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A B S T R A C T

In this paper, we develop a model for the evolution of the Multiple Sclerosis pathology that considers the
modulatory influence of cytokines on the activation rate of macrophages. Our starting point is the reaction–
diffusion-chemotaxis model proposed in 4, and we modify the macrophage activation mechanism. What triggers
the immune cells into an active state is still debated in the medical literature. In this paper, we explore the
hypothesis, e.g., Lassmann, (2018), that cytokines mediate the activation mechanism. Our primary focus is
on the rigorous analysis of instabilities responsible for the formation of demyelinating lesions and on the
qualitative properties of the solution.

Through a weakly nonlinear analysis, we characterize the chemotaxis-driven Turing instability and
construct the stationary patterns that emerge from this instability. Using biologically relevant parameter values,
we show that the asymptotic solutions of our model system reproduce the concentric demyelinating rings,
confluent plaques, and preactive lesions observed in Balò sclerosis and type III Multiple Sclerosis. Furthermore,
we explore the initiation and progression of demyelinated plaques through extensive numerical simulations
on two-dimensional domains. Our findings reveal that the alternative scenario proposed here results in a less
aggressive pathology characterized by reduced inflammation levels and significantly slower disease progression.

Under the appropriate regularity conditions on the initial data, we prove the existence of a unique global
solution to our proposed system.

This study provides insights into the role of cytokines in the pathogenesis of Multiple Sclerosis, shedding
light on the disease’s dynamics and offering potential avenues for therapeutic interventions.
1. Introduction

In this introductory Section, we shall first discuss the primary mech-
anisms that underlie the etiopathogenesis of various types of Multiple
Sclerosis (MS), according to the general consensus. Specifically, we
shall focus on the distinct roles played by innate and adaptive immunity
in different types of MS. In the second Subsection, we shall provide
an overview of the main attempts to give a mathematical description
of MS: probably due to the disorder’s complexity and heterogeneity,
initial contributions were formulated only in recent years, leading to a
relatively underdeveloped body of literature on the subject. In the third
Subsection, we shall present the main results of this paper. They involve
modeling and analyzing the impact of cytokines on the activation of the
inflammatory cascade leading to demyelination, and the proof of the
well-posedness of the model. In the last Subsection, we shall present
the plan of the paper.
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1.1. MS pathology: a brief overview

Multiple Sclerosis is one of the most common autoimmune disabling
and degenerative disorders of the Central Nervous System (CNS) that
affects over 2.8 million people worldwide. MS patients often experience
relapsing–remitting phases on a background of a progressive disease
course until progression becomes dominant [1–3]. The disease is char-
acterized by a loss of myelin, a fatty substance that is produced by
oligodendrocytes and that, surrounding the nerve fibers of CNS, favors
the propagation of the electric signal along the nerve axon. Destruction
of myelin sheaths is usually organized in pseudo-circular areas, called
plaques or lesions [1–3].

An important line of research in MS focuses on understanding
the complex mechanisms underlying the pathology, particularly those
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related to etiology and its correlation with the observed clinical and
immunological heterogeneity, both at the population and individual
level. It is generally accepted that a dysfunction of the immune system
causes MS, which mistakes healthy neural cells for diseased or damaged
ones [1,3–5]. Recent studies indicate that immune cells of both the
innate and adaptive immune system are involved in the onset and
development of MS [2,3].

Among the cells of the innate immune system, microglia and
macrophages play a prominent role in the pathogenesis of MS [2].
Microglia, small-size white blood cells present in the CNS, manage the
entire defense system in the brain, as other larger immune cells can-
not cross the blood–brain barrier (BBB) under physiologic conditions.
Microglia periodically sweep the brain tissue, looking for pathogens,
foreign cells, or damaged neurons. In the presence of foreign or dam-
aged cells, they turn into an active state, 𝑖.𝑒. they increase their size
nd phagocytize harmful cells [6–9]. In the phagocytic state, microglia
ook like other macrophages (from the Greek makròs phagein, 𝑖.𝑒., big

eater), which are immune cells (or white blood cells) specialized to
digest pathogens and foreign substances [9,10]. In healthy organisms,
macrophages are not present in the CNS; they can be found in the
perivascular space and are too large to cross the BBB. However, in
MS brains, the BBB has increased permeability, and even large cells
such as macrophages are able to cross the barrier and infiltrate the
CNS [6–9]. In fact, infiltrating macrophages and microglia are the
dominant immune cells in plaques and are thought to be mainly
responsible for neuroinflammation and myelin degradation of MS pa-
tients [4,6,9,11,12]. On the other hand, macrophages also play many
beneficial roles, including removing neurotoxins and promoting repair.
According to their functional roles, macrophages are roughly divided
into two subtypes: pro-inflammatory (or M1) and anti-inflammatory
(or M2) macrophages [5–7,13]. Both M1 and M2 macrophages release
cytokines, small proteins that mediate and regulate immune responses,
inflammatory reactions, and chemotaxis, and lead to the proliferation
of antibody cells [11,14,15].

Because MS lesions exhibit profound heterogeneity with respect to
their immunopathologic patterns, several classification systems based
on plaque activity and histologic features have been introduced. Based
on biopsy and autopsy specimens, a classification of early active le-
sions known as the Lucchinetti/Lassmann/Brück system (LLB clas-
sification) has recently been proposed [16–19], which divides the
actively demyelinating lesions into four distinct subtypes. Type I and
type II lesions are the most common. They are characterized by high
macrophage and lymphocyte infiltration levels, complement activa-
tion, and massive phagocytosis of myelin by macrophages. Type-I and
type-II plaques closely resemble the lesions seen in T-cell mediated
experimental autoimmune encephalomyelitis, a murine model of brain
inflammation. Type III lesions resemble hypoxia-like lesions and are
characterized by extensive oligodendrocyte apoptosis in regions of
myelin preservation, high activation of microglia and macrophages,
no signs of complement activation and low levels of lymphocyte in-
filtration [16,20,21]. Similar immunopathological features are also re-
ported in Baló sclerosis, a rare, aggressive variant of MS whose plaques
display concentric alternating rims of demyelinated and myelinated
tissue [22]. Finally, type IV lesions are infrequent and, most likely,
caused by oligodendrocyte dysfunction. Immunohistological classifica-
tion suggests that different mechanisms may cause different subtypes of
MS lesions. Specifically, type I and type II MS would be autoimmune-
mediated disorders, whereas type III lesions emerge from microglia
activation through innate immunity mechanisms. Lesions would be
the result of an initial oligodendrocyte injury, caused by oxygen and
nitrogen radicals released by activated microglia, ultimately followed
by T-cells infiltration and demyelination, leading to the formation of
the classical plaque [18,19,21]. Whether different lesion types are
specific to each MS patient [16] or if they correspond to different
temporal stages of the disease [18,20,21], is still under debate in the
2

biomedical community.
1.2. Mathematical modeling of MS

In recent decades, mathematical modeling of diseases has been
widely used to study and explore the mechanisms responsible for the
development of severe pathologies such as cancer, diabetes, respira-
tory syndromes, inflammation [23–25] and, only to a lesser extent,
autoimmune diseases [26]. With few exceptions, existing continuum
deterministic models of MS are formulated in terms of ordinary differ-
ential equations (ODEs), in which the species distribution is assumed
uniform in space, and one takes into account only its time dependence.
Such models can reproduce the oscillatory behavior of immune cells
corresponding to the relapsing–remitting phase of MS and, in some
cases, also the underlying progressive stage (see, for example, [26–29]
for a review). Khonsary and Calvez [30,31] introduced the description
of lesion formation that considers species’ spatial distribution. The au-
thors formulated a model based on partial differential equations (PDEs)
to reproduce the concentric demyelinating rings observed in type III
MS/Balò sclerosis. Following the immunopathological findings on type
III MS/Balò sclerosis, they assumed that activation of innate immunity
by an unknown pathogen was responsible for initiating the inflam-
matory cascade, leading to the destruction of oligodendrocytes. Their
system describes the spatiotemporal dynamics of immune cells, chem-
ical mediators, and damaged oligodendrocytes. Moving from [30,31],
in [32–35], the authors took into account the macrophage production
of cytokines and, through theoretical and numerical bifurcation anal-
ysis, were able to reproduce several pathological scenarios observed
in type III MS/Balò sclerosis. Recently, in [36], they have considered
an Allee-type growth term to reproduce macrophage activation and
studied the effect on the illness progression. Moise and Friedman [12]
have proposed a comprehensive spatial model. The authors also an-
alyzed the impact of specific drugs for MS treatment and compared
their findings with clinical data. The model encompasses multiple
species’ interactions to replicate MS’s intricate biological pathways with
remarkable detail. However, the mathematical complexity makes the
system unsuitable for analytical analysis, and the results heavily rely on
numerical simulations. This does not allow for an understanding of the
fundamental mechanisms leading to the different illness scenarios, nor
to elucidate which are the key parameters guiding the progression and
transition of the pathology. Finally, through an Ordinary Differential
Equation-Partial Differential Equation (ODE–PDE) system, the interplay
between the adaptive and immune responses in the development of MS
is elucidated, [37].

1.3. Aims of the paper

This paper aims to derive a model incorporating the influence of
cytokines on macrophage activation. In [33], the kinetic term repro-
ducing proliferation of activated macrophages is a logistic functional
form whose constant activation rate describes the effect of an unknown
antigen directly acting on resident immune cells. This mechanism
reproduces the findings of many immunopathological studies (see [16,
20,21,38]), which report activation of macrophages in the absence of
cytokine-driven regulatory effects. Experimental models, such as the
induction of type III lesions through lipopolysaccharide injection into
rats’ spinal cords, confirm direct macrophage activation without cy-
tokine involvement, leading to focal areas of microglial activation and
oligodendrocyte apoptosis [21]. Despite various hypotheses proposed
to elucidate the triggering factors of the immune response, such as
CNS antigens in MS or the Epstein–Barr virus, no study has definitively
identified the antigen or provided a universally accepted explanation
for the activation mechanism to date [39]. In fact, some studies suggest
that inflammatory cells, exhibiting a cytokine-producing phenotype,
are already present in the early stages of lesions, potentially initiating
a pathogenic cascade of events leading to demyelination and oligo-
dendrocyte damage [21,40,41]. Considering that the medical literature

predominantly recognizes cytokines as the primary chemical mediators
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driving inflammatory activation in MS [42], these findings lead to the
hypothesis of the involvement of cytokines in the activation process.
Moreover, mathematical descriptions of MS and inflammation-driven
diseases typically consider cytokine participation in the proliferation
of activated macrophages [12,23,25]. The primary goal of this paper
is to test the hypothesis regarding cytokine-mediated activation of
the immunopathological response in MS. Therefore, we modify the
activation rate in the macrophage equation of the model in [33] by
choosing a logistic functional form with a cytokine-dependent growth
rate that displays Holling-type saturation at high cytokine concen-
trations. The modified form of the kinetics describes a more general
scenario of [33], which is recovered in the limit of vanishingly small
values of the newly introduced half-saturation parameter of the growth
rate. Moreover, since some of the currently used immunomodulatory
drugs for the treatment of MS inhibit cytokine production and T-
cell proliferation, by varying the value of the cytokine half-saturation
constant, we could mimic the effect of medical treatment on disease
dynamics and investigate its impact on the lesions.

We focus on the study of the Turing-type instabilities of the nontriv-
ial homogeneous steady state, leading to the settlement of stationary
patterns of inflammation and demyelination. At the onset of the insta-
bility, we carry out the linear and weakly nonlinear analysis which
yield quantitative estimates of the most relevant pattern properties,
such as bifurcation threshold, wavelength, amplitude, and form. We
analyze how the emergent pattern changes by varying the parameters
within experimentally estimated ranges, especially focusing on the
effects of varying the cytokine half-saturation constant. We find that the
involvement of cytokines in the proliferation of macrophages results in
a less aggressive form of the disease and in a slower progression of the
inflammation compared to the case of direct activation of the innate
immune system.

In the paper’s final part, we examine the proposed model’s well-
posedness. The mathematical properties of chemotactic-diffusion-
reaction systems, initially introduced by Keller and Segel, have been
extensively studied [43–47]. It is also well-known that aggregation
of cells may lead to blow-up phenomena [48]. Well-posedness of
the considered model depends on the form of the chemotactic term
and on the presence of reproduction and saturation kinetic terms. If
one introduces volume-filling effects in the chemotaxis term, global
existence and uniqueness of the solutions to the Cauchy problem can
be proved [49]. Moreover, the inclusion of logistic-type kinetics and/or
growth limitations on the sensitivity function prevents blow-up of the
solutions [50,51].

The well-posedness of the system proposed in [33] has been studied
in [52–54], where the authors prove the existence and uniform-in-
time boundedness of strong solutions. If porous media-type nonlinear
diffusion terms are included, the existence of global weak solutions is
shown in [55]. Indeed, the results obtained in [52,54] hold also for
the model presented in the present paper. Therefore, in this paper,
we consider the mathematically interesting case when the production
mechanism of activated macrophages has no saturation effects as the
density of the cytokine increases. This scenario is recovered from the
kinetics presented here in the limit of large values of both the half-
saturation constant and the constant growth rate. In the absence of
cytokine-induced growth-limiting effects, we prove the existence of a
unique, strong solution that exists globally in time.

1.4. Plan of the paper

The paper is organized as follows: in Section 2 we present the
model. In Section 3, we perform a Turing stability analysis at the
onset of the stationary bifurcation and derive the explicit expressions
of the critical value of the chemotactic coefficient and the critical
wavenumber of the pattern. In Section 4, we discuss the parameter val-
ues adopted in the analysis, either taken from experimental literature
3

or estimated. In Section 5 we perform a weakly nonlinear analysis on
1D spatial domains and obtain the amplitude equation that captures
the dynamics of the system close to criticality. We also derive the
Ginzburg–Landau equation that describes the wave-like invasion of the
pattern through the domain. Section 6 provides a detailed numerical in-
vestigation of dynamics supported by the proposed model on 2D spatial
omains. In Section 7, we prove global in-time well-posedness of the
odel, when the reaction kinetics of the activated macrophages have
o saturation effects. In Section 8, we finally draw some conclusions
nd discuss open problems.

. Mathematical model for MS lesions formation

The mathematical model we propose aims to reproduce the forma-
ion of MS lesions by the interaction of three species: immune cells
amely activated M1 macrophages or activated microglia, cytokines,
nd oligodendrocytes. Let 𝑚̃(𝑇 ,𝑋), 𝑐(𝑇 ,𝑋) and 𝑑(𝑇 ,𝑋) be the densities
f macrophage, cytokine, and oligodendrocyte species, respectively,
here (𝑇 ,𝑋) ∈ R+ ×𝛺, with 𝛺 ⊂ R𝑛, 𝑛 = 1, 2 is a bounded domain on

which we impose no-flux boundary conditions. Our model is a general-
ization of the model proposed in [33], which describes the initial stages
of the disease leading to type-III lesions, characterized by macrophage
activation by innate immunity, high levels of oligodendrocyte apopto-
sis, and minimal or absent lymphocyte infiltration [16,18,20,21]. Here,
we generalize the model proposed in [33] to include the involvement of
the cytokines in the activation of immune cells. We therefore introduce
the following system of PDEs:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑚̃
𝜕𝑇

= 𝐷𝛥𝐗𝑚̃ − ∇𝐗 ⋅ (𝛹 (𝑚̃)∇𝐗𝑐) + 𝜆
𝑐

𝑘𝑐 + 𝑐
𝑚̃(𝑚 − 𝑚̃),

𝜕𝑐
𝜕𝑇

= 1
𝜈
(𝜀𝛥𝐗𝑐 + 𝜇𝑑 + 𝑏𝑚̃ − 𝛼𝑐),

𝜕𝑑
𝜕𝑇

= 𝜅 𝐹 (𝑚̃) 𝑚̃ (𝑑 − 𝑑),

(2.1)

ith 𝛹 (𝑚̃) = 𝜓 𝑚̃
𝑚+𝑚̃ and 𝐹 (𝑚̃) = 𝑚̃

𝑚+𝑚̃ . Since microglia and macrophages
express similar molecular markers and are often experimentally indis-
tinguishable [8], we shall represent them as a single species. The spatial
movement of macrophages is described by diffusion and chemotaxis:
the diffusion term 𝐷𝛥𝐗𝑚̃ accounts for the random movement of cells,

here 𝛥𝐗 = ∇𝐗 ⋅ ∇𝐗, ∇𝐗 = 𝜕∕𝜕𝐗 and 𝐷 is the constant diffusion rate.
Following [33], we describe the chemotactic movement of the cells
by a density-dependent chemotactic sensitivity function 𝛹 (𝑚̃), which
displays saturation of chemotaxis due to overcrowding effects, where
𝜓 is the maximum chemotactic rate and 𝑚 is the characteristic density
of resident (non-activated) cells.

The kinetic term describes the production rate of activated
macrophages/microglia 𝑚̃ and represents the novelty of the present
model with respect to [33]. The model presented in [33] describes
the onset of plaque formation in type III and Baló sclerosis, which,
according to many studies, is characterized by direct activation of
the innate immune response (macrophages/microglia) by an unknown
pathogen, in the absence of cytokine-driven regulatory effects [16,
20,21,38]. Without going into the details of the activation process,
in [33] the macrophage production term is therefore modeled by a
logistic function of 𝑚̃, namely 𝜆𝑚̃(𝑚 − 𝑚̃), to reproduce production
of the activated cells at a constant growth rate 𝜆, and saturation at
the average density of resident non-activated macrophages 𝑚. The
same functional form has been used in similar models of MS [30,31]
and in ODE models of acute inflammation [23]. In the model, the
effect of the unknown pathogen responsible for initiation of MS is
reproduced by choosing an initial condition consisting of a localized
bump of activated macrophages in the absence of signaling molecules
and damaged oligodendrocytes. However, other data suggest that pro-
inflammatory cytokines are responsible for the inflammatory cascade,
ultimately leading to demyelination [40–42]. Hence, in this paper, we
want to generalize the model in [33] to include the role played by the
pro-inflammatory cytokines to the activation of macrophage/microglia.
To describe the activation of macrophages mediated by cytokines
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we choose a logistic-type functional form with a cytokine-dependent
growth rate 𝜆(𝑐) = 𝜆 𝑐

𝑘𝑐+𝑐
, where 𝑘𝑐 is the cytokine half-saturation

onstant. A similar term was used in [12]. Although different cy-
okine species stimulate the proliferation of activated macrophages and
romote chemotaxis, we do not distinguish between different medi-
tors and indicate by 𝑐(𝑇 ,𝐗) any type of pro-inflammatory signaling
ytokines.

Note that the model in [33] derives from (2.1) by setting 𝑘𝑐 = 0.
ince for any 𝑘𝑐 > 0, the saturation effect slows down the rate of
acrophage activation, the variation of the newly introduced parame-

er 𝑘𝑐 affects the time of plaque formation.
The equation for the evolution of 𝑐 is the same as in [33]: the

ytokines diffuse in space with diffusivity coefficient 𝜖, and damaged
ligodendrocytes release them and activated macrophages with linear
inetics, whose coefficients are 𝜇 and 𝑏, respectively and they linearly
ecay at a constant rate 𝛼. Finally, the parameter 𝜈 measures the
haracteristic time scale of the cytokine dynamics (see [33]).

The oligodendrocyte equation is as in [30,31,33]: the destroyed
ligodendrocytes are immotile, so no spatial term is included. 𝑑 indi-

cates the initial characteristic density of healthy oligodendrocytes in
the brain: intact oligodendrocytes are destroyed by interaction with
activated macrophages through a mass action law with a coefficient
that is a nonlinear saturating function of macrophage density and
whose strength is measured by the parameter 𝜅.

We now introduce the following non-dimensional variables and
arameters:

= 𝑚̃
𝑚
, 𝑑 = 𝑑

𝑑
, 𝑐 = 𝛼

𝑏𝑚
𝑐, 𝑡 = 𝜆𝑚𝑇 , 𝐱 =

√

𝜆𝑚
𝐷

𝐗,

𝜒 =
𝜓𝑏
𝛼𝐷

, 𝜏 = 𝜈𝜆𝑚
𝛼
, 𝜖 = 𝜀𝜆𝑚

𝛼𝐷
, 𝛽 = 𝑏

𝑏
, 𝑟 = 𝜅

𝜆
,

𝛿 =
𝜇𝑑

𝑚𝑏
, 𝜉 =

𝛼𝑘𝑐
𝑏𝑚

(2.2)

where all the non-dimensional variables and parameters are as in [33],
except 𝜉: this is the new parameter that rules the effect of cytokines
on the macrophage activation rate. Then, the system (2.1) assumes the
following non-dimensional form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑚
𝜕𝑡

= 𝛥𝑚 − ∇ ⋅ (𝜒(𝑚)∇𝑐) + 𝑐
𝜉 + 𝑐

𝑚(1 − 𝑚) , (𝑥, 𝑡) ∈ 𝛺𝑇

𝜕𝑐
𝜕𝑡

= 1
𝜏
(𝜖𝛥𝑐 + 𝛿𝑑 − 𝑐 + 𝛽𝑚) , (𝑥, 𝑡) ∈ 𝛺𝑇

𝜕𝑑
𝜕𝑡

= 𝑟𝐹 (𝑚)𝑚 (1 − 𝑑) , (𝑥, 𝑡) ∈ 𝛺𝑇

(2.3)

with 𝜒(𝑚) = 𝜒 𝑚
1+𝑚 , 𝐹 (𝑚) = 𝑚

1+𝑚 , 𝛺𝑇 = (0, 𝑇 ) ×𝛺, where 𝛺 is a bounded
domain in R𝑛 (𝑛 ∈ N, 𝑛 ≥ 1) with smooth boundary 𝜕𝛺 on which no-
flux (homogeneous von Neumann) boundary conditions are imposed.
Moreover, we shall impose the following conditions on the parameters:

𝜒 > 0, 𝜏 > 0, 𝜖 > 0, 𝛽 ≥ 0, 𝑟 > 0, 𝛿 ≥ 0, 𝜉 ≥ 0. (2.4)

We are interested in investigating the effects of the new term 𝑐∕(𝜉 + 𝑐)
on the formation of aggregates and compare the results with those
obtained in the case 𝜉 = 0, which yields the model in [33].

3. Turing instability analysis

In this Section, we conduct a linear stability analysis of system
(2.3) to explore the formation of small-amplitude stationary structures
emerging from a Turing instability of the non-trivial homogeneous
equilibrium. The system (2.3) admits two spatially uniform steady
states, namely the disease-free equilibrium 𝑃0 = (0, 0, 0) and the point
𝑃 ∗ = (𝑚∗, 𝑐∗, 𝑑∗) = (1, 𝛽 + 𝛿, 1). As in [33], the equilibrium 𝑃0 is
unstable while 𝑃 ∗ is a stable, attractive node with respect to spatially
uniform perturbations for all values of the parameters satisfying (2.4).
4

The linearized dynamics of (2.3) in the neighborhood of the steady state
𝑃 ∗ reads:

𝐰̇ = 𝐽 ′𝐰 +𝐷′𝛥𝐰, (3.1a)

where:

𝐰 =
⎛

⎜

⎜

⎝

𝑚 − 𝑚∗

𝑐 − 𝑐∗

𝑑 − 𝑑∗

⎞

⎟

⎟

⎠

, 𝐽 ′ =

⎛

⎜

⎜

⎜

⎝

−𝜃 0 0
𝛽
𝜏 − 1

𝜏
𝛿
𝜏

0 0 − 𝑟
2

⎞

⎟

⎟

⎟

⎠

, (3.1b)

=
𝛽 + 𝛿

𝜉 + 𝛽 + 𝛿
, 𝐷′ =

⎛

⎜

⎜

⎝

1 − 𝜒
2 0

0 𝜖
𝜏 0

0 0 0

⎞

⎟

⎟

⎠

. (3.1c)

e note that, under the assumptions (2.4), the parameter 𝜃 can be
ritten as:

= 𝑐∗

𝜉 + 𝑐∗
, so that 0 ≤ 𝜃 < 1 and 𝜃|𝜉=0 = 1, (3.2)

here 𝑐∗ = 𝛽 + 𝛿 is the constant equilibrium value of the cytokines.
e observe that for 𝜉 = 0, one recovers the model presented in [33],
hich therefore corresponds to 𝜃 = 1. For this reason, hereafter, we

hall indicate all the quantities evaluated for the model given in [33]
ith the subscript (1). We also remark that the only difference with the

inearized kinetics of the model proposed in [33] is in the coefficient
′
(1,1) of the matrix 𝐽 ′, where the linearized kinetics of [33] is obtained

from (3.1a)–(3.1c) by setting 𝜃 = 1.
We now look for solutions of Eq. (3.1a) of the form 𝐰 ∝ 𝑒𝜎𝑡+𝑖𝐤⋅𝐱,

where 𝜎 is the linear growth rate of the Fourier mode of the pertur-
bation with wavenumber 𝐤. Since we are imposing no-flux boundary
conditions on the spatial domain 𝛺 = [0,𝓁], the wavenumbers admitted
by the boundary conditions must be of the form |𝐤| = 𝑛𝜋∕𝓁, with 𝑛 ∈ Z.
Substituting in (3.1a), we get a cubic equation for the eigenvalues,
which easily gives one eigenvalue equal to −𝑟∕2. We then obtain
the following dispersion relation, which gives the eigenvalue 𝜎 as a
function of the wavenumber 𝑘 = |𝐤|:

𝜎2 + 𝑔(𝑘2)𝜎 + ℎ(𝑘2) = 0, (3.3a)

where:

𝑔(𝑘2) = 𝑘2𝑡𝑟(𝐷) − 𝑡𝑟(𝐽 ), (3.3b)

ℎ(𝑘2) = 𝑑𝑒𝑡(𝐷)𝑘4 + 𝑞𝑘2 + 𝑑𝑒𝑡(𝐽 ), (3.3c)

=
2 (1 + 𝜃𝜖) − 𝜒𝛽

2𝜏
, (3.3d)

nd

=

(

−𝜃 0
𝛽
𝜏 − 1

𝜏

)

, 𝐷 =

(

1 − 𝜒
2

0 𝜖
𝜏

)

. (3.3e)

For Turing instability to occur, the steady state must be stable in
the absence of spatial effects (𝑖.𝑒., Re{𝜎(𝑘2 = 0)} < 0), and it must be
linearly unstable with respect to spatial disturbances. Namely it must
exist 𝑘 ≠ 0 such that Re{𝜎(𝑘2)} > 0. From (3.3d)–(3.3e), one can easily
see that 𝑔(𝑘2) > 0 ∀𝑘. Therefore, the only possibility for Eq. (3.3a) to
have a positive root is that ℎ(𝑘2) < 0 for some nonzero 𝑘, see [56]. Since
ℎ(𝑘2) is a concave-up parabola, a nonzero 𝑘 exists such that ℎ(𝑘2) < 0
only if its minimum is negative. The minimum of ℎ is attained at

𝑘2 = −
𝑞

2 det𝐷
≡ 𝑘2𝑐 . (3.4)

where 𝑘𝑐 denotes the critical wavenumber, corresponding to the most
unstable mode. The expression (3.4) requires 𝑞 < 0, which is satisfied
by imposing the following necessary condition:

𝜒 > 𝜒 ∶=
2 (1 + 𝜃𝜖)

𝛽
. (3.5)

arginal stability is obtained for ℎ(𝑘2𝑐 ) = 0, so that the bifurcation value
𝑐 can be found by requiring:

min(ℎ(𝑘2)) = 0, (3.6)

𝑘
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Fig. 1. (a) Plot of the growth rate 𝜎(𝑘2) as a function of 𝑘2 for different values of the bifurcation parameter 𝜒 . For 𝜒 > 𝜒𝑐 there exists a range [𝑘21 , 𝑘
2
2] for which 𝜎(𝑘2) > 0. At

𝜒 = 𝜒𝑐 , 𝜎(𝑘2𝑐 ) = 0 while 𝜎(𝑘2) < 0 elsewhere. For 𝜒 < 𝜒𝑐 , 𝜎(𝑘2) < 0 ∀𝑘 > 0. (b) Plot of the critical value 𝜒𝑐 as a function of 𝜉. The different curves are obtained for evenly spaced
values of 𝜖 in the interval [0.5, 1.5]. The other parameters are chosen equal to 1. (c) Plot of 𝑘2𝑐 as function of 𝜉. The different curves are obtained for evenly spaced values of 𝜖 in
the interval [0.5, 1.5]. The other parameters are chosen equal to 1.
Eq. (3.6) can be solved substituting (3.4) in the expression of ℎ(𝑘2)
given by (3.3d). The bifurcation value is finally given by:

𝜒𝑐 =
2
𝛽

(

1 +
√

𝜃𝜖
)2
. (3.7)

Using the expression of 𝜒𝑐 in (3.4), we obtain the corresponding critical
wavenumber:

𝑘2𝑐 =
√

𝜃
𝜖
. (3.8)

For the Turing instability to occur, it has to be min𝑘(ℎ(𝑘2)) < 0, which
leads to 𝜒 > 𝜒𝑐 . Observing that 𝜒𝑐 ≥ 𝜒 , so that (3.5) is satisfied if
𝜒 > 𝜒𝑐 , one has the proof of the following theorem.

Theorem 3.1 (Turing Instability). Let the reaction–diffusion system (2.3)
be given. Then, under the hypotheses (2.4) on the parameters, there exists
𝜒𝑐 , given by (3.7), such that at 𝜒 = 𝜒𝑐 the uniform steady state solution
(𝑚∗, 𝑐∗, 𝑑∗) = (1, 𝛽 + 𝛿, 1) undergoes a Turing bifurcation.

Remark 3.2. Theorem 3.1 guarantees that there exists a unique value
𝜒𝑐 such that:

𝑖. for 𝜒 = 𝜒𝑐

• 𝜎(𝑘𝑐 ) = 0, 𝑖.𝑒. the growth rate 𝜎(𝑘𝑐 ) of the critical wavenum-
ber 𝑘𝑐 is zero;

• 𝜎(𝑘) < 0, ∀𝑘 ≠ 𝑘𝑐 , 𝑖.𝑒. the growth rate of all the wavenum-
bers except 𝑘𝑐 is negative;

𝑖𝑖. for 𝜒−𝜒𝑐 > 0 sufficiently small, there exists a band of wavenum-
bers 𝑘 ∈ (𝑘1, 𝑘2) such that:

• 𝜎(𝑘) > 0 for 𝑘 ∈ (𝑘1, 𝑘2), 𝜎(𝑘) < 0 for 𝑘 ∉ [𝑘1, 𝑘2], and
𝜎(𝑘1) = 𝜎(𝑘2) = 0; 𝑖.𝑒., only the wavenumbers belonging to
the interval (𝑘1, 𝑘2), have positive growth rate;

• on the spatial domain 𝛺 = [0,𝓁], if there exist 𝑘 ∈ (𝑘1, 𝑘2)
such that 𝑘 = 𝑛𝜋∕𝓁, with 𝑛 ∈ Z, then the system (2.3)
admits a spatially non-homogeneous stationary solution;
𝑖.𝑒., the pattern will develop if, within the interval (𝑘1, 𝑘2),
at least one wavenumber is compatible with the no-flux
boundary conditions.

Fig. 1(a) shows some graphs of the growth rate 𝜎(𝑘2) for different
values of the chemotaxis strength 𝜒 , which plays the role of the bifur-
cation parameter. Comparing these results with those obtained in [33],
we observe that 𝜒𝑐 ≤ 𝜒𝑐(1) , which means that the model presented
here, compared to the model in [33], admits a lower threshold of
the chemotactic coefficient to have the Turing instability. Therefore,
the contribution of cytokines to the macrophage proliferation rate
allows for the onset of aggregates of inflammation at lower levels
5

of aggressiveness compared with the direct activation of the innate
immunity described by [33]. Moreover, we find 𝑘𝑐 ≤ 𝑘𝑐(1) . Namely, the
critical wavenumber prescribed by the present model is lower than that
found in [33]. This means that, in the presence of a cytokine-mediated
activation of macrophages, the characteristic size of the plaques and
their spacing are larger. We finally note that the explicit expressions of
𝜒𝑐 and 𝑘𝑐 depend, through the parameter 𝜃, on the equilibrium value
𝑐∗ = 𝛽 + 𝛿 of the cytokines, which, in the present model, directly
influences the critical threshold of the chemotactic parameter and the
critical wavenumber of the emerging pattern.

In Figs. 1(b)–1(c) we display the graphs of 𝜒𝑐 and 𝑘2𝑐 versus 𝜉 for
various values of 𝜖. As discussed above, the plots show that 𝜒𝑐 and 𝑘2𝑐
are monotonously decreasing functions of 𝜉. Additionally, increasing
the value of 𝜖, which is proportional to the species’ diffusivity ratio
has a stabilizing effect on the homogeneous equilibrium. This effect is
evident from the fact that, for any fixed value of 𝜉, the critical value of
𝜒 is larger as 𝜖 grows. Correspondingly, once the pattern has formed,
its characteristic size is larger if one increases the diffusivities ratio, as
indicated by the fact that, for any fixed 𝜉, 𝑘2𝑐 is smaller as 𝜖 grows.

4. Parameter values

The numerical values or the ranges for the parameters introduced
in the system (2.1) are determined or estimated in [33], derived from
previous experimental estimates and recent studies [30,57]. We need
only to determine the numerical value of the cytokine half-saturation
constant, 𝑘𝑐 , that we have introduced here.

The functional dependence we propose in (2.1) for the macrophage
production rate is based on the model presented in [12] for the activa-
tion of the pro-inflammatory M1 immune cells: it is of logistic type with
a cytokine-dependent growth rate 𝜆(𝑐) = 𝜆 𝑐

𝑘𝑐+𝑐
, where 𝑘𝑐 is the cytokine

half-saturation constant. In [12], the activation of the macrophages
M1 is favored by the presence of cytokines 𝐼17, 𝐼23, 𝑆 (see eq. (2.9)
in [12]). Therefore, to estimate the range of physiologically meaningful
numerical values for 𝑘𝑐 , we focus on the steady-state densities of
𝐼17, 𝐼23, 𝑆 cytokines (see Table 3 of [12]). We note that 𝐼23 cytokines are
moderately effective, as they assume, at the steady state, an interme-
diate value of the density among the three different types of cytokines
considered. Therefore, we refer to 𝐼23 to estimate 𝑘𝑐 . Differently from
the procedure followed in [12], where some assumptions are made, we
take the value of the concentration of activated 𝐼23 (𝑖.𝑒. in plaques) as
given in [11], namely 250 pg/ml:

𝐼023 = 250
pg
ml

= 0.25
pg
mm3

(4.1)

Following [12], the value of the half-saturation coefficient 𝑘𝐼23 is de-
rived assuming the Michaelis–Menten formula, namely 𝐼023∕(𝑘𝐼23 + 𝐼

0
23) =

5∕6. It therefore follows that:

𝑘 =
𝐼023 (4.2)
𝐼23 5
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Table 1
Dimension carrying parameter values of the model.

Parameter Description Value Source

𝑚̄ average macrophages density 350 cells mm−2 [58]
𝑑 average oligodendrocyte density 400 cells mm−2 [59]
𝜆 macrophages activation rate ∼ 3 ⋅ 10−6 mm2 cells−1 min−1 Estimated
𝐷 macrophages random motility 6.6 ⋅ 10−5 mm2 min−1 [60]
𝜓 chemoattraction 0.0023–0.298 mm2 min−1 cells pg−1 Derived from [60]
𝜀∕𝜈 cytokine diffusion 9 ⋅ 10−4 mm2 min−1 [61]
𝑏∕𝜈 cytokine production rate 5.7 ⋅ 10−6–1.96 ⋅ 10−5 pg min−1 cells−1 [62,63]
𝜇∕𝜈 cytokine production rate per oligodendrocyte 10−6–10−5 pg min−1 cells−1 Estimated
𝛼∕𝜈 cytokine decay rate 0.001–0.03 min−1 [63]
𝜅 damaging intensity 3.96 ⋅ 10−6 mm2 cells−1 min−1 [30]
𝑘𝑐 cytokines half-saturation coefficient 0.136 pg−1mm−2 [11,12]
a

W
a

𝛯

𝑂

𝐆

Table 2
Non dimensional parameter values used in the numerical simulations.

Parameter Description Value

𝜒 chemoattraction 4–55
𝜏 time scale of cytokine dynamics 0.001–1
𝜖 cytokine diffusion 0.5–1.5
𝛽 cytokine production rate 0.2–1
𝛿 cytokine production rate per oligodendrocyte 0–1
𝑟 damaging intensity 0.01–6
𝜉 cytokine half-saturation coefficient 0.02–0.6

The value of 𝑘𝐼23 on 3D spatial domains is then given by 𝑘𝑐3𝐷 = 𝑘𝐼23 =
𝐼023∕5 = 0.05 pg∕mm3. On 2D domains we have 𝑘𝑐2𝐷 = (𝑘𝑐3𝐷 )

2∕3 =
.136 pg∕mm2.

In Table 1, we summarize the physiologically meaningful values for
he entire set of parameters along with the corresponding units and
escriptions.

From the above scaling, we derive the admissible values for the
imensionless parameter 𝜉 as given in (2.2) and use them in the
umerical simulations.

𝜉𝑚𝑖𝑛 =
𝑘𝑐 ⋅

𝛼
𝜈𝑚𝑖𝑛

𝑏
𝜈 ⋅ 𝑚

= 0.136 ⋅ 10−3

1.96 ⋅ 10−5 ⋅ 3.5 ⋅ 102
= 0.0198 (4.3a)

𝜉𝑚𝑎𝑥 =
𝑘𝑐 ⋅

𝛼
𝜈𝑚𝑎𝑥

𝑏
𝜈 ⋅ 𝑚

= 0.136 ⋅ 3 ⋅ 10−2

1.96 ⋅ 10−5 ⋅ 3.5 ⋅ 102
= 0.5948 (4.3b)

o that 𝜉2𝐷 ∈ [0.02, 0.6].
On 1D spatial domains one has: 𝑘𝑐1𝐷 = (𝑘𝑐3𝐷 )

1∕3 = 0.368 pg∕mm, and
𝑚1𝐷 = (𝑚2𝐷)1∕2 = 18.7 cells/mm, so that 𝜉1𝐷 ∈ [1, 30].

Table 2 shows the range of values for the entire set of dimensionless
arameters that we shall use for the simulations on 2D spatial domains.

. Pattern formation on 1D domain

In this Section, we construct spatially non-constant solutions of (2.3)
rising from the Turing instability. To this end, through the multiple
cales method, we derive the amplitude equations for the spatially pe-
iodic solutions to the system (2.3) on the 1D spatial domain 𝛺 = [0,𝓁].
pecifically, in Section 5.1, we derive the Stuart–Landau equation that
overns the characteristics of small-amplitude stationary patterns. In
ection 5.2, we obtain the Ginzburg–Landau equation, which describes
he wave-like propagation of the pattern through the domain.

.1. Weakly nonlinear analysis

Adopting the formalism of [64–67], we perform a weakly nonlinear
nalysis close to the uniform steady state 𝑃 ∗ = (𝑚∗, 𝑐∗, 𝑑∗) = (1, 𝛽+𝛿, 1).

We set a small control parameter 𝜂2 = (𝜒 − 𝜒𝑐 )∕𝜒𝑐 , which gives
he dimensionless distance of 𝜒 from the bifurcation value 𝜒𝑐 . Upon
ranslation of the equilibrium 𝑃 ∗ to the origin, the system (2.3) can be
ritten as:
𝜕𝐰 = 𝜒𝐰 +𝐰, (5.1)
6

𝜕𝑡
where 𝐰 is defined in (3.1b), the linear operator 𝜒 = 𝐽 ′+𝐷′(𝜒)𝜕𝑥𝑥 with
𝐽 ′ and 𝐷′ defined in (3.1b), and  is a nonlinear operator containing
higher order powers in 𝐰. Close to equilibrium we expand 𝐰 and the
bifurcation parameter 𝜒 as follows:

𝐰 = 𝜂𝐰1 + 𝜂2𝐰2 + 𝜂3𝐰3 + 𝑂(𝜂4),

𝜒 = 𝜒𝑐 + 𝜂2𝜒2 + 𝑂(𝜂4),

nd look for solutions having a multiple scale dependence on time 𝑡:

𝐰𝑖 = 𝐰𝑖(𝑇2, 𝑇4,…),

where

𝑇2 = 𝜂2𝑡, 𝑇4 = 𝜂4𝑡,… .

so that the time derivative operator has the following expansion:
𝜕
𝜕𝑡

= 𝜂2 𝜕
𝜕𝑇2

+ 𝜂4 𝜕
𝜕𝑇4

+ 𝑂(𝜂5).

e introduce the following notation: 𝐰𝑖 = (𝑤𝑚𝑖 , 𝑤𝑐𝑖 , 𝑤𝑑𝑖 )
𝑇 (𝑖 = 1, 2… ),

nd:

(𝑚) = 𝑚
1 + 𝑚

, 𝛷(𝑚, 𝑑) = 𝑚2

1 + 𝑚
(1 − 𝑑).

By substitution of the above expansions into (5.1) and collecting the
terms at each order in 𝜂, we obtain the following systems:

𝑂(𝜂) ∶ 𝜒𝑐𝐰1 = 𝟎, (5.2a)

(𝜂2) ∶ 𝜒𝑐𝐰2 = 𝐅, (5.2b)

𝑂(𝜂3) ∶ 𝜒𝑐𝐰3 = 𝐆, (5.2c)

with 𝜒𝑐 = 𝐽 ′ + 𝐷′(𝜒𝑐 )𝜕𝑥𝑥 and the expressions for 𝐅 and 𝐆 are the
following:

𝐅 =

⎛

⎜

⎜

⎜

⎝

𝜃𝑤2
𝑚1

+ 𝜉𝜃2

(𝛽+𝛿)2
𝑤𝑚1

𝑤𝑐1
0

−𝑟𝜕𝑚𝑑𝛷(𝑚∗, 𝑑∗)𝑤𝑚1
𝑤𝑑1

⎞

⎟

⎟

⎟

⎠

+ 𝜒𝑐

⎛

⎜

⎜

⎜

⎝

𝛯′(𝑚∗)𝜕𝑥
(

𝑤𝑚1
𝜕𝑥𝑤𝑐1

)

0
0

⎞

⎟

⎟

⎟

⎠

,

=
𝜕𝐰1
𝜕𝑇2

+

⎛

⎜

⎜

⎜

⎝

2𝜃𝑤𝑚1
𝑤𝑚2

+ 𝜉𝜃2

(𝛽+𝛿)2
(𝑤𝑚1

𝑤𝑐2 +𝑤𝑚2
𝑤𝑐1 +𝑤

2
𝑚1
𝑤𝑐1 ) −

𝜉𝜃3

(𝛽+𝛿)3
𝑤2
𝑐1
𝑤𝑚1

0
−𝑟

[

𝜕𝑚𝑑𝛷(𝑚∗, 𝑑∗)
(

𝑤𝑚1
𝑤𝑑2 +𝑤𝑚2

𝑤𝑑1
)

+ 1
2 𝜕𝑚𝑚𝑑𝛷(𝑚

∗, 𝑑∗)𝑤2
𝑚1
𝑤𝑑1

]

⎞

⎟

⎟

⎟

⎠

+𝜒𝑐

⎛

⎜

⎜

⎜

⎝

𝛯′(𝑚∗)𝜕𝑥
(

𝑤𝑚1
𝜕𝑥𝑤𝑐2 +𝑤𝑚2

𝜕𝑥𝑤𝑐1
)

+ 𝛯′′(𝑚∗)
2 𝜕𝑥

(

𝑤2
𝑚1
𝜕𝑥𝑤𝑐1

)

0
0

⎞

⎟

⎟

⎟

⎠

+𝑅(𝜒2)𝜕𝑥𝑥𝐰1,

where:

𝑅(𝜒2) =
⎛

⎜

⎜

0 𝜒2𝛯(𝑚∗) 0
0 0 0

⎞

⎟

⎟

.

⎝0 0 0⎠
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Fig. 2. Turing region: The black bold line corresponds to 𝐿(𝜖, 𝛽) = 0. The region in light gray corresponds to the supercritical case 𝐿 > 0, whereas the dark gray region corresponds
to the subcritical case 𝐿 < 0. The parameters are fixed as follows: 𝜏 = 1, 𝛿 = 1, 𝑟 = 1, 𝜂2 = 0.1, with (a) 𝜉 = 0, (b) 𝜉 = 1, (c) 𝜉 = 5 and (d) 𝜉 = 13. For increasing values of 𝜉 the
region corresponding to the subcritical case 𝐿 < 0 becomes smaller.
From Eq. (5.2a), by imposing Neumann boundary conditions, one gets
a solution of the form:

𝐰1 = 𝝆𝐴(𝑇2,…)cos (𝑘𝑐𝑥), 𝝆 ∈ 𝐾𝑒𝑟(𝐽 ′ − 𝑘2𝑐𝐷
′(𝜒𝑐 )), (5.3)

where 𝐴(𝑇2,…) is the time-dependent amplitude of the pattern, 𝑘𝑐
given by (3.4) must satisfy 𝑘𝑐 = 𝑛𝜋∕𝓁, 𝑛 ∈ Z, and 𝝆 is normalized as
follows:

𝝆 =
(

𝜌1, 1, 0
)

=

⎛

⎜

⎜

⎜

⎝

1+𝜖𝑘2𝑐
𝛽
1
0

⎞

⎟

⎟

⎟

⎠

. (5.4)

By the Fredholm Alternative theorem, the solvability condition for the
Eq. (5.2b) is given by ⟨𝐅,𝝍⟩ = 0, with 𝝍 ∈ 𝐾𝑒𝑟(∗), where we have
denoted by ∗ the adjoint of 𝜒𝑐 and by ⟨⋅, ⋅⟩ the scalar product in
𝐿2(0,𝓁). As before, by imposing Neumann boundary conditions, one
gets a solution of the form:

𝝍 = 𝝆′ cos (𝑘𝑐𝑥), where 𝐾𝑒𝑟(∗) ∋ 𝝆′ =
⎛

⎜

⎜

⎜

⎝

𝛽
𝜏(𝑘2𝑐+𝜃)

1
2𝛿
𝑟𝜏

⎞

⎟

⎟

⎟

⎠

. (5.5)

At order 𝜂2 the solvability condition is automatically satisfied and
the solution 𝐰2 to the second-order system (5.2b) is given by:

𝐰2 = 𝐴2[𝐰20 + 𝐰22 cos (2𝑘𝑐𝑥)], (5.6)

where the vectors 𝐰2𝑖 = (𝑤𝑚2𝑖
, 𝑤𝑐2𝑖 , 𝑤𝑑2𝑖 )

𝑇 for 𝑖 = 0, 2 are the solutions
of the following linear system:

⎧

⎪

⎨

⎪

⎩

𝐽 ′𝐰20 =
𝜃𝜌1
2

(

𝜌1 +
𝜉𝜃

(𝛽+𝛿)2
, 0, 0

)𝑇
,

(

𝐽 ′ − 4𝑘2𝑐𝐷
′(𝜒𝑐 )

)

𝐰22 =
(

𝜃𝜌1
2

(

𝜌1 +
𝜉𝜃

(𝛽+𝛿)2

)

− 𝜌1𝜒𝑐𝑘2𝑐𝛯
′(𝑚∗), 0, 0

)𝑇
.

(5.7)

Substituting 𝐰1 and 𝐰2 into (5.2c), one gets the following expression
for 𝐆:

𝐆 =
(

𝜕𝐴
𝜕𝑇2

𝜌 + 𝐴𝐆(1)
10 + 𝐴3𝐆(3)

10

)

cos(𝑘𝑐𝑥) +𝐆∗,

where 𝐆∗ can be written as 𝐆∗ = 𝐴3[𝐆∗(3)
31 cos (3𝑘𝑐𝑥)+𝐆

∗(3)
13 cos3 (𝑘𝑐𝑥)]. In

the above expression 𝐆∗(3)
31 satisfies the Fredholm solvability condition,

while 𝐆(𝑗)
10 for 𝑗 = 1, 3 and 𝐆∗(3)

13 , whose explicit expression is not
reported here, depend on the system parameters. Therefore, impos-
ing the solvability condition at the third order, we get the following
Stuart–Landau equation for the amplitude 𝐴(𝑇2):
𝜕𝐴
𝜕𝑇2

= 𝜎𝐴 − 𝐿𝐴3, (5.8a)

where:

𝜎 =
⟨𝐆(1)

1 ,𝝆′⟩
, 𝐿 =

⟨𝐆(3)
1 ,𝝆′⟩

, (5.8b)
7

⟨𝝆,𝝆′⟩ ⟨𝝆,𝝆′⟩
and

𝐆(1)
1 = −𝐆(1)

10 =
⎛

⎜

⎜

⎝

𝜒2𝑘2𝑐𝛯(𝑚
∗)

0
0

⎞

⎟

⎟

⎠

, (5.8c)

𝐆(3)
1 = 𝐆(3)

10 + 3
4
𝐆∗(3)

13 =
⎛

⎜

⎜

⎝

𝛴
0
0

⎞

⎟

⎟

⎠

. (5.8d)

where 𝛴 = 2𝜃𝜌1
(

𝑤𝑚20
+

𝑤𝑚22
2

)

+ 𝜉𝜃2

(𝛽+𝛿)2

[

𝜌1
(

𝑤𝑐20 +
𝑤𝑐22
2

)

+𝑤𝑚20

+
𝑤𝑚22
2 + 3

4𝜌
2
1

]

− 3
4

𝜉𝜃3

(𝛽+𝛿)3
− 𝜒𝑐𝑘2𝑐

[

𝛯′(𝑚∗)
(

𝑤𝑚20
−

𝑤𝑚22
2 + 𝜌1

𝑤𝑐22
2

)

+
1
8𝜌

2
1𝛯

′′(𝑚∗)
]

.
One can verify that the growth rate 𝜎 is always positive for all

values of the parameters for which one has the Turing instability.
Then, the dynamics of the Stuart–Landau Eq. (5.8a) can be divided
into two qualitatively different cases, depending upon the sign of the
Landau coefficient 𝐿: for 𝐿 > 0, one has the supercritical case that
corresponds to the onset of small-amplitude patterns; for 𝐿 < 0 one
gets the subcritical case that, close to criticality, yields the settlement
of finite amplitude structures. In Fig. 2(a)–(c) we present the curve
across which 𝐿(𝜖, 𝛽) changes its sign for different values of 𝜉 and fixed
values of the remaining parameters. The curve 𝐿(𝜖, 𝛽) = 0 divides the
Turing space into two distinct regions: the region where the pattern
forms supercritically (displayed in light gray) and the subcritical region
(displayed in dark gray). We note that the bifurcation is subcritical
in a portion of the parameter space whose width is maximum for
𝜉 = 0 and that becomes progressively smaller for growing values of 𝜉.
This analysis reveals that the involvement of cytokines in macrophage
activation (𝜉 > 0 and large) corresponds, in a large portion of the
parameter space, to the onset of a mild disease, displaying small levels
of inflammation even when the chemotactic effect is strong (𝑖.𝑒., the
bifurcation parameter is above the Turing threshold).

Conversely, small values of the parameter 𝜉 correspond, in a large
parameter region, to the onset of an aggressive disease that, for high
values of 𝜒 (namely, 𝜒 > 𝜒𝑐), leads to the formation of demyelinated
bands (or ring-shaped plaques on 2D domains) characterized by high
levels of inflammation.

5.2. Traveling wavefront equations

In this Subsection, we study the propagation of patterned MS
through the spatial domain as a wave (see also [32]). If the domain
size is large compared to the characteristic wavelength of the pattern, a
large number of modes can be excited, even for values of the bifurcation
parameter very close to the critical threshold. The interaction among
the excited modes results in a slow modulation-in-space of the pattern
amplitude. In order to describe this phenomenon quantitatively, one
must, therefore, consider that the solution has both a slow and a fast
spatial dependence. One can easily argue that the characteristic length
scale of the spatial modulation is 𝑂(𝜂−1). The weakly nonlinear analysis
of Section 5.1 needs to be modified to consider the dependence of
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Fig. 3. The red line represents the envelope 𝑚Env of the macrophages solution given by (5.12) as prescribed by the GLE, whose initial condition is depicted in red in
Fig. 3(a) and where 𝐴(𝑋, 𝑇2) is expressed by (5.11). The black line represents the macrophage numerical solution of the system (2.3) with initial condition (𝑚0 , 𝑐0 , 𝑑0)𝑇 =
(𝑚∗ , 𝑐∗ , 𝑑∗)𝑇 + 𝜂𝐴(𝑋, 0)𝝆 cos (𝑘𝑐𝑥) reported in black in Fig. 3(a). In Figs. 3(b)–3(c) the two spatial profiles of 𝑚Env and of the macrophage numerical solution of the full system
(2.3) are displayed at two different times. The parameter values are: 𝛽 = 1, 𝛿 = 1, 𝑟 = 1, 𝜏 = 1, 𝜖 = 0.5, 𝜒 = 3.8071, 𝜉 = 5. For this set of parameters we obtained 𝜒𝑐 = 3.7976, and
𝜂 = 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the amplitude 𝐴 on the slow variable 𝑋 = 𝜂𝑥. Separating the fast
𝑥-dependence and the slow 𝑋-dependence and following the same
procedure as in Section 5.1, at the leading order in 𝜂 we recover the
homogeneous linear problem 𝜒𝑐𝑥 𝐰1 = 𝟎, where 𝜒𝑐𝑥 denotes the opera-
tor 𝜒𝑐 , defined in Section 5.1 and where we have also emphasized the
dependence on the fast spatial variable 𝑥. The solution of the first-order
equation is:

𝐰1 = 𝝆𝐴(𝑋, 𝑇2,…)cos (𝑘𝑐𝑥), (5.9)

where 𝝆 is given by (5.4).
At the second order in 𝜂, we obtain, as in (5.2b), the following

linear non-homogeneous problem: 𝜒𝑐𝑥 𝐰2 = 𝐅. The analytical expres-
sion of 𝐅 is not reported here; however, as in (5.2b), 𝐅 satisfies the
Fredholm solvability condition. The solution 𝐰2 of the second-order
non-homogeneous system can be recovered as:

𝐰2 = 𝐴2𝐰20 + 𝐴2𝐰22 cos (2𝑘𝑐𝑥) +
𝜕𝐴
𝜕𝑋

𝐰21 sin (𝑘𝑐𝑥),

where the vectors 𝐰2𝑖 = (𝑤𝑚2𝑖
, 𝑤𝑐2𝑖 , 𝑤𝑑2𝑖 )

𝑇 for 𝑖 = 0, 2 are the solutions
of the linear systems given by (5.7), and 𝐰21 is the solution of the
following linear system:
(

𝐽 ′ − 𝑘2𝑐𝐷
′(𝜒𝑐 )

)

𝐰21 = 2𝑘𝑐𝐷′(𝜒𝑐 )𝝆.

Substituting the expressions of 𝐰1 and 𝐰2 in the linear problem
obtained at the third order, one gets 𝜒𝑐𝑥 𝐰3 = 𝐆, where 𝐆 is expressed
as follows:

𝐆 =
(

𝜕𝐴
𝜕𝑇2

𝜌 + 𝐴𝐆(1)
10 + 𝐴3𝐆(3)

10 + 𝜕2𝐴
𝜕𝑋2

𝐆(0)𝑋𝑋
10

)

cos (𝑘𝑐𝑥)

+𝐴 𝜕𝐴
𝜕𝑋

𝐆(1)𝑋
02 sin (2𝑘𝑐𝑥) +𝐆∗,

with 𝐆∗ = 𝐴3[𝐆∗(3)
13 cos3 (𝑘𝑐𝑥) + 𝐆∗(3)

31 cos (3𝑘𝑐𝑥)], and where 𝐆(1)𝑋
02 and

𝐆∗(3)
31 satisfy the Fredholm solvability condition. Imposing the solv-

ability condition at the third order, one therefore gets the following
Ginzburg–Landau Equation (GLE) for the amplitude 𝐴(𝑋, 𝑇2):

𝜕𝐴
𝜕𝑇2

= 𝜈 𝜕
2𝐴
𝜕𝑋2

+ 𝜎𝐴 − 𝐿𝐴3 (5.10a)

where:

𝜈 =
⟨𝐆(0)𝑋𝑋

1 ,𝝆′⟩
⟨𝝆,𝝆′⟩

, (5.10b)

with

𝐆(0)𝑋𝑋
1 = −𝐆(0)𝑋𝑋

10 = 2𝑘𝑐𝐷′(𝜒𝑐 )𝐰21 +𝐷′(𝜒𝑐 )𝝆, (5.10c)

and 𝜎 and 𝐿 are given by (5.8b)–(5.8d).
Choosing the system parameters in such a way that the Landau

coefficient 𝐿 is greater than zero, we can obtain the explicit expression
8

for the solution of the GL Eq. (5.10a), namely:

𝐴(𝑋, 𝑇2) =
1
2

√

𝜎
𝐿

(

1 − tanh

(

√

𝜎
𝜈
𝑧 − 𝑧0
2
√

2

))

,

where 𝑧 = 𝑋 − 𝑢𝑇2, with 𝑢 = 3
√

𝜎𝜈
2
, (5.11)

where 𝑢 is the wave speed, namely the speed of the envelope of the
traveling pattern.

In what follows, we shall show some numerical simulations for
which we have selected the parameters so that 𝜒 > 𝜒𝑐 and 𝐿 > 0.
Precisely, in Fig. 3, we show two curves representing the macrophage
species: the envelope of the solution spatial profile as predicted by the
GL Eq. (5.10a) (shown by the red line), namely:

(𝑚Env, 𝑐Env, 𝑑Env)𝑇 = (𝑚∗, 𝑐∗, 𝑑∗)𝑇 + 𝜂 𝐴(𝑋, 𝑇2)𝝆, (5.12)

where 𝐴(𝑋, 𝑇2) is given by (5.11); and the numerical solution of the
system (2.3) (shown by the black line) at different times and for a fixed
value of 𝜉. The initial condition of the solution to (2.3) is a pertur-
bation of the equilibrium 𝑃 ∗ localized at the left end side of the spa-
tial domain, precisely (𝑚0, 𝑐0, 𝑑0)𝑇 = (𝑚∗, 𝑐∗, 𝑑∗)𝑇 + 𝜂𝐴(𝑋, 0)𝝆 cos (𝑘𝑐𝑥),
where 𝑘𝑐 is the first integer or semi-integer allowed by the Neumann
boundary conditions that become unstable when 𝜒 passes the criti-
cal value 𝜒𝑐 (see also [68]). The simulations show that the solution
(𝑚Env, 𝑐Env, 𝑑Env)𝑇 predicted by the GL equation is in good agreement
with the amplitude of the numerical solution of the system (2.3) as the
wavefront progressively propagates through the domain.

In Fig. 4 we show the envelope of the macrophage solution as pre-
dicted by the GL equation and expressed by (5.12), and the numerical
solution of the system (2.3) at a fixed time and for different values of
𝜉. We remark that the critical value of the bifurcation parameter 𝜒𝑐
depends on 𝜉 (see Eq. (3.7)); therefore, as 𝜉 is varied while 𝜒 is held
fixed, the parameter 𝜂 =

√

(𝜒 − 𝜒𝑐 )∕𝜒𝑐 also varies, returning for 𝜂 a
monotonically increasing function of 𝜉. Since for the weakly nonlinear
analysis to be valid, we must restrict ourselves to small values of 𝜂; this
forces us to consider variations of 𝜉 only in a small range. In Fig. 4 we
have fixed 𝜒 = 5.8430; with the chosen parameter set, for 𝜉 = 0 one
gets 𝜂 = 0.05, while for 𝜉 = 0.15 one obtains 𝜂 = 0.1807. Therefore,
although with a fixed 𝜒 , the three plots in Figs. 4(a)–4(c) are obtained
for different values of the distance of 𝜒 from the respective bifurcation
threshold.

From Fig. 4 we observe that, besides the differences in the pattern
wavenumber and the amplitude displayed for different values of 𝜉, the
speed of traveling wavefront invasion seems to change for increasing
values of 𝜉. Therefore, in what follows, we want to investigate how the
wavefront velocity depends on 𝜉. To this aim, upon substituting the
expressions of 𝜎 and 𝜈, given by (5.8b) and (5.10b), respectively, into
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Fig. 4. Traveling wavefront invasion for different values of 𝜉 at the same fixed time 𝑇2. The red line represents the envelope 𝑚Env of the macrophages solution prescribed
by the GLE as given by (5.12), with the initial condition 𝐴(𝑋, 𝑇2 = 0). The black line represents the macrophage numerical solution of the system (2.3) with initial condition
(𝑚0 , 𝑐0 , 𝑑0)𝑇 = (𝑚∗ , 𝑐∗ , 𝑑∗)𝑇 + 𝜂𝐴(𝑋, 0)𝝆 cos (𝑘𝑐𝑥). The parameter 𝜉 is chosen as: (a) 𝜉 = 0, (b) 𝜉 = 0.1, (c) 𝜉 = 0.15. All the other parameter values are: 𝛽 = 1, 𝛿 = 1, 𝑟 = 1, 𝜏 = 1,
𝜖 = 0.5, 𝜒 = 5.8430. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Plot of the dimension-carrying traveling wavefront invasion speed as a function
of the parameter 𝜉, for fixed values of 𝛽 = 1, 𝑟 = 1, 𝜏 = 1, 𝜖 = 0.5 and computing
𝜂 =

√

(𝜒 − 𝜒𝑐 )𝜒𝑐 for each value of 𝜉 (see text). (a) The different curves are obtained
for different values of 𝛿 while the value of 𝜒 is fixed as 𝜒 = 5.8430. (b) The different
curves are obtained for different values of 𝜒 while the value of 𝛿 is fixed as 𝛿 = 1. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the expression of 𝑢 in (5.11), we derive the explicit dependence of 𝑢 on
𝜉 (and on the other system parameters). The obtained 𝑢 is of the form:

𝑢(𝜉) =
3
√

𝜖(𝛽 + 𝛿)
√

𝜖(𝜉 + 𝛽 + 𝛿) + 𝜏
√

𝛽 + 𝛿
, (5.13)

resulting in a monotonously decreasing function of 𝜉, when all the other
parameters are held fixed. However, to recover from the expression
(5.13) the dimensional velocity (𝑖.𝑒., the one expressed in dimensional
units), we have to multiply by a factor that involves the control
parameter 𝜂 =

√

(𝜒 − 𝜒𝑐 )∕𝜒𝑐 , which, as we have already noticed, grows
with increasing 𝜉. A typical plot of the resulting traveling wavefront
speed expressed in dimensional units as a function of 𝜉 is shown in
Fig. 5. We notice that the speed initially grows for increasing 𝜉 while,
after a certain threshold, it diminishes as 𝜉 is increased. This behavior
can be explained if one considers two different effects that depend
on varying 𝜉: the first is the distance of the bifurcation parameter 𝜒
from the critical threshold, and the second is the activation term in the
macrophage equation of system (2.3). When 𝜉 is small, the macrophage
activation term is close to its maximum value, since 𝑐∕(𝜉 + 𝑐) ≈ 1. In
this case, keeping a constant value for 𝜒 and increasing 𝜉 increases
the relative distance between 𝜒 and 𝜒𝑐 , which in turn leads to an
increasing relative chemotactic strength for the macrophages and to
a faster domain invasion for the traveling wavefront. On the other
hand, for large values of 𝜉 the activation term for macrophages remains
small, due to the high value of the half-saturation constant of the
cytokines. In this case, as 𝜉 is increased, the effect of an augmented
relative chemotactic strength is overtaken by a lowered activation rate
of macrophages, resulting in a slightly decreasing function of 𝜉 for the
wavefront invasion speed.

To better illustrate the dependence of the dimensional traveling
speed on the parameter 𝜉, in Fig. 6 we have performed some numerical
9

experiments adopting the following procedure: (1) we have fixed all
the parameters, but 𝜉 and 𝜒 ; (2) for 𝜉 = 0, we have computed the
corresponding value of 𝜒𝑐 and we have performed the simulation fixing
𝜒 = (1+𝜂2)𝜒𝑐 , with 𝜂 = 0.05: (3) for each considered value of 𝜉, we have
computed the updated value of 𝜒𝑐 and chosen the value of 𝜒 = (1+𝜂2)𝜒𝑐
by keeping the same value of 𝜂 = 0.05 as in step (2). This procedure
allows us to investigate the dependence of the dimensional velocity on
𝜉 maintaining fixed the distance from the bifurcation threshold 𝜒𝑐 as 𝜉
is varied. The corresponding simulations are reported in Fig. 6. We note
that, as 𝜉 is increased, keeping the distance of the control parameter
from the onset fixed, the wavelength shows only a slight increase with
respect to the case 𝜉 = 0, while the pattern amplitude decreases. This
last behavior is opposite to what observed in Fig. 5 (where the value of
𝜒 was fixed for different values of 𝜉, so changing the relative distance
from the bifurcation), and is determined by the reduced activation rate
of macrophages as 𝜉 increases. In Fig. 7, we show the graph of the
dimensional wave velocity computed, holding 𝜂 fixed, 𝑖.𝑒., using the
same procedure as in Fig. 6. As expected, since, in this case, the relative
distance from the bifurcation threshold does not vary as 𝜉 increases, the
only mechanism affecting the wave speed is the inferior activation rate
of macrophages, which makes the velocity smaller as 𝜉 is increased.

6. Numerical results on 2D spatial domains

In this Section we present the results of the numerical experiments
performed on the system (2.3) on 2D spatial domains. Our aim is
to examine the impact on the plaque formation process of the term
𝑐∕(𝜉 + 𝑐) included the kinetic part of the macrophages equation. We
primarily explore how changing 𝜉 and the initial conditions affect the
plaque formation process, which is characterized by the emergence of
localized zones of apoptotic oligodendrocytes When 𝜉 = 0, the system
has been previously analyzed in [33], which included an extensive
sensitivity analysis of the other system parameters under different
initial conditions and scenarios. Most of the conclusions regarding the
effect of parameter variations for 𝜉 = 0 remain applicable for 𝜉 >
0. We refer the interested reader to [33] for further analysis details.
All numerical simulations are performed through the spectral solver
described in [33].

6.1. Radially symmetric plaques

To examine how 𝜉 > 0 affects the system, we shall consider an
initial configuration comprising of a 0.5 magnitude cytokine cluster, a
low concentration (10−3) of uniformly distributed macrophages around
the cytokine area, and no oligodendrocytes present. This initial condi-
tion creates round-shaped structures in the damaged oligodendrocytes.
When 𝜒 > 𝜒𝑐 satisfies the condition for Turing instability, it produces
concentric ring shapes similar to the well-known Baló’s sclerosis le-
sions, as demonstrated in [33]. We fix some of the parameters in the
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Fig. 6. Comparison of the profiles of the macrophage traveling wave at the same time 𝑇2 for different values of 𝜉 and keeping 𝜂 fixed as 𝜉 varies (see text). In each figure the
red line represents the exact solution of the GLE (5.10a), expressed by (5.11), with the initial condition 𝐴(𝑋, 𝑇2 = 0), while the black line represents the numerical solution of the
system (2.3) with initial condition (𝑚0 , 𝑐0 , 𝑑0)𝑇 = (𝑚∗ , 𝑐∗ , 𝑑∗)𝑇 + 𝜂𝐴(𝑋, 0)𝝆 cos (𝑘𝑐𝑥). The parameters are chosen as in Fig. 3 with 𝜂 fixed as 𝜂 = 0.05, except for 𝜉, that is chosen as
follows: (a) 𝜉 = 0, for which one has 𝜒 = 3.5830; (b) 𝜉 = 5, for which one has 𝜒 = 3.8071; (c) 𝜉 = 10, for which one has 𝜒 = 3.3297. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Plot of the dimension-carrying traveling wavefront invasion speed as a function
of the parameter 𝜉, for fixed values of the other parameters as 𝑟 = 1, 𝜏 = 1, 𝜖 = 0.5,
𝜂 = 0.05, keeping 𝜂 fixed as 𝜉 varies and computing 𝜒 = (1+𝜂2)𝜒𝑐 for each value of 𝜉 (see
text). (a) The different curves are obtained for different values of 𝛿. (b) The different
curves are obtained for different values of 𝛽. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

following way: 𝛽 = 1 (high cytokine production by macrophages),
𝜖 = 0.5 (low cytokine diffusivity), 𝛿 = 1 (moderate-high value of the
cytokine production by damaged oligodendrocytes), 𝑟 = 1 (moderate-
low aggressiveness) and 𝜏 = 1. The parameter 𝜉 varies in the range
[0.01, 0.6]. According to (3.7), for the parameters considered, the critical
value 𝜒𝑐 for the emergence of Turing instability ranges in the interval
[5.249, 5.872] (lower value 𝜒𝑐 corresponds to higher 𝜉 and vice versa).

In our analysis, we utilize specific metrics to quantify the mea-
surement of the radially symmetric plaque. The primary metric, 𝑃𝑠𝑖𝑧𝑒,
quantifies the area of demyelination resulting from the accumulation
of macrophages. Following the method utilized in [16] for Alzheimer’s
plaques, we define 𝑃𝑠𝑖𝑧𝑒 at a specific time as the radius of the region
where the decrease in destroyed oligodendrocytes has decayed by a
maximum factor 𝑒 relative to its maximum. As emphasized in [33],
tracking the evolution of 𝑃𝑠𝑖𝑧𝑒 provides insight into plaque formation
dynamics. A decreasing 𝑃𝑠𝑖𝑧𝑒 in time suggests that the demyelination
process is intensifying, with destroyed oligodendrocytes concentrating
in a specific region where 𝑑 is strongly increasing. A sudden rise in
the size of 𝑃𝑠𝑖𝑧𝑒 signifies either the enlargement of a uniform lesion
or the formation of secondary rings, depending on the value of 𝜒 . It
is important to note that even before complete demyelination, where
𝑑 is very small, 𝑃𝑠𝑖𝑧𝑒 can still be of the order of centimeters. In fact,
𝑃𝑠𝑖𝑧𝑒 represents the radius where myelin loss occurs, regardless of its
severity (e.g., when dead oligodendrocytes 𝑑 ≈ 1). For a more specific
measure of a highly demyelinated area, we introduce the quantity
𝑃 ′
𝑠𝑖𝑧𝑒, which denotes the radius of the region where 𝑑 > 𝑑thresh. Here,
𝑑thresh is a threshold beyond which demyelination can be considered
clinically significant. Here, we have set 𝑑thresh = 1∕2, 𝑖.𝑒., half of the
maximum value of dead oligodendrocytes permitted. 𝑃 ′

𝑠𝑖𝑧𝑒 will stay at
0 until this threshold is met, after which it will progressively increase
10
with plaque size. The third variable we consider is the maximum value
𝑀𝑃 of the concentration of destroyed oligodendrocytes. This value,
which ranges between 0 and 1 for our system, is significant because,
at 𝑀𝑃 = 1, oligodendrocytes are completely destroyed. Therefore,
it can be employed to predict the duration required to attain full
demyelination. The final variable we will investigate is the time 𝑚𝑡
necessary for 𝑀𝑃 to reach a value of 1 (complete demyelination).

We first consider the case 𝜒 = 4 below the threshold 𝜒𝑐 for all the
𝜉 values considered. The simulation outcomes reveal that increasing
𝜉 causes a slowdown in the demyelination process. The results for
𝜉 = 0.05, 0.1, 0.4, 0.6 are depicted in Figs. 8(a)–8(d), which display the
profiles of destroyed oligodendrocytes at time 𝑇 = 140 days. Figs. 9(a)–
9(d) illustrate the time evolution of quantities 𝑀𝑝, 𝑚𝑡, and 𝑃𝑠𝑖𝑧𝑒. From
Figs. 8(a)–8(d), it is clear that a radially symmetric homogeneous
plaque forms in all scenarios. The size and time of plaque formation
are significantly affected by the value of 𝜉. Notably, when 𝜉 = 0.01,
the plaque forms earlier and has a substantial spatial extent at the time
shown. As 𝜉 increases, the plaques become smaller, or in the case of
𝜉 = 0.4, 0.6, not fully developed. This delay in the formation of plaque as
the 𝜉 values increase is further emphasized by the temporal progression
of 𝑀𝑃 , 𝑚𝑡, 𝑃𝑠𝑖𝑧𝑒, 𝑃 ′

𝑠𝑖𝑧𝑒 exhibited in Figs. 9(a)–9(d). The peak value of 𝑀𝑃
increases later as 𝜉 increases, and the complete demyelination takes
longer, almost linearly proportional to 𝜉. Despite the higher 𝜉 values,
the plaque can still attain significant size, as depicted in Figs. 9(c)–9(d),
although this process takes longer. One can deduce from Fig. 9(c) that
there is an intense demyelination phase characterized by a reduction
in 𝑃𝑠𝑖𝑧𝑒, which indicates a quick concentration of damaged oligoden-
drocytes in a small region. This is followed by a sudden expansion that
marks the growth of the demyelinated area. In Fig. 9(d), we observe
that demyelination becomes significant approximately at the same time
as 𝑃 ′

𝑠𝑖𝑧𝑒 > 0, and subsequently increases as a further indication of the
plaque size increase.

The second scenario pertains to the case 𝜒 = 18 above the crit-
ical threshold 𝜒𝑐 for all considered 𝜉 values. This indicates that the
condition to support Turing instability is satisfied, and the formation
of concentric ring patterns is expected. For 𝜒 > 𝜒𝑐 , the case with
the smallest 𝜉 displays a more pronounced expansion of the plaque
in comparison to the cases with higher 𝜉 values, which is manifested
by the development of multiple rings. The results are depicted in
Figs. 10(a)–10(d), where the profiles of destroyed oligodendrocytes are
shown for various 𝜉 values at 𝑇 = 120 days. The concentric plaque
has developed and extended only in the instances where 𝜉 = 0.05, 0.1,
whereas demyelination is only weak for 𝜉 = 0.4, 0.6, at maximum 𝑑
values of around 10−4. However, plaques with concentric rings form
later, as shown in Figs. 11(a)–11(b) at times 𝑇 = 300, 472 days for
𝜉 = 0.4, 0.6 respectively. In Figs. 12(a)–12(c) the time evolution of
𝑀𝑝, 𝑚𝑡, 𝑃𝑠𝑖𝑧𝑒, 𝑃 ′

𝑠𝑖𝑧𝑒 is displayed. It can be concluded that similarly to
the case 𝜒 = 4: (i) As 𝜉 increases, full demyelination occurs over
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Fig. 8. Profile of destroyed oligodendrocytes 𝑑 at time 𝑇 = 140 days for 𝜒 = 4 < 𝜒𝑐 and various 𝜉. The Initial condition is a bump for cytokine 𝑐, uniformly distributed small
macrophages 𝑚 concentrations over a small patch, and zero for the dead oligodendrocytes. Unit length is cm. For large 𝜉 the plaque formation process is slowed down compared
to the case of smaller 𝜉.
Fig. 9. (a) Time evolution of the maximum value 𝑀𝑝 of the destroyed oligodendrocytes distribution for 𝜉 = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to right/black to light blue)(b)
Times 𝑚𝑡 at which 𝑀𝑝 = 1 for the first time (full demyelination) for different values of 𝜉 (c) Time evolution of 𝑃𝑠𝑖𝑧𝑒 (in cm) for 𝜉 = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to right/black
to light blue) (d) Time evolution of 𝑃 ′

𝑠𝑖𝑧𝑒 (in cm) for 𝜉 = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6 (left to right/black to light blue). All the figures are for 𝜒 = 4 < 𝜒𝑐 . Initial condition is a
bump for cytokine 𝑐 of magnitude 0.5, uniformly distributed small macrophages 𝑚 concentrations of magnitude 10−3 over a small patch, and zero for the dead oligodendrocytes.
Time unit is 1 day. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Profile of destroyed oligodendrocytes at time 𝑇 = 120 days for 𝜒 = 18 < 𝜒𝑐 and various 𝜉. The Initial condition is a bump for cytokine 𝑐, uniformly distributed small
macrophages 𝑚 concentrations over a small patch, and zero for the dead oligodendrocytes. Unit length is cm. For 𝜉 = 0.05, 0.2 concentric rings representing the typical Balo’s
sclerosis lesions are formed and largely extended. For 𝜉 = 0.4, 0.6 lesions develop at later times (see Figs. 11(a)–11(b)).
a more prolonged period, resulting in the increase of both 𝑀𝑝 and
𝑚𝑡, as illustrated in Figs. 12(a)–12(b); (ii) the onset of the intense
demyelination phase is characterized by a reduction in 𝑃𝑠𝑖𝑧𝑒 suddenly
followed by a rapid growth and by the activation of 𝑃 ′

𝑠𝑖𝑧𝑒, which
happens earlier as 𝜉 decreases. In contrast to the case with 𝜒 = 4, the
plaque subsequently expands, forming concentric rings. The jumps that
appear in the sizes of 𝑃𝑠𝑖𝑧𝑒 and 𝑃 ′

𝑠𝑖𝑧𝑒 indicate the formation of new rings.

6.2. Pre-active lesions

In this Subsection, we present the occurrence of pre-active lesions,
which are clusters of activated microglia found in normal-appearing
white matter without full demyelination. Pre-active lesions are con-
sidered the initial indicators of early reversible disorder and precede
classical inflammatory lesions characterized by myelin degradation, fol-
lowing a well-accepted scenario of lesion development. Lesions can last
for days to months and may resolve spontaneously, but they can also
become chronic and exacerbate the disease. The majority of Multiple
Sclerosis patients typically display the same pattern found in numerous
11
Fig. 11. Profile of destroyed oligodendrocytes 𝑑 for 𝜒 = 18 > 𝜒𝑐 for 𝜉 = 0.4, 0.6. In all
cases profiles are shown just after the formation of the third concentric ring. Initial
condition is a bump for cytokine 𝑐 of magnitude 0.5, a uniform concentration of small
macrophages 𝑚 with a magnitude of 10−3 over the region with excited cytokines, and
zero dead oligodendrocytes. Times are 𝑇 = 300, 472 days for 𝜉 = 0.4, 0.6 respectively.
Unit length is cm.
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Fig. 12. (a) Time evolution of the maximum value 𝑀𝑝 of the destroyed oligodendrocytes distribution (b) Times 𝑚𝑡 at which 𝑀𝑝 = 1 for the first time (full demyelination) and times
𝑑𝑡 at which 𝑀𝑝 has its maximum in time, for different values of various 𝜉 (c) Time evolution of 𝑃𝑠𝑖𝑧𝑒 (in cm). (d) Time evolution of 𝑃 ′

𝑠𝑖𝑧𝑒 (in cm) for 𝜉 = 0.01, 0.050.1, 0.2, 0.3, 0.4, 0.5, 0.6
(left to right/black to light blue) All the figures are for 𝜒 = 18 > 𝜒𝑐 . Initial condition is a bump for cytokine 𝑐 of magnitude 0.5, a uniform concentration of small macrophages 𝑚
with a magnitude of 10−3 over the region with excited cytokines, and zero dead oligodendrocytes. Time unit is 1 day. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 13. Initial condition for the pre-active lesion simulation. A noised cytokine bumps
over a rounded patch (panel a), noised distributed small macrophage concentrations 𝑚
(panel b), and zero dead oligodendrocytes. Unit length is cm.

experimental findings [69,70]. In [33], the model reproduced pre-
active lesions within specific parameter ranges, namely for very low
aggressiveness parameter 𝑟, usually of the order of 10−2. They were
observed a few days after development. Here, we want to show that
cytokine-mediated macrophage production can slow down the devel-
opment of these lesions, resulting in activated microglia clusters ac-
companied by mild demyelination that persists for several weeks. This
scenario’s initial condition comprises randomly distributed cytokine
concentrations over a circular region (Fig. 13(a)). Small macrophage
concentrations 𝑚 are also randomly distributed over the same region
(Fig. 13(b)), and no oligodendrocytes have been damaged (𝑑 = 0).
The spatial distributions of 𝑚 and 𝑑 at different times are depicted
in Figs. 14(a)–14(d) for the following parameters: 𝜒 = 10, 𝜉 = 0.6,
𝑟 = 0.001, 𝛽 = 1, 𝛿 = 0, 𝜖 = 0.5. Clusters of activated macrophages, with
𝑚 > 1, and sparsely populated aggregates of damaged oligodendrocytes,
with 𝑑 ⪅ 0.15, can be observed at 35–70 days.

6.3. Confluent plaques

This Section presents simulations on the coalescence of plaques that
result in the formation of non-concentric lesions. The initial conditions
for these simulations consist of three cytokine bumps with a magnitude
of 0.5 and small macrophage concentrations (𝑚) of magnitude 10−3,
uniformly distributed across an irregular patch bordering the cytokine
bumps. Additionally, there are no dead oligodendrocytes. This configu-
ration aims to model the progression of a single plaque originating from
distinct multifocal damage zones, mimicking the frequently observed
pattern in Magnetic Resonance Imaging scans of patients with Multiple
Sclerosis. The parameters for the simulations are set as follows: 𝛽 = 1,
𝜖 = 0.5, 𝛿 = 1, 𝑟 = 1, 𝜏 = 1, and 𝜉 = 0.2. We investigate the above and
below the critical 𝜒𝑐 cases, solving for the values 𝜒 = 4 and 𝜒 = 18.
The lesions formed are depicted in Figs. 15(a)–15(b) and 16(a)–16(b).
We present the profiles of destroyed oligodendrocytes 𝑑 for the two
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Fig. 14. Spatial distribution of activate macrophages 𝑚 (panels a and c) and destroyed
oligodendrocytes 𝑑 (panels b and d) at times 𝑇 = 35 days and 𝑇 = 70 days, respectively,
for 𝜒 = 10, 𝜉 = 0.1, 𝑟 = 0.001, 𝛽 = 1, 𝛿 = 0, 𝜖 = 0.5. Initial condition is depicted in
Figs. 13(a)–13(b). Unit length is cm. Although there are many clusters of high-density
activated macrophages (𝑚 > 1), demyelination is still moderate-weak (𝑑 ⪅ 0.1)

scenarios 𝜉 = 4 and 𝜉 = 18. As expected, in the first scenario, a uniform
plaque emerges once the damaged areas initially defined by the three
cytokine bumps have conjoined. On the other hand, in the second
scenario, an irregular pattern is observed, characterized by fragmented
demyelinated rings. These lesions appear similar to those identified
in MRI scans, as demonstrated in [71,72]. Without showing further
simulations, we emphasize that for this setting also, the 𝜉 parameter
strongly influences the time of complete demyelination and subsequent
lesion expansion. In fact, as explained in Section 6.1, the duration of
these times can be altered by adjusting 𝜉, resulting in lesion growth
ranging from a few days to several months.

7. Global well posedness

In this Section we shall study the well-posedness of the following
system:

⎧

⎪

⎪

⎨

⎪

⎪

𝜕𝑚
𝜕𝑡

= 𝛥𝑚 − ∇ ⋅ (𝜒(𝑚)∇𝑐) + 𝑐 𝑚(1 − 𝑚) , (𝑡, 𝑥) ∈ 𝛺𝑇

𝜕𝑐
𝜕𝑡

= 1
𝜏
(𝜖𝛥𝑐 + 𝛿𝑑 − 𝑐 + 𝛽𝑚) , (𝑡, 𝑥) ∈ 𝛺𝑇

𝜕𝑑 = 𝑟𝐹 (𝑚)𝑚 (1 − 𝑑) , (𝑡, 𝑥) ∈ 𝛺

(7.1)
⎩ 𝜕𝑡 𝑇
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Fig. 15. Profile of destroyed oligodendrocytes 𝑑 at times 𝑇 = 200 and 𝑇 = 260
days for parameters 𝜒 = 4 < 𝜒𝑐 . The Initial condition is made by three cytokine
bumps, uniformly distributed small macrophage concentrations 𝑚, and zero dead
oligodendrocytes. Unit length is cm. A uniform large plaques forms after the confluence
of the damaged areas initially defined by the three cytokine bumps.

Fig. 16. Profile of destroyed oligodendrocytes 𝑑 at times 𝑇 = 200 and 𝑇 = 260 days
for parameters 𝜒 = 18 > 𝜒𝑐 . The Initial condition is made by three cytokine bumps,
uniformly distributed small macrophage concentrations 𝑚, and zero dead oligodendro-
cytes. Unit length is cm. A patterned large plaques forms after the confluence of the
damaged areas initially defined by the three cytokine bumps.

with 𝜒(𝑚) = 𝜒 𝑚
1+𝑚 , 𝐹 (𝑚) = 𝑚

1+𝑚 , 𝛺𝑇 = (0, 𝑇 ) ×𝛺, where 𝛺 is a bounded
domain in R𝑛 (𝑛 ∈ N, 𝑛 ≥ 1) with smooth boundary 𝜕𝛺. We denote by
n = n(𝑠) the outward normal to 𝜕𝛺 at a point 𝑠 of the boundary, and
impose the following Neumann boundary condition on 𝜕𝛺:
{

n ⋅ 𝛁𝑚 = 0 ,
n ⋅ 𝛁𝑐 = 0 .

(7.2)

Finally, we impose the following non-negative initial conditions:

⎧

⎪

⎨

⎪

⎩

𝑚(𝑡 = 0, 𝑥) = 𝑚𝑖𝑛(𝑥) , 𝑥 ∈ 𝛺
𝑐(𝑡 = 0, 𝑥) = 𝑐𝑖𝑛(𝑥) , 𝑥 ∈ 𝛺
𝑑(𝑡 = 0, 𝑥) = 𝑑𝑖𝑛(𝑥) . 𝑥 ∈ 𝛺

(7.3)

Moreover, we recall the following conditions on the system parameters:

𝜒 > 0 , 𝜏 > 0 , 𝜖 > 0 , 𝛽 ≥ 0 , 𝑟 > 0 , 𝛿 ≥ 0 . (7.4)

The system (7.1) differs from the system (2.3) in the kinetic term
of the macrophage equation. In the first equation of (7.1), differently
from (2.3), the production mechanism of the activated macrophages
has no saturation effect. This means that the term 𝑐∕(𝜉 + 𝑐) of the first
equation of (2.3), is substituted by 𝑐 in (7.1). The functional form of
(7.1) corresponds to the limit of infinite saturation constant 𝑘, and
derives from (2.1) as follows: first, rescale as 𝜆 → 𝑘𝜆, 𝑘̃𝑐 → 𝑘 𝑘̃𝑐 ; second,
take the limit 𝑘→ ∞; finally, adimensionalize as in (2.2).

Clearly, for the analysis of the existence and uniqueness of the
solution, the system (7.1) is more challenging than the system (2.3).
Regularity results for system (2.3) could be immediately recovered from
the results obtained in [52–54]. On the other hand, the fact that the sys-
tem (7.1) presents a linear growth in 𝑐 for the macrophage production
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term requires some modifications of the arguments in [52–54]. In the
rest of this Section, we shall follow [54].

We begin by introducing some classical mathematical notations,
see [73,74]. We shall use the 𝐿𝑝(𝛺) function spaces with 𝑝 ≥ 1 and
denote by ‖ ⋅ ‖𝐿𝑝(𝛺) the norm. For the space 𝐿∞(𝛺), we shall use the
ess-sup norm, denoted by ‖ ⋅ ‖𝐿∞(𝛺).

For any 𝑡0, with 0 ≤ 𝑡0 < 𝑇 , we denote by 𝛺𝑡0 ,𝑇 ∶= (𝑡0, 𝑇 ) × 𝛺.
For simplicity, when 𝑡0 = 0, we denote by 𝛺𝑇 the set 𝛺0,𝑇 . The spaces
𝐿𝑝(𝛺𝑡0 ,𝑇 ), with 1 ≤ 𝑝 ≤ ∞, are the spaces 𝐿𝑝((𝑡0, 𝑇 ), 𝐿𝑝(𝛺)) equipped
with the classical space–time norm which is denoted by ‖ ⋅ ‖𝐿𝑝(𝛺𝑡0 ,𝑇 )

.
When 𝑡0 = 0, we write 𝐿𝑝(𝛺𝑇 ) and 𝐿∞(𝛺𝑇 ), and the norms are

denoted by ‖ ⋅ ‖𝐿𝑝(𝛺𝑇 ) and ‖ ⋅ ‖𝐿∞(𝛺𝑇 ).
As usual, 𝑊 𝑟,𝑝(𝛺) are the Sobolev spaces of 𝐿𝑝 functions with

differential index 𝑟, where 1 ≤ 𝑝 ≤ ∞ and 𝑟 > 0.
We shall consider also the space 𝑊 1,2

𝑝 (𝛺𝑡0 ,𝑇 ) defined as:

𝑊 1,2
𝑝 (𝛺𝑡0 ,𝑇 ) =

{

𝑣 ∶ 𝜕𝑟𝑡 𝜕
𝑠
𝑥𝑣 ∈ 𝐿𝑝(𝛺𝑡0 ,𝑇 ),

2𝑟 + 𝑠 ≤ 2, 𝑟, 𝑠 ∈ N ∪ {0}} ,

with norm:

‖𝑣‖𝑊 1,2
𝑝 (𝛺𝑡0 ,𝑇 )

∶=
∑

2𝑟+𝑠≤2
‖𝜕𝑟𝑡 𝜕

𝑠
𝑥𝑣‖𝐿𝑝(𝛺𝑡0 ,𝑇 ).

By 𝐶𝑘(𝛺) we denote the Banach space of continuous functions in 𝛺,
such that their derivatives up to order 𝑘 are continuous in 𝛺.

The space 𝐶0 (𝛺𝑇
)

is the space of continuous function in 𝛺𝑇 .
Finally, we introduce the function space 𝐶0,1 ∶= 𝐶0,1

(

[0, 𝑇 ] ×𝛺
)

,
that is the space of functions continuous, together with their space
gradient, in [0, 𝑇 ] ×𝛺. The space 𝐶0,1 is a Banach space with norm:

‖𝑢‖𝐶0,1 = sup
𝑡∈[0,𝑇 ]

‖𝑢(𝑡, ⋅)‖𝐿∞(𝛺) + sup
𝑡∈[0,𝑇 ]

‖∇𝑢(𝑡, ⋅)‖𝐿∞(𝛺).

The main result of this Section is the following Theorem:

Theorem 7.1. Let 𝛺 be a smooth (𝐶2+𝛼 , with 𝛼 > 0) bounded connected
open subset of R𝑛, 𝑛 ∈ N, and suppose that (7.4) holds. For 𝑝̃ > 𝑛 + 2,
let the non-negative initial conditions 𝑚𝑖𝑛 and 𝑐𝑖𝑛 belong to 𝑊 (2−2∕𝑝̃),𝑝̃(𝛺),
while 𝑑𝑖𝑛 belongs to 𝐿∞(𝛺). Then the system (7.1) with boundary and initial
conditions (7.2) and (7.3) admits a unique global strong solution which is
non-negative in each component and bounded in time. More precisely, we
have that:

𝜕𝑡𝑚 , 𝜕𝑡𝑐 , 𝜕𝑡𝑑 , 𝛥𝑚 , 𝛥𝑐 , ∇ ⋅ (𝜒(𝑚)∇𝑐) ∈ 𝐿𝑝̃
(

𝛺𝑇
)

, (7.5)

and

𝑚 , 𝑐 ∈ 𝐶0,1 , 𝑑 ∈ 𝐿∞(𝛺𝑇 ) , (7.6)

for all 𝑇 > 0.
Finally, if the initial data are smooth, 𝑖.𝑒., 𝑚𝑖𝑛, 𝑐𝑖𝑛 and 𝑑𝑖𝑛 ∈ 𝐶2(𝛺) and

satisfy the compatibility conditions ∇𝑚𝑖𝑛 ⋅ n = ∇𝑐𝑖𝑛 ⋅ n = 0 on 𝜕𝛺, then the
solution to system (7.1) is classical, 𝑖.𝑒.,

𝜕𝑡𝑚 , 𝜕𝑡𝑐 , 𝜕𝑡𝑑 , 𝛥𝑚 , 𝛥𝑐 , ∇ ⋅ (𝜒(𝑚)∇𝑐) ∈ 𝐶0 (𝛺𝑇
)

∀𝑇 > 0 . (7.7)

The proof of Theorem 7.1 is divided into two parts: in Section 7.1,
we shall prove the existence of a global solution; in Section 7.2, we
shall prove the uniqueness. The proof of Theorem 7.1 closely follows
the procedure adopted in [54].

We recall the following embedding Lemma, see [54,74,75], which
will be useful in the sequel.

Lemma 7.2. Assume that 1 < 𝑝 <∞ and fix 𝑇 > 0 and 𝑡0 ∈ [0, 𝑇 ). Then
there exists a constant 𝐶 which depends on 𝑇 − 𝑡0, 𝛺, 𝑝 and 𝑛, such that
for all 𝑢 ∈ 𝑊 1,2

𝑝 (𝛺𝑡0 ,𝑇 ) we have:

•
‖𝑢‖ 𝑞 ≤ 𝐶‖𝑢‖ 1,2 ,
𝐿 (𝛺𝑡0 ,𝑇 ) 𝑊𝑝 (𝛺𝑡0 ,𝑇 )
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where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞 = (𝑛+2)𝑝
𝑛+2−2𝑝 if 𝑝 < 𝑛+2

2 ;

𝑞 = ∞ if 𝑝 > 𝑛+2
2 ;

𝑞 is finite and arbitrary if 𝑝 = 𝑛+2
2 .

(7.8)

•
‖∇𝑢‖𝐿𝑞 (𝛺𝑡0 ,𝑇 ) ≤ 𝐶‖𝑢‖𝑊 1,2

𝑝 (𝛺𝑡0 ,𝑇 )
,

where
⎧

⎪

⎨

⎪

⎩

𝑞 = (𝑛+2)𝑝
𝑛+2−𝑝 if 𝑝 < 𝑛 + 2 ;

𝑞 = ∞ if 𝑝 > 𝑛 + 2 ;
𝑞 is finite and arbitrary if 𝑝 = 𝑛 + 2 .

(7.9)

• 𝑊 1,2
𝑝 (𝛺𝑡0 ,𝑇 ) is compactly embedded in 𝐶0,1, if 𝑝 > 𝑛 + 2.

7.1. Global existence

In this Subsection, first, using the Leray–Schauder fixed point theo-
rem [73], we shall prove the existence of global non negative solutions
to system (7.1). Second, we shall prove that such solutions are bounded
in the 𝐿∞-norm.

7.1.1. Construction of the map 𝑆
We construct the map 𝑆

𝑆 ∶ 𝐶0,1 × 𝐶0,1 × [0, 1] ⟶ 𝐶0,1 × 𝐶0,1 , (7.10)

as follows:

• for a given 𝑚 ∈ 𝐶0,1, solve the following ODE:
{

𝜕𝑑
𝜕𝑡 = 𝑟 𝐹 (𝑚+)𝑚+ (1 − 𝑑) (𝑡, 𝑥) ∈ 𝛺𝑇 ,
𝑑(𝑡 = 0, 𝑥) = 𝑑𝑖𝑛(𝑥) 𝑥 ∈ 𝛺 ,

(7.11)

where 𝑚+ = max(0, 𝑚);
• next, solve the following heat equation with source term and

Neumann boundary condition:

⎧

⎪

⎨

⎪

⎩

𝜕𝑐∗

𝜕𝑡 = 1
𝜏

[

𝜖𝛥𝑐∗ − 𝑐∗ +
(

𝛿𝑑 + 𝛽𝑚+
)]

(𝑡, 𝑥) ∈ 𝛺𝑇 ,
n ⋅ 𝛁𝑐∗ = 0 (𝑡, 𝑠) ∈ (0, 𝑇 ) × 𝜕𝛺 ,
𝑐∗(𝑡 = 0, 𝑥) = 𝑐𝑖𝑛(𝑥) 𝑥 ∈ 𝛺 ;

(7.12)

• finally, solve the following heat equation with source term and
Neumann boundary condition:

⎧

⎪

⎨

⎪

⎩

𝜕𝑚∗

𝜕𝑡 = 𝛥𝑚∗ + 𝑚+(1 − 𝑚+)𝑐∗ − ∇ ⋅
(

𝜒(𝑚+)∇𝑐∗
)

(𝑡, 𝑥) ∈ 𝛺𝑇 ,
n ⋅ 𝛁𝑚∗ = 0 (𝑡, 𝑠) ∈ (0, 𝑇 ) × 𝜕𝛺 ,
𝑚∗(𝑥, 0) = 𝑚𝑖𝑛(𝑥) 𝑥 ∈ 𝛺 ,

(7.13)

The map 𝑆 is defined as

𝑆(𝑚, 𝑐, 𝜆) = (𝜆𝑚∗, 𝜆 𝑐∗). (7.14)

Remark 7.3. From (7.11) and 𝑑𝑖𝑛 ≥ 0, immediately follows that

0 ≤ 𝑑(𝑡, 𝑥) ≤ max(1, ‖𝑑𝑖𝑛‖𝐿∞(𝛺)) = 𝐻0 . (7.15)

To apply the Leray–Schauder theorem, we define the following set
:

=
{

(𝑚, 𝑐) ∈ 𝐶0,1 × 𝐶0,1 ∶ 𝑆(𝑚, 𝑐, 𝜆) = (𝑚, 𝑐), 0 < 𝜆 ≤ 1
}

. (7.16)

Observe that if (𝑚, 𝑐) ∈ 𝛷, then 𝑚 = 𝜆𝑚∗ and 𝑐 = 𝜆𝑐∗ where 𝑚∗ and 𝑐∗

olve (7.12) and (7.13).

emma 7.4. If (𝑚, 𝑐) are in 𝛷, then 𝑚 and 𝑐 are non negative.
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c

roof. We first observe that if (𝑚, 𝑐) ∈ 𝛷, then 𝑚 and 𝑐 satisfy the
ollowing two systems of equations:

⎧

⎪

⎨

⎪

⎩

𝜕𝑐
𝜕𝑡 =

1
𝜏

[

𝜖𝛥𝑐 − 𝑐 + 𝜆
(

𝛿𝑑 + 𝛽𝑚+
)]

(𝑡, 𝑥) ∈ 𝛺𝑇 ,
n ⋅ 𝛁𝑐 = 0 (𝑡, 𝑠) ∈ (0, 𝑇 ) × 𝜕𝛺 ,
𝑐(𝑡 = 0, 𝑥) = 𝜆 𝑐𝑖𝑛(𝑥) 𝑥 ∈ 𝛺 ;

(7.17a)

⎧

⎪

⎨

⎪

⎩

𝜕𝑚
𝜕𝑡 = 𝛥𝑚 + 𝑚+(1 − 𝑚+)𝑐 − ∇ ⋅

(

𝜒(𝑚+)∇𝑐
)

(𝑡, 𝑥) ∈ 𝛺𝑇 ,
n ⋅ 𝛁𝑚 = 0 (𝑡, 𝑠) ∈ (0, 𝑇 ) × 𝜕𝛺 ,
𝑚(𝑡 = 0, 𝑥) = 𝜆𝑚𝑖𝑛(𝑥) 𝑥 ∈ 𝛺 .

(7.17b)

q. (7.17a) and 𝑐𝑖𝑛 ≥ 0 and 𝑑 ≥ 0, imply that 𝑐 ≥ 0.
To prove that 𝑚 ≥ 0, we multiply the first equation in (7.17b) by

2
−, where 𝑚− = max(0,−𝑚), and integrate in space and time. After

ntegration by parts, we obtain:

1
3 ∫𝛺

𝑚3
−𝑑𝑥 = 2∫

𝑡

0 ∫𝛺
𝑚−|∇𝑚−|

2𝑑𝑥𝑑𝑡

∫

𝑡

0 ∫𝛺
𝑚2
− 𝑚+(1 − 𝑚+)𝑐𝑑𝑥𝑑𝑡 − 2𝜒 ∫

𝑡

0 ∫𝛺

𝑚−𝑚+
1 + 𝑚+

∇𝑚− ⋅ ∇𝑐𝑑𝑥𝑑𝑡

2∫

𝑡

0 ∫𝛺
𝑚−|∇𝑚−|

2𝑑𝑥𝑑𝑡 ≥ 0 ,

nd consequently 𝑚− = 0 for each 𝑡 ∈ [0, 𝑇 ], which concludes the
roof. □

As a consequence of Lemma 7.4 and of the definition of 𝛷, we
ave that, if (𝑚, 𝑐) ∈ 𝛷, then (𝑚, 𝑐, 𝑑) satisfies the following system for
𝑡, 𝑥) ∈ 𝛺𝑇 :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑚
𝜕𝑡 = 𝛥𝑚 + 𝑚(1 − 𝑚) 𝑐 − ∇ ⋅ (𝜒(𝑚)∇𝑐) ,
𝜕𝑐
𝜕𝑡 =

1
𝜏 [𝜖𝛥𝑐 − 𝑐 + 𝜆 (𝛿𝑑 + 𝛽𝑚)] ,

𝜕𝑑
𝜕𝑡 = 𝑟𝐹 (𝑚)𝑚 (1 − 𝑑) ,

(7.18a)

ith Neumann BC and the following initial condition for 𝑥 ∈ 𝛺:

⎧

⎪

⎨

⎪

⎩

𝑚(𝑥, 𝑡 = 0) = 𝜆𝑚𝑖𝑛(𝑥) ,
𝑐(𝑥, 𝑡 = 0) = 𝜆𝑐𝑖𝑛(𝑥) ,
𝑑(𝑥, 𝑡 = 0) = 𝑑𝑖𝑛(𝑥) .

(7.18b)

.1.2. Compactness and continuity of 𝑆
To apply the Leray–Schauder fixed point theorem, we need to prove

hat the map 𝑆 is compact and continuous in 𝐶0,1 × 𝐶0,1.
We shall divide the proof in two Lemmas: in Lemma 7.5 we shall

rove that 𝑆 sends bounded sets of 𝐶0,1 × 𝐶0,1 × [0, 1] into precompact
ets of 𝐶0,1 × 𝐶0,1; then, in Lemma 7.6, we shall prove that 𝑆 is
ontinuous.

emma 7.5. Under the hypotheses of Theorem 7.1, the map 𝑆 maps
ounded sets of 𝐶0,1 × 𝐶0,1 × [0, 1] into precompact sets of 𝐶0,1 × 𝐶0,1.

roof. From the definition of the map 𝑆 given by (7.10)–(7.13), from
he maximal regularity results of the heat equation with Neumann
oundary conditions [54,74], and from (7.15), we have that:

𝑐∗‖𝑊 1,2
𝑝 (𝛺×(0,𝑇 )) ≤ 𝐶𝑝 ,

𝑚∗
‖𝑊 1,2

𝑝 (𝛺×(0,𝑇 )) ≤ 𝐶𝑝 ,

here the constant 𝐶𝑝 depends on ‖𝑚‖𝐶0,1 ,𝛺, 𝑇 , ‖𝑚𝑖𝑛‖𝐿∞(𝛺), ‖𝑐𝑖𝑛‖𝐿∞(𝛺),
nd ‖𝑑𝑖𝑛‖𝐿∞(𝛺). Since 𝑝 > 𝑛+ 2, then 𝑊 2,1

𝑝 (𝛺𝑇 ) is compactly embedded
n 𝐶0,1 and the Lemma is proved. □

emma 7.6. Under the hypotheses of Theorem 7.1. the map 𝑆 is

ontinuous.
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Proof. Consider 𝑚1, 𝑚2 ∈ 𝐶0,1 and 𝑐1, 𝑐2 ∈ 𝐶0,1. Denote by 𝑑1 and 𝑑2
he solutions of (7.11) obtained for 𝑚1 and 𝑚2, respectively. We have:

𝑑1 − 𝑑2‖𝐿∞(𝛺𝑇 ) ≤ 𝐶𝑇 ‖𝑚1+ − 𝑚2+‖𝐿∞(𝛺𝑇 ) ≤ 𝐶𝑇 ‖𝑚1 − 𝑚2‖𝐶0,1 , (7.19)

here 𝐶𝑇 is a constant which depends on 𝑇 , 𝑟 and ‖𝑑𝑖𝑛‖𝐿∞(𝛺). More-
ver, considering the equation satisfied by 𝑐∗1 − 𝑐∗2 , using the maximal
egularity results together with (7.19), and the compactly embedding
roperty of 𝑊 1,2

𝑝 for 𝑝 > 𝑛 + 2, we obtain that:

𝑐∗1 − 𝑐∗2‖𝐶0,1 ≤ 𝐶𝑇 ‖𝑚1 − 𝑚2‖𝐶0,1 , (7.20)

here again we denote by 𝐶𝑇 a constant which depends on 𝑇 , 𝛽, 𝛿, 𝜀,
, 𝑟, 𝛺, 𝑛 and ‖𝑑𝑖𝑛‖𝐿∞(𝛺). We now consider the following equation for
∗
1 − 𝑚

∗
2:

𝜕(𝑚∗
1 − 𝑚

∗
2)

𝜕𝑡
= 𝛥(𝑚∗

1 − 𝑚
∗
2) + 𝑚1+(1 − 𝑚1+)𝑐∗1 − 𝑚2+(1 − 𝑚2+)𝑐∗2 +

∇ ⋅
(

𝜒(𝑚1+)∇𝑐∗1 − 𝜒(𝑚1+)∇𝑐∗1
)

with (𝑡, 𝑥) ∈ 𝛺𝑇 ,

ith boundary condition:

(𝑚∗
1 − 𝑚

∗
1) ⋅ n = 0 , (𝑠, 𝑡) ∈ (0, 𝑇 ) × 𝜕𝛺,

and initial condition:

𝑚∗
1(𝑥, 0) − 𝑚

∗
2(𝑥, 0) = 0 , 𝑥 ∈ 𝛺.

We have the following estimates:

|𝑚1+(1 − 𝑚1+)𝑐∗1 − 𝑚2+(1 − 𝑚2+)𝑐∗2 | ≤

≤ |𝑚1+(1 − 𝑚1+)(𝑐∗1 − 𝑐∗2 )| + |(𝑚1+(1 − 𝑚1+) − 𝑚2+(1 − 𝑚2+))𝑐∗2 |

≤ 1
4
|𝑐∗1 − 𝑐∗2 | + |𝑚1 − 𝑚2||𝑐

∗
2 |(1 + 2max(𝑚1+, 𝑚2+)) ,

nd

∇ ⋅
(

𝜒(𝑚1+)∇𝑐∗1 − 𝜒(𝑚2+)∇𝑐∗2
)

| ≤

|𝜒(𝑚1+)| |𝛥(𝑐∗1 − 𝑐∗2 )| + |∇𝜒(𝑚1+)| |∇𝑐∗1 − ∇𝑐∗2 | +

+|𝜒(𝑚1+) − 𝜒(𝑚2+)| |𝛥𝑐∗2 | + |∇(𝜒(𝑚1+) − 𝜒(𝑚1+))| |∇𝑐∗2 |

𝜒 |𝛥(𝑐∗1 − 𝑐∗2 )| + 𝜒 |∇𝑚1+| |∇𝑐∗1 − ∇𝑐∗2 | +

𝜒|𝑚1+ − 𝑚2+| |𝛥𝑐
∗
2 | + 𝜒|∇(𝑚1+ − 𝑚2+)| |∇𝑐∗2 | .

Repeating the same arguments used for 𝑐∗1 − 𝑐∗2 , we have:

𝑚∗
1 − 𝑚

∗
2‖𝐶0,1 ≤ 𝐶𝑇 ‖𝑚1 − 𝑚2‖𝐶0,1 , (7.21)

where 𝐶𝑇 is a constant which depends on 𝑇 , 𝛽, 𝛿, 𝜀, 𝜏, 𝑟, 𝛺, 𝑛, 𝜒
and ‖𝑑𝑖𝑛‖𝐿∞(𝛺). From (7.20) and (7.21), we have that the map 𝑆 is
continuous from 𝐶0,1 × 𝐶0,1 × [0, 1] to 𝐶0,1 × 𝐶0,1. □

7.1.3. Boundedness of 𝛷
We want to prove that 𝛷 is bounded in 𝐶0,1 ×𝐶0,1. The proof of this

is given in Lemma 7.11. Before stating the lemma and giving the proof,
we need four lemmas on regularity of 𝑚 and 𝑐, when (𝑚, 𝑐) is in 𝛷.

Lemma 7.7. Let (𝑚, 𝑐) ∈ 𝛷. Under the hypotheses of Theorem 7.1, there
exists a constant 𝐻1 that depends on 𝑇 , 𝛺, 𝑛, 𝛽, 𝛿, 𝜏, ‖𝑚𝑖𝑛‖𝐿1(𝛺), ‖𝑐𝑖𝑛‖𝐿1(𝛺),
‖𝑑𝑖𝑛‖𝐿∞(𝛺) but not on 𝜆, such that

sup
𝑡∈[0,𝑇 ]

(

‖𝑚(𝑡, ⋅)‖𝐿1(𝛺) + ‖𝑐(𝑡, ⋅)‖𝐿1(𝛺)
)

≤ 𝐻1 . (7.22)

Proof. Integrating the equations for 𝑚 and 𝑐 in (7.18a) and summing,
we obtain:
𝑑
𝑑𝑡 ∫𝛺

(𝑚 + 𝑐) 𝑑𝑥 ≤ ∫𝛺
(𝑚 − 𝑚2)𝑐 𝑑𝑥 − 1

𝜏 ∫𝛺
𝑐 𝑑𝑥 +

𝛽
𝜏 ∫𝛺

𝑚𝑑𝑥

𝛿
𝜏
|𝛺| ‖𝑑‖𝐿∞(𝛺)

≤
( 1 − 1) 𝑐 𝑑𝑥 +

𝛽
𝑚𝑑𝑥 + 𝛿

|𝛺| ‖𝑑‖𝐿∞(𝛺)
15

4 𝜏 ∫𝛺 𝜏 ∫𝛺 𝜏 L
≤ max
(

𝛽
𝜏
, 1
4
− 1
𝜏

)

∫𝛺
(𝑚 + 𝑐) 𝑑𝑥 + 𝛿

𝜏
|𝛺|𝐻0 ,

where we have used the inequality 𝑚(1−𝑚) ≤ 1∕4 and we have denoted
by |𝛺| the measure of the domain 𝛺. Consequently, by using Gronwall’s
lemma [76], we obtain (7.22) with

𝐻1 =
(

‖𝑚𝑖𝑛‖𝐿1(𝛺) + ‖𝑐𝑖𝑛‖𝐿1(𝛺) +
𝛿
𝜏
|𝛺|𝑇𝐻0

)

𝑒
(

max
(

𝛽
𝜏 ,

1
4−

1
𝜏

)

𝑇
)

. □

emma 7.8. Let (𝑚, 𝑐) ∈ 𝛷. Under the hypotheses of Theorem 7.1,
here exists a constant 𝐻2 that depends on 𝑇 , 𝛺, 𝑛, 𝛽, 𝛿, 𝜏, 𝜖, ‖𝑚𝑖𝑛‖𝐿2(𝛺),
𝑐𝑖𝑛‖𝐿2(𝛺), ‖𝑑𝑖𝑛‖𝐿∞(𝛺) but not on 𝜆, such that:

𝑚‖𝐿2(𝛺𝑇 ) ≤ 𝐻2 . (7.23)

roof. Consider the equation for 𝑚 in (7.18a) and integrate in space:

𝑑
𝑑𝑡 ∫𝛺

𝑚𝑑𝑥 = ∫𝛺
(𝑚 − 𝑚2)𝑐 𝑑𝑥

∫𝛺
(1 − 𝑚)𝑐 𝑑𝑥 = ‖𝑐‖𝐿1(𝛺) − ‖𝑚𝑐‖𝐿1(𝛺) .

rom the above bound and using (7.22), it follows that:

𝑚𝑐‖𝐿1(𝛺𝑇 ) ≤ 𝐶∗ , (7.24)

here 𝐶∗ is a constant which depends on 𝑇 , 𝛺, 𝑛, 𝛽, 𝛿, 𝜏 and ‖𝑚𝑖𝑛‖𝐿1(𝛺),
𝑐𝑖𝑛‖𝐿1(𝛺) and ‖𝑑𝑖𝑛‖𝐿∞(𝛺), but not on 𝜆. Consider now the equation for
in (7.18a), multiply times 𝑐 and integrate in space to obtain:

1
2
𝑑
𝑑𝑡 ∫𝛺

𝑐2𝑑𝑥 + 𝜖
𝜏 ∫𝛺

|∇𝑐|2𝑑𝑥 + ∫𝛺
𝑐2𝑑𝑥

𝛿
𝜏
𝐻0‖𝑐‖𝐿1(𝛺) +

𝛽
𝜏
‖𝑚𝑐‖𝐿1(𝛺) .

onsequently, using (7.22) and (7.24), there exists a constant 𝐶∗∗ such
that:

sup
𝑡∈[0,𝑇 ]

‖𝑐‖𝐿2(𝛺) + ‖∇𝑐‖2
𝐿2(𝛺𝑇 )

≤ 𝐶∗∗ , (7.25)

where 𝐶∗∗ depends on 𝑇 , 𝛺, 𝑛, 𝛽, 𝛿, 𝜖, 𝜏 and ‖𝑚𝑖𝑛‖𝐿1(𝛺), ‖𝑐𝑖𝑛‖𝐿1(𝛺) and
‖𝑑𝑖𝑛‖𝐿∞(𝛺) but not on 𝜆. We now multiply times 𝑚 the equation for 𝑚
in (7.18a) and integrate in space to obtain:
1
2
𝑑
𝑑𝑡

‖𝑚‖2
𝐿2(𝛺)

≤ −‖∇𝑚‖2
𝐿2(𝛺)

+ ‖𝑚2(1 − 𝑚) 𝑐‖𝐿1(𝛺)

+‖𝜒(𝑚) ∇𝑐 ⋅ ∇𝑚‖𝐿1(𝛺)

≤ −‖∇𝑚‖2
𝐿2(𝛺)

+ 1
4
‖𝑚𝑐‖𝐿1(𝛺)

+1
2
‖𝜒(𝑚) ∇𝑐‖2

𝐿2(𝛺)
+ 1

2
‖∇𝑚‖2

𝐿2(𝛺)

≤ −1
2
‖∇𝑚‖2

𝐿2(𝛺)
+ 1

4
‖𝑚𝑐‖𝐿1(𝛺) +

1
2
𝜒2

‖∇𝑐‖2
𝐿2(𝛺)

.

In the above estimate, using (7.24) and (7.25) and applying Gron-
wall’s lemma we obtain (7.23). □

Lemma 7.9. Let (𝑚, 𝑐) ∈ 𝛷. Under the hypotheses of Theorem 7.1, there
exists a constant 𝐻3 that depends on 𝛺, 𝑇 , 𝑛, 𝜖, 𝜏, 𝛽, 𝛿, ‖𝑚𝑖𝑛‖𝐿2(𝛺),
𝑐𝑖𝑛‖𝑊 1,2(𝛺), ‖𝑑𝑖𝑛‖𝐿∞(𝛺) but not on 𝜆, such that:

𝑐‖𝑊 2,1
2 (𝛺𝑇 )

≤ 𝐻3 . (7.26)

∇𝑐‖𝐿2+4∕𝑛(𝛺𝑇 ) ≤ 𝐶 𝐻3 . (7.27)

roof. To obtain (7.26), consider the equation for 𝑐 in (7.18a) and use
he maximal regularity result together with (7.15) and (7.23). Estimate
7.27) is a consequence of (7.26) and the embedding Lemma 7.2 (see
emma 2.3 in [54]). □
emma 7.10.
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‖
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‖
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‖

Let (𝑚, 𝑐) ∈ 𝛷. Under the hypotheses of Theorem 7.1 and for 1 ≤
𝑝 < ∞, there exists a constant 𝐻∗

𝑝 that depends on 𝑝, 𝛺, 𝑇 , 𝑛, 𝜖, 𝜏, 𝛽, 𝛿,
𝑚𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), ‖𝑐𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), and ‖𝑑𝑖𝑛‖𝐿∞(𝛺), but not on 𝜆, such that

𝑚‖𝐿𝑝(𝛺𝑇 ) + ‖𝑐‖𝐿𝑝(𝛺𝑇 ) ≤ 𝐻∗
𝑝 . (7.28)

roof. For the proof we adapt to our case the proof of Lemma 2.4
n [54]. We prove (7.28) for 𝑝 large enough, in particular for 𝑝 =
′∕(𝑝′ − 1), where 𝑝′ is such that 1 < 𝑝′ < 𝑛+2

2 . Consequently, we have
that 1 + 2

𝑛 < 𝑝 <∞.
Let be 𝜃 ∈ 𝐿𝑝′ (𝛺𝑇 ), with 𝜃 ≥ 0 and ‖𝜃‖𝐿𝑝′ (𝛺𝑇 ) ≤ 1. We denote with

𝜙 and 𝜓 the unique solutions of the following forward heat equations:

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑡𝜙 + 𝛥𝜙 = −𝜃 (𝑡, 𝑥) ∈ 𝛺𝑇 ,
∇𝜙 ⋅ n = 0 (𝑡, 𝑠) ∈ (0, 𝑇 ) × 𝜕𝛺 ,
𝜙(𝑇 , 𝑥) = 0 𝑥 ∈ 𝛺 ,

(7.29)

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑡𝜓 + 𝜖

𝜏 𝛥𝜓 = −𝜃 (𝑡, 𝑥) ∈ 𝛺𝑇 ,
∇𝜓 ⋅ n = 0 (𝑡, 𝑠) ∈ (0, 𝑇 ) × 𝜕𝛺 ,
𝜓(𝑇 , 𝑥) = 0 𝑥 ∈ 𝛺 .

(7.30)

We have that 𝜙 and 𝜓 are nonnegative and, from the maximal regular-
ity for the heat semigroup [54,74] and Lemma 7.2, we also have that:

‖𝜕𝑡𝜙‖𝐿𝑝′ (𝛺𝑇 ) + ‖𝜙‖𝐿𝑞1 (𝛺𝑇 ) + ‖∇𝜙‖𝐿𝑞2 (𝛺𝑇 ) ≤ 𝐶𝑝′ , (7.31)

and

‖𝜕𝑡𝜓‖𝐿𝑝′ (𝛺𝑇 ) + ‖𝜓‖𝐿𝑞1 (𝛺𝑇 ) + ‖∇𝜓‖𝐿𝑞2 (𝛺𝑇 ) ≤ 𝐶𝑝′ , (7.32)

where 𝑞1 = (𝑛 + 2)𝑝′∕(𝑛 + 2 − 2𝑝′) and 𝑞2 = (𝑛 + 2)𝑝′∕(𝑛 + 2 − 𝑝′) and 𝐶𝑝′
is a positive constant which depends on 𝛺, 𝑇 , 𝑛 and 𝑝′.

Multiply 𝜃 by 𝑚 and integrate in space and time. Using Eq. (7.29),
integrating by parts and using (7.18a), we obtain:

∫

𝑇

0 ∫𝛺
𝑚𝜃 𝑑𝑥 𝑑𝑡 ≤ ∫𝛺

𝑚𝑖𝑛 𝜙(0, 𝑥) 𝑑𝑥 +
1
4 ∫

𝑇

0 ∫𝛺
𝑐 𝜙𝑑𝑥 𝑑𝑡

+∫

𝑇

0 ∫𝛺
𝜒(𝑚)∇𝜙 ⋅ ∇𝑐 𝑑𝑥 𝑑𝑡 . (7.33)

Analogously, multiply 𝜃 by 𝑐 and integrate in space and time. Using
Eq. (7.30), integrating by parts and using (7.18a), we obtain:

∫

𝑇

0 ∫𝛺
𝑐𝜃 𝑑𝑥 𝑑𝑡 ≤ ∫𝛺

𝑐𝑖𝑛 𝜓(0, 𝑥) 𝑑𝑥 +
𝛿
𝜏 ∫

𝑇

0 ∫𝛺
𝜓 𝑑 𝑑𝑥 𝑑𝑡

𝛽
𝜏 ∫

𝑇

0 ∫𝛺
𝑚𝜓𝑑𝑥𝑑𝑡 . (7.34)

We estimate each terms in the above inequalities.
We begin with the first term in (7.33). Using Holdër inequalities and

7.31), we have (see [54]):

𝛺
𝑚𝑖𝑛𝜙(0, 𝑥)𝑑𝑥 ≤ ‖𝑚𝑖𝑛‖𝐿𝑝(𝛺)‖𝜙(0, 𝑥)‖𝐿𝑝′ (𝛺)

≤ ‖𝑚𝑖𝑛‖𝐿𝑝(𝛺) 𝑇
1∕𝑝 ‖

‖

‖

‖

𝜕
𝜕𝑡
𝜙
‖

‖

‖

‖𝐿𝑝′ (𝛺𝑇 )
≤ ‖𝑚𝑖𝑛‖𝐿𝑝(𝛺) 𝑇

1∕𝑝 𝐶𝑝′ . (7.35)

Repeating the same arguments for the first term in (7.34), we have

∫𝛺
𝑐𝑖𝑛𝜓(0, 𝑥)𝑑𝑥 ≤ ‖𝑐𝑖𝑛‖𝐿𝑝(𝛺) 𝑇

1∕𝑝 𝐶𝑝′ . (7.36)

For the second term in (7.34), using (7.15) and (7.31), we have

∫

𝑇

0 ∫𝛺
𝜓 𝑑 𝑑𝑥 𝑑𝑡 ≤ 𝐻0‖𝜓‖𝐿1(𝛺𝑇 ) ≤ 𝐻0𝐶

∗
‖𝜓‖𝐿𝑞1 (𝛺𝑇 ) ≤ 𝐻0𝐶

∗𝐶𝑝′ .

(7.37)

In the rest of this proof, with 𝐶∗ we shall denote a constant that depends
n 𝑝, 𝛺, 𝑇 and 𝑛.

We estimate now the second term in (7.33).
16
As in [54], we consider first the case when 𝑛 = 1, 2. In this case
1 > 2 and using (7.26), (7.31) and Lemma 7.2, we obtain:

∫

𝑇

0 ∫𝛺
𝑐𝜙 𝑑𝑥 𝑑𝑡 ≤ ‖𝑐‖𝐿2(𝛺𝑇 )‖𝜙‖𝐿2(𝛺𝑇 ) ≤ 𝐶∗𝐻3 𝐶𝑝′ . (7.38)

hen 𝑛 ≥ 3, repeating the same arguments in [54], we define 𝜎 =
− 4∕(𝑛 + 2), which implies that 0 < 𝜎 < 1. Using Holdër inequalities
nd using (7.26), (7.31) and Lemma 7.2, we have:

∫

𝑇

0 ∫𝛺
𝑐 𝜙 𝑑𝑥 𝑑𝑡 ≤ 𝐶∗𝐶𝑝′𝐻

1−𝜎
3 ‖𝑐‖𝜎𝐿𝑝(𝛺𝑇 ) . (7.39)

Analogously we have that

∫

𝑇

0 ∫𝛺
𝑚𝜓 𝑑𝑥 𝑑𝑡 ≤ 𝐶∗𝐻2 𝐶𝑝′ + 𝐶∗𝐶𝑝′𝐻

1−𝜎
2 ‖𝑚‖𝜎𝐿𝑝(𝛺𝑇 ) . (7.40)

Finally, we estimate the last term in (7.33). We choose 𝑏 ∈ (0, 1]
hat satisfies the following condition:

< 𝑏 < 4
𝑛 + 2

. (7.41)

Notice that one has

𝜒(𝑚) = 𝜒 𝑚
1 + 𝑚

≤ 𝜒𝑚𝑏 . (7.42)

From (7.41), there exists an 𝑠, with 𝑠 ∈ (0, 1), such that

𝑏 − 𝑠 < 2
𝑛 + 2

, 𝑏 − 𝑠 < 4
𝑛 + 2

− 1 . (7.43)

Using (7.42), Holdër inequalities and using (7.23), (7.27) and (7.43),
we obtain:

∫

𝑇

0 ∫𝛺
|𝜒(𝑚)||∇𝜙||∇𝑐| 𝑑𝑥 𝑑𝑡 ≤ 𝜒 𝐶∗ 𝐶𝑝′𝐻

(𝑏−𝑠)
2 𝐶𝐻3‖𝑚‖

𝑠
𝐿𝑝(𝛺𝑇 )

. (7.44)

Collecting all the above estimates (7.35), (7.38), (7.39) and (7.44), and
(7.36), (7.37) and (7.40), and summing we have:

∫

𝑇

0 ∫𝛺
(𝑚 + 𝑐) 𝜃 𝑑𝑥𝑑𝑡 ≤

𝐶1 + 𝐶2 ‖𝑚 + 𝑐‖𝜎𝐿𝑝(𝛺𝑇 ) + 𝐶3 ‖𝑚 + 𝑐‖𝑠𝐿𝑝(𝛺𝑇 ) .

The above inequality holds for every 𝜃 ≥ 0 with ‖𝜃‖𝐿𝑝′(𝛺𝑇 ) ≤ 1, then,
y the definition of the norm 𝐿𝑝(𝛺𝑇 ) using duality we have that

𝑚 + 𝑐‖𝐿𝑝(𝛺𝑇 ) ≤ 𝐶1 + 𝐶2 ‖𝑚 + 𝑐‖𝜎𝐿𝑝(𝛺𝑇 ) + 𝐶3 ‖𝑚 + 𝑐‖𝑠𝐿𝑝(𝛺𝑇 ) ,

ith 𝜎 and 𝑠 ∈ (0, 1). Using Young’s inequality, we obtain (7.28),
nd the constant 𝐻∗

𝑝 depends obviously on 𝑝, 𝛺, 𝑇 , 𝑛, 𝜖, 𝜏, 𝛽, 𝛿,
𝑚𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), ‖𝑐𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺) and ‖𝑑𝑖𝑛‖𝐿∞(𝛺), but not on 𝜆. □

We are now ready to prove that the set 𝛷 is bounded.

emma 7.11. Under the hypotheses of Theorem 7.1, the set 𝛷 is bounded
n 𝐶0,1 × 𝐶0,1. In particular, if (𝑚, 𝑐) are in 𝛷 then

𝑚‖𝐶0,1 + ‖𝑐‖𝐶0,1 ≤ 𝐷𝑇 , (7.45)

here 𝐷𝑇 is a constant which depends on 𝛺, 𝑇 , 𝑛, 𝜖, 𝜏, 𝛽, 𝛿 and
𝑚𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), ‖𝑐𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), ‖𝑑𝑖𝑛‖𝐿∞(𝛺), but not on 𝜆.

roof. As 𝑝 > 𝑛 + 2, then 𝑊 1,2
𝑝 (𝛺𝑇 ) is compactly embedded in 𝐶0,1.

pplying the maximal regularity results to the equation for 𝑐 in (7.18a)
e have that

𝑐‖𝐶0,1 ≤ 𝐶‖𝑐‖𝑊 1,2
𝑝 (𝛺𝑇 )

𝐶𝑇
(

𝛿‖𝑑‖𝐿𝑝(𝛺𝑇 ) + 𝛽‖𝑚‖𝐿𝑝(𝛺𝑇 ) + ‖𝑐𝑖𝑛‖𝑊 𝑝,2−2∕𝑝(𝛺)

)

≤ 𝐵𝑇 , (7.46)

here 𝐶𝑇 depends on 𝛺, 𝑇 , 𝑛, 𝑝 and 𝐵𝑇 depends on 𝛺, 𝑇 , 𝑛, 𝑝, 𝜖, 𝜏, 𝛽, 𝛿
nd ‖𝑚𝑖𝑛‖𝐿∞(𝛺), ‖𝑐𝑖𝑛‖𝐿∞(𝛺) and ‖𝑑𝑖𝑛‖𝐿∞(𝛺), but not on 𝜆 (see Lemma 7.10
nd (7.15)).

Repeating for the 𝑚-equation in (7.18a) the same argument, we
ave:

𝑚‖ 0,1 ≤ 𝐶‖𝑚‖ 1,2
𝐶 𝑊𝑝 (𝛺𝑇 )
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w
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≤

w

𝛯

s

≤ 𝐶𝑇
(

‖𝑚(1 − 𝑚) 𝑐 − 𝜒(𝑚)𝛥𝑐‖𝐿𝑝(𝛺𝑇 ) + ‖𝑚𝑖𝑛‖𝑊 𝑝,2−2∕𝑝(𝛺)

)

≤ 𝐵∗
𝑇 . (7.47)

Consequently, (7.45) is proved using (7.46) and (7.47). □

7.1.4. Existence of the solution
We conclude this subsection by proving the existence of a global

solution. This is stated by the following Proposition whose proof is a
consequence of Lemmas 7.4, 7.5, 7.6, and 7.11:

Proposition 7.12. Under the hypotheses of Theorem 7.1, for any 𝑇 > 0,
he system (7.1) with Neumann boundary conditions (7.2) and initial data
7.3) admits, in [0, 𝑇 ], a strong non negative solution (𝑚, 𝑐, 𝑑). Moreover

there exists a constant 𝐶, which depends on 𝛺, 𝑇 , 𝑛, 𝜖, 𝜏, 𝛽, 𝛿 and
𝑚𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), ‖𝑐𝑖𝑛‖𝑊 2−2∕𝑝̄,𝑝̄(𝛺), ‖𝑑𝑖𝑛‖𝐿∞(𝛺), such that:

𝑚‖𝐶0,1 + ‖𝑐‖𝐶0,1 + ‖𝑑‖𝐿∞(𝛺𝑇 ) ≤ 𝐶 . (7.48)

roof. Using the Leray–Schauder fixed point theorem, we have that 𝑆
dmits a fixed point.

Then, for any 𝑇 > 0, one can obtain in [0, 𝑇 ] a solution of the
riginal system (7.1).

The inequality (7.48) follows from (7.15) and (7.45).
Moreover, as all terms appearing in the system (7.1) are defined a.e.

s 𝐿1(𝛺𝑇 ) functions, then the solution is strong. □

.2. Uniqueness

In this subsection we shall prove that the solution of system (7.1)
ith boundary conditions (7.2) and initial conditions (7.3) is unique.
amely, we shall prove the following

roposition 7.13. Under the hypotheses of Theorem 7.1 and for each
> 0, the solution to system (7.1) with Neumann boundary conditions (7.2)

and initial data (7.3) constructed in Proposition 7.12 is unique.

Proof. Let (𝑚1, 𝑐1, 𝑑1) and (𝑚2, 𝑐2, 𝑑2) be two solutions of system (7.1),
with boundary and initial conditions given in (7.2) and (7.3). Taking
their differences, we have:

𝑑
𝑑𝑡 ∫𝛺

|𝑑1 − 𝑑2|
2𝑑𝑥 ≤

𝑟(1 +𝐻0 + ‖𝑚2‖𝐿∞(𝛺𝑇 ))
(

∫𝛺
|𝑚1 − 𝑚2|

2𝑑𝑥 + ∫𝛺
|𝑑1 − 𝑑2|

2𝑑𝑥
)

, (7.49a)

𝑑
𝑑𝑡 ∫𝛺

|𝑐1 − 𝑐2|
2𝑑𝑥 + 2𝜖

𝜏 ∫𝛺
|∇(𝑐1 − 𝑐2)|

2𝑑𝑥 ≤

𝛽
𝜏 ∫𝛺

|𝑚1 − 𝑚2|
2𝑑𝑥 + 𝛿

𝜏 ∫𝛺
|𝑑1 − 𝑑2|

2𝑑𝑥

+
𝛽 + 𝛿
𝜏 ∫𝛺

|𝑐1 − 𝑐2|
2𝑑𝑥 , (7.49b)

𝑑
𝑑𝑡 ∫𝛺

|𝑚1 − 𝑚2|
2𝑑𝑥 + 2∫𝛺

|∇(𝑚1 − 𝑚2)|
2𝑑𝑥

+2∫𝛺
𝑐1(𝑚1 + 𝑚2)(𝑚1 − 𝑚2)2𝑑𝑥 =

≤ 2‖𝑐1‖𝐿∞(𝛺𝑇 ) ∫𝛺
|𝑚1 − 𝑚2|

2𝑑𝑥

+‖𝑚2‖𝐿∞(𝛺𝑇 )(1 + ‖𝑚2‖𝐿∞(𝛺𝑇 ))
(

∫𝛺
|𝑐1 − 𝑐2|

2𝑑𝑥 + ∫𝛺
|𝑚1 − 𝑚2|

2𝑑𝑥
)

+∫𝛺
𝜒2

|∇(𝑐1 − 𝑐2)|
2𝑑𝑥 + ∫𝛺

|∇(𝑚1 − 𝑚2)|
2𝑑𝑥

+𝜒2
‖∇𝑐1‖𝐿∞(𝛺𝑇 ) ∫𝛺

|𝑚1 − 𝑚2|
2𝑑𝑥

+ |∇(𝑚1 − 𝑚2)|
2𝑑𝑥 . (7.49c)
17

∫𝛺
From (7.49c) we get:

𝑑
𝑑𝑡 ∫𝛺

|𝑚1 − 𝑚2|
2𝑑𝑥 ≤

𝑚2‖𝐿∞(𝛺𝑇 )(1 + ‖𝑚2‖𝐿∞(𝛺𝑇 ))∫𝛺
|𝑐1 − 𝑐2|

2𝑑𝑥

𝜒2
∫𝛺

|∇(𝑐1 − 𝑐2)|
2𝑑𝑥

(

2‖𝑐1‖𝐿∞(𝛺𝑇 ) + ‖𝑚2‖𝐿∞(𝛺𝑇 )(1 + ‖𝑚2‖𝐿∞(𝛺𝑇 )) + 𝜒
2
‖∇𝑐1‖𝐿∞(𝛺𝑇 )

)

∫𝛺
|𝑚1 − 𝑚2|

2𝑑𝑥

𝐴∫𝛺
|𝑐1 − 𝑐2|

2𝑑𝑥 + 𝜒2
∫𝛺

|∇(𝑐1 − 𝑐2)|
2𝑑𝑥

𝐵 ∫𝛺
|𝑚1 − 𝑚2|

2𝑑𝑥 . (7.49d)

ith 𝐴 = ‖𝑚2‖𝐿∞(𝛺𝑇 )(1 + ‖𝑚2‖𝐿∞(𝛺𝑇 )) and 𝐵 = 2‖𝑐1‖𝐿∞(𝛺𝑇 ) +
𝑚2‖𝐿∞(𝛺𝑇 )(1 + ‖𝑚2‖𝐿∞(𝛺𝑇 )) + 𝜒2

‖∇𝑐1‖𝐿∞(𝛺𝑇 ). Using the previous es-
imates (7.49a)–(7.49b)–(7.49d) and applying the Gronwall’s lemma
o:

𝛺
|𝑚1 − 𝑚2|

2 𝑑𝑥 +
𝜏𝜒2

2𝜖 ∫𝛺
|𝑐1 − 𝑐2|

2 𝑑𝑥 + ∫𝛺
|𝑑1 − 𝑑2|

2 𝑑𝑥,

e obtain:

𝛺
|𝑚1 − 𝑚2|

2𝑑𝑥 +
𝜏𝜒2

2𝜖 ∫𝛺
|𝑐1 − 𝑐2|

2𝑑𝑥 + ∫𝛺
|𝑑1 − 𝑑2|

2𝑑𝑥 ≤

𝑒𝛯𝑡
(

∫𝛺
|𝑚1𝑖𝑛 − 𝑚2𝑖𝑛|

2𝑑𝑥 +
𝜏𝜒2

2𝜖 ∫𝛺
|𝑐1𝑖𝑛 − 𝑐2𝑖𝑛|

2𝑑𝑥

+∫𝛺
|𝑑1𝑖𝑛 − 𝑑2𝑖𝑛|

2𝑑𝑥
)

,

here

= max
(

𝑟(1 +𝐻0 + ‖𝑚2‖𝐿∞(𝛺𝑇 )) + 𝐵 +
𝛽𝜒2

2𝜖
;
𝛽 + 𝛿
𝜏

+ 2𝐴𝜖
𝜏𝜒2

;

𝑟(1 +𝐻0 + ‖𝑚2‖𝐿∞(𝛺𝑇 )) +
𝛿𝜒2

2𝜖

)

,

o that the uniqueness of the solution is proved. □

Propositions 7.12 and 7.13 give Theorem 7.1.

8. Conclusions

Despite the profound impact of MS on individuals and society,
mathematical research focused on MS has been underwhelming to
date. Nevertheless, mathematical modeling of MS has yielded numerous
insights into its pathophysiology, progression, therapeutic strategies,
and potential treatment strategies [26].

In this paper, we have studied a reaction–diffusion-chemotaxis
model of MS that extends the system proposed in [33] by including
the triggering effect of cytokines in the activation rate of macrophages.
Since activated T-cells release cytokines in the early stages of plaque
formation [21,40,41], the proposed system is an initial attempt to ac-
count for the involvement of the adaptive immune system while main-
taining a mathematically simple description. Notably, the combined
effect of innate and adaptive immune responses on the development of
MS is recently described in [37], where the authors combine the ODE-
based description of peripheral triggering by T-cells with the PDE-based
description (derived from [33]) of the innate response in the brain
parenchyma. In this work, we introduce the effects of T-cell-produced
cytokines on macrophage activation while keeping the simplified de-
scription of [33] and retaining three interacting species. This choice
facilitates a mathematical investigation of the instabilities responsible
for lesion formation. We characterize the chemotaxis-driven Turing
instability through a weakly nonlinear analysis near the homogeneous
equilibrium and construct the corresponding stationary patterns. These
asymptotic solutions of the model system are obtained for biologically
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measured values of the system parameters and qualitatively reproduce
the concentric demyelinating rings observed in Balò sclerosis and in
type III MS. Through extensive numerical simulations on 2D domains,
we investigate the onset and progression of the plaques The com-
parison with the results obtained in [33], where direct activation of
macrophages with no involvement of cytokines was assumed, reveals
a less aggressive pathology. This form of the disease displays lower
levels of inflammation and evolves on significantly slower timescales.
Moreover, we prove the existence of a unique global solution to the
proposed system when the activation rate grows linearly with increas-
ing cytokine levels. We believe this result, which does not immediately
derive from the previously published well-posedness theorems on [33],
is of independent interest.

This paper does not consider several issues that could be the subject
of further investigation. One line of research worth exploring involves
considering the dependence of the diffusion coefficient on cell density.
It is well-documented that variations in cellular density at the lesion
site can lead to differences in diffusivity [77]. While a recent study [55]
describes this effect, its potential consequences on lesion development
and progression have yet to be addressed.

Furthermore, the rigorous construction of axisymmetric stationary
patterns on 2D domains is of significant interest [35].

The nonlinear stability of the proposed model using a suitable
Lyapunov functional is also worth investigating [78,79].

A hyperbolic extension of the parabolic system introduced here
would enable the exploration of inertial effects and the modeling of
transient dynamics between the homogeneous steady state and the
asymptotic stationary pattern [80].

Finally, examining the mechanisms leading to the emergence of
localized plaques deserves attention. The pattern localization could
occur under specific parameter regimes, where the homoclinic snaking
scenario verifies, or as a consequence of the spatial heterogeneity of
the cerebral tissue, [81]. Both of these scenarios will be the focus of
subsequent work.
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