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In this paper the existence and multiplicity of non-zero solutions for nonlinear
Dirichlet problems involving the p-Laplacian operator and which are defined
in the whole space is established. In particular, the existence of two non-zero
solutions, one with negative energy and other with positive one for equations
having combined effects of concave and convex nonlinearities is obtained. The
approach is based on variational methods.
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1. Introduction

This paper is devoted to the study of existence and multiplicity of solutions for the following problem⎧⎪⎨⎪⎩
−∆pu + a(x)|u|p−2

u = λf(x, u) in RN ,

lim
|x|→+∞

u(x) = 0;

here ∆p(u) = div(|∇u|p−2∇u) denotes the p-Laplacian differential operator, p > N , where N is the
imension of the space, λ is a real positive parameter, a : RN → R is such that a− = ess infRN a >

0 , a ∈ L∞(RN ), and f : RN × R → R is L1-Carathéodory. Precisely, we establish the existence of one
non-zero solution when the primitive of the nonlinearity f(x, u) with respect to u has a growth which
is less than p-linearity in a precise set [c1, c2] (see (b) of Theorem 3.1) and if, in addition, it satisfies
the classical Ambrosetti–Rabinowitz condition (that is, (AR) in Lemma 2.4), a distinct second non-zero
solution is obtained. It is worth noticing that the above growth is satisfied when the nonlinearity f is
(p−1)−sublinear at zero uniformly with respect to x and, as it is already known, the (AR) condition implies
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the (p − 1)−superlinearity at infinity. This situation contains the combined effects of convex and concave
nonlinearities, as shown by the following particular case of our results, given here as an example.

Theorem 1.1. Let α ∈ L1(RN ) be a nonnegative function and s, q two nonnegative constants such that
+ 1 < p < q + 1. Then, there is η∗ > 0 such that for each η ∈]0, η∗[ the problem⎧⎪⎨⎪⎩

−∆pu + |u|p−2
u = α(x)ηus + α(x)uq in RN ,

lim
|x|→+∞

u(x) = 0;

admits at least two non-zero and nonnegative distinct solutions.

There is a wide literature on elliptic p-Laplacian problems in bounded domains while it is less abundant
for equations in the whole space (we refer to [1,2,9,10,12] and references therein for a general overview). This
is due to the lack of compactness of the embedding of Sobolev spaces into suitable spaces and therefore the
difficulty of verifying the condition of Palais–Smale, that is (PS)−condition recalled in Section 2. To the
best of our knowledge, there are no results in the case p > N in the whole space and the purpose of this
note is to fill this gap. In this case, thanks to Morrey’s Theorem and Cantor’s diagonal process, despite the
lack of compactness of the embedding, it is possible to prove the Palais Smale condition of the functional
(see proof of Lemma 2.3) and thus obtain results in line with the bounded domains. In particular, as seen
with Theorem 1.1, concave–convex nonlinearities can be studied and, in this case, it is worth noting that
thanks to [5, Theorem 2.1], which is one of our approaches, we avoid using regularity results and lower–upper
solution method which are usually the main tool for solving problems of this type.

This paper is organized as follows. In Section 2, we give some auxiliary results to insert the problem
in a variational framework. Precisely, we provide a numerical value of the constant of the Sobolev–
Morrey inequality and prove both a weak Palais–Smale condition and Palais–Smale condition of the energy
functional associated to the problem. In Section 3, we present our main results which guarantee the existence
of one non-zero solution to our problem under a suitable behavior of the nonlinear term, and the existence
of a second distinct non-zero solution when also (AR)−condition is assumed.

2. Variational setting and preliminaries

Given the Euclidean space RN and fixed p > N , denote with W 1,p(RN ) the usual Sobolev space endowed
with the norm

∥u∥ = ∥u∥Lp + ∥∇u∥Lp .

The Morrey Theorem (see [6, Theorem 9.12, p.282]) ensures that there is a constant K > 0 such that

∥u∥∞ ≤ K∥u∥ ∀u ∈ W 1,p(RN ),

that is, the space L∞(RN ) is continuously embedded in W 1,p(RN ).
For our aim is useful to obtain an explicit numerical value of K for which the previous inequality holds.

To this end, we recall the following result for bounded convex domains deduced from Burenkov–Gusakov [8,
Theorem 1, p.1293] (see also [7, Remark 33, p.184]).

Proposition 2.1. Let Ω be a convex open bounded set in RN with a generally regular boundary ∂Ω . Fix
x ∈ Ω and put dx = sup

{
d(x, y) : y ∈ ∂Ω

}
. Then, one has

|u(x)| ≤ C ∥u∥ ∀u ∈ C1(Ω),
x
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where

Cx = 1
|Ω |1/p

max
{

1; dx

N1/p

(
p − 1
p − N

)(p−1)/p
}

and ∥u∥ is the usual norm in the Sobolev space W 1,p(Ω), that is, ∥u∥ = ∥u∥p + ∥∇u∥p.

Proof. Arguing as in the proof of Theorem 1 of [8] we obtain

|u(x)| ≤ 1
|Ω |1/p

(
∥u∥Lp + dx

N1/p

(
p − 1
p − N

)(p−1)/p

∥∇u∥Lp

)
.

Hence, the conclusion follows. □

As a consequence of Proposition 2.1 we point out the following result.

Proposition 2.2. Put

K =
[
Γ
(
1 + N

2
)

πN/2

]1/p
1

NN/p2

(
p − 1
p − N

)N(p−1)
p2

.

Then one has
∥u∥∞ ≤ K∥u∥ ∀u ∈ W 1,p(RN ).

roof. Fix u ∈ C1
0 (RN ) and x ∈ RN and consider the ball B(x, r0) of center x and radius r0 =

1/p

(
p − N

p − 1

) p−1
p

. From Proposition 2.1, applied to Ω = B(x, r0) and taking into account that dx = r0,
ne has

|u(x)| ≤ 1
|B(x, r0)|1/p

max
{

1; r0

N1/p

(
p − 1
p − N

)(p−1)/p
}

(∥u∥Lp + ∥∇u∥Lp)

=

⎡⎢⎣Γ (1 + N/2)
πN/2

⎛⎝ 1
N1/p

(
p − 1
p − N

) p−1
p

⎞⎠N
⎤⎥⎦

1/p

(∥u∥Lp + ∥∇u∥Lp)

= K

⎛⎝(∫
B(x,r0)

|u(t)|pdt

)1/p

+
(∫

B(x,r0)
|∇u(t)|pdt

)1/p
⎞⎠

≤ K

((∫
RN

|u(t)|pdt

)1/p

+
(∫

RN
|∇u(t)|pdt

)1/p
)

,

that is,

|u(x)| ≤ K

((∫
RN

|u(t)|pdt

)1/p

+
(∫

RN
|∇u(t)|pdt

)1/p
)

.

Hence, from the arbitrary of x and the density of C1
0 (RN ) in W 1,p(RN ), the conclusion is achieved. □

Remark 2.1. We explicitly observe that from the classical proof of Morrey’s Theorem a numerical value
of the embedding constant can be easily deduced (see for instance [6, p. 283]), which is

p
.

p − N

3
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P

Moreover, an explicit value is reported in [11, Lemma II.3.4, formula II.3.13, p. 56], which is[
Γ
(
1 + N

2
)

πN/2

]1/p

max
{

1,

(
p − 1
p − N

)(p−1)/p
}

.

Clearly, the value provided by Proposition 2.2 is more precise than the previous values. We note that, as a
consequence, the value η∗ guaranteed in Theorem 1.1 is numerically greater than the one obtained through
the aforementioned estimates (see Remark 3.3).

In this paper, we consider X = W 1,p(RN ) endowed with the equivalent norm

∥u∥X =
(∫

RN
|∇u(x)|pdx +

∫
RN

a(x)|u(x)|pdx

) 1
p

,

where a ∈ L∞(RN ) is such that a− = ess infRN a > 0.
We now adapt Proposition 2.2 to the previous norm. Precisely, we have the following result which we will

use in the sequel.

Lemma 2.1. One has
∥u∥∞ ≤ La∥u∥X ∀u ∈ W 1,p(RN ) , (2.1)

where

La =
(

1
a−

) p−N

p2
2

p−1
p

[
Γ
(
1 + N

2
)

πN/2

]1/p
1

NN/p2

(
p − 1
p − N

)N(p−1)
p2

. (2.2)

roof. As seen in the proof of Proposition 2.1 we have

|u(x)| ≤ 1
|Ω |1/p

(
∥u∥Lp + dx

N1/p

(
p − 1
p − N

)(p−1)/p

∥∇u∥Lp

)

= 1
|Ω |1/p

((∫
Ω

|u(t)|pdt

)1/p

+ dx

N1/p

(
p − 1
p − N

)(p−1)/p(∫
Ω

|∇u(t)|pdt

)1/p
)

≤ 1
|Ω |1/p

(
1

a
1/p
−

(∫
Ω

a(t)|u(t)|pdt

)1/p

+ dx

N1/p

(
p − 1
p − N

)(p−1)/p(∫
Ω

|∇u(t)|pdt

)1/p
)

≤ 1
|Ω |1/p

max
{

1
(a−)1/p

; dx

N1/p

(
p − 1
p − N

)(p−1)/p
}

×

×

((∫
Ω

a(t)|u(t)|pdt

)1/p

+
(∫

Ω

|∇u(t)|pdt

)1/p
)

.

At this point, arguing as in Proposition 2.2 by choosing Ω = B(x, r0), dx = r0 and

r0 =
(

N

a−

)1/p(
p − N

p − 1

) p−1
p

, one has

|u(x)| ≤ 1
|B(x, r0)|1/p

1
(a−)1/p

⎛⎝(∫
B(x,r0)

a(t)|u(t)|pdt

)1/p

+
(∫

B(x,r0)
|∇u(t)|pdt

)1/p
⎞⎠

=

⎡⎢⎣Γ (1 + N/2)
πN/2

⎛⎝(a−)1/p 1
N1/p

(
p − 1
p − N

) p−1
p

⎞⎠N
⎤⎥⎦

1/p

1
(a−)1/p

×

4
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(
(

(
(i

(ii
×

⎛⎝(∫
B(x,r0)

a(t)|u(t)|pdt

)1/p

+
(∫

B(x,r0)
|∇u(t)|pdt

)1/p
⎞⎠

≤2
p−1

p

⎡⎢⎣Γ (1 + N/2)
πN/2

⎛⎝ 1

(a−)
p−N
pN

1
N1/p

(
p − 1
p − N

) p−1
p

⎞⎠N
⎤⎥⎦

1/p

×

×

(∫
B(x,r0)

a(t)|u(t)|pdt +
∫

B(x,r0)
|∇u(t)|pdt

)1/p

≤ La

(∫
RN

a(t)|u(t)|pdt +
∫
RN

|∇u(t)|pdt

)1/p

.

Hence, arguing again as in the proof of Proposition 2.2, we obtain

∥u∥∞ ≤ La

(∫
RN

a(t)|u(t)|pdt +
∫
RN

|∇u(t)|pdt

)1/p

for all u ∈ W 1,p(RN ), that is, the conclusion. □

Let f : RN × R → R be an L1-Carathéodory function, that is a function such that

(i) x → f(x, t) is measurable for all t ∈ R;
ii) x → f(x, t) is continuous for almost every x ∈ RN ;
iii) for all ρ > 0 the function sup|t|≤ρ |f(·, t)| belongs to L1(RN ).

Consider the following nonlinear differential problem on the entire space⎧⎨⎩ −∆pu + a(x)|u|p−2
u = λf(x, u) in RN ,

u ∈ W 1,p(RN )
(Pλ)

with λ > 0. We recall that u ∈ X is a weak solution of problem (Pλ) if∫
RN

(
|∇u|p−2∇u∇v + a(x)|u|p−2

uv
)

dx = λ

∫
RN

f(x, u)v dx , (2.3)

for all v ∈ X. In order to find this type of solution for problem (Pλ), put

F (x, t) =
∫ t

0
f(x, ξ)dξ ∀ (x, t) ∈ RN × R.

Thanks to the assumptions on the function f , one has

i′) x → F (x, t) is measurable for all t ∈ R;
i′) t → F (x, t) belongs to C1(RN ) for almost every x ∈ RN ;
i′) for all ρ > 0 the function sup|t|≤ρ |F (·, t)| belongs to L1(RN ).

Moreover, we define Φ,Ψ : X → R by

Φ(u) = 1
p

∥u∥p
X , Ψ(u) =

∫
RN

F (x, u(x))dx , ∀ u ∈ X,

and
I (u) = Φ(u) − λΨ(u) ∀ u ∈ X, ∀ λ > 0.
λ

5
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It is well known that Φ and Ψ are Gâteaux differentiable and one has

Φ′(u)(v) =
∫
RN

|∇u(x)|p−2∇u(x)∇v(x) dx +
∫
RN

a(x)|u(x)|p−2
u(x)v(x) dx ,

Ψ ′(u)(v) =
∫
RN

f(x, u(x))v(x) dx,

or all u, v ∈ X. Hence, it follows that u is a critical point of Iλ, namely I ′
λ(u)(v) = 0 for every v ∈ X, if and

nly if u is a weak solution for problem (Pλ), see (2.3). Noticing that we present results on the existence of
non-negative solutions, we can assume, without loss of generality, that one has

f(x, t) = f(x, 0) ∀t ≤ 0, ∀x ∈ RN .

Indeed, we have the following proposition.

emma 2.2. Assume that f(x, 0) ≥ 0 for a.e. x ∈ Ω . Then, any weak solution of problem (Pλ) is
onnegative.

roof. Let u ∈ X be a weak solution of (Pλ). One has∫
RN

(
|∇u|p−2∇u∇v + a(x)|u|p−2

uv
)

dx = λ

∫
RN

f(x, u)v dx,

or all v ∈ X. Therefore, by choosing as v the function u− = min{u, 0} and setting A = {x ∈ RN : u(x) < 0},
t follows ∫

RN

(
|∇u|p−2∇u∇u− + a(x)|u|p−2

uu−
)

dx = λ

∫
RN

f(x, u)u− dx,∫
A

(
|∇u|p−2∇u∇u− + a(x)|u|p−2

uu−
)

dx = λ

∫
A

f(x, u)u− dx,

0 ≤
∫

A

(|∇u|p + a(x)|u|p) dx = λ

∫
A

f(x, 0)u dx ≤ 0.

ence, one has u = 0 in A for which A = ∅ and so u(x) ≥ 0 for all x ∈ RN . □

Our main tools are a local minimum theorem proved in [3], given as in [4, Theorem 2.6], and two non-
ero critical points theorem established in [5], which is a non immediate consequence of the local minimum
heorem in combination with the Ambrosetti–Rabinowitz theorem. Therefore, we recall some definitions. Let
X, ∥ · ∥) be a Banach space, X∗ its dual and Iλ : X → R a Gâteaux differentiable functional, with λ > 0.

efinition 2.1. We say that Iλ satisfies the Palais–Smale condition (in short, (PS)-condition), if any
equence {un} ⊆ X such that

(P1) Iλ(un) is bounded,
(P2) limn→∞ ∥Iλ(un)∥X∗ = 0,

as a convergent subsequence in X.

efinition 2.2. Fix r ∈] − ∞, ∞]. We say that Iλ satisfies the Palais–Smale condition cut-off upper at r

in short, (PS)[r]-condition), if any sequence {un} ⊆ X such that

(P1) Iλ(un) is bounded,
(P2) limn→∞ ∥Iλ(un)∥X∗ = 0,
(P3) Φ(un) < r,
as a convergent subsequence in X.
6
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Clearly, if Iλ satisfies the (PS)-condition, then it satisfies also the (PS)[r]-condition. Here we give two
preliminary results on the energy functional Iλ.

Lemma 2.3. For each λ > 0, Iλ satisfies the (PS)[r]-condition for every r > 0.

Proof. Fix λ > 0, r > 0 and {un} ⊆ X such that (P1), (P2) and (P3) hold. From (P3), taking the coercivity
f Φ into account, it follows that {un} is bounded in X. Since X is reflexive, then up to a subsequence, one
as un ⇀ u in X. Moreover, taking into account that for all open ball B(0, R) one has that W 1,p(B(0, R))

is compactly embedded in C(B̄(0, R)), by Cantor’s diagonal process it follows that un(x) → u(x) for every
x ∈ RN .

Now, recalling that X is continuously embedded in L∞(RN ), one has that un ⇀ u in L∞(RN ), then
|un(x)| ≤ ρ for all n ∈ N, for a.e. x ∈ RN . So, from the assumptions (ii) and (iii) on function f , we
have that f(x, un(x)) → f(x, u(x)) for a. e. x ∈ RN and f(·, un) belongs to L1(RN ) for all n ∈ N.
Therefore, Lebesgue dominated convergence theorem ensures that f(·, un(·)) strongly converges to f(·, u(·))
in L1(RN ) ⊂ (L∞(RN ))∗ and from [6, proposition III.5 (iv)] it follows that

⟨f(·, un(·)), un(·)⟩ → ⟨f(·, u(·)), u(·)⟩ ,

which leads to
lim

n→∞

∫
RN

f(x, un(x)) (un(x) − u(x)) dx = 0 . (2.4)

Now, exploiting (P2), there exists a sequence {εn}, with εn → 0+, such that ∥I ′
λ(un)∥X∗ ≤ εn for all

n ∈ N, which implies |⟨I ′
λ(un), v⟩| ≤ ∥I ′

λ(un)∥X∗∥v∥X ≤ εn for every n ∈ N and for each v ∈ X such that
∥v∥X ≤ 1. Then, choosing v = un−u

∥un−u∥X
one has∫

RN

(
|∇un|p−2∇un(∇un − ∇u) + a(x)|un|p−2

un(un − u)
)

dx (2.5)

−λ

∫
RN

f(x, un)(un − u) dx ≤ εn∥un − u∥X ,

or all n ∈ N. Focusing on the first integral, we have that∫
RN

(
|∇un|p−2∇un(∇un − ∇u) + a(x)|un|p−2

un(un − u)
)

dx

≥ ∥un∥p
X −

∫
RN

|∇un|p−2|∇un||∇u| dx −
∫
RN

a(x)|un|p−2|un∥u| dx

≥ ∥un∥p
X −

∫
RN

|∇un|p−1|∇u| dx −
∫
RN

a(x)|un|p−1|u| dx .

Using the following inequality (see [6, page 92])

|a|p−1|b| ≤ p − 1
p

|a|p + 1
p

|b|p,

e obtain that ∫
RN

(
|∇un|p−2∇un(∇un − ∇u) + a(x)|un|p−2

un(un − u)
)

dx

≥ ∥un∥p
X −

∫
RN

(
p − 1

p
|∇un|p + 1

p
|∇up|

)
dx −

∫
RN

a(x)
(

p − 1
p

|un|p + 1
p

|u|p
)

dx

= ∥un∥p
X − p − 1

p
∥un∥p

X − 1
p

∥u∥p
X

= 1∥un∥p
X − 1∥u∥p

X .

p p

7
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T
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w

C

f

f

Thus, from (2.5), one has
1
p

∥un∥p
X − εn∥un − u∥X ≤ λ

∫
RN

f(x, un(x))(un − u) dx + 1
p

∥u∥p
X .

aking (2.4) into account, the latter implies that

lim sup
n→+∞

∥un∥X ≤ ∥u∥X .

Finally, thanks to [6, Proposition 3.32, p.78], it follows that {un} strongly converges to u ∈ X and the proof
is complete. □

Lemma 2.4. Suppose that f(x, 0) ≥ 0 for all x ∈ RN and assume that

there are s > 0, µ > p : 0 < µF (x, t) ≤ tf(x, t) ∀x ∈ RN , ∀t ≥ s. (AR)

Then, Iλ satisfies the (PS)-condition and it is unbounded from below for each λ > 0.

Proof. Fix λ > 0 and {un} ⊆ X such that (P1) and (P2) hold. We prove the thesis in different steps.

Claim 1. There exists k ≥ 0 such that un(x) ≥ −k for a.e. x ∈ RN , for all n ∈ N.

From (P2), there exists {εn}, with εn → 0+, such that |I ′
λ(un)(v)| ≤ εn for all n ∈ N, for each v ∈ X,

with ∥v∥X ≤ 1. So, in correspondence of v = u−
n

∥u−
n ∥X

, the following inequality hold∫
RN

(
|∇un|p−2∇un∇u−

n + a(x)|un|p−2
unu−

n

)
dx − λ

∫
RN

f(x, un)u−
n dx ≤ εn∥u−

n ∥X ,

or every n ∈ N. Now, since
∫
RN f(x, un)u−

n dx ≤ 0, being
∫

{un<0} f(x, 0)u−
n dx ≤ 0 and∫

{un≥0} f(x, un)u−
n dx = 0, one has

0 ≤ ∥u−
n ∥p

X ≤ ∥u−
n ∥p

X − λ

∫
RN

f(x, un)u−
n (x) dx ≤ εn∥u−

n ∥X ,

that is, ∥u−
n ∥X ≤ (εn)

1
p−1 , for which passing to the limit for n → ∞, one has that ∥u−

n ∥X → 0, then it is
ounded in X. Taking Lemma 2.1 into account, there exists k ≥ 0 such that |u−

n (x)| ≤ k for a.e. x ∈ RN ,
hich means un(x) ≥ −k for a.e. x ∈ RN .

laim 2. {un} is bounded in X.

Arguing as in Claim 1, in correspondence of v = un
∥un∥X

, one has

− I ′
λ(un)(un) ≤ εn∥un∥X , (2.6)

or every n ∈ N. Also, from (P1) there exists M > 0 such that

|Iλ(un)| ≤ M, (2.7)

or all n ∈ N. On the other hand, one has
1
µ

I ′
λ(un)(un) = 1

µ
∥un∥p

X − λ

µ

∫
RN

f(x, un)un dx

+ λ

∫
RN

F (x, un) dx − λ

∫
RN

F (x, un) dx

= 1 ∥un∥p
X − λ

∫ (
f(x, un)un − µF (x, un)

)
dx − λ

∫
F (x, un) dx,
µ µ RN RN

8
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Therefore, it follows that

Iλ(un) − 1
µ

I ′
λ(un)(un) = 1

p
∥un∥p

X − λ

∫
RN

F (x, un) dx

− 1
µ

∥un∥p
X + λ

µ

∫
RN

(
f(x, un)un − µF (x, un)

)
dx

+ λ

∫
RN

F (x, un) dx

=
(

1
p

− 1
µ

)
∥un∥p

X + λ

µ

∫
RN

(
f(x, un)un − µF (x, un)

)
dx.

(2.8)

Focusing on the integral, taking Claim 1 and (AR) into account, one has∫
RN

(
f(x, un)un − µF (x, un)

)
dx =

∫
un(x)≥−k

(
f(x, un)un − µF (x, un)

)
dx

=
∫

−k≤un(x)≤s

(
f(x, un)un − µF (x, un)

)
dx +

∫
un(x)>s

(
f(x, un)un − µF (x, un)

)
dx

≥
∫

−k≤un(x)≤s

(
f(x, un)un − µF (x, un)

)
dx ≥

∫
|un(x)|≤c

(
f(x, un)un − µF (x, un)

)
dx,

with 0 ≤ c ≤ min{k, s}. Moreover, by some computations, using (iii) and (iii)′, we obtain that∫
RN

(
f(x, un)un − µF (x, un)

)
dx ≥ − c

∫
|un(x)|≤c

(
sup
|ξ|≤c

|f(x, ξ)|
)

dx

− µ

∫
|un(x)|≤c

(
sup

|ξ|≤un(x)
|f(x, ξ)|

)
|un(x)| dx

≥ − c

∫
RN

(
sup
|ξ|≤c

|f(x, ξ)|
)

dx

− cµ

∫
RN

(
sup

|ξ|≤un(x)
|f(x, ξ)|

)
dx

≥ − c(k1 − µk2) ,

(2.9)

where k1 and k2 are L1-norms. Thus, from (2.8), one has

Iλ(un) − 1
µ

I ′
λ(un)(un) ≥

(
1
p

− 1
µ

)
∥un∥p

X − λ

µ
c(k1 − µk2) ,

which, using (2.6) and (2.7), leads to(
1
p

− 1
µ

)
∥un∥p

X ≤ M + 1
µ

εn∥un∥X + λ

µ
c(k1 − µk2).

Now, if we assume by a contradiction that ∥un∥X is unbounded, there is a subsequence {unk
} such that

limk→∞ ∥unk
∥X = +∞. Therefore, by passing to the limit for k → ∞ the previous inequality, it follows that

limk→∞ ∥unk
∥p−1

X = 0 and this is an absurd. Hence, ∥un∥X is bounded and our claim is proved.
At this point, the same proof of Lemma 2.3 proves that Iλ satisfies (PS)-condition.
Finally, we prove that Iλ is unbounded from below.
To this aim, using (AR), we obtain that∫ t µ

dξ ≤
∫ t f(x, ξ)

dξ, ∀x ∈ RN , ∀t ≥ s,

s ξ s F (x, ξ)

9
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p

which implies
ln
(

t

s

)µ

≤ ln
(

F (x, t)
F (x, s)

)
,

amely
F (x, t)

tµ
≥ F (x, s)

sµ
= A(x) > 0 ∀x ∈ RN , ∀t ≥ s. (2.10)

Clearly, owing to (iii′), one has A ∈ L1(RN ). On the other hand, for every x ∈ RN , 0 ≤ t ≤ s one has

F (x, t) ≥ min
ξ∈[0,s]

F (x, ξ) ≥ min
ξ∈[0,s]

F (x, ξ) + A(x)tµ − A(x)sµ

= A(x)tµ −
(

A(x)sµ − min
ξ∈[0,s]

F (x, ξ)
)

= A(x)tµ − B(x)
(2.11)

where B(x) = A(x)sµ −minξ∈[0,s] F (x, ξ) and, owing to (iii′), B ∈ L1(RN ). Hence, putting (2.10) and (2.11)
together, we have that

F (x, t) ≥ A(x)tµ − B(x)

for all x ∈ RN and for every t ≥ 0. Therefore, fixed ū ∈ X such that ∥ū∥X ̸= 0 and ū(x) ≥ 0 in
RN , one has Ψ(tū) =

∫
Rn F (x, tū(x))dx ≥ tµ

∫
Rn A(x)|ū|µdx −

∫
RN B(x)dx = C1tµ − C2. Moreover,

ne has Φ(tū) = 1
p ∥tū∥p

X = 1
p t

1
p ∥ū∥p

X = C3tp. Hence, one has Iλ(tū) ≤ C3tp − λC1tµ + λC2 and so
imt→+∞ Iλ(tū) = −∞ for which Iλ is unbounded from below and the proof is completed. □

. Main results

Fix an open ball of center x0 and radius R, which we denote by B(x0, R), and put

KR := 1
Lp

a

Γ (1 + N/2)
πN/2

(
Rp−N

2p − 2p−N + Rp∥a∥∞

)
, (3.1)

here La is given in (2.2).
We explicitly observe that the constant K is independent by the choice of x0. Moreover, it can often be

onvenient, for simplicity, to take R = 1. So, by choosing as ball B(0, 1) the constant becomes

K1 := 1
Lp

a

Γ (1 + N/2)
πN/2

(
1

2p − 2p−N + ∥a∥∞

)
.

he constant KR plays an important role in the following statements since it regulates the growth less than
p − 1)−linear of the nonlinearity in a suitable range (see (b) below), which is a fundamental assumption of
ur results.

In the following, we present our first result on the existence of one non-trivial and non-negative solution
or problem (Pλ).

heorem 3.1. Suppose that f(x, 0) ≥ 0 for all x ∈ RN and assume that there exist a ball B(x0, R) and
wo positive constants c1, c2, with 0 < c1 < c2, such that

(a) F (x, t) ≥ 0 for all (x, t) ∈ RN × [0, c1],

(b)
∫
RN max|ξ|≤c2 F (x,ξ) dx

c
p
2

< KR

∫
B(x0, R

2 )
F (x,c1) dx

c
p
1

.

hen, for each λ ∈ Λc1,c2 , where

Λc1,c2 :=
]

1
pLp

a

1
KR

cp
1∫

B(x0, R
2 ) F (x, c1) dx

,
1

pLp
a

cp
2∫

RN max|ξ|≤c2 F (x, ξ) dx

[
,

roblem (P ) admits at least one non-trivial and non-negative solution u such that ∥u ∥ < c .
λ λ λ ∞ 2

10



E. Amoroso, G. Bonanno and K. Perera Nonlinear Analysis 236 (2023) 113364

P
T

N

F

F

Proof. Our aim is to apply [4, Theorem 2.3]. To this end, consider (X, ∥ · ∥X),Φ,Ψ : X → R as defined in
Section 2, which verify the required regularity assumptions. In addition, thanks to Lemma 2.3, one has that
Φ − λΨ satisfies the (PS)[r] condition for every r > 0, λ > 0. So, one has to prove that there exist r > 0
and ũ ∈ X, with 0 < Φ(ũ) < r, such that

supΦ(u)<r Ψ(u)
r

<
Ψ(ũ)
Φ(ũ) .

ut r = c
p
2

pL
p
a

; taking Lemma 2.1 into account, for each u ∈ X with Φ(u) = 1
p ∥u∥p

X < r one has ∥u∥∞ < c2.
herefore, it follows that

supΦ(u)<r Ψ(u)
r

≤ p Lp
a

∫
RN max|ξ|≤c2 F (x, ξ) dx

cp
2

. (3.2)

ow, consider ũ ∈ X defined by

ũ(x) :=

⎧⎪⎨⎪⎩
0 if x ∈ RN \ B(x0, R),
2c1
R (R − |x − x0|) if x ∈ B(x0, R) \ B(x0, R

2 ),
c1 if x ∈ B(x0, R

2 ).

or simplicity, put S := B(x0, R) \ B(x0, R
2 ) and mR := |B(x0, R)| = πN/2

Γ (1 + N/2)RN . Clearly, ũ ∈ X and

Φ(ũ) = 1
p

(∫
S

(|∇ũ(x)|p + a(x)|ũ(x)|p) dx +
∫

B(x0, R
2 )

a(x)cp
1 dx

)

= 1
p

[(
2c1

R

)p ∫
S

(1 + a(x)|R − |x − x0∥p) dx + cp
1

∫
B(x0, R

2 )
a(x) dx

]

≤ 1
p

[(
2c1

R

)p ∫
S

(
1 + ∥a∥∞

(
R

2

)p)
dx + cp

1∥a∥∞

⏐⏐⏐⏐B(x0,
R

2

)⏐⏐⏐⏐]
≤ 1

p

[(
2c1

R

)p

|S|
(

1 + ∥a∥∞

(
R

2

)p)
+ cp

1∥a∥∞
mR

2N

]
= 1

p

[(
2c1

R

)p

mR
2N − 1

2N

(
1 + ∥a∥∞

Rp

2p

)
+ cp

1∥a∥∞
mR

2N

]
= mR

p
cp

1

(
2p − 2p−N + ∥a∥∞Rp

Rp

)
= 1

p

mR

RN

(
2p − 2p−N + ∥a∥∞Rp

Rp−N

)
cp

1

= 1
p

1
Lp

aKR
cp

1,

that is,
Φ(ũ) ≤ 1

p

1
Lp

aKR
cp

1 . (3.3)

urthermore,
Ψ(ũ) =

∫
S

F

(
x,

2c1

R
(R − |x − x0|)

)
dx +

∫
B(x0, R

2 )
F (x, c1)dx ,

and from assumption (a) it follows that

Ψ(ũ) ≥
∫

R
F (x, c1)dx . (3.4)
B(x0, 2 )

11
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T

t

0
w
n

T
e
a

Therefore, putting (3.3) and (3.4) together, we have

Ψ(ũ)
Φ(ũ) ≥ pLp

aKR

∫
B(x0, R

2 ) F (x, c1)dx

cp
1

. (3.5)

Taking (3.2) into account, from our assumption (b) it follows that

Ψ(ũ)
Φ(ũ) > p Lp

a

∫
RN max|ξ|≤c2 F (x, ξ) dx

cp
2

≥
supΦ(u)<r Ψ(u)

r
,

that is,
supΦ(u)<r Ψ(u)

r
<

Ψ(ũ)
Φ(ũ) .

Hence, it remains to prove that Φ(ũ) < r. Taking into account (3.3), that is,

Φ(ũ) ≤ 1
p

1
KRLp

a
cp

1

and r = c
p
2

pL
p
a

, one has

Φ(ũ) < r when

(
1

KR

)1/p

c1 < c2.

his inequality holds thanks to the assumption that 0 < c1 < c2. In fact,

reasoning by absurd we suppose that
(

1
KR

)1/p

c1 ≥ c2, which implies that

∫
RN max|ξ|≤c2 F (x, ξ) dx

cp
2

≥ KR

∫
RN max|ξ|≤c1 F (x, ξ) dx

cp
1

≥ KR

∫
RN F (x, c1) dx

cp
1

≥ KR

∫
B(x0, R

2 ) F (x, c1) dx

cp
1

,

hat is in contradiction with assumption (b).
All the hypotheses of [4, Theorem 2.3] are verified, then for each λ ∈ Λc1,c2 there exists uλ ∈ X, with

< Φ(uλ) < r, which is a non-zero local minimum of functional Iλ in Φ−1(]0, r[), namely uλ is a non-zero
eak solution for problem (Pλ) and one has that ∥uλ∥∞ < c2. Moreover, Lemma 2.2 ensures that it is
onnegative and the proof is completed. □

heorem 3.2. Suppose that f(x, 0) ≥ 0 for all x ∈ RN . Assume that (AR)-condition is satisfied and there
xist two positive constant c1, c2 such that condition (a) and (b) hold. Then, for each λ ∈ Λc1,c2 problem (Pλ)
dmits at least two non-trivial and non-negative solution uλ,1, uλ,2 such that

1
p

∫
RN

|uλ,1|pdx + λ

∫
RN

F (x, uλ,1(x))dx < 0 <
1
p

∫
RN

|uλ,2|pdx + λ

∫
RN

F (x, uλ,2(x))dx.

Proof. Our aim is to apply [5, Theorem 2.1]. To this end, put (X, ∥ · ∥X),Φ,Ψ : X → R as defined in
Section 2, which verify the required regularity assumptions. In addition, thanks to Lemma 2.4, one has that
Iλ = Φ − λΨ satisfies the (PS) condition and it is unbounded from below. Moreover, the same proof of
Theorem 3.1 ensures that there exist r > 0 and ũ ∈ X, with 0 < Φ(u) < r, such that

supΦ(u)<r Ψ(u)
<

Ψ(ũ)
.

r Φ(ũ)
12
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All the hypotheses of [5, Theorem 2.1] are verified, then for each λ ∈ Λc1,c2 there exist two critical points
f Iλ uλ,1, uλ,2 ∈ X, which are two non-zero weak solutions of Problem (Pλ) and, owing to Lemma 2.2, they
re nonnegative. Finally, again from [5, Theorem 2.1], one has

1
p

∫
RN

|uλ,1|pdx + λ

∫
RN

F (x, uλ,1(x))dx < 0 <
1
p

∫
RN

|uλ,2|pdx + λ

∫
RN

F (x, uλ,2(x))dx.

and the proof is completed. □

Now we point out some consequences of previous main results when the nonlinear term is with separated
variables. Let α ∈ L1(RN ) be a nonnegative and non-zero function. Moreover, let g : R → R be a nonnegative
continuous function and put G(t) =

∫ ξ

0 g(ξ)dξ, t ∈ R. Finally, put

HR :=

∫
B(0,R/2) α(x)dx

∥α∥1
KR (3.6)

here KR is given in (3.1). Consider the following nonlinear differential problem on the entire space⎧⎨⎩ −∆pu + a(x)|u|p−2
u = λα(x)g(u(x)) in RN ,

u ∈ W 1,p(RN )
(Dλ)

e have the following result.

heorem 3.3. Assume that there exist two positive constants c1, c2, with 0 < c1 < c2, such that

b′) G(c2)
c

p
2

< HR
G(c1)

c
p
1

.

hen, for each λ ∈ Λ′
c1,c2 , where

Λ′
c1,c2 :=

]
1

pLp
a∥α∥1

1
HR

cp
1

G(c1) ,
1

pLp
a∥α∥1

cp
2

G(c2)

[
,

problem (Dλ) admits at least one non-trivial and non-negative solution uλ,1 such that ∥uλ,1∥∞ < c2.
Further, in addition, assume that

there are s > 0, µ > p : 0 < µG(t) ≤ tg(t) ∀t ≥ s. (AR’)

hen, for each λ ∈ Λ′
c1,c2 problem (Dλ) admits a second distinct non-zero and non-negative solution uλ,2

uch that
1
p

∫
RN

|uλ,1|pdx + λ

∫
RN

F (x, uλ,1(x))dx < 0 <
1
p

∫
RN

|uλ,2|pdx + λ

∫
RN

F (x, uλ,2(x))dx.

Proof. It follows from Theorems 3.1 and 3.2. □

Remark 3.1. Assumption (b′) of Theorem 3.3 is verified when

lim
t→0+

g(t)
tp−1 = +∞. (3.7)

ut λ∗ = 1
pL

p
a∥α∥1

supc>0
cp

G(c) , the assumption (3.7) ensures the existence of at least one non-zero and
onnegative weak solution to Problem (Dλ) for each λ ∈]0, λ∗[.

Clearly, if we assume (3.7) in addition with (AR’), then for each λ ∈]0, λ∗[, problem (Dλ) admits at least
wo distinct non-zero and nonnegative weak solutions.
13
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Remark 3.2. Theorem 1.1 in Introduction is a special case of Theorem 3.3. Indeed, putting g(t) = ηts + tq,
ssumption (3.7) in Remark 3.1 is verified as well as condition (AR’). Hence, for each λ ∈]0, λ∗[, problem⎧⎨⎩ −∆pu + a(x)|u|p−2

u = λα(x) (ηus + uq) in RN ,

u ∈ W 1,p(RN )
(Ds,q,λ)

dmits two non-zero and nonnegative weak solutions. In this case (see Remark 3.1), one has

λ∗ = 1
pLp

a∥α∥1
sup
c>0

cp

G(c) = 1
pLp

a∥α∥1

c̄p

G(c̄) = 1
pLp

a∥α∥1

(
η

1
s + 1 c̄s+1−p + 1

q + 1 c̄q+1−p

)
,

where

c̄ =
(

η
q + 1
s + 1

p − (s + 1)
(q + 1) − p

) 1
q−s

.

t follows that
λ∗ > 1 ⇐⇒ η < η∗,

here

η∗ =
(

1
pLp

a∥α∥1

) q−s
(q+1)−p (s + 1)((q + 1) − p)(q + 1)

p−(s+1)
(q+1)−p (p − (s + 1))

p−(s+1)
(q+1)−p

(q − s)
(q+1)−p

q−s

. (3.8)

Therefore, for each η ∈]0, η∗[, problem (Ds,q,λ) admits two non-zero and nonnegative weak solutions for
λ = 1, that is our conclusion.

Remark 3.3. We explicitly observe that the value η∗ in Theorem 1.1 is determined numerically by (3.8).
We also note that it depends on the embedding constant La.
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