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Abstract. In this work, we present an investigation of the cardiovascu-
lar and cardiorespiratory regulatory mechanisms involved during stress
responses using the information-theoretic measure of transfer entropy
(TE). The analysis was carried out on the series of heart period, sys-
tolic arterial pressure and respiration measured from 61 young healthy
subjects, at rest and during orthostatic and mental stress states, by us-
ing both a linear model-based and a nonlinear model-free approaches to
compute TE. The results reveal mostly significant correlations for the
measures of TE estimated with the two approaches, particularly when
assessing the influence of respiration on cardiovascular activity during
mental stress and the influence of vascular dynamics on cardiac activ-
ity during tilt. Therefore, our findings suggest that the simpler linear
parametric approach is suitable in conditions predominantly regulated
by sympathetic nervous system or by the withdrawal of the parasympa-
thetic system.
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1 Introduction

The human body is a complex network of interdependent systems and control
mechanisms that work together to maintain homeostasis [9]. However, currently
there is not well-established analytical methodologies, computational tools, and
theoretical frameworks that can effectively extract and quantify the interactions
between physiological systems from continuous streams of data. The dynamics of
these interactions are complex and occur across multiple scales, which presents
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significant challenges in identifying and measuring these networks. While tradi-
tional methods such as cross-correlation and coherence have been proposed to
investigate the relationships between two systems [21], there is growing inter-
est in the use of the framework of information-theory to better understand the
complex interplay between organ systems [12].

Turing’s theory suggests that any type of information carried by a system
can be broken down into three distinct components: information storage, infor-
mation transfer, and information modification [24]. The measurement of infor-
mation transfer is commonly achieved through the use of transfer entropy (TE),
which calculates the directional effects between two processes by analyzing the
information provided by a putative driver system above and beyond the pre-
dictability given by the target itself. Related to the concept of Granger causality
[25], the TE measure has been shown to be a valuable tool for assessing infor-
mation transfer between interconnected systems in various contexts [4, 20, 1, 25,
10].

A main challenge regards the practical estimation of the TE from short re-
alizations of physiological processes [6]. Over the years, various methodologies
have been proposed in the literature for estimating transfer entropy, which can
be classified as either model-based or model-free. Both approaches rely on the
assumption of stationarity, but in the former case, the probability density func-
tion used to calculate TE can be fully described by a specific model, while in
the latter case, it is directly estimated from the data [17]. When dealing with
a linear model, the model-based approach requires less data and computational
resources and should be chosen when only short datasets are available. How-
ever, the model-free method is crucial for revealing the intricate structure of
physiological connections supported by nonlinear feedback interactions [5, 7].

In this context, the present study proposes an analysis of the information
transfer assessed from short term series reflecting the spontaneous variability
of heart period, systolic arterial pressure and respiration in healthy subjects
undergoing a protocol including orthostatic and mental stress. In particular, the
main goal is to compare two different estimation approaches, i.e., a simpler linear
parametric and a more sophisticated non linear k-nearest neighbors method.

2 Material and methods

2.1 Subjects, experimental protocol and time series extraction

In this study, an historical database previously employed to study cardiovascu-
lar variability was used [13, 10]. In detail, electrocardiographic (ECG; CardioFax
ECG-9620, NihonKohden, Japan), arterial blood pressure (ABP; Finometer Pro,
FMS, Netherlands) and respiratory volume (RespiTrace, NIMS, USA) signals ac-
quired at a sampling rate of 1 kHz on a group of sixty-one healthy young subjects
(37 females, 17.5±2.4 years old) were analysed [10]. The experimental protocol
was approved by the Ethical Committee of the Jessenius Faculty of Medicine,
Comenius University, Martin, Slovakia, and consisted of (i) a supine resting state
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(REST, 15 minutes), (ii) an orthostatic stress phase (HUT, 8 minutes) during
which an head-up tilt test was performed tilting a motorized table to 45 degrees,
and (iii) a mental arithmetic stress phase (MA, 6 minutes) during which subjects
were instructed to perform a series of additions with three-digit numbers until
a one-digit number was reached, and to indicate whether the result was odd or
even. Both HUT and MA phases were followed by 10 minutes of supine recovery,
which were not considered in our analysis.

From these signals, the heart periods (RR) time series was measured as the
time differences between two consecutive ECG R peaks, the systolic arterial
pressure (SAP) time series was obtained by identifying the maximum values of
the ABP signal within each detected heart period, while the respiratory (RESP)
one by sampling the respiratory volume signal at each detected ECG R peak.
Time series windows of 300 samples were extracted for each subject and protocol
phase discarding any transient periods, as detailed in [10] to which we refer the
reader for further information about data acquisition and experimental protocol.

Before computing the directional coupling measures, all time series were pre-
processed applying a zero phase high-pass autoregressive filter, by removing and
interpolating samples differing more than three times standard deviation from
the mean value, and normalizing the series to zero mean and unit variance.

2.2 Directional coupling measure

Given a bivariate system S = {X ,Y}, its joint and dynamical evolution can be
described looking at the stochastic processes X and Y . Let us indicate as Xn, Yn
the scalar random variables describing the current state of X and Y , as Xk

n =
[Xn−1 · · ·Xn−k]

⊤ ∈ Rk×1, Y k
n = [Yn−1 · · ·Yn−k]

⊤ ∈ Rk×1 the vector variables
sampling the two processes over the past k lags, and as X−

n = limk→∞ Xk
n,

Y −
n = limk→∞ Y k

n the infinite-dimensional variables sampling X and Y over
their whole past history. Considering X and Y respectively as driver and target
processes, the information transferred from X to Y is defined as [20]

TEX→Y = I(Yn;X
−
n |Y

−
n ) = H(Yn|Y −

n )−H(Yn|X−
n ,Y

−
n ), (1)

where I(·; ·|·) and H(·|·) denote conditional mutual information and conditional
entropy, respectively. The TE measure reflects the directional influence of the
driver process X on the target one Y ; in absence of any interaction between the
dynamical systems X and Y, the whole predictive information about the target
is stored in its own past history and the information transferred from X to Y is
equal to zero.

Given a pair of time series {x, y} representing a realization of the driver and
target processes, TE estimates can be obtained either from the parametric repre-
sentation of the bivariate system dynamics, using a model-based (MB) approach,
or directly from the probability density distribution of data, using a model-free
(MF) approach. In the follow, the two approaches are described considering two
joint Markov processes of order p, whose past processes can be approximated to
p lags, i.e., X−

n ≈ Xp
n ∈ Rp×1 and Y −

n ≈ Y p
n ∈ Rp×1.
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Linear parametric method. Under the hypothesis of gaussianity of the investi-
gated stochastic processes, the current state of the target process Yn can be de-
scribed in terms of the past history of the driver process Xp

n by using the autore-
gressive (AR) model, i.e., Yn = AY p

n+Un, and of both the driver and the target
processes [Xp

n,Y
p
n] via the cross-AR (ARX) model, i.e., Yn = AY p

n+BXp
n+Wn,

where A and B are the vectors of the models coefficients belonging to the space
R1×p, while Un and Wn are two zero-mean white Gaussian noises of variance
σ2
U and σ2

W , respectively. In this framework, the linear estimate (lin) of the
information transferred from the X process to Y one is expressed as:

TElin =
1

2
ln
σ2
U

σ2
W

, (2)

where the variance of the prediction error of the AR and ARX models, i.e., σ2
U

and σ2
W , can be obtained through the identification of the two models via the

Ordinary Least Square (OLS) method.

Nonlinear model-free method. The model-free estimation of the information
transferred fromX to Y was performed using the Kraskov-Stögbauer-Grassberger
formulation of the k-nearest neighbors (knn) approach [11]. Based on a neighbour
search of samples in the highest dimensional space and then on range searches
in the projected lower dimensional spaces for estimating the probability data
distribution, TE is computed as [4]:

TEknn = ψ(k) + ⟨ψ(NY p
n
+ 1)− ψ(NYnY

p
n
+ 1)− ψ(NXp

nY
p
n
+ 1)⟩, (3)

where ψ(·) is the digamma function, k is the number of neighbors, ϵn,k is twice
the distance from each point to its k-th neighbor in the higher dimensional space
(i.e., [YnY

p
nX

p
n]), and NZ is the number of neighbors whose distance in the Z

space is lower than ϵn,k/2.

2.3 Data and statistical analysis

The two formulations of transfer entropy described in Sect. 2.2 were used to
compute the information transferred from X to Y , being X = RESP and Y =
RR when considering the cardiorespiratory system, X = RESP and Y = SAP
when considering vascular and respiratory systems, and X = SAP and Y = RR
when considering the cardiovascular system.

The MB approach was implemented using the Bayesian Information Criterion
(BIC) to set the optimal orders p for AR and ARX models (with the maximum
order was fixed to 10) [22], while the MF approach was implemented through
a non-uniform embedding technique which minimises the conditional mutual
information [4]. According to previous works [4, 15], the number of neighbors k
was fixed to 10, while a maximum lag of 10 and 100 random shuffling surrogates
have been used to establish the exit criterion.
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Non-parametric statistical tests were used for each estimator to identify dif-
ferences in the TE among physiological states, since the assumption of gaus-
sianity of the transfer entropy distributions was rejected using the Anderson-
Darling test. Specifically, the Kruskal-Wallis analysis of variance followed by
the Wilcoxon post-hoc signed rank test with Bonferroni correction (n=3) was
applied. Moreover, the statistical significance of the estimated TE value was as-
sessed for each subject, condition and estimator using 100 surrogates generated
randomly shifting the target series over time (minimum shift of 20 lags). The
McNemar test for paired proportions was then carried out to determine signifi-
cant variations between conditions of the number of subjects showing significant
TE.

The Pearson product-moment correlation coefficient r was computed between
the TE measures computed through MB and MF approaches for each direction
and protocol phase, testing the null hypothesis of absence of linear relation
between the two estimates of information transfer.

For all statistical tests, the significance level was set at 0.05.
Data processing and analysis were performed using MATLAB 2020a (The

Mathworks, Inc.); the functions used to estimate transfer entropy measures are
collected in the ITS toolbox (http://www.lucafaes.net/its.html).

3 Results and discussion

Figure 1 reports the distributions across subjects of the information transfer
from RESP to RR and SAP, and from SAP to RR, during the three physiolog-
ical states (i.e., rest, orthostatic and mental stress). A decrease of the influence
of the ventilation activity on both cardiac (Fig. 1a) and vascular (Fig. 1b) dy-
namics is reported during both physical (in pink) and mental stress (in green)
states in compared with resting (in light blue). This decrease is associated with
a reduction in the activity of the parasympathetic nervous system (PNS) [2, 19]
evoked by stress, which leads to a weakened respiratory sinus arrhythmia (RSA)
mechanism [8, 10], as well as a decrease in the mechanical effect of ventilation
during mental arithmetic [23]. Moreover, the causal influence of SAP on RR
increased significantly during head-up tilt, but not during mental arithmetics,
compared to the resting condition (Fig. 1c). This results is related to the fact
that tilting activates the feedback mechanism in the closed-loop cardiovascular
regulatory system [2]. Previous studies have demonstrated that ventilation ac-
tivity is a primary source of cardiovascular variability related to stress [10, 21],
as here evidenced by the results of both the surrogate data analysis (Figs. 1d-f),
with the significance of TESAP→RR being lower than the other two measures,
and the McNemar test.

The reported differences are detected statistically significant using both esti-
mators, except for the decrease in directional coupling from RESP to RR during
tilt, which is only detected by the nonlinear estimator (Fig. 1a). The agreement
between linear and knn estimates of the TE is corroborated by the correlation
analysis results presented in Figure 2.
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Fig. 1. Error bar graphs of TE computed (a) from RESP to RR, (b) from RESP to SAP
and (c) from SAP to RR for all subjects during resting (R, light blue), orthostatic stress
(T, pink) and mental stress (M, green) states with both linear (lin) and nonlinear (knn)
estimators. In panels a-b-c, the asterisks indicate a statistically significant difference
comparing the given phase to the one corresponding to the asterisk colour according to
Wilcoxon test with Bonferroni correction (n=3). The Kruskal-Wallis analysis results
are not reported in the figure, being always statistically significant. The number of
subjects with statistically significant TE according to surrogate analysis are reported
in the bar plots in panels (d), (e) and (f) and the asterisks indicate a statistically
significant difference comparing conditions according to McNemar test.

The correlation between the parametric and the model-free estimates of
TERESP→RR is low during REST (Fig. 2a) and increases with stress, with the
maximum value reported during MA with the highest significance as well (Fig.
2g). This finding can be explained by the linearization of cardiorespiratory dy-
namics during stress, as nonlinearities are known to be common in healthy indi-
viduals in situations with a dominant vagal modulation [17, 7, 3]. When looking
at the influence of the respiratory activity to the vascular system, we may in-
fer that nonlinear dynamics are predominant during HUT, as evidenced by a
lower correlation of the measure TERESP→SAP during tilting (Fig. 2e) com-
pared to the other two conditions (Figs. 2b,h). As reported in literature, this
can be related to the nonlinear influence of breathing activity on cardiac barore-
flex and venous return mechanisms [18]. On the other hand, when investigating
the cardiovascular regulatory mechanism, a nearly constant correlation between
parametric and model-free estimates is observed throughout the various phases
of the protocol (Figs. 2c,f,i). Indeed, previous studies have provided evidences
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that sympathetic activity predominantly regulates SAP dynamics and that such
activity is not reflected in nonlinear dynamics [16].

As regard the comparison of the two estimation approaches in discriminat-
ing the two stress conditions, similar findings have been found on heart rate
variability during tilt using the univariate measure of conditional entropy [17].
Furthermore, our results are supported by previous researches on the interac-
tion between different physiological systems during physical or mental stress,

Fig. 2. Scatter plots of pair of linear (lin) and nonlinear (knn) estimates of TE measures
computed for each subject in a given experimental condition (REST in light blue, HUT
in pink and MA in green). The values of the information transferred from RESP to
RR (left column: a,d,g panels), from RESP to SAP (middle column: b,e,h panels),
and from SAP to RR (right column: c,f,i) are reported. In each subplot, the solid line
depicts the regression line between the two estimators, and the correlation value r as
well as its significance level p are reported at the top left of each subplot.
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which reported comparable trends in the different directional measures using
both linear [10] and nonlinear [4] approaches.

4 Conclusion

Our findings confirm that respiratory activity has a reduced influence on cardio-
vascular activity during stress, owing to the decrease in parasympathetic activ-
ity and the increase in the sympathetic one; the latter determines an increase in
baroreflex activity during orthostatic stress. The robustness of these results is
corroborated by the fact that both model-based and model-free approaches for
TE estimation perform similarly in discriminating between stressful and resting
conditions. This is further supported by the significant correlation between the
TE values obtained using the two approaches. Therefore, our findings support
the adoption of the parametric approach for the investigation of physiological
control mechanisms in healthy subjects undergoing tasks leading to the acti-
vation of the sympathetic system, given its simplicity compared to model-free
ones.

Future research should explore the use of simpler and computationally faster
model-free estimation methods, e.g. binning or permutation-based approaches
[1], and compare their discriminative capability with that of the linear approach
also on other databases, including in pathological conditions where nonlinear
interaction dynamics are dominant [14].
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