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ABSTRACT 11 

The power curve of a wind turbine describes the generated power versus instantaneous wind 12 

speed. Assessing wind turbine performance under laboratory ideal conditions will always tend 13 

to be optimistic and rarely reflects how the turbine actually behaves in a real situation. 14 

Occasionally, some aerogenerators produce significantly different from nominal power curve, 15 

causing economic losses to the promoters of the investment. Our research aims to model actual 16 

wind turbine power curve and its variation from nominal power curve. The study was carried 17 

out in three different phases starting from wind speed and related power production data of a 18 

Senvion MM92 aero-generator with a rated power of 2.05 MW. The first phase was focused on 19 

statistical analyses, using the most common and reliable probability density functions. The 20 

second phase was focused on the analysis and modelling of real power curves obtained on site 21 

during one year of operation by fitting processes on real production data. The third was focused 22 

on the development of a model based on the use of an Artificial Neural Networks  that can 23 

predict the amount of delivered power. The actual power curve modelled with a multi-layered 24 

neural network was compared with nominal characteristics and the performances assessed by 25 

the turbine SCADA. For the studied device, deviations are below 1% for the producibility and 26 

below 0.5% for the actual power curves obtained with both methods. The model can be used 27 

for any wind turbine to verify real performances and to check fault conditions helping operators 28 

in understanding normal and abnormal behaviour. 29 
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Nomenclature 33 

an Fourier coefficient 34 
bn Fourier coefficient 35 
Eg  annual delivered energy [kWh] 36 
fn nominal frequency [Hz] 37 
heq equivalent hours [h] 38 
In nominal current [A] 39 
P wind turbine power [kW] 40 
Pn  wind turbine nominal power [kW] 41 
R.H. relative humidity [%] 42 
T air temperature [°C] 43 
Un nominal voltage [V] 44 
v wind speed [m/s] 45 
Vmed average wind speed [m/s] 46 
VMax maximum wind speed [m/s] 47 
 air density [kg/m3] 48 
 49 
ANN parameters 50 
Ai activation potential 51 
wij interconnection synaptic weights between i-th and j-th neuron layers 52 
xi neuron input data 53 
yi neuron output data 54 
 momentum 55 
 estimated and actual power curve deviation  56 
 learning rate 57 
 neuron activation function 58 

1. Introduction 59 

Wind power is a key actor in the field of renewable energy sources. Production capacity has 60 

risen exponentially in recent years [1]. The wind energy in Europe, issuing about 10.4% of the 61 

electricity demand in 2016, is an important technology that can help in meeting the goals the 62 

EU has set itself to achieve a low carbon energy policy by 2050 [2]. Due to the shortage of 63 

traditional energy resources and ecological degradation of the environment, the generation of 64 

electricity from wind power has experienced rapid development [3,4]. Achieving the 65 

aforementioned goal in 2050 is made possible developing modern wind turbines with high 66 

levels of reliability and power production. Nonetheless, a reliable prediction of power 67 

production within a small margin of error has always been a major issue.  68 

The amount of energy that a turbine can produce depends on several parameters including the 69 

wind regime of the specific site and the main characteristics of the wind turbine [4]: on the wind 70 

intensity and wind direction, on the rotor diameter and rotor height, on weather conditions such 71 

as temperature, density and air pressure, and also depends on the wind turbulence in the 72 

immediately preceding time. For this reason, the assessment of the site productivity is a 73 

preliminary crucial step in the wind farm realization. 74 

Another fundamental step is to combine the anemometric studies with the power curves of the 75 

wind turbine supplied by the manufacturers, even to match between the wind turbine and the 76 

specific site in order to obtain maximum energy and reliability benefits [4]. An accurate 77 

assessment of the power generated by a wind turbine is important since expenses in operation 78 

and maintenance represent 10% of the total cost of any wind energy project [5]. 79 

The main parameter that represents the relationship between wind speed and the power output 80 

of a wind turbine [6] is the power curve, governed by a cubic relationship of these variables [7]. 81 

A comparison between measured power output versus power output given by the manufacturer 82 



 

 

power curve (MPC) shows a similar trend but with real data is always scattered. This is because, 83 

besides the wind speed, there are more important variables involved in turbine power output 84 

such as atmospheric pressure, turbulence intensity, wind direction variability, both vertical and 85 

horizontal shear, atmospheric stability, drive train temperature and so on [8]. Moreover, the 86 

standard conditions under which the MPC is derived are different from those under which the 87 

turbine is operated. Furthermore, local orography and wake effects produced by other turbines 88 

need to be taken into consideration in power estimations of wind farms in field conditions [7]. 89 

Several techniques have being used to model the turbine power curve: parametric [9], non-90 

parametric [10,11] and stochastic [12] methods. In this context, several attempts have been 91 

made to identify a reliable model to assess the wind turbine power curve [13]. In [14,15] a 92 

discrete approximation approach is applied where the power delivered by the wind turbine, 93 

model output, is only a function of the hub wind speed and air density. However, in [8,16] it is 94 

recognized that other input parameters significantly influence the correct evaluation of the 95 

power output of a wind turbine. In [17] a parametric approach using a set of mathematical 96 

equations was tested. 97 

Normally, wind power curves of each new turbine are obtained in wind tunnels on scale models; 98 

later, prototypes are tested directly on the field by the same manufacturing companies. Each 99 

company guarantee the power generation curves of the generator and the availability of its 100 

operation at exact percentages, often close to 100%. It is clear that a single percentage point of 101 

lower productivity can conduct to a loss of profit. If the production of the wind turbine differs 102 

negatively from the expected productivity, the investors can claim compensation due to 103 

economic losses. The mismatch among declared and actual wind power curve often results in 104 

contentious between investors and manufactures. 105 

Another option to assess the WTPC is represented by Wind Turbine Condition Monitoring 106 

(WTCM) systems that are increasingly installed with the primary goal of providing wind 107 

turbine component specific information to wind farm operators to be used for optimal 108 

maintenance planning [18]. Their economic benefit to operation and maintenance costs has 109 

been investigated [19,20], and proven to be substantial although it largely depends on the fault 110 

detection rate [21]. While many commercial solutions, techniques and methods are available 111 

[22,23], their related cost and complexity deter operators from a widespread deployment [24]. 112 

The use of data from the Supervisory Control And Data Acquisition (SCADA) system appears 113 

therefore as a potential solution for WTCM due to its availability at no additional cost. The 114 

SCADA system usually samples data at relatively high frequency (typically 1 Hz) with standard 115 

practice to store 10-min averaged values of the parameters characterising the operating and 116 

environmental conditions.  117 

There are a small number of works in the literature in which authors use the non-parametric 118 

methods for example through the application of artificial intelligence-based tools to model the 119 

wind turbine power curve as a power performance validation tool. Artificial Neural Networks 120 

(ANN) have been demonstrated to be well suited for solving nonlinear problems with multiple 121 

input variables [25] and, as such, have been successfully applied to the prediction of wind speed 122 

and power generated by wind farms. 123 

In [26], the authors used experimental data collected from three wind farms in Southern Italy 124 

and  trained a two-hidden layer neural network to predict the wind energy output; in [27], field 125 

data collected from seven wind farms were used for the analysis and prediction of power 126 

generation from wind farms, developing a neural network with three input (wind speed, relative 127 

humidity and generation hours) and one output, the energy output of wind farms. In the study 128 

[28], it is demonstrated that the neural network based Measure-Correlate-Predict (MCP) 129 

method performs very well respect to the correlation, root-mean-square error and the distance 130 

in the wind speed frequency distribution . In [13] the authors use the ANN for modelling the 131 

power curve of a wind turbine located in a specific site, in [29] use the genetic algorithm, in 132 



 

 

[27,30] developed an ANN model to determine the delivered power of wind power plant, in [31] 133 

was proposed a dynamic model based on RBF neural network to consider the nonlinear time-134 

variant essence of wind power generation systems. 135 

The purpose of this study is to explore the possibility of generating a WTPC using artificial 136 

intelligence techniques such as neural networks and using data from real installations. The tool 137 

should provide to wind farm managers the opportunity to compare the real WTPC with the data 138 

provided by the manufacturer and thus be helpful in any disputes arising from productivity 139 

indices lower than expected. The authors then investigated power output time series of a real 140 

wind turbine SEVION MM92, being part of a wind farm installed in Southern Italy, comparing 141 

the performances declared in the technical datasheet. 142 

After a preliminary statistical analyses of input data, the authors extracted the actual power 143 

curve of the wind turbine for different air density ranges and with a bin of 0.10 m/s. In order to 144 

compare this curve with the curve provided by manufacturer, two different methods have been 145 

applied to fit the manufacturer curve at the same bin: spline interpolation and Fourier series 146 

interpolation function. In the last part of the paper the authors, employing an ANN and an 147 

optimization technique based on the application of a Genetic Algorithm (GA), created a model 148 

that returns a WTPC from real data. The reliability of this model was confirmed by the low 149 

value of the Standard deviation of about 44 kW respect to the nominal power of 2050 kW of 150 

the examined turbine. Furthermore, the developed neural network model takes into account a 151 

significantly higher number of variables related to the description of the phenomenon (ten input 152 

data and one output data) respect conventional and/or statistical models. 153 

2. Anemometric campaign 154 

The use of wind as a source of kinetic energy for the electricity production is subordinated to the 155 

occurrence of a several conditions that make the installation of wind farm competitive and 156 

profitable. For this reason, a preliminary feasibility study is always accompanied by an 157 

anemometric campaign. Our study employs an annual anemometric campaign linked to a wind 158 

turbine. 159 

Two anemometers have been used: one anemometer is located in the wind farm and another is 160 

located over wind turbine. For security and privacy reasons details about position and property of 161 

the wind plant cannot be disclosed. However, we can say that the wind farm is located in southern 162 

Italy and that the area is characterized by a simple and flat orography, free of natural obstructions. 163 

The SENVION MM92 generator (WTG test) used in this study is located about 500 m from the 164 

anemometric station and about 800 meters from the other nearby turbines (Fig. 1). 165 

 166 

 167 
 168 

Fig. 1. Aero-generators and anemometric station positions. 169 

 170 



 

 

The main variables measured by the anemometric station at different heights are: maximum, 171 

average and minimum wind speeds, standard deviation, wind direction, air temperature, relative 172 

humidity and atmospheric pressure with a time step of 10 minutes. In Fig. 2 are shown the daily 173 

wind speed trends, measured by the anemometer and by the WGT anemometer of the turbine. 174 

 175 

    176 
 177 

Fig. 2. Wind speed trends at different time steps. 178 

 179 

Fig. 3 shows the average, maximum and minimum wind speed and the standard deviation (StD) 180 

at 82 meters a.s.l. (the highest point); this site is characterized by an annual average wind speed of 181 

5.37 m/s. 182 

 183 

 184 
 185 

Fig. 3. Average, maximum and minimum wind speed and StD. 186 

 187 

The maximum and minimum wind speed values are almost equidistant from the average value: 188 

this means that the site is not characterized by a high level of wind turbulence. 189 

Fig. 4 shows the 2D wind rose and a 3D representation that also considers the intensity of wind 190 

with direction. 191 

 192 



 

 

   193 
 194 

Fig. 4. 2D and 3D wind roses. 195 

 196 

Data clearly shows that Mistral (north-westerly wind) represents the most frequent direction; on 197 

the other hand, Libeccio (westerly or south-westerly wind) issues wind with the greatest intensity; 198 

all other wind directions are rarely detected (Fig. 5).  199 

 200 

 201 
 202 

Fig. 5. Frequency distribution and average wind speed. 203 

 204 

In addition to wind speed and direction data, even air density () was considered; to improve the 205 

accuracy of models we used a variable air density calculation with a time step of 10 minute (Fig. 206 

6). 207 

 208 



 

 

 209 
 210 

Fig. 6. Monthly average temperature, density and humidity of the air at 75 meters above ground 211 

level. 212 

 213 

2.1. Statistical analysis of wind data 214 

A pre-processing phase was performed on the 10-min average data series to eliminate invalid data 215 

points [32]. In the following, the most important parameter is the average wind speed measured at 216 

the maximum height, the nearest to the real turbine rotor height. Then, because the reliability and 217 

goodness of a site producibility analysis depends on the fitting of the Probability Density Functions 218 

(PDF), a statistical analysis was carried out by using fitting algorithms to adapt data-points to PDF. 219 

Due to the nature of the data processed, Weibull and Burr PDF were chosen. 220 

The Weibull distribution is one of the most widely used statistical distributions in reliability 221 

engineering and wind speed analysis; on the other hand the Burr distribution has been recently 222 

applied to wind speed problems with good results. In [33], three types of probability distributions 223 

have been used to estimate the wind energy potential in Malaysia; a comparison  shows that of all 224 

the three distributions used, Burr distribution provides the best fit. In [34], the study investigates 225 

the wind speed characteristics recorded in the urban area of Palermo, in the south of Italy, by a 226 

monitoring network composed by four weather stations. Even in this case the results show that, 227 

concerning the accuracy of fitting the empirical data, Burr PDF has the best agreement.  228 

Figs. 7 and 8 show the Weibull and Burr distribution fitting over the experimental data concerning 229 

average wind speed and linked cumulative function. 230 

 231 



 

 

 232 
 233 

Fig. 7. Weibull and Burr distribution fitting over experimental frequency distribution of average 234 

wind speed. 235 

 236 

 237 



 

 

 238 

Fig. 8. Weibull and Burr cumulative fitting over experimental data of average wind speed. 239 

 240 

Table 1 show the equations and the parameters value of Weibull and Burr distribution for the 241 

probability density function and survival function of average wind speed respectively in which α 242 

is the shape or slope parameters, β and k are the scale parameters. 243 

 244 

Table 1: Equations and parameters value of Weibull and Burr distribution. 245 

 246 

PDF parameters 
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 247 

3. Case study 248 

Wind turbines assures their maximum performances under nominal and constant operating 249 

conditions and obviously, these conditions can be achieved only in a wind tunnel. Indeed, as seen 250 

before, the wind and its related variables are almost never constant. Other operating parameters 251 

that can be used to study the actual behaviour of the wind turbines are: 252 

• wind speed turbulence percentage, defined as the ratio of the standard deviation of the wind 253 

speed and its average value in the ten-minute interval; 254 

• wind direction turbulence percentage, defined as the ratio of the standard deviation of the 255 

wind direction and its average value in the ten-minute interval; 256 

• wind speed gust ratio, defined as the ratio between the maximum value of the wind speed 257 

in the ten-minute interval and the average value of the speed, in the same interval; 258 

• wind specific power, defined as power flowing through the surface unit perpendicular to 259 

the velocity wind trajectory,
30.5wP v=    ; 260 

• wind specific energy. 261 

The used dataset is related to an anemometric campaign linked to a SENVION MM 92 turbine 262 

with a nominal power of 2050 kW, a rotor diameter of 92.5 m and an electric pitch regulation 263 

system on each blade. In Table 2 are shown the main technical features of the wind turbine.  264 

 265 

Table 2: Main features of the SENVION MM92 turbine. 266 

 267 

Data sheet SENVION MM92 

Nominal power Pn = 2050 [kW] 

Nominal voltage Un = 690 [V] 



 

 

Nominal current In = 1715 [A] 

Nominal frequency fn = 50 [Hz] 

Rotor diameter 92.5 [m] 

Blades length 42.5 [m] 

High tower 100 [m] 

Total high 146.3 [m] 

 268 

In the dataset issued by the wind farm owner the power output from the wind generator is averaged 269 

over steps of 10 minutes; over 52460 recorded data points the wind turbine has provided electrical 270 

power in 34445 points, equivalent to 5740 operating hours; the generator has been inactive or 271 

absorbing energy from the grid for 18015 intervals, equal to 3002 hours. These hours are not to 272 

be confused with the concept of equivalent hours (heq) which is nothing more than the dummy 273 

number of hours in which the wind turbine should work at its nominal power to deliver an 274 

amount of electricity equal to that delivered in the same year operating at different power levels 275 

depending on wind speed, defined as: 276 

 277 
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where Eg is the energy delivered in a year by the generator [kWh], Pn is nominal power of the 279 

wind turbine [kW]. 280 

3.1. Power curve issued by manufacturers 281 

The power curves issued by the manufacturers provide the user the theoretical performances with 282 

wind speed changes. Fig. 9 shows the manufacturer WTPC of the SENVION MM92 turbine. 283 

 284 

 285 
 286 

 287 

Fig. 9. Graphical WTPC issued by manufacturer related to the air density value of 1.225 kg/cm3. 288 

 289 

Obviously, the power output increases as the density increases as shown in Fig. 10; 290 

 291 



 

 

 292 
 293 

Fig. 10. WTPC variation with air density. 294 

3.2. Producibility assessment 295 

In order to facilitate the comparison between data coming from statistical or neural models with 296 

official data issued by manufacturers (data often provided in tabular form or in graphical form), it 297 

is advisable to adopt a methodology that allows to derive from the datasheets an analytical form 298 

of the WTPC. To this aim, to analyse the behaviour of the exanimated turbine and to carry out an 299 

accurate producibility assessments, the authors decided to reduce the wind speed bin of the official 300 

WTPC of a factor 10; from 1 to 0.1 m/s, obtaining more accurate curves. Two methods of 301 

numerical interpolation have been used: 302 

• Spline interpolation function; 303 

• Fourier series. 304 

The two methods are employed to transform the official WTPC usually provided by the 305 

manufactures in histograms or tables form with a resolution of 1 m/s, in an analytical function, 306 

easier to use when comparing with other curves. 307 

 308 

3.2.1 Spline interpolation function 309 

The spline function is a special interpolation method that uses polynomial equations. Its 310 

application involves subdividing the interpolation interval into sub-intervals and interpolating 311 

the starting function in each of them trough low degree polynomials. This approach allows to 312 

solve the difficulties encountered when trying to interpolate the whole function with a single 313 

high degree polynomial. In the case study examined in the paper, the interpolation interval 314 

 max0,V of the power output function has been divided into sub-intervals through the following 315 

nodes succession: 316 

  0 1 max0 .....m nv v v V = =    =    (2) 317 

The authors, to perform the interpolation of the data set, used a natural cubic spline that is a 318 

third-degree polynomial in each interval  1,i iv v +  with 0,1,..., 1i n= − . The form of each cubic 319 

spline in  1,i iv v +  is: 320 

 ( ) 3 3P v a v b v c v d=  +  +  +    (3) 321 

in which the coefficients a, b, c, d are calculated imposing the following constraints:  322 



 

 

1. the ( )P v assumes the values ( )iP v  and ( )1iP v +
; 323 

2. the tangent to the curve at the point ( ),i iv P v    forms equal angles with the segments 324 

joining ( )iP v  to ( )1iP v −
 and ( )iP v  to ( )1iP v +

. 325 

3.2.2 Fourier series interpolation 326 

Fixed the value of the air density, the function ( )P v  allows to calculate the delivered power by 327 

the wind turbine varying the wind speed value. This function is considered periodic, limited and 328 

integrable in the period [0, Vmax]. The Fourier series development of this function, arrested at the 329 

eighth order is given by the following equation: 330 
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where 0a , na  and nb  are Fourier coefficients defined by the following equations: 332 
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 336 

The two methods concisely introduced above, permits to generate a WTPC from tabular technical 337 

datasheet with a wind speed step of 0.1 m/s, and a comparative analysis of the results obtained 338 

with the two methods is performed. The process has been applied of each official dataset varying 339 

with air density. The results showed that the reliability of the “enriched” WTPC obtained by the 340 

two methods is high and the two curves are practically superimposed except for the initial part. As 341 

shown in Fig. 11, only for low wind speed there is a small difference. However, comparing the 342 

two curves obtained by the two methods with the graphical WTPC issued by the manufacturer, it 343 

can be seen that in this zone the power curve obtained with the spline interpolating function slightly 344 

overestimates the power output.  345 

 346 
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Fig. 11. Comparison between Spline and Fourier power curves with air density of 1.186 [kg/m3]. 349 

 350 

Therefore, it has been assumed that the enriched WTPCs generated by the Fourier series method, 351 

although more complex and more expensive in terms of computational load, are more adequate 352 

than WTPC generated by cubic spline. 353 

The producibility assessment, collected in Table 3, was made by using the enriched WTPC 354 

obtained by Fourier series interpolation applied to official data and for an mean air density of 1.186 355 

[kg/m3]. The generated energy (Eg) and the number of equivalent hours (heq) were calculated 356 

changing the wind detection height. In bold are underlined the data monitored at 103 m of altitude 357 

measured contemporary from hub anemometer and park anemometer. 358 

 359 

Table 3: Producibility assessment by Fourier series applied to official WTPC. 360 

 361 

Producibility assessment  

Anemometric 

station 
Height Eg heq 

 [m] [MWh] [h] 

Hub anemometer 103 4,357.22 2,125.48 

Park anemometer 103 4,217.14 2,057.14 

Park anemometer 82 4,027.35 1,964.56 

Park anemometer 80 3,901.14 1,903.00 

Park anemometer 60 3,746.29 1,827.46 

Park anemometer 40 3,629.01 1,770.25 

 362 

To compare the above evaluation with the real productivity, the authors decided to use the wind 363 

data recorded with the hub anemometer (Table 4).  364 

 365 

Table 4: Comparison between actual and estimated producibility. 366 

 367 
 Producibility 

 

Anemometric 

station 
Height Eg heq 

 [m] [MWh] [h] 

WTG Sevion MM92 
Hub 

anemometer 
103 3,988.87 1,945.79 

Power curve issued 

by manufacture 

Hub 

anemometer 
103 4,357.22 2,125.48 

 368 

In this case, the power curve issued by manufactured conducts to an overestimation of 8% of the 369 

actual production of energy. If we exclude a discrepancy between the actual and the officially 370 

declared characteristics of the turbine, the differences, in terms of generated energy and equivalent 371 

hours, could be attributed to the following machine stop reasons: 372 

• maintenance, TERNA (an Italian electricity transmission system operator) dispatching and 373 

realignment; 374 

• average wind speed next to the cut-off wind speed; 375 

• average wind speed next to the cut-in wind speed. 376 

3.3. Extraction of experimental WTPC 377 

In the wind practice, given the manufacturers WTPC, and given the analyses produced in the 378 

anemometric campaigns, it is possible to evaluate the producibility of the aerogenerator. Anyway, 379 



 

 

the mismatch among declared and actual WTPC often results in contentious between investors and 380 

manufactures. Consequently, the aim of this work is to deploy a mathematical tool capable of 381 

demonstrating whether an installed aerogenerator produces in accordance with what is stated in 382 

the technical datasheets. The first step was to group the actual power output versus the 383 

contemporary wind speed value. As expected, the points are distributed on a sigmoid curve (Fig. 384 

12). 385 

 386 

 387 
 388 

Fig. 12. Actual wind turbine power output vs wind speed. 389 

 390 

In a simplified approach, since each operating condition is a function of only two variables, 391 

velocity and density of air, it is possible to obtain the mathematical function representing the 392 

WTPC for the given air density applying a mathematical model (such as those described in section 393 

3.2) exploiting data and applying Ordinary Least Squares (OLS) technique. To deploy an 394 

experimental WTPC the authors followed two different approaches; the first based on a simplified 395 

mathematical model based on an interpolation procedure with OLS application, the second based 396 

on a complex model that exploits the learning ability of an artificial neural network. 397 

4. Experimental WTPC with simplified approach 398 

The first operation was to remove from the previous graph all those abnormal operating 399 

conditions that can be defined as outliers of the dataset. Then, the dataset was reduced from 400 

52460 to 33429 values, as depicted in (Fig. 13). 401 

 402 



 

 

 403 
 404 

Fig. 13. Actual wind turbine power output vs wind speed without outliers. 405 

 406 

Data points of the reduced dataset have been used in a curve fitting procedure, a process of 407 

constructing a curve, or mathematical function, that has the best fit to a series of data points. 408 

4.1 Experimental WTPC with cubic spline interpolation 409 

In our implementation, the OLS method has been applied to set of third order curves in Matlab 410 

environment. The computational load is significantly affected by the number of points to which 411 

the OLS method has to be applied. In our case the application of Fourier series interpolation 412 

requires a much higher calculation time and, considering the minimum deviation shown in Fig. 413 

11, the cost / benefit ratio has led us to choose the cubic spline in comparison with Fourier 414 

series. 415 

Three distinct simplified models have been defined: 416 

1. Model 1 is a model that allows to determine WTPCs depending on both the speed and 417 

the air density. The air density range used in the model 1 is: (1.12-1.24 kg/m3); 418 

2. Model 2 is a model that allows to determine the WTPC depending on wind speed and 419 

for given average air density value recorded in the reference year (1.186 kg/m3); 420 

3. Model 3 is a model that allows to determine the WTPC depending on wind speed and 421 

two different air density values, summer average air density value and winter average 422 

air density value. 423 

The comparison between the WTPCs obtained from the models and the WTCPs issued by the 424 

manufactures demonstrates a high corresponds. As example, in Fig. 14 is illustrated the 425 

comparison between the WTPC obtained by the Model 2 curve fitting procedure (red curve) 426 

versus the manufacturers WTPC obtained in section 3.2 considering constant the air density 427 

and equal to 1.186 kg/m3 with wind speed step of 0.1 m/s (green line). 428 



 

 

 429 
 430 

Fig. 14. Model 2 and manufacturer WTPC. 431 

 432 

The graph shows a very good relationship between the results of the implemented mathematical 433 

model with manufacturer data. This means that the wind turbine model under examination has a 434 

very good compliance with official datasheet. 435 

4.2 Experimental WTPC with Fourier series interpolation 436 

Concerning the generation of WTPC using real data and applying Fourier series interpolation, this 437 

operation has been implemented on the SCADA control system of the aero-generator that allows 438 

to extract, on the basis of the data measured in a year, the experimental WTPC in a tabular form. 439 

In Table 5 are compared the results obtained with Model 2 and those obtained with Fourier series 440 

interpolation. 441 

 442 

Table 5: Comparison between experimental Fourie WTPC and experimental cubic spline WTPC 443 

(Model 2) with wind speed step of 1 m/s. 444 

 445 

Comparison between experimental WTPC for air density 1.186 kg/m3 

Vmed 
FOURIER  

(8 harmonics) 

CUBIC 

SPLINE 
 Vmed 

FOURIER  

(8 harmonics) 

CUBIC 

SPLINE 
 

[m/s] [kW] [kW] [%] [m/s] [kW] [kW] [%] 

3.00 13.97 15.00 7.35 14.00 2057.29 2057.79 0.02 

4.00 70.32 67.83 -3.54 15.00 2057.21 2057.42 0.01 

5.00 177.03 178.20 0.66 16.00 2057.46 2057.59 0.01 

6.00 344.67 349.15 1.30 17.00 2055.56 2057.92 0.11 

7.00 586.90 585.67 -0.21 18.00 2058.00 2058.00 0.00 

8.00 894.30 896.06 0.20 19.00 2057.55 2057.55 0.00 

9.00 1267.59 1273.01 0.43 20.00 2057.29 2057.29 0.00 

10.00 1634.88 1673.60 2.37 21.00 2056.20 2056.20 0.00 

11.00 1929.67 1950.85 1.10 22.00 2055.32 2055.32 0.00 

12.00 2034.96 2042.33 0.36 23.00 2056.21 2056.21 0.00 

13.00 2052.98 2055.68 0.13 24.00 2051.67 2051.67 0.00 

 Average value for different wind velocity range 



 

 

wind speed range 3 - 24 [m/s] 0.47% 

wind speed range 10 - 24 [m/s] 0.27% 

wind speed range 13 - 24 [m/s] 0.02% 

 446 

Where  represent the percentage deviation between the Fourier and cubic spline WTPC. 447 

5. Experimental WTPC with Artificial Neural Network 448 

An ANN is a mathematical model consisting of artificial neurons that is inspired by a real 449 

biological neural network. Artificial neurons are arranged in layers and exchange information with 450 

other neurons and/or with themselves and interconnections define the topology of ANN [35]. The 451 

ANNs can be used to simulate complex relationships between inputs and outputs that other analytic 452 

functions cannot represent [36,37]. Indeed, an ANN receives external signals on a layer of input 453 

nodes, each of which is connected with numerous internal nodes, organized in multiple layers. 454 

Each node processes the received signals through its activation function () [38] and transmits the 455 

result to subsequent nodes as schematically shown in Fig. 15. 456 

 457 

 458 
 459 

Fig. 15. Artificial neural network scheme [35]. 460 

 461 

In an ANN, the link between input and output is not defined by explicit relationships but is obtained 462 

through an empirical training process based on the presentation of matching input and outputs 463 

patterns. In most cases, it is an adaptive system that changes its structure in relation to external 464 

information flowing through the network during the learning phase [35]. The training algorithm 465 

modifies some network parameters at each iteration to get the desired response from the analysed 466 

phenomenon (supervised learning mode). These parameters are the numerical weights (wij) 467 

associated with the synaptic connections between the neurons of the network.  468 

A dataset of actual input and output examples is used: in this case the dependent variable, the 469 

output power of the wind turbine, is a function of one or more independent variables. To the aim 470 

to internally validate the ANN training phase, a comparison between the output forecasted by the 471 

ANN and actual data is required. To this porpoise, 15% of dataset was not used during the training 472 

phase. The 5014 data points used for validation phase have been selected randomly. Furthermore, 473 

given the complexity of the analysed phenomenon, the authors applied an optimization process: a 474 

heuristic algorithm based on natural selection and biological evolution principles that belongs to a 475 

family of optimization techniques [39]. This procedure permits to optimize the topology of the 476 

ANN and some parameters involved in the activation functions. 477 



 

 

5.1. ANN dataset 478 

To train the ANN, a large database of experimental data was implemented: 12 different parameters 479 

with 10-minute intervals were collected; 10 inputs and 1 output. Inputs are: 480 

1. average hub wind speed [m/s]; 481 

2. average air density [kg/m3]; 482 

3. relative humidity [%]; 483 

4. atmospheric pressure [Pa]; 484 

5. air temperature [°C]; 485 

6. wind direction [°]; 486 

7. turbulence percentage of wind direction [%]; 487 

8. turbulence percentage of wind speed [%]; 488 

9. wind speed gust ratio; 489 

10. wind specific power [W/m2]. 490 

The output data is the average output power [kW]. 491 

5.2. ANN development  492 

After the pre-processing phase, several ANN topologies were explored. Particularly, several 493 

topologies of ANNs, varying the number of neurons belonging to the hidden layers, varying the 494 

type of activation functions, and changing the structure of the connections have been analysed. In 495 

the following Fig. 16, the configuration of the selected best ANN is sketched. 496 

 497 

 498 
 499 

Fig. 16. Structure and topology of the selected best ANN. 500 

 501 

This ANN is a Multilayer Perceptron (MLP) with Feed-forward back-propagation [40]: a 502 

network where information moves in one direction, forward, from input nodes, hidden nodes, 503 

and output nodes. More in detail, the network is organized in: 504 

• 4 neuron layers; 505 

• 1 input neuron layers with; 506 

- a neuron for each input signal (10 inputs); 507 

• 2 neurons hidden layers; respectively of 20 and 6 neurons; 508 

• 1 output neuron. 509 

In Fig. 16 it also possible to observe the deviation between expected and calculated results 510 

(validation phase) that after only 40 epochs is was already close to 10-3. 511 

Among each neurons layer, it is possible to identify an activation function node that determines 512 

if the output of the layer can be propagated. In our case we used a combination of linear and 513 

hyperbolic tangent functions (tanh-sigmoid) [35]. Furthermore, different simulations have been 514 

carried out changing the epochs of the training phase. 515 



 

 

In order to obtain a more reliable model, after the identification of the best structure, an 516 

optimization phase was conducted. The use of an evolutionary process has allowed to iteratively 517 

update the values of a set of key parameters of the network to obtain better results: learning rate 518 

(), momentum () and noise level for each weight layers and type of activation functions. 519 

After the optimization phase, the best ANN topology has been trained and validated for a total 520 

of 100,000 epochs, corresponding to a computational time of about 140 hours with a machine 521 

characterized by 50 core e 200 GB of RAM. 522 

6. RESULTS 523 

During the post processing phase, it is possible to evaluate the goodness of the ANN model, 524 

evaluating the error between expected and calculated results. In Table 6 are collected the values 525 

of the Mean Absolute Error (MAE), Median and Standard Deviation [35]; all the quantities are 526 

expressed in kW.  527 

 528 

Table 6: Results of the ANN model. 529 

 530 

Models 

Training Validation 

MAE Median StD 
Confidence 

range 95% 
MAE Median StD 

Confidence 

range 95% 

MLP ANN  0.697 0.793 44.015 86.278 1.119 0.985 44.529 87.294 

 531 

The MAE of 0.67 kW and 1.11 kW, during the training and validation phases respectively, 532 

represent a very good result because, in both cases, practically the ANN does not overestimate or 533 

underestimate the desired result. Another important result is the StDv, indeed the range of ± 44 534 

kW represent about 2.14 % of wind turbine nominal power.  535 

In Fig. 17 and Fig. 18, are shown the Mean Absolute Error (MAE) frequency distribution for 536 

the training and validation phase. 537 

 538 

 539 
 540 

Fig. 17. MAE frequency distribution in the training phase. 541 

 542 



 

 

 543 
 544 

Fig. 18. MAE frequency distribution in the validation phase. 545 

 546 

Figs. 17 and 18 show a symmetric error frequency distribution and well centred around the null 547 

value: this attests the excellent performance of the proposed neural model. The number of training 548 

epochs, although very high, did not determine the phenomenon of overfitting, for which ANNs 549 

sometimes become very good at predicting the output for the data already presented during the 550 

training phase, but they are poor in the validation phase, when are presented input values that have 551 

not been used in the training phase. Fig. 19 shows confidence plot of the power output in the range 552 

of 95% for validation dataset. 553 

 554 

 555 
 556 

Fig.19. ANN Confidence plot for validation dataset. 557 

 558 

The authors compared the Experimental WTPC with Fourier series interpolation (developed in 559 

the SCADA management system) with the data provided by WTPC obtained with neural 560 

network approach. In Fig. 20 is represented the comparison between the ANN and Fourier WTPC 561 

related the following conditions:  562 

• average wind direction 237 [°]; 563 

• relative humidity R.H. = 62 %; 564 

• air temperature T = 17 [°C]; 565 

• turbulence percentage of wind direction 17.5%; 566 

• turbulence percentage of wind speed = 16.75 %; 567 

• wind speed gust ratio = 1.43. 568 

 569 



 

 

 570 
 571 

Fig. 20. ANN and SCADA WTPC. 572 

 573 

It is important to underline how the neural model relies on a total of 10 climatic parameters, which 574 

make the model very sophisticated and accurate, with a high reliable power output calculation in 575 

any weather conditions. To generate the WTPC used for the comparison in Fig. 20, mean annual 576 

values of average wind direction, relative humidity, air temperature, turbulence percentage of wind 577 

direction, turbulence percentage of wind speed, and wind speed gust ratio have been employed. 578 

To emphasise the high reliability of the results, in Fig. 21 and Fig. 22 are illustrated the 579 

comparison between the actual data versus the predicted data and the distribution of residuals. 580 

In Fig. 21 the prediction of the ANN fits very well with the actual power curve; all data are 581 

around the 1:1 line and the determination coefficient is close to 1. 582 

 583 

 584 
 585 

Fig. 21. Actual vs. ANN predicted data. 586 

 587 
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As displayed in the Fig. 22, the residuals do not depend on the power level considered but are 589 

of the same order of magnitude along the WTPC; in 95% of cases are within a short range of 590 

±100 kW, about the 5% of the turbine nominal power. 591 

 592 

 593 
 594 

Fig. 22. Residuals distribution between the actual and predicted data. 595 

 596 

Table 7 shows instead the comparison between the two WTPC for wind speed step of 1 m / s and 597 

the evaluation of the corresponding error in tabular form. 598 

 599 

Table 7: Comparison between Fourier and ANN WTPC with wind speed step of 1 m/s. 600 

 601 

Comparison between experimental WTPC for air density 1.186 kg/m3 

Vmed 
FOURIER  

(8 harmonics) 
ANN   Vmed 

FOURIER  

(8 harmonics) 
ANN   

[m/s] [kW] [kW] [%] [m/s] [kW] [kW] [%] 

3.00 13.97 8.28 -40.73% 14.00 2057.29 2054.87 -0.12% 

4.00 70.32 72.56 3.19% 15.00 2057.21 2055.22 -0.10% 

5.00 177.03 182.32 2.99% 16.00 2057.46 2059.79 0.11% 

6.00 344.67 358.91 4.13% 17.00 2055.56 2064.78 0.45% 

7.00 586.90 613.89 4.60% 18.00 2058.00 2068.42 0.51% 

8.00 894.30 936.10 4.67% 19.00 2057.55 2070.32 0.62% 

9.00 1267.59 1306.94 3.10% 20.00 2057.29 2070.69 0.65% 

10.00 1634.88 1698.34 3.88% 21.00 2056.20 2070.04 0.67% 

11.00 1929.67 1971.29 2.16% 22.00 2055.32 2068.67 0.65% 

12.00 2034.96 2059.42 1.20% 23.00 2056.21 2067.69 0.56% 

13.00 2052.98 2061.78 0.43% 24.00 2051.67 2066.93 0.74% 

 Average value for different wind velocity range 

wind speed range 3 - 24 [m/s] -0.26% 

wind speed range 10 - 24 [m/s] 0.83% 

wind speed range 13 - 24 [m/s] 0.43% 

-300

-200

-100

0

100

200

300

0 500 1000 1500 2000 2500

R
es

id
u

a
ls

 [
k

W
]

ANN Predicted data [kW]



 

 

 602 

In this case the percentage deviations are slightly greater than those evaluated from the 603 

comparison between the WTPC obtained by the cubic spline and Fourier series interpolation.  604 

 605 

 606 
  607 

Fig.23. Comparison among the Fourier (manufacturer), ANN and cubic spline (Model 2) 608 

derived WTPC. 609 

 610 

As example, in Fig. 23 is illustrated the comparison among: the Fourier application of issued 611 

WTPC, the ANN WTPC and the spline WTPC of the Model 2. The simultaneously comparison 612 

among the three models, with fixed air density value, and the results predicted in the same 613 

conditions by the ANN, gives rise to graphs with practically overlapping curves, which are not 614 

useful for understanding. Furthermore, it is important to underline the manner in which the 615 

neural algorithm is much more accurate and flexible because allows to consider variable climate 616 

and different physical weather conditions at the same time, instead the curves of the three 617 

models would allow to plotting only constant density trends. 618 

7. Conclusion 619 

The field of research concerning the truthfulness and reliability of Wind Turbine Power Curves 620 

is very important for designers but especially for investors. Small discrepancies between the 621 

declared technical characteristics and the actual characteristics of the turbine can lead to 622 

substantial errors in the assessment of energy productivity. For this reason, it is important to 623 

have reliable mathematical procedures that allow to deduce the WTPC from the experimental 624 

data so that the investors and the plant management can compare the actual characteristics with 625 

those declared by the producers. 626 

Based on this observation, two different approaches were studied to define WTPCs using one 627 

year of monitored data over a commercial real plant. In particular, in this work have been 628 

presented a simplified mathematical approach based on the elaboration of wind speed data and 629 

power output with two different interpolation procedures, and a neural approach that allows to 630 

immediately calculate the actual power curve taking into account simultaneously many more 631 

climatic variables that influences the electric power generation. 632 

The simplified mathematical approach involved the generation of three distinct models which 633 

were developed on the basis of data recorded by a wind turbine SCADA monitoring system. 634 
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These models therefore allow to determine the WTPC according to the wind speed and to the 635 

value of the air density. The first model takes into account a variability range of air density, the 636 

second considers a fixed air density value, and the third model issues the WTPC taking into 637 

account two constant seasonal values of air density. The generated power curves, have been 638 

compared with those one officially issued by the manufacturer. 639 

To make possible this comparison, being the WTPCs supplied by the manufacturer 640 

characterized by a wind speed step of 1 m/s, it was necessary to interpolate the values obtaining 641 

a new wind speed step of 0.1 m/s. The reliability of WTPC based on Fourier series interpolation 642 

it was assessed even by comparing the energy expected and produced by the plant. 643 

The neural network approach, thanks to its ability to solve complex problems, has allowed the 644 

development of a mathematic tool able to quickly and reliably predict the WTPC employing 645 

the dataset of climatic variables that are normally always recorded by the SCADA system of 646 

the wind turbine.  647 

A further comparison was made between the WTPC obtained from the ANN and those one 648 

obtained with Fourier series interpolation. The results of both methods show that the developed 649 

instrument can predict turbine power with a minimum error. The strength of the ANN tool 650 

instrument relies in the high reliability of the forecasted power output even with limited input 651 

dataset. In particular, unlike other simplified models, which are often already available in the 652 

management software of wind power plants, the proposed approach is able to employ many 653 

more interesting parameters in a simple and immediate way, obtaining a very good evaluation 654 

of the producibility. 655 

The possibility to use an extremely reliable instrument in assessing the WTPC in many different 656 

weather conditions allows to help the operators of wind farms in demonstrating a possible 657 

deviation of the wind turbine energy performances with respect to the official data declared by 658 

the manufacturer. The ascertainment of this deviation can in fact mean, for the producer the 659 

payment of huge penalties, and for the owner the recovery of lost revenues due to an erroneous 660 

evaluation of the energy producibility. 661 
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