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Abstract: The progress in additive manufacturing has remarkably increased the application of
lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes.
Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and
mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the
regeneration of massive bone defects, which require external intervention to be bridged. However,
the repair of such critical bone defects remains a challenge. The present review collected the most
significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a
comprehensive summary of the mechanical and morphological requirements for the osteointegration
process. Particular attention was given on the effects of pore size, surface roughness and the elastic
modulus on bone scaffold performances. The application of the Gibson–Ashby model allowed for a
comparison of the mechanical performance of the lattice materials with that of human bone. This
allows for an evaluation of the suitability of different lattice materials for biomedical applications.

Keywords: lattice structures; titanium alloy; bone tissue engineering; scaffolds; additive manufacturing;
mechanical properties

1. Introduction

Lattice structures are topologically ordered structures based on one or more repeating
unit cells [1]. From Gibson–Ashby’s research on cellular solids, a unit cell is determined
by the connectivity and dimensions of its constitutive strut elements, which are connected
at specific nodes [2]. Lattice materials present voids deliberately embedded in their struc-
tures [2]. Three types of lattice structures are currently studied for engineering applications:
strut-based, triply periodic minimal surfaces (TPMS) skeletal and TPMS sheet [3].

In recent years, the application of lattice structures in engineering fields has consider-
ably grown due to the progress in Additive Manufacturing (AM). Freedom of design, mass
customization, waste minimization, the ability to manufacture complex structures and
rapid prototyping are the major advantages of AM [4]. The ability to fabricate components
with complex parts and customizable material properties is one of the most important
advantages of these technologies, allowing for the production of complex functional objects
from multiple materials unattainable with conventional manufacturing methods [5]. The
modern approaches to fabricate bone constructs via AM provide a favourable environment
for bone regeneration [6]. Different AM technologies are currently used for the fabrication
of parts from metallic fine powders, for instance: Selective Laser Melting (SLM) [7], Se-
lective Laser Sintering (SLS) [8], Direct Metal Laser Sintering (DMLS) [9], Electron Beam
Melting (EBM) [10].

Lattice materials attract a great deal of interest in several engineering disciplines, for
instance automotive and aerospace, thanks to the high strength-to-weight ratio, thermal
conductivity and enhanced mechanical energy absorption [11,12]. Applications in the
biomechanical field used as bone substitutes have been also proposed [13–16].
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The Ti6Al4V alloy has a long history of application for bone implants due to its
mechanical biocompatibility, high strength, long lifetime, high wear resistance and low
elastic modulus [17–19].

The mechanical and morphological features of lattice materials affect the osteointe-
gration and bone ingrowth of the candidate implant. Specifically, the elastic modulus was
demonstrated to affect scaffold remodelling [20], as well as cell migration and differentia-
tion [21]. It is particularly important to reduce or eliminate stress shielding, which is one of
the primary causes requiring revision surgery leading to bone resorption [22,23]. Other im-
portant factors are pore size, which affects cell penetration and bone ingrowth [24,25], and
surface roughness, which supports the achievement of improved interaction mechanisms
between the implant and biological tissues [26,27].

This review aims to provide a comprehensive view of the mechanical and morpho-
logical requirements of lattice structures for the design of biomedical implants for bone
substitutes, with a focus on the effect of pore size and surface roughness on the bone
ingrowth and on the effect of the elastic modulus in the reduction of stress shielding and
promotion of osseointegration. The current work intends to furnish guidelines on the
choice of the most suitable lattice topology by applying the Gibson–Ashby model and by
focusing on the performance and features needed for bone stimulation in the osseointegra-
tion process. The review has collected the most significant findings achieved in the last ten
years with the utilization of additive manufacturing with Ti6Al4V for porous scaffolds.

2. Classification of Lattice Structures

Three classes of lattice structures are commonly investigated in applications for
biomedical engineering: the first class is strut-based structures, while the second and
third classes are derived from mathematically-created TPMS, namely skeletal-TPMS and
sheet-TPMS lattice structures.

Figure 1 shows the strut-based unit cell [2,28] proposed by Gibson–Ashby.
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Figure 1. Gibson–Ashby lattice structure [3].

The most known strut-based topologies, which are named after analogous crystalline
structures, are the body centred cubic (BCC) and face centred-cubic (FCC), as well as the
variations named z-struts BCCZ and FCCZ. There exist other strut-based topologies, such
as the cubic, octet-truss and diamond (see Figure 2).
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Lattice materials with cubic symmetry, strut-based cell topology, such as Archime-
dean solids or Catalan solids, have been widely investigated over the years. Archimedean 
solids are a group of 13 solids, first enumerated by Archimedes (see Figure 5). They are 
convex uniform polyhedra composed of regular polygons with identical vertices. Catalan 
solids are the dual polyhedra of the Archimedean solids. Most studied Archimedean sol-
ids include the cuboctahedron [32,33], truncated cube (TC) [34,35], truncated octahedron 

Figure 2. Strut-based lattice topologies: (A) BCC; (B) BCCZ; (C) FCC; (D) FCCZ; (E) cubic; (F) octet-
truss; (G) diamond [29].

The octet-truss cell is composed of an octahedral cell (black part) and a tetrahedral cell
(light grey part), as shown in Figure 3.
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Other variations in the BCC lattice are represented by the G7 unit cell and the simple
cubic body-centred cubic (SCBCC) as shown in Figure 4.
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Lattice materials with cubic symmetry, strut-based cell topology, such as Archime-
dean solids or Catalan solids, have been widely investigated over the years. Archimedean
solids are a group of 13 solids, first enumerated by Archimedes (see Figure 5). They are
convex uniform polyhedra composed of regular polygons with identical vertices. Catalan
solids are the dual polyhedra of the Archimedean solids. Most studied Archimedean solids
include the cuboctahedron [32,33], truncated cube (TC) [34,35], truncated octahedron (TO
or Kelvin cell) [36,37], rhombicuboctahedron (RCO) [35,38] and truncated cuboctahedron
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(TCO) [35,39]. Among Catalan solids, researchers mostly focused their attention on the
rhombic dodecahedron (RD) [35,40].
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Figure 5. Archimedean and Catalan solid lattice structures: (a) cuboctahedron; (b) truncated cube;
(c) truncated octahedron (Kelvin); (d) rhombicuboctahedron; (e) truncated cuboctahedron; (f) rhombic
dodecahedron [33,35].

Recently, cellular structures with mathematically defined architectures, as TPMS based
topologies, have been proposed [3]. A minimal surface can be considered as a surface with
a mean curvature equal to zero in all points; thus, a TPMS is characterized as a minimal
surface periodic in three independent directions [41]. TPMS mathematical representation is
defined by a system of coordinates calculated using the Enneper–Weierstrass parametric
representation as shown here.

x = Re
(

eiθ
∫ w

w0

(
1 − τ2

)
R(τ)dτ

)
y = Re

(
eiθ
∫ w

w0
i
(

1 − τ2
)

R(τ)dτ
)

z = Re
(

eiθ
∫ w

w0
2τR(τ)dτ

) (1)

R(τ) represents a function dependent upon the TPMS topology and can be expressed as:

R(t) =
1√

1–14τ4+τ8
(2)

Compared to the parametric form, a TPMS has a simpler and unified representation
expressed by sinusoid terms and defined as [41]:

ϕ(γ) = ∑K
k=1 Ak cos

[
2π(hk·γ)
λk

+pk

]
= C (3)

TPMS topologies can be approximately defined as combinations of trigonometric
functions in an implicit form. Examples of the most common TPMS equations in the
implicit form are expressed in Table 1 as follows [42,43]:
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Over the last few years, novel lattice materials have been proposed (see Figure 7).
Dong et al. [54] numerically and experimentally investigated the mechanical behaviour
of a vintile single unit cell and lattice, while other researchers analysed its behaviour
for biomedical applications [55,56]. Alomar et al. [57] proposed and developed a new
lattice material based on a circular constituent cell. Distefano et al. [58] developed a novel
biomimetic lattice material based on the scheme of rocks and called the TAOR lattice.
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3. Current Status of Additive Manufacturing Technologies

AM has grown considerably in recent years, thanks to the technological advance-
ment and the subsequent enhanced material properties. The ability to create components
with complex parts and customisable material properties is one of the most important
advantages of AM, allowing the fabrication of complex functional objects from various
materials unattainable with conventional manufacturing methods [5]. This resulted in
the industrial use of AM parts, even in highly advanced applications, most notably in
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aerospace, automotive and biomedical fields. Different AM technologies are currently used
for the fabrication of parts used in this fields, from metallic fine powders, for instance: SLM,
DMLS, EBM [10].

However, due to the rapid diffusion of a multitude of technologies related to AM,
there is a lack of a comprehensive set of design principles, manufacturing guidelines and
standardization of best practices. AM techniques require process optimization and quality
control to ensure accuracy and reliability [60]. This requirement is particularly relevant
for components with complex geometries, such as lattice structures, which include curved
surfaces and thin connecting features. Different factors, such as machine selection, processes
and materials, position and orientation of the part and finishing can alter the resulting
quality of the printed component [61]. A major limitation is the minimum feature size for
the AM technology used [62], the achievable feature resolution is inherently constrained
by the fact that powder-based technologies require particles larger than 20 µm so that the
powder can be successfully spread during recoating [63]. An additional limitation is placed
on the part design, most notably the build angles [64]. When extremely complex structure,
such as truncated icosahedra, are printed with dimensions in the order of micrometres,
some feature cannot be reproduced [65]. An important attribute is the surface quality,
which is mainly determined by the thickness of each printed layer. Surface quality also
depends on the form of the raw material; powder bed AM processes present poorer surface
quality than others due to large and partially melted powder particles that reside on the
printed part’s surface [61].

In order to promote research interest and investments, the goal of AM technologies is
to face these and other challenges to ensure the quality of the 3D-printed products [66].

4. Mechanical and Morphological Requirements for Biomedical Applications

Bone is a complex tissue undergoing biological remodelling. This feature of bone
underpins the ability to remodel itself to repair damage [67]. However, the bone’s ability
for self-regeneration of massive defects can be limited because of deficiencies in blood
supply or in the presence of systemic disease [68]. When bone defects exceed a critical
non-healable size, a surgical process is required to support self-healing when defects need
bridging. Despite recent advances in biomaterials and tissue engineering, the repair of such
a critical bone defects remains a challenge [69–71]. Lattice materials are widely used in the
biomedical field when devices are applied as bone substitutes [72–79]. A successful porous
metallic implant should restore the physiological function of the bone, and porous struc-
tures provide high interfacial bond area for vascularization and bone ingrowth, promoting
the biological fixation of implants and bone [80]. An ideal bone porous implant should
possess the following properties: biocompatibility, suitable surface for cell attachment,
proliferation, differentiation and migration [67]. In addition, angiogenesis is an essential
physiological process for bone regeneration [81]; the biological inertia of the Ti6Al4V surface
and the deficit of angiogenesis may cause postoperative complications, such as dislocation
or loosening of the device [82]. Several methods to enhance the angiogenesis of Ti6Al4V
scaffolds were evaluated in the literature, including the development of multifunctional
surface coatings with angiogenic properties [83]; the incorporation into a Ti6Al4V alloy of
copper ions, which presents high bioactivity and outstanding antibacterial properties [84];
and the controlled release of bone-morphogenic protein-2 and vascular endothelial growth
factor in the Ti6Al4V alloy [85]. The abilities of bone-lining cells are affected by the size and
shape of the scaffold pores; higher porosity promotes cell ingrowth and the transport of nu-
trients [86]. The current review presents a comparison of literature findings to evaluate the
effect of mechanical and morphological properties on bone ingrowth and osseointegration
and estimate the optimal parameters of lattice structures for biomedical applications.

4.1. Effect of Pore Size

The influence of pore size is still controversial. Wang et al. [67] reported that the
optimal pore size is in the range of 100–400 µm. However, several studies evaluated the
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influence of pore size on bone ingrowth, with controversial results. Van Bael et al. [87]
produced, via SLM, six Ti6Al4V scaffold configurations with three different pore shapes
(triangular, hexagonal and rectangular) and two distinct pore sizes (500 µm and 1000 µm);
after 14 days, in vitro culture exhibited a significantly higher living cell density on the
Ti6Al4V bone scaffolds with 1000 µm pores. Cheng et al. [88] used a human trabecular bone
template to design and manufacture Ti6Al4V scaffolds with variable porosities via SLS and
observed increasing bone ingrowth up to 300 µm. The latter was considered an optimal
value for bone ingrowth. Prananingrum et al. [89] fabricated porous titanium scaffolds
stratified in four groups with increasing pore sizes from 60 µm up to 600 µm. After 20 weeks,
the group with a pore size of 100 µm showed considerably greater bone ingrowth compared
to the other groups. Li et al. [90] fabricated Ti6Al4V scaffolds with three pore sizes between
300 µm and 700 µm using Electron Beam Melting (EBM). Bone ingrowth in the group with
a pore size of 400 µm was significantly higher than that with the other two porous scaffolds.
Taniguchi et al. [91] implanted 300 µm, 600 µm and 900 µm porous titanium scaffolds
into rabbit tibia and found that 600 µm and 900 µm scaffolds demonstrated significantly
higher bone ingrowth than 300 µm scaffolds. Kapat et al. [92] used Ti6Al4V samples with
92 µm, 178 µm and 297 µm pore sizes; a quantitative evaluation of bone ingrowth via
µ-CT revealed that there was approximately 52% higher bone formation in the sample with
a 178 µm pore size after 12 weeks, compared to that with the other configurations. Ran
et al. [93] designed and fabricated porous Ti6Al4V implants with straightforward pore
dimensions: 500, 700, and 900 µm using SLM. They assessed the morphological features of
scaffolds, showing that actual pore sizes were about 400, 600 and 800 µm; they observed
that the biological performance of specimens with a 600 µm pore size was superior to
that of the other two groups. Luan et al. [94] examined porous Ti6Al4V scaffolds with
334.1 µm, 383 µm and 401 µm pore sizes; results highlighted that all three types of porous
Ti6Al4V scaffolds were inclined to promote bone ingrowth; however, a pore size of 383 µm
showed better results. Ouyang et al. [95] fabricated, via SLM, porous titanium scaffolds
with similar porosity and different pore sizes: 400, 650, 850 and 1100 µm; the best bone
ingrowth was observed in scaffold with a 650 µm pore size. Chen et al. [96] manufactured,
via SLM, scaffolds with 500 µm, 600 µm and 700 µm pore sizes and 60% and 70% porosities
to explore the optimal morphological features. The scaffold with a pore size of 500 µm and
porosity of 60% exhibited the best bone ingrowth by means of in vivo experiments. Wang
et al. fabricated, via EBM, seven groups of porous scaffolds with pore sizes from 800 µm
to 1000 µm. Bone ingrowth was assessed via µ-CT 3D reconstruction images showed the
magnitude of positive remodelling with 1000 µm-pore-size scaffolds. Table 2 and Figure 8
describe the aforementioned findings in chronological order.

Table 2. Comparison of different research findings for the evaluation of the optimal pore size for
bone ingrowth.

Research Optimal Pore Size [µm] Tested Pore Size Range [µm]

Van Bael et al. [87] 1000 500–1000
Cheng et al. [88] 300 200–400

Prananingrum et al. [89] 100 60–600
Li et al. [90] 400 300–700

Taniguchi et al. [91] 632 300–900
Kapat et al. [92] 178 92–297
Ran et al. [93] 600 400–800

Luan et al. [94] 383 334–401
Ouyang et al. [95] 650 400–1100

Chen et al. [96] 500 500–700
Wang et al. [97] 1000 800–1000



J. Funct. Biomater. 2023, 14, 125 9 of 26

J. Funct. Biomater. 2023, 14, 125 9 of 27 
 

 

Chen et al. [96] 500 500–700 
Wang et al. [97] 1000 800–1000 

 
Figure 8. Evaluated optimal pore size for bone ingrowth. 

All presented results were obtained by performing in vivo or in vitro experiments 
where μ-CT reconstructions were applied to quantitatively show the effect of pore size on 
bone ingrowth (see Figure 9). 

 

Figure 8. Evaluated optimal pore size for bone ingrowth.

All presented results were obtained by performing in vivo or in vitro experiments
where µ-CT reconstructions were applied to quantitatively show the effect of pore size on
bone ingrowth (see Figure 9).

J. Funct. Biomater. 2023, 14, 125 9 of 27 
 

 

Chen et al. [96] 500 500–700 
Wang et al. [97] 1000 800–1000 

 
Figure 8. Evaluated optimal pore size for bone ingrowth. 

All presented results were obtained by performing in vivo or in vitro experiments 
where μ-CT reconstructions were applied to quantitatively show the effect of pore size on 
bone ingrowth (see Figure 9). 

 
Figure 9. Cont.



J. Funct. Biomater. 2023, 14, 125 10 of 26
J. Funct. Biomater. 2023, 14, 125 10 of 27 
 

 

 

Figure 9. Quantitative μ-CT analysis of new bone ingrowth in the research papers of the following: 
(a) Chen et al. [96]; (b) Kapat et al. [92]; (c) Ouyang et al. [95]. 

In brief, porosity, pore size and pore interconnectivity are important factors influenc-
ing the mechanical and biological properties of scaffolds, bone ingrowth and the trans-
portation of cells and nutrients. Given the discrepancy among findings, the optimal topo-
logical scaffold architecture remains a major challenge in biomedical applications. 

4.2. Effect of Surface Roughness 
Another factor affecting bone ingrowth is the surface roughness. Porous samples 

with highly rough surfaces, Ra ≥ 56.9 μm, resulted in a reduction in proliferation and bone 
ingrowth [98], while the surface roughness with range of 0.5 up to 8.5 μm positively in-
fluenced the bone implant [26]. Surface roughness affects the permeability of porous im-
plants. As surface roughness increases, the permeability decreases. High values of perme-
ability enhance the osteointegration process, since the transportation of cells, nutrients 
and growth factors requires the flow of blood through the porous scaffolds [99]. Chen et 
al. [100] manufactured Ti6Al4V discs with different additive angles, via an SLM process, 
with the aim of maximizing the direct effects of the additive angle on surface properties 
and biocompatibility. As the angle increases, the surface roughness increases because of 
the increasement of unmelted metallic particles. They, in vitro, evaluated the effect to os-
teoblast attachment and proliferation with six surface roughness values ranging from 2 to 
3 μm, in comparison to those with wrought samples (see Figure 10). 

 
Figure 10. Arithmetic average roughness (Ra) and contact angle of wrought alloy and SLM-fabri-
cated Ti6Al4V discs with different additive angles [100]. 

Figure 9. Quantitative µ-CT analysis of new bone ingrowth in the research papers of the following:
(a) Chen et al. [96]; (b) Kapat et al. [92]; (c) Ouyang et al. [95].

In brief, porosity, pore size and pore interconnectivity are important factors influencing
the mechanical and biological properties of scaffolds, bone ingrowth and the transportation
of cells and nutrients. Given the discrepancy among findings, the optimal topological
scaffold architecture remains a major challenge in biomedical applications.

4.2. Effect of Surface Roughness

Another factor affecting bone ingrowth is the surface roughness. Porous samples
with highly rough surfaces, Ra ≥ 56.9 µm, resulted in a reduction in proliferation and
bone ingrowth [98], while the surface roughness with range of 0.5 up to 8.5 µm positively
influenced the bone implant [26]. Surface roughness affects the permeability of porous
implants. As surface roughness increases, the permeability decreases. High values of per-
meability enhance the osteointegration process, since the transportation of cells, nutrients
and growth factors requires the flow of blood through the porous scaffolds [99]. Chen
et al. [100] manufactured Ti6Al4V discs with different additive angles, via an SLM process,
with the aim of maximizing the direct effects of the additive angle on surface properties
and biocompatibility. As the angle increases, the surface roughness increases because of
the increasement of unmelted metallic particles. They, in vitro, evaluated the effect to
osteoblast attachment and proliferation with six surface roughness values ranging from
2 to 3 µm, in comparison to those with wrought samples (see Figure 10).

J. Funct. Biomater. 2023, 14, 125 10 of 27 
 

 

 

Figure 9. Quantitative μ-CT analysis of new bone ingrowth in the research papers of the following: 
(a) Chen et al. [96]; (b) Kapat et al. [92]; (c) Ouyang et al. [95]. 

In brief, porosity, pore size and pore interconnectivity are important factors influenc-
ing the mechanical and biological properties of scaffolds, bone ingrowth and the trans-
portation of cells and nutrients. Given the discrepancy among findings, the optimal topo-
logical scaffold architecture remains a major challenge in biomedical applications. 

4.2. Effect of Surface Roughness 
Another factor affecting bone ingrowth is the surface roughness. Porous samples 

with highly rough surfaces, Ra ≥ 56.9 μm, resulted in a reduction in proliferation and bone 
ingrowth [98], while the surface roughness with range of 0.5 up to 8.5 μm positively in-
fluenced the bone implant [26]. Surface roughness affects the permeability of porous im-
plants. As surface roughness increases, the permeability decreases. High values of perme-
ability enhance the osteointegration process, since the transportation of cells, nutrients 
and growth factors requires the flow of blood through the porous scaffolds [99]. Chen et 
al. [100] manufactured Ti6Al4V discs with different additive angles, via an SLM process, 
with the aim of maximizing the direct effects of the additive angle on surface properties 
and biocompatibility. As the angle increases, the surface roughness increases because of 
the increasement of unmelted metallic particles. They, in vitro, evaluated the effect to os-
teoblast attachment and proliferation with six surface roughness values ranging from 2 to 
3 μm, in comparison to those with wrought samples (see Figure 10). 

 
Figure 10. Arithmetic average roughness (Ra) and contact angle of wrought alloy and SLM-fabri-
cated Ti6Al4V discs with different additive angles [100]. 
Figure 10. Arithmetic average roughness (Ra) and contact angle of wrought alloy and SLM-fabricated
Ti6Al4V discs with different additive angles [100].



J. Funct. Biomater. 2023, 14, 125 11 of 26

Adhesion and proliferation were found to be similar on the surface for every angle
(see Figure 11), though cells initially adhered less with improved cell spreading at a higher
additive angle.
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Li et al. [101] prepared porous Ti6Al4V scaffolds via EBM; then, scaffolds were sub-
jected to solution treatment at 800 ◦C, 950 ◦C and 1000 ◦C and then water quenching. Heat
treatment increased surface roughness, obtaining values in the range of 3 up to 8 µm (see
Figure 12).
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The result showed that the scaffold heat treated at 1000 ◦C exhibited the best cellular
adhesion and proliferation after in vitro culture (see Figure 13).
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4.3. Effect of Elastic Modulus

Implants made of metals and alloys are usually stiffer than human bone mechanical
properties; specifically, the Ti6Al4V alloy has an elastic modulus of nearly 110 GPa [102,103].
Mechanical properties of bone vary significantly with age, bone quality and the presence
of diseases [104]. The elastic modulus continues to cause a scientific challenge to fully
understand the mechanics of living bones [67]. Cortical bone is stiffer when loaded lon-
gitudinally than in transverse and shear directions and presents a longitudinal modulus
ranging from 18 to 20 GPa, transverse modulus between 10 and 12 GPa and shear modulus
of around 3 GPa [105–108]. Cancellous bone presents a low elastic modulus, ranging
from 0.2 to 4 GPa [105,108–110]. This mismatch in the elastic modulus may lead to stress
shielding, which represents a major issue for bone resorption and eventual failure of the
implants [19,111]. The internal lattice architecture, i.e., porosity, pore size and pore intercon-
nectivity, can be designed to lower the equivalent elastic modulus of the implant, avoiding
the mismatch between the stiffness of the implant and the adjacent bone [112]. This will
allow the matching of mechanical requirements of the bone substitute to reduce the stress
shielding by satisfying loading requirements. This may however avoid the mechanical
failure of the implant [113], by maintaining an appropriate mechanical strength. Indeed,
porous scaffolds also have a load-bearing function [114,115].

The choice of the most suitable lattice topology that should be used for the conception
of biomedical implants is still controversial. Parisien et al. [59] investigated the capability
of strut-based lattices to enhance osteointegration. They compared twenty-four lattice
topologies with ten different relative densities, from 5 up to 50%, subjected to bone ingrowth
stimulations by applying four different pressures, in the range of 0.5 to 2 MPa. They
evaluated the effect of the lattice elastic modulus on the percentage of pores that is optimal
for bone ingrowth. Relative densities lower than 20% showed similar bone ingrowth
performance. For relative densities higher than 30%, at the lowest pressure of 0.5 MPa,
topologies with a smaller elastic modulus stimulate better bone ingrowth, while at the
highest pressure of 2 MPa, the FCCZ, which has the highest elastic modulus, was the
only topology showing less than 70% of bone stimulation (see Figure 14). Since various
topologies presented more than 90% of their optimal space, the authors assessed that
topology choice can be based on the elastic modulus that fits the design’s needs.
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Several studies evaluated the effects of the elastic modulus of biomedical implants. Sun
et al. [116] proposed a novel ZK60 cervical cage and evaluated the biomechanical properties
under flexion, extension, lateral bending and axial rotation of the cervical spine. They
performed cage optimization by decreasing the volume of 40% to reduce the cage’s stiffness.
They observed that the optimized cage can considerably enhance the stress stimulation of
the bone by reducing the stress-shielding effect between the implant and vertebral bodies.
They also observed that the stresses at the endplate–cage interface decrease while the
cage’s stiffness decreases, indicating that subsidence is less likely to occur in the device
with lower stiffness. Wieding et al. [115] evaluated the mechanical performance of two
types of Ti6Al4V-custom-made porous implants, with an elastic modulus of 6 and 8 GPa,
implanted into a 20 mm segmental defect in the metatarsus of sheep. After 12 and 24 weeks
postoperative, they performed torsional testing on the implanted bone and compared it
to the contralateral non-treated side. Both types of implants offered mechanically stable
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situations, with bone tissue ingrowth around and into the implants, presenting an elastic
modulus in the range of the cortical bone.

5. The Gibson–Ashby Model
5.1. Compressive Behaviour

Lattice structure can be categorized based on its mechanical response as bending-
dominated or stretch-dominated. Bending-dominated structures are compliant and absorb
energy well when compressed; stretch-dominated structures have greater stiffness and
compressive strength compared to bending-dominated lattices, for a given relative den-
sity [117].

Figure 15 shows the compressive stress–strain curve of a bending-dominated lattice.
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The deformation behaviour can be divided into three stages: linear elastic deformation,
plastic deformation and densification. In the first stage, the lattice material response is
linear elastic with a Young’s modulus proportional to the structure material compliance.
Under compression, the struts of lattice materials are exposed to three mechanisms of
collapse: yield, buckling or crushing. They compete until the mechanism with the lowest
stress threshold is reached. Once the elastic limit is reached, plastic deformation begins
and the structure keeps collapsing at a nearly constant stress, referred to as the plateau
stress, until the opposite side of the cells impinge, constraining further deformation. The
densification strain is reached, and densification begins as stress rises steeply [29,117].

When subjected to a tensile/compressive loading, a stretch-dominated lattice material
first responds via elastic stretch of the struts; on average, in the first stage of the curve only
one-third of lattice strut bears loads [117]. In this case, the elastic limit is reached when one
or more sets of struts yield plastically, buckle or crush. Once the elastic limit is reached, the
whole lattice material bears the loads, and the structure fails through strut fracture. The
stretch-dominated mechanisms of deformation involve hard modes (stretching) compared
to the soft ones (bending) of the bending-dominated structures; therefore, initial yielding is
followed by plastic buckling or brittle collapse of the struts, leading to post-yield softening,
with oscillation of the stress required for further deformation. Then, the densification strain
is reached, and the stress steeply increases. Figure 16 shows the compressive stress–strain
curve of a stretch-dominated lattice.
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The deformation behaviour of strut-based topologies can be estimated by Maxwell’s
stability criterion, by evaluating the Maxwell number M of the lattice material.

M = S − 3N + 6 (4)

If M < 0, the structure is bending dominated; if M ≥ 0, the structure is stretch domi-
nated; if M > 0 the structure is hyperstatic [118].

The Maxwell number of most commonly studied strut-based unit cells is reported in
Table 3.

Table 3. Maxwell number for strut-based unit cells.

Unit Cell Topology Cubic BCC Diamond Octet-Truss TC RD RCO TCO

S 12 8 9 36 36 24 48 72
N 8 9 7 14 24 14 24 48
M −6 −13 −6 0 −30 −12 −18 −66

5.2. Comparison of Experimental Data for Different Lattice Materials

The Gibson–Ashby model is the most relevant and commonly recognized model for
the prediction of the lattice’s mechanical properties, which depend on the deformation
behaviour exhibited by the structure (bending or stretch-dominated) and show a positive
power relationship with the structure relative density. Gibson–Ashby provided the formu-
lae relating the elastic modulus and strength of lattice structures to their relative density:

E∗

Es
= C1

(
ρ∗

ρs

)n1

(5)

σ∗

σs
= C2

(
ρ∗

ρs

)n2

(6)

C1, n1, C2 and n2 are constant values dependent on the unit cell topology and are
experimentally derived.

The n exponent can be predicted on the basis of the lattice deformation behaviour. In
stretching-dominated structures, both stiffness and strength scale linearly as a function of
the relative density and are higher than that of bending-dominated structures in which
the elastic modulus scales quadratically with the relative density, while the strength scales
with a factor of 3/2 [3].
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The results of the experimental tests can be summarized in a graph in which the relative
elastic modulus and relative strength are plotted against relative density (Figures 17 and 18).
Through data interpolation, the constant values reported in Equations (5) and (6) can be
calculated for a given lattice structure.

J. Funct. Biomater. 2023, 14, 125 16 of 27 
 

 

E*

Es
=C1

ρ*

ρs

n1

 (5)

σ*

σs
=C2

ρ*

ρs

n2

 (6)

C1, n1, C2 and n2 are constant values dependent on the unit cell topology and are ex-
perimentally derived. 

The n exponent can be predicted on the basis of the lattice deformation behaviour. In 
stretching-dominated structures, both stiffness and strength scale linearly as a function of 
the relative density and are higher than that of bending-dominated structures in which 
the elastic modulus scales quadratically with the relative density, while the strength scales 
with a factor of 3/2 [3]. 

The results of the experimental tests can be summarized in a graph in which the rel-
ative elastic modulus and relative strength are plotted against relative density (Figures 17 
and 18). Through data interpolation, the constant values reported in Equations (5) and (6) 
can be calculated for a given lattice structure. 

 
Figure 17. Gibson–Ashby model: relative modulus against relative density [117] Figure 17. Gibson–Ashby model: relative modulus against relative density [117].

J. Funct. Biomater. 2023, 14, 125 17 of 27 
 

 

 
Figure 18. Gibson–Ashby model: relative strength against relative density [117]. 

Many studies performed on Ti6Al4V lattice materials are consistent with predictions 
obtained by the Gibson–Ashby model. Gibson–Ashby parameters from compressive tests, 
performed on different topologies and reported in the literature, were collected and are 
presented in Table 4. 

Table 4. Gibson–Ashby model parameters from compressive tests reported in the literature. 

Unit Cell Topology 
Elastic Modulus (GPa) Compressive Strength 

(MPa) 
C1 n1 C2 n2 

Cubic [35] 0.11 0.92 1.15 1.75 
Cubic [119] 0.55 2.82 1.34 1.85 
BCC [120] 0.15 2 0.57 1.9 
BCC [121] 0.15 2 0.23 1.5 

Diamond [118] 0.17 1.68 0.56 1.58 
Octet-truss [119] 0.51 2.33 1.37 1.37 

TC [118] 0.32 1.5 1.49 1.9 
RD [118] 0.42 2.34 1.29 2.27 
RD [122] 1.08 1.9 0.6 1.31 

RCO [118] 0.17 1.25 0.97 1.62 
TCO [118] 0.14 1.18 0.99 1.78 
Kelvin [58] 0.6 2.3 0.3 1.5 
TAOR [58] 0.8 2.3 0.6 1.5 

Schwarz Primitive [123] 0.09 1.15 0.34 1.25 
Schwarz Primitive [124] 1.38 2 0.98 1.5 

Diamond Sheet [125] 0.71 1.21 0.42 1.14 
Diamond Sheet [123] 0.12 1.06 1.66 1.89 

Diamond Skeletal [15] 0.17 1.64 1.39 1.95 
Diamond Skeletal [126] 0.7 2.7 1.17 2.6 

Gyroid Sheet [127] 0.2 1.2 0.67 1.3 
Gyroid Sheet [123] 0.12 1.1 2.07 2.03 

Gyroid Skeletal [15] 0.19 1.71 1.31 1.83 
Gyroid Skeletal [128] 0.29 2 0.46 1.5 

Figure 18. Gibson–Ashby model: relative strength against relative density [117].

Many studies performed on Ti6Al4V lattice materials are consistent with predictions
obtained by the Gibson–Ashby model. Gibson–Ashby parameters from compressive tests,
performed on different topologies and reported in the literature, were collected and are
presented in Table 4.
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Table 4. Gibson–Ashby model parameters from compressive tests reported in the literature.

Unit Cell Topology
Elastic Modulus (GPa) Compressive Strength (MPa)

C1 n1 C2 n2

Cubic [35] 0.11 0.92 1.15 1.75
Cubic [119] 0.55 2.82 1.34 1.85
BCC [120] 0.15 2 0.57 1.9
BCC [121] 0.15 2 0.23 1.5

Diamond [118] 0.17 1.68 0.56 1.58
Octet-truss [119] 0.51 2.33 1.37 1.37

TC [118] 0.32 1.5 1.49 1.9
RD [118] 0.42 2.34 1.29 2.27
RD [122] 1.08 1.9 0.6 1.31

RCO [118] 0.17 1.25 0.97 1.62
TCO [118] 0.14 1.18 0.99 1.78
Kelvin [58] 0.6 2.3 0.3 1.5
TAOR [58] 0.8 2.3 0.6 1.5

Schwarz Primitive [123] 0.09 1.15 0.34 1.25
Schwarz Primitive [124] 1.38 2 0.98 1.5

Diamond Sheet [125] 0.71 1.21 0.42 1.14
Diamond Sheet [123] 0.12 1.06 1.66 1.89

Diamond Skeletal [15] 0.17 1.64 1.39 1.95
Diamond Skeletal [126] 0.7 2.7 1.17 2.6

Gyroid Sheet [127] 0.2 1.2 0.67 1.3
Gyroid Sheet [123] 0.12 1.1 2.07 2.03

Gyroid Skeletal [15] 0.19 1.71 1.31 1.83
Gyroid Skeletal [128] 0.29 2 0.46 1.5

Neovius [126] 0.31 2.3 1.43 2.9

Both the elastic modulus and compressive strength increase with the relative density.
Collected experimental data were plotted in the Gibson–Ashby diagram to compare me-
chanical properties as a function of the relative density. Figure 19 shows the elastic modulus
of the lattice structures, since the material used in the collected papers is the Ti6Al4V alloy
in all cases. Therefore, the elastic modulus of the lattice materials can be compared to that
of human bone. Figure 20 shows the relative strength against the relative density.
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6. Biomedical Device Case Studies

Ti6Al4V porous device performances are widely examined via in silico, in vitro and
in vivo experiments. Ti6Al4V scaffolds are applied for the treatment of bone disorders in
the mandible, shoulder, spine, hip and femur.

Gao et al. [129] investigated and optimized, by employing finite element analysis
(FEA) and the bone “Mechnostat” theory, porous scaffolds for mandibular defects. They
considered both the biomechanical behaviour and mechanobiological property of scaf-
folds and analysed four lattice configurations with three strut diameters. The results
showed a strong correlation between lattice topology and load transmission capacity, while
mechanical failure strongly depends on the strut size and configuration; moreover, the
computational model results indicated that the optimized scaffold can provide an excellent
mechanical environment for bone regeneration. Liu et al. [130] compared conventional
prostheses with homogeneous structures to stress-optimized functionally graded devices.
They investigated, in silico, the damage resistance of four scaffolds and proposed a novel
gradient algorithm for lightweight mandibular devices. The results illustrated that the
optimized device reduced the maximum stress by 24.48% and increased the porosity by
6.82%, providing a better solution for mandibular reconstruction.

Bittredge et al. [131] investigated the stress shielding of total shoulder implants. The
purpose of the study was the design and optimization of a lattice-based implant to manage
the stiffness of a humeral implant stem used in shoulder implant applications. The study
applied a topology lattice-optimization tool to develop various cellular designs that filled
the original design of a shoulder implant and were further analysed by means of FEA
and experimental tests. The results indicated that the proposed cellular implant can be
effectively applied as a total shoulder replacement.

Fogel et al. [132] applied in vitro testing to elucidate the relative contribution of a
porous design to intervertebral device stiffness and subsidence performance. Four groups
of titanium cages were created with a combination of a porous endplate and/or an internal
lattice architecture. The cage stiffness was scaled down by 16.7% by the internal lattice
architecture and by 16.6% by the porous endplates. The cage with both porous parts
exhibited the lowest stiffness with a value of 40.4 kN/mm and a motion segment stiffness
of 1976.8 N/mm for subsidence. The internal lattice architecture showed no significant
impact on the motion segment stiffness, while the porous endplates significantly decreased
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this value. Several works evaluated, using computed tomography (CT), the fusion rate of
Ti6Al4V cages and PEEK cages by comparing groups of patients who had undergone cage
implantation. Cuzzocrea et al. [133] found a better fusion rate and prevalence of fusion in
the group treated with Ti6Al4V cages. Nemoto et al. [134] found a 96% fusion rate in the
Ti6Al4V group and 64% in the PEEK group after 12 months. At 24 months, the fusion rate
in the Ti6Al4V group was increased to 100%, while that in the PEEK group showed a 76%
fusion rate. They also observed vertebral osteolysis in 60% of the cases with non-union
in the PEEK group. This unusual finding was not observed in the Ti6Al4V group. Tanida
et al. [135] observed a postoperative bone union rate of 75.2% and 74.5% at 1 year and
82.8% and 80.4% at 2 years for Ti6Al4V and PEEK groups, respectively, concluding that the
bone union rate did not significantly differ between the two groups. They reported that the
formation of vertebral endplate cysts is helpful for the non-union prediction, confirming
after CT scan observations, the usefulness of this parameter.

Abate et al. [56] focused on the design of an acetabular cup using vintile lattice material
with different porosities and pore sizes. The acetabular cup was then optimized by adjusting
the porosity to improve mechanical performance and reduce stress shielding. In silico
and in vitro experiments were carried out, and results showed that the optimized implant
presents a weight reduction of 69%, reduced the stress shielding, has a more uniform stress
distribution and has an elastic modulus in the range of that of human bones.

Gok [136] developed a multi-lattice design by dividing the proximal zone of a hip
implant stem into three parts. Due to the multi-lattice design, a weight reduction of 25.89%
was obtained and the maximum von Mises stresses in the stem were reduced from 289 to
189 MPa. They obtained stress shielding signals by determining the change in strain energy
per unit bone mass caused by the presence of the femoral hip implant stem and its ratio to
intact bone. In the case of multi-lattice design implants, there is a significant increase in
stress-shielding signals from different zones of the femur.

7. Concluding Remarks

Progress in AM has considerably increased the production of complex structures
unachievable with traditional fabrication techniques, such as lattice structures. This has led
to research into these structures for different engineering applications. In the biomedical
field, lattice materials made of Ti6Al4V alloy are widely used for the fabrication of scaffolds
for bone substitutes. This review collected the most significant findings of the last ten years,
which are summarized as follows:

• Data analysis of the results of the pore size effect on the bone ingrowth of eleven
studies showed a wide range of optimal pore sizes from 100 up to 1000 µm, with an
optimal mean value of 522 µm. The comparison showed little discrepancies, since
works that evaluated comparable ranges of pore sizes found different optimal results.

• The analysis of the effect of surface roughness showed that minimal differences in the
roughness values do not affect the cell adhesion and proliferation. In other studies, the
comparison of a wide range values from 3 to 8 µm showed that the optimal surface
roughness values are between 6 and 8 µm.

• Findings on the effect of the elastic modulus showed that reducing the implant stiffness
to that of human bone improves stress stimulation and reduces stress shielding. Several
studies with implants having an elastic modulus comparable to that of human bone
revealed no significant influence of elastic material properties on bone ingrowth.

• The Gibson–Ashby model is useful for comparing the mechanical performance of
lattice structures and confirmed the suitability of the Ti6Al4V alloy for biomedical
applications. Indeed, the collected results showed that the elastic modulus of the
selected lattice materials, with relative densities under 30%, falls within the range of
the cancellous bone elastic modulus.

Future works include the development of a repeatable and robust design methodology
of biomedical implants with a combination of Gibson–Ashby model data and in silico and
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in vitro experiments. Data reported in the present review provide a scientific base for the
choice of the optimal lattice topology and design parameters.
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Nomenclature

TPMS triply periodic minimal surface
AM additive manufacturing
SLM selective laser melting
SLS selective laser sintering
DMLS direct metal laser sintering
EBM electron beam melting
BCC body-centred cubic
FCC face-centred cubic
BCCZ body-centred cubic with vertical struts
FCCZ face-centred cubic with vertical struts
SCBCC simple cubic body-centred cubic
TC truncated cube
TO truncated octahedron
RCO rhombicuboctahedron
TCO truncated cuboctahedron
RD rhombic dodecahedron
TAOR triply arranged octagonal rings
τ complex variable
θ Bonnet angle
R(τ) TPMS function
γ position vector in the Euclidean space
Ak amplitude factor
hk kth grid vector in the reciprocal space
λk periodic wavelength
pk phase offset
C constant factor related to porosity
M Maxwell number
S number of struts
N number of nodes
E* elastic modulus of the lattice structure
σ* compressive strength of the lattice structure
Es elastic modulus of the parent material
σs compressive strength of the parent material
FEA finite element analysis
PEEK polyetheretherketone
CT computed tomography
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