Filters 10 and 100, 252 

only (Fig. 1).  253 

To properly assess benthic foraminiferal response to Cr in terms of β diversity while controlling 254 

for sequencing artefacts, we proceeded by comparing eDNA Filter 100 and eRNA Filter 100 datasets 255 

(abundance trim). We furtherly controlled for PCR errors by deriving from the aforementioned 256 
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datasets two new datasets including solely the shared OTUs observed in both eDNA and eRNA 257 

samples (trim by shared OTUs). Of the 78 shared OTUs, more than half could not be taxonomically 258 

assigned (55%), 42% belonged to Monothalamids and 3% were assigned to Globothalamea (Rotaliida 259 

and Textularida) (Fig. 2). No Tubothalamea was observed in the shared eRNA/eDNA dataset (Table 260 

1, Fig. 2). 261 

 We compared the foraminiferal communities across eDNA and eRNA datasets based on OTUs 262 

presence/absence. This comparison was based on Jaccard distances independently determined for 263 

eDNA and eRNA samples. The turnover in OTU composition across different Cr concentrations was 264 

more evident in eRNA than in eDNA samples as indicated by the distance range in the violin plots 265 

(Fig. 3). In particular, the eRNA Filter 100 dataset showed the highest turnover rate across samples. 266 

 We then proceeded by investigating the single OTUs response to the Cr concentration based on 267 

read abundance and visualized the results in a multivariate space (i.e., NMDS) for each of the datasets 268 

produced (Fig. 4). The BIOENV analyses performed on the obtained ordinations revealed that, in the 269 

eRNA shared dataset, Cr gradient correlated significantly with the obtained ordination (R2=0.28, p = 270 

0.05) indicating that assemblage shifts could, at least in part, be attributed to changes in the pollutant 271 

concentration. No significant correlation between Cr concentrations and OTUs abundance was instead 272 

observed in the ordination obtained on the other datasets.   273 

 274 

3.3. Potential new bioindicators 275 

To identify potential foraminiferal bioindicator species, the eRNA shared OTUs sample scores on 276 

the second dimension of the ordination in Figure 4 were extracted and used for a differential 277 

abundance analysis (Fig. 5).  278 

Less than half of the retrieved OTUs (38%) could be identified as Monothalamids. The DESeq2 279 

analyses pointed at potential indicators foraminiferal OTUs (Fig. 5). In particular, Monothalamids 280 

belonging to Clade Y (Allogromiid, ICEMON 7, OTU 5829), Clade O (Allogromiid, OTU 3166, 281 

OTU 6719, OTU 6740, OTU 6269), Clade BM (OTU 146) and unassigned monothalamid (OTU 79) 282 
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appeared to be negatively affected by increasing concentration of Cr in the sediment. The only OTU 283 

found as tolerant to the highest values of Cr in the sediment could not be taxonomically identified 284 

(OTU 5150). To verify that the identified OTUs were solely to respond to the concentration of Cr in 285 

the sediment and to rule out the presence of an ‘ageing of the sediment’ signal, we plotted the 286 

abundance change in the Control samples at each time of sampling (Fig. S3). The plot shows that the 287 

reads trend of the 21 OTUs in absence of a Cr gradient differs from the one presented in the heatmap 288 

in Figure 5b. 289 

 290 

4. Discussion  291 

4.1 eRNA better captures ecological information in metabarcoding surveys 292 

The observed eDNA diversity was significantly higher for all the datasets generated (Fig. S1). 293 

Correlation analysis showed unilaterally that the increase of Cr concentration, though subtle, 294 

negatively impacted α-diversity measured on eRNA derived data (Fig. 1). In contrast, even if the 295 

eDNA datasets showed higher α-diversity (Fig. S1), no significant relationship with the Cr gradient 296 

was present (Fig. 1). The diversity inflation recorded from the DNA template indicates that DNA was 297 

more spread among samples and that the data reflected the presence of extra-organismal and 298 

extracellular molecular components in the sediment (Dell’Anno and Danovaro 2005; Corinaldesi et 299 

al. 2011). These findings agree with previous studies that showed how RNA-based diversity surveys 300 

tend to be less biased (Not et al. 2009) and to better reflect environmental changes (Pawlowski et al., 301 

2014b; Pochon et al., 2015; Visco et al., 2015) as well as macrofauna-based biotic indices (Pawlowski 302 

et al. 2016) since they more accurately return only the active fraction of the biomass (Guardiola et al. 303 

2016). 304 

Across all the datasets investigated, our analyses show that eRNA samples were characterized by 305 

a higher OTUs turnover resulting in an increased difference in composition across samples, especially 306 

in the eRNA filter 100 dataset (Fig. 3). This indicates that the longer persistence of the DNA molecule 307 

in the sediment can possibly increase the rates of false positives due to the detection of non-viable 308 
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OTUs (Veilleux et al. 2021), resulting in a reduced inter-sample variability and artificially decreasing 309 

β-diversity estimates (Lejzerowicz et al. 2015). On the other hand, the OTU turnover in the eRNA 310 

samples suggests that the response to the pollutant is measured on individuals that are viable at the 311 

time of sampling, entailing that the RNA molecule is better suited for studying its short-term 312 

community response (Novitsky 1986; Stoeck et al. 2007). Indeed, eRNA has been suggested to 313 

potentially increase the level of spatial and temporal resolution provided by environmental nucleic 314 

acid assays (Yates, Derry, and Cristescu 2021). This is because, unlike DNA, the RNA molecule is 315 

considered to be less stable, breaking down rapidly after cell death, and is therefore expected to persist 316 

in the sediment for shorter periods of time (Eigner et al. 1961; Mengoni et al. 2005). This has been 317 

recently confirmed in an experiment where a comparison of the decay rates of the two molecules 318 

showed a significantly faster degradation of RNA compared to DNA across both mitochondrial and 319 

nuclear genes (Marshall, Vanderploeg, and Chaganti 2021). Importantly, other factors can influence 320 

the detection and persistence of the two molecules, such as the presence of microbial activity (Strickler 321 

et al. 2015), sediment conditions (Corinaldesi et al. 2011; Orsi et al. 2013) and even the seafloor 322 

topography (Lejzerowicz et al. 2021).  323 

 324 

4.2 Data filtering increases metabarcoding surveys accuracy 325 

To properly assess the differences in foraminiferal β-diversity responses registered in eDNA and 326 

eRNA samples and identify potential ecological relevant OTUs, we needed to control/reduce the 327 

effect of potential sequence artifacts. To this end, we based our analyses on the Filter 100 datasets 328 

(trimming by abundance threshold) and on the datasets including only the shared OTUs (composition 329 

filter). These methods have been shown to increase the accuracy of the assessment of anthropogenic 330 

impacts in metabarcoding-based studies (Laroche et al. 2017; Pawlowski et al. 2014b). 331 

After trimming we found that 78 OTUs were present only in the eRNA dataset while 63 OTUs 332 

were only observed in the eDNA dataset (Fig. 2). The presence of additional DNA OTUs could be 333 

explained by the occurrence of rare species occurring sporadically in the mesocosms integrating the 334 
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history of the several communities across seasons present as extracellular DNA deposited in the 335 

marine sediment initially sampled (Dell’Anno and Danovaro 2005; Corinaldesi et al. 2011). The 336 

RNA-only OTUs observed in our dataset could instead represent rare taxa possibly stemming from 337 

DNA under-sampling (given the higher heterogeneity/diversity of the DNA dataset, Fig. S1). Thus, 338 

the complete absence of the Tubothalamea in the eDNA dataset (Filter 100) (Fig. 2) suggests that this 339 

particular group is rare but highly active in the sediment and could not be detected in the eDNA dataset 340 

because of its overall low abundance (Table 1) (Laroche et al. 2017). Another possibility is that OTUs 341 

observed only in the eRNA dataset represent PCR artefacts originated from the reverse transcription 342 

of RNA to cDNA (Egge et al. 2013; Ficetola et al. 2015). This process is based on the usage of a 343 

reverse transcriptase enzyme that, lacking proofreading activity, can introduce point mutations in 344 

some of the cDNA sequences (Houseley and Tollervey 2010). Furthermore, the reverse transcription 345 

process can introduce errors like chimeric sequences and isoform sequences that cannot be easily 346 

detected and filtered during bioinformatic processes (Laroche et al. 2017). 347 

The application of both filtering strategies enabled purifying the foraminiferal response, at the 348 

single OTU level, to the Cr concentration in the sediment with statistically significant results 349 

observable only in the eRNA shared dataset (Fig. 4).  350 

 351 

4.3 Identification of new foraminiferal bioindicators  352 

From the differential abundance analysis, we could identify OTUs belonging to Clade Y (OTU 353 

5829), Clade O (OTU 3166, OTU 6719, OTU 6740, OTU 6269, OTU 7378), Clade BM (OTU 146) 354 

and one unassigned monothalamous species (OTU 79) as more sensitive to Cr increase than other 355 

taxa.  356 

The prevalence of ecologically informative Monothalamiids emerging from our analyses indicates 357 

that taxa belonging to this group, largely ignored in morphological studies, could potentially be 358 

adopted as new category of foraminiferal bioindicators in environmental surveys. Especially in 359 

experimental settings involving mesocosms, these small and fast reproducing species would represent 360 
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a better model for ecotoxicological analyses than large, hard-shelled species. 361 

Finally, the lack of reference sequences hampers the functional assessment of the foraminifera 362 

OTUs that could not be taxonomically identified in our experiment. However, the use of protists as 363 

bioindicators does not necessarily have to rely on taxonomic identification, instead, a taxonomy-free, 364 

sequence-centred approach has been recently invoked to maximize the potential of microbial 365 

communities in biomonitoring applications (Pawlowski et al. 2016; Cordier et al. 2020; Cavaliere et 366 

al., 2021). 367 

 368 

Conclusions 369 

Our analyses indicated that the variations of Cr concentration, even if subtle, negatively affected 370 

the α and β diversity measured in the eRNA samples, while no significant effect was observed in the 371 

eDNA samples. Foraminiferal taxa showed a higher turnover rate in the eRNA dataset with abundance 372 

fluctuations significantly correlated with the Cr concentration gradient when only shared OTUs were 373 

considered. Overall, our findings suggest that even if working with eRNA can present some technical 374 

and economic challenges, its usage should be implemented in environmental monitoring programs 375 

and possibly studied in parallel with eDNA to properly assess microbial diversity response to 376 

anthropogenic pollution when in presence of subtle variation of pollutant concentrations. 377 

 378 

Data Availability 379 

Raw reads will be deposited in the European Nucleotide Archive (ENA) upon acceptance. The data 380 

tables used for the analyses are available at https://figshare.com/s/02b34064c4cd237f6be7 (DOI: 381 

10.6084/m9.figshare.16818421). The geochemical data were previously published in Maccotta et al. 382 

(2016).  383 
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Dataset # Reads # OTUs Unassigned 
(%) 

Monothalamea 
(%) 

Globothalamea 
(%) 

Tubothalamea 
(%) 

eDNA Total 300,751 2,562 60.24 38.49 1.25 0.02 

eDNA Filter 1 299,782 1,593 60.12 38.61 1.25 0.02 

eDNA Filter 10 296,024 702 59.70 39.05 1.24 0.01 

eDNA Filter 100 280,298 141 58.06 41.02 0.92 0.00 

eDNA Filter 500 261,977 61 57.53 42.00 0.47 0.00 

eDNA Filter 1000 247,096 40 55.82 43.68 0.50 0.00 

eRNA Total 266,458 2,057 41.37 53.52 4.49 0.62 

eRNA Filter 1 265,852 1,451 41.25 53.64 4.50 0.62 

eRNA Filter 10 262,515 718 40.56 54.30 4.51 0.63 

eRNA Filter 100 245,533 156 37.45 57.66 4.30 0.59 

eRNA Filter 500 226,969 65 34.38 60.92 4.28 0.42 

eRNA Filter 1000 211,606 43 32.48 62.93 4.59 0.00 

 393 

Table 1. Foraminiferal taxonomic composition of the Datasets analysed. 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 



18 
 

 403 

Fig. 1 Correlation between Simpson diversity and Cr concentration in the sediment for each of the 404 

datasets investigated. 405 

 406 

 407 

 408 
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 409 

Fig. 2 a) Venn Diagram showing OTUs distribution between the eDNA and eRNA Filter 100 datasets 410 

and b) their corresponding taxonomic composition. Relative abundances were calculated on the total 411 

number of OTUs in each data subset (Shared OTUs, eRNA only and eDNA only).   412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

  421 
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 422 

 423 

Fig. 3 Boxplot showing foraminiferal OTUs turnover based on the Jaccard distance calculated on 424 

presence-absence data for each subset. The violin plots show the sample-to-sample pairs distance 425 

distribution. 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 
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 439 

Fig. 4 NMDS ordination performed on the Filter 100 datasets including the results of the BIOENV 440 

analysis. Points in the panels represent the different Foraminiferal OTUs color-coded by their 441 

taxonomical assignment. Contour lines were derived from surface fitting (GAM) of the Chromium 442 

concentration. The results of the BIOENV analyses (R-squared and p value) are given for each dataset 443 

along with NMDS stress. 444 

 445 

 446 



22 
 

 447 
Fig. 5 a) Log2 Fold Change and b) Heatmap showing the response of the ecologically important 448 

foraminiferal OTUs exposed to the Cr gradient extrapolated from the NMDS in figure 4. The x-axis 449 

in b) shows the second dimension of the NMDS in Fig. 4. 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 
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 460 

Fig. S1 Simpson diversity index calculated on each datasets pairs. P-values report the results of 461 

Wilcoxon test. 462 

 463 

 464 
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 465 

 466 

 467 

Fig. S2 OTU composition normalised to one of the RNA Filter 100 and DNA Filter 100 datasets and the 468 

respective shared subsets. 469 
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 470 

Fig. S3 Heatmap showing changes in abundance of ecologically relevant foraminiferal OTUs showed in 471 

Figure 5 in the control samples. Changes of abundance are plotted along a time gradient (weeks 1, 2, 4, 8, 472 

and 12). 473 

 474 

 475 

 476 

 477 
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