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Assessing Granger causality (GC) intended as the
influence, in terms of reduction of variance of
surprise, that a driver variable exerts on a given
target, requires a suitable treatment of ‘instantaneous’
effects, i.e. influences due to interactions whose time
scale is much faster than the time resolution of the
measurements, due to unobserved confounders or
insufficient sampling rate that cannot be increased
because the mechanism of generation of the
variable is inherently slow (e.g. the heartbeat).
We exploit a recently proposed framework for
the estimation of causal influences in the spectral
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domain and include instantaneous interactions in the modelling, thus obtaining (i) a novel
index of undirected instantaneous causality and (ii) a novel measure of GC including
instantaneous effects. An effective procedure to speed up the optimization of parameters in
this frame is also presented. After illustrating the proposed formalism in a theoretical example,
we apply it to two datasets of cardiovascular and respiratory time series and compare the
values obtained within the frequency bands of physiological interest by the proposed total
measure of causality with those derived from the standard GC analysis. We find that the
inclusion of instantaneous causality allows to correctly disentangle the baroreflex mechanism
from the effects related to cardiorespiratory interactions. Moreover, studying how controlling
the respiratory rhythm acts on cardiovascular interactions, we document an increase of the
direct (non-baroreflex mediated) influence of respiration on the heart rate in the respiratory
frequency band when switching from spontaneous to paced breathing.

This article is part of the theme issue ‘Advanced computation in cardiovascular physiology:
new challenges and opportunities’.

1. Introduction
The assessment of causal interactions among a set of measured variables, typically performed
through the statistical notion of Granger causality (GC) [1], is an important issue in the study
of physiological systems, in particular when the interdependencies among different regulatory
systems is under investigation [2]. The oscillatory content of physiological systems stimulated the
development of methods able to assess GC in the frequency domain [3–5]. This development is
fundamental when physiological mechanisms operate at well-known time scales, as is the case for
the short-term cardiovascular control where the Mayer waves (of period approx. 10 s) and higher
frequency rhythms (synchronous with the breathing rate) occur spontaneously as a consequence
of the physiological regulation [6].

The model underlying the standard definition of GC is a strictly causal vector autoregressive
(VAR) model, which can unambiguously provide causal information only when instantaneous
effects are negligible. We remark that the term instantaneous should not be taken literally, as
instantaneous influences may be due to interactions whose time scale is much faster than the
time resolution of the measurements. Instantaneous influences might be due to unobserved
confounders or insufficient sampling rate that cannot be increased because the mechanism
of generation of the variable is inherently slow. The latter is the case of the heart and the
cardiovascular system, intended as a dynamical systems whose activity is paced by the heartbeat;
many of the output variables of these systems, such as the heart period and the systolic arterial
pressure (SAP), can be measured once per cardiac beat and thus cannot be assessed at a faster
pacing. Such problem often shows up in the analysis of physiological time series [7,8]; a solution
to this issue has been proposed in [9] introducing an extended GC measure in the frequency
domain that takes into account both lagged and instantaneous influences. A main limitation of
this approach is the fact that it assigns a direction to zero-lag effects, and the proposed measure
depends on such an assignment. On the other hand, in some cases, a preferential direction
for instantaneous influences cannot be assigned a priori [10], and more generally instantaneous
interactions in VAR models should be un-directed, as discussed in [11].

In this paper, we propose a novel approach to deal with instantaneous interactions in
the spectral formulation of GC, which (i) exploits a recently introduced framework [12] that
allows one to quantify causal influences in a stochastic dynamical system, both in the time
and frequency domains; (ii) introduces a measure of undirected instantaneous causality for
multivariate systems; (iii) introduces a measure of extended GC that takes into consideration
both lagged and instantaneous causality and does not depend on the direction of instantaneous
interactions; (iv) significantly speeds up the evaluation of the model parameters compared to
the original proposal [12]. Our approach, differently from [9], does not provide the direction of
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the instantaneous interactions among variables; at the same time, no a priori knowledge of the
instantaneous influences is needed.

The paper is organized as follows. In the next section, we describe the methods, whilst
in §3.1, we show the results by the proposed approach on a simulated data set. In §3.2, we
turn to consider real data, in particular the application to cardiovascular and cardiorespiratory
interactions. Using our measure of GC with instantaneous effects, we can more clearly identify
the correct frequency ranges in which each physiological effect is significant, in particular, the
activation of the baroreflex mechanism during postural stress and the direct (non-baroreflex
mediated) effect of respiration on the RR interval during paced breathing. In §4, we draw some
conclusions.

2. Methods

(a) The framework of causal influences in stochastic dynamical systems
In this subsection, we briefly recall a recently introduced framework [12] that quantifies causal
influences in a multivariate stochastic dynamical system, both in the time and frequency domains.

Firstly, the system, composed by N subsystems whose activity is mapped by the variables x1,
. . . , xN, is described using a VAR(p) model (the so-called full model), which in principle can account
for couplings among every pair of variables

xt =
p∑

k=1

Akxt−k + εt, (2.1)

where xt = [xt,1 . . . , xt,N]T denotes the state of the system at time t, the N × N matrices Ak contain
the coupling coefficients between each process and the regressors, and εt represents normally
distributed residuals uncorrelated over time.

Secondly, a disconnected model is considered in which some of the influences are cut, i.e. some
of the coupling coefficients are forced to zero at all lags

xt =
p∑

k=1

A′
kxt−k + ε′

t, where ∀ k = 1, . . . , p, ∀(i, j) ∈ Λ : (A′
k)ij = 0. (2.2)

The set Λ includes all the combinations of the influences from the time series j to the time series
i that are cut; in other words, Λ represents the constraints on the disconnected model; different
choices of Λ lead to different types of causal influences that can be assessed in this framework, like
GC, integrated information (Φ) and others [12]. Model identification is carried out by minimizing
the generalized variance |Σ | with respect to the non-zero AR coefficients, where

Σ = E[εtε
T
t ], (2.3)

denotes the covariance matrix of the residuals. It can be shown that this procedure, when applied
to the full model, is equivalent to the standard generalized least squares (GLS) estimation; the
ordinary least squares method (OLS), which minimizes the variance of each residual separately,
is less efficient when Σ is not a diagonal matrix and instantaneous correlations are expected.
The minimization procedure adopted in [12] is gradient descent, which can be computationally
expensive especially in systems with many variables or when an high model order p is needed.
We remark that the identification procedure for the disconnected model, given the presence of the
constraints Λ, cannot be done using a simple matrix inversion like in the GLS algorithm: this is
the reason for an iterative algorithm like the gradient descent.

Given the generalized variances for the full and disconnected model, the causal influence from
the series indexed with j to the series indexed with i in the set Λ is defined as [12]

CI = 1
2

log
( |Σ ′|

|Σ |
)

. (2.4)
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The measure CI quantifies the increase in the prediction error when some causal links are cut; in
[12], it is shown that, for a bivariate system and given a driver variable j and a target variable i, if
one chooses the constraints for the disconnected model such that (A′

k)ij = 0, ∀ k then the resulting
causal influence is equivalent to the GC from j to i.

The strength of the formulation of causal influences in [12] is the possibility to give a
meaningful spectral decomposition to any causal influence. More specifically, given the spectral
density matrices S(ω) and S′(ω) obtained from the frequency domain representation of the VAR
parameters of the full and disconnected models [2,4,7], the corresponding frequency-domain
measure can be computed as

ci(ω) = 1
2

log
( |S′(ω)|

|S(ω)|
)

. (2.5)

It can be proven that CI = (1/2π )
∫π

−π ci(ω) dω, regardless of the choice of the constraints for the
disconnected model. Moreover, using the constraints previously discussed to evaluate the GC,
the resulting spectral measure is identical to the spectral GC defined by Geweke [3,13].

(b) Including instantaneous interactions in the frame of causal influences
Now we exploit the framework described in the previous Section [12] to deal with GC when
instantaneous interactions are not negligible; the formalism here described will be used in
following sections. We also show here that this framework allows to estimate the GC in a fast
and efficient way solving a set of Yule–Walker equations [14].

We start noting that the presence of instantaneous interaction in a system reflects on the
presence of non-zero off-diagonal terms in the covariance matrix of residuals Σ . We remark
that the converse is not always true; in other words, the presence of off-diagonal correlations
of residuals εt does not imply that there are instantaneous interactions between the time
series. Moreover, even if the actual instantaneous interactions in the system are directed, the
resulting residuals covariance matrix is always symmetric Σ = ΣT; therefore, the reconstructed
instantaneous interactions are always bidirectional, see the discussions in [1,11]. In the full model
of the time series, we thus include a zero-lag coupling matrix A0, defining the extended model

xt =
p∑

k=0

Akxt−k + εt. (2.6)

The matrix A0 must be chosen so as to have the structure of an acyclic interaction graph: this
means that, by a suitable rearrangement of the variables, the non-zero elements of A0 can be
transformed into a strictly triangular matrix with diagonal elements equal to zero [9]. It can be
shown that, for any such structure of A0, fitting the corresponding full model leads to a diagonal
covariance matrix of residuals with determinant which does not depend on the structure of A0
(provided that the structure of A0 is acyclic).

Given these constraints for the matrix A0, we now show how to compute the non-zero entries
of all the matrices Ak explicitly. First, we compute Σ = E[εtε

T
t ] using (2.6)

Σ = Γ0 −
p∑

l=0

ΓlA
T
l −

p∑
l=0

AlΓ
T

l +
p∑

l=0

p∑
k=0

AlΓk−lA
T
k , (2.7)

where we denoted the auto-covariance of xt and xt−k as Γk = E[xtxT
t−k]. The optimal components

of each Ak can be found as the ones that minimize the generalized variance |Σ |, as shown in [12].
The minimization procedure can be carried out without Lagrange multipliers, setting to zero the
derivatives of |Σ | w.r.t. the unconstrained (non-zero) couplings (Ak)ij; after some manipulations,
it reads

∂|Σ |
∂(Ak)ij

= 2|Σ |
⎡
⎣Σ−1

⎛
⎝ p∑

l=0

AlΓk−l − Γk

⎞
⎠

⎤
⎦

ij

= 0, k = 0, . . . , p. (2.8)
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The system of equations should be solved, for each k = 0, . . . , p, only for (i, j) ∈ 	k, where 	k = {(i,
j) | (Ak)ij �= 0} is the set of ordered pairs (i, j) for which the corresponding coupling coefficient is
unconstrained at a certain lag k. As an example, when evaluating the full model, if we assume a
strictly upper triangular matrix A0, the constraints would be 	0 = {(i, j)|j = 1, . . . , N ∧ i < j}. The
system of equations (2.8) should be solved, in general, using a numeric method like gradient
descent. On the other hand, the choice to include the instantaneous matrix A0 in the model
guarantees diagonality of the matrix Σ ; in this case, the same is true for its inverse, so that (2.8)
reduces to

∀ k = 0, . . . , p, ∀(i, j) ∈ 	k,

⎛
⎝ p∑

l=0

AlΓk−l − Γk

⎞
⎠

ij

= 0. (2.9)

We note that the system of equations (2.9) resembles the Yule–Walker equations; this allows it to
be readily solved using the algorithm described in the appendix A. It is worth mentioning that
the optimization procedure described above might be replaced, for the full model, with more
common and simpler methods. On the other hand, the generality of the proposed framework
allows us to identify models where some constraints are applied to the entries of the connectivity
matrices, as discussed in the following paragraph; such constraints render problematic the use of
more common techniques.

We now consider the disconnected model, for which a different set of constraints, denote as
	k

′, determine the zero elements of coupling matrices. Considering the transfer of information
from a driver variable j to a target variable i, conditioned on all the other variables in the system,
corresponds to set to zero all the lagged couplings from the driver to the target, (Ak

′)ij = 0 for
k = 1, . . . , p, as well as choosing an acyclic structure for the instantaneous matrix A0

′. It is worth
mentioning, at this point, that in the disconnected model not all the acyclic matrices A0

′ render
the covariance of residuals diagonal, differently from what happens for the full model. Therefore,
apart from acyclicity, further properties of A0

′ are required to ensure that Σ ′ is diagonal. In
appendix b, we show how to design the structure of A0

′ so that Σ ′ is diagonal, and equation
(2.9) hold. Again, one can show that all the acyclic structures of A0

′ which render the residuals
covariance diagonal lead to the same value of the determinant of Σ ′.

Then, given the sets of constraints for the full (	k) and disconnected (	k
′) models, both

resulting in diagonal covariance matrices Σ and Σ ′, we use (2.4) to evaluate the conditional GC
in the time domain

Fxj→xi|x[i,j] = 1
2

log
( |Σ ′|

|Σ |
)

, (2.10)

where we denoted x[i,j] as the set of conditional variables, i.e. all the variables x = (x1, . . . , xN)
excluding xi and xj. We remark that the use of the determinant of the full error covariance matrix,
instead of the variance of the target variable, allows one to generalize the GC to the multivariate
case, as pointed out in [?], and is mandatory when stricter constraints on the VAR model are Q1

applied, like in [12]. Furthermore, in order to compute the GC in the frequency domain, we
evaluate the transfer function H(ω) and the spectral density matrix S(ω) as [2]

S(ω) = H(ω) Σ H†(ω), where H(ω) =
⎛
⎝I −

p∑
k=0

Ak e−iωk

⎞
⎠

−1

, (2.11)

and where the superscript † denotes conjugate transpose and I is the identity matrix. Note that the
matrix A0 must be included in the definition of the transfer function H(ω) if we want to investigate
lagged causality in the presence of instantaneous interactions. The same equations are used to
define H′(ω) and S′(ω) for the disconnected model, and then the spectral conditional GC can be
evaluated as

fxj→xi|x[i,j] (ω) = 1
2

log
( |S′(ω)|

|S(ω)|
)

. (2.12)

We emphasize that (2.10) and (2.12) are exactly equal to the standard definitions of GC in the
time and frequency domains given by Granger and Geweke [1–3,14], the main difference being
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that in our approach the choice of the driver, target and conditioned variables is simply encoded
in the choice of the constraints 	k

′, and that the solution can be computed efficiently using a
Yule–Walker-like system of equations (2.9). In the next sections, we will exploit our formalism to
introduce a new measure of instantaneous causality.

We conclude this section stressing that in our approach we give up the identifiability of the
model, as the instantaneous couplings are not uniquely determined; however, the determinants
of the residuals covariance are unique, so the GC estimate is defined unambiguously.

(c) Quantifying instantaneous causality
In this section, we propose a novel measure of instantaneous causality within the framework
described in the previous sections. In general, the presence of instantaneous interactions is
reflected in non-zero off diagonal entries of the residuals covariance of the VAR model (1).
This has lead to define the instantaneous interaction measure for a system of two time series as
follows [3–5]: calling Σ the covariance matrix, and Σ ′ a new covariance matrix preserving only
the diagonal elements, the log-ratio ii = log(|Σ ′|/|Σ |) measures the increased uncertainty one
gets when neglecting the instantaneous interactions, interpreted as the value of instantaneous
causality between the variables.

In the proposed approach, a diagonal residuals covariance Σ is obtained introducing a zero lag
matrix A0 in the model, supposed to correspond to an acyclic structure. To quantify instantaneous
causality, we define a disconnected model in which the instantaneous coupling between variables
i and j is cut, i.e. (A0

′)ij = (A0
′)ji = 0. This choice introduces non-zero elements in the residuals

covariance matrix, (Σ ′)ij = (Σ ′)ji �= 0, and limits us from using (2.9) to solve the disconnected
model. As done before, we neglect the newly introduced off-diagonal elements and solve the
model using (2.9) anyway, using (2.7) to evaluate the covariance matrix and then discarding
the off-diagonal elements. This procedure is justified by the fact that, in this way, we can
quantify instantaneous causality as the error in prediction we commit when neglecting one of
the instantaneous couplings. Note that our procedure can be carried out in multivariate systems
and the corresponding instantaneous causality measure can be conditioned on the other variables
in the system. We denote the time domain instantaneous causality measure we get from (2.4)
as Fxi·xj|x[i,j] and the frequency domain one as fxi·xj|x[i,j] (ω). Note that this measure is symmetrical,
i.e. the instantaneous causality from i to j is exactly equal to the instantaneous causality from j to
i. Moreover, differently from other instantaneous causality measures in the spectral domain [15],
our decomposition is non-negative as required. The spectrum of our definition of instantaneous
causality can be proven to be flat, as it has been demonstrated in [12].

(d) Granger causality including instantaneous effects (iGC)
The formalism developed above allows us to introduce, both in the time and frequency domains,
a new measure that quantifies the combination of lagged and instantaneous causality. Given a
driver variable j and a target variable i in a multivariate system, we introduce a disconnected
model in which we combine the lagged and instantaneous constraints that we described in the
previous sections. Specifically, we cut all the lagged directional couplings from the driver to
the target, (Ak>0

′)ij = 0, and we also cut the symmetric instantaneous coupling between them,
(A0

′)ij = (A0
′)ji = 0. The remaining constraints on A0

′ are identical to the ones given for the GC
and are thoroughly discussed in appendix B. The off-diagonal elements that appear in Σ ′ should
be treated like discussed in the previous section. We denote the resulting causality measure
as Fxj•→xi|x[i,j] and we call it Granger causality with instantaneous effects (iGC); the corresponding
frequency domain measure is denoted as fxj•→xi|x[i,j] (ω). The iGC combines the lagged and the
instantaneous causality in a single measure and in our experiments we observed that, in the time
domain, it equals the sum of the GC and of the instantaneous causality

Fxj•→xi|x[i,j] = Fxj→xi|x[i,j] + Fxi·xj|x[i,j] . (2.13)
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Figure 1. Top left: graph of interactions for the simulated RESP, SAP, RR series. The arrows denotes a lagged coupling or an
oscillatory self-interaction at a specified frequency; the dotted lines denote an instantaneous coupling. Top right: the matrices
of AR coefficients for the simulated VAR(2) model. The diagonal terms of each matrix are chosen in a way that guarantees
an oscillatory behaviour at a desired frequency f i, where θ i = 2π f i (assuming a sampling frequency of 1 Hz) and r1 = 0.9,
r2 = 0.8 and r3 = 0.55. Bottom: thefirst 300 samples of the simulated time series, alongsidewith the respective spectra. (Online
version in colour.)

The same relation does not hold for the corresponding spectral measures. This means that the
spectral iGC fxj•→xi|x[i,j] (ω) is not just a shifted version of the spectral GC and the two may differ
significantly. At the same time, the spectrum of the iGC is not flat unless the lagged causality
contribution is vanishing. In the next sections, we will analyse simulated and real systems and
we will argue that the peaks and valleys of the iGC spectrum can be interpreted in meaningful
ways when instantaneous interactions are not negligible.

3. Evaluation on simulated vector autoregressive model
We test the proposed approach on a VAR(2) model producing time series with spectral
components similar to those commonly encountered in heart period (RR), systolic pressure (SAP)
and respiration (RESP) variability series; the model is similar to those previously used for the
same purpose [16,17]. In our simulation, the state of the system at time t is xt = (RESPt, SAPt,
RRt) and we consider both instantaneous and lagged couplings from RESP to SAP, from RESP
to RR, and from SAP to RR. The corresponding interaction graph is shown in figure 1, alongside
with the matrices Ak. The oscillatory frequencies for the time series are chosen as f RESP = 0.3 Hz,
f SAP = 0.1 Hz and f RR = 0.02 Hz, and we assume a sampling frequency of 1 Hz; the presence
of instantaneous interaction is encoded in the non-zero off-diagonal elements of the residuals
covariance matrix Σ .
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Figure 2. The conditional GC (solid line), instantaneous causality (dotted line) and iGC (dash-dotted line) in the frequency
domain for the simulated model, shown only for the directions in which a lagged coupling is present. As discussed, the
instantaneous causality has aflat spectrum.Moreover, theareaunder the iGC curve (the time-domainvalueof the iGC) is equal to
the sumof the areas under the GC curve and the instantaneous causality line. The iGC shows sharp peaks around the frequencies
that have a clear interpretation in terms of the physiological rhythms, whilst the standard GC shows a broader spectrum.
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Figure 3. The conditional GC (solid line), instantaneous causality (dotted line) and iGC (dash-dotted line) computed in the
frequency domain from RESP to RR conditioned on SAP (a), along with the power spectral densities of each series computed
from the model coefficients (b) for one of the subjects in the HUT dataset that displayed an high contribution of instantaneous
effects. The iGC shows a sharper peak around the standard respiratory frequency (approx. 0.2 Hz), an higher contribution at high
frequencies and a lower contribution at low frequencies. We remark that the area under the iGC curve is exactly equal to the
sum of the areas under the two other curves. (Online version in colour.)

We modelled this connectivity structure because we are interested in assessing the effect
of instantaneous interactions on the direct influences from SAP to RR in the absence of any
description of the closed-loop RR-SAP relationship. We remark that, while the interactions pattern
in this toy model has no closed loops, the application of the proposed framework is not limited
to direct acyclic interaction graphs (DAGs) and can be used when feedback loops are present in
the system under consideration. We generated one realization of the stationary stochastic process
with length T = 3 × 105 samples, for which a randomly chosen segment of 300 samples is shown
in figure 1 alongside with the corresponding spectra. From the VAR model, we evaluated the
correlation matrices Γk using the Yule–Walker equations up to the order q = 100 and then we used
(2.9) to evaluate the matrices Ak

′ for all the disconnected models.



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

ARTICLE IN PRESS

9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A20200263

............................................................

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

–0.02

LF HF

0.10

0.08

0.06

0.04

0.02

0

–0.02
LF HF

0.10

0.08

0.06

0.04

0.02

0

–0.02
LF HF

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

–0.02

LF HF

RESP RR SAP RR

RESP RR ÁSAP SAP RR ÁRESP

Figure 4. Results of GC analysis for the HUT database. Panels report the boxplot distributions of the pairwise and conditional
spectral GC (empty boxes) and iGC (filled boxes) computed in the supine position (green boxes) and in the upright position
(orange boxes) integrated over the low frequency (LF, [0.04, 0.15] Hz) and high frequency (HF, [0.15, 0.4] Hz) bands. Lines Q2

connecting pairs of distributions denote p< 0.05. (Online version in colour.)

The spectral conditional GC, iGC and instantaneous causality are shown in figure 2 for the
cases RESP → SAP — RR, RESP → RR — SAP and SAP → RR — RESP. We remark that, as it
is clear from the figure, the iGC displays sharp peaks corresponding to frequencies of the driver
time series, thus allowing a clear interpretation of causal influences in terms of the underlying
physiological rhythms. On the contrary, the standard GC shows a broader spectrum with less
interpretable causal influences, especially when the RESP series is taken as the driver.

4. Application to cardiovascular and cardiorespiratory interactions
We analyse two datasets of cardiovascular and respiratory time series previously collected [18,19],
which have been already investigated to study cardiovascular and cardiorespiratory interactions
through Granger-causal methods during parasympathetic inhibition and sympathetic nervous
system activation induced by head-up tilt (HUT) [20] and during the regularizing action of
paced breathing (PB) at a rate close to the spontaneous one [17]. The two datasets contain
the variability series of consecutive RR intervals measured from the ECG, SAP measured from
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Figure 5. Results of GC analysis for the PB database. Panels report the boxplot distributions of the pairwise and conditional
spectral GC (empty boxes) and iGC (filled boxes) computed during spontaneous breathing (green boxes) and during pacedQ2

breathing (yellow boxes) integrated over the low frequency (LF, [0.04, 0.15] Hz) and high frequency (HF, [0.15, 0.4] Hz) bands.
Lines connecting pairs of distributions denote p< 0.05. (Online version in colour.)

the arterial pressure signal recorded non-invasively through the volume-clamp method, and
respiration signal (RESP, measured via inductive plethysmography in the HUT database and via
a nasal thermistor in the PB database). The HUT database consisted of time series lasting 300
heartbeats collected in the resting supine position and in the upright position (45 degrees) from
61 healthy young volunteers (37 female, 17.5 ± 2.4 yrs). The PB database consisted of time-series
lasting 256 heartbeats collected during spontaneous breathing in the resting position and during
controlled breathing at 15 breaths/min from 19 healthy young volunteers (11 female, 27–35 yrs).
Both protocols adhered to the principles of the Declaration of Helsinki, and were approved by the
ethical committee of the Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
(HUT protocol) and by the ethical review board of the ‘L. Sacco’ Hospital and of the Department
of Technologies for Health of the University of Milan, Italy (PB protocol).

In both databases, the adopted measurement convention is that the nth SAP value is contained
within the nth RR interval, and the nth RESP value is sampled at the onset of the nth RR interval.
The VAR model identification was performed for each set of time series using the least squares
method, setting the model order according to the Akaike information criterion [21] for each
subject, resulting in model orders between 3 and 5. Given the model coefficients, the correlation
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Table 1. Statistical analysis for the first database; comparison supine versus upright position.

LF HF

GC p-value KendallW p-value KendallW

RESP→ RR 0.016 0.061 0.843 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR <0.001 0.293 <0.001 0.168
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.252 0.007 0.002 0.097
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP <0.001 0.497 <0.001 0.293
LF HF

iGC p-value KendallW p-value KendallW
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR 0.012 0.142 0.255 0.013
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR <0.001 0.329 0.403 0.006
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.320 0.033 <0.001 0.168
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP <0.001 0.368 0.462 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

matrices Γk were evaluated using the Yule–Walker equations up to the order q = 100 for all sets
of series. Then, from the Γk matrices, we evaluated all the matrices Ak and Ak

′ for the full and
disconnected models using (2.9) and, consequently, all the GC, iGC and instantaneous causality
from RESP and SAP to RR, both in time and frequency domain. As an example, in figure 3, we
show the spectral GC, iGC and instantaneous causality, from RESP to RR conditioned on SAP, for
one of the subjects in the dataset that showed an high contribution of instantaneous effects. The
iGC exhibits a sharper peak around the respiratory frequency compared to the standard GC and,
at the same time, it shows a lower contribution at lower frequencies.

To perform group analysis, we integrated each spectral causality measure in the two frequency
bands of physiological interest: the LF band ([0.04, 0.15] Hz) and the HF band ([0.15, 0.4] Hz)
[22]. Results for the two datasets are illustrated in figures 4 and 5, respectively, depicting the
distribution across subjects of the GC and the iGC, assessed separately for the two frequency
bands in both the analysed conditions. In each case, statistically significant differences between
the two conditions or between the GC and the iGC are shown as lines connecting the relevant
pairs of distributions. The statistical comparisons between the two conditions and between the
two methods is carried out using the Wilcoxon signed-rank test; a significance level α = 0.05 was
chosen for both tests. Moreover, the corresponding effect sizes were calculated using the Kendall’s
W parameter. The results of the comparison between the two phases are shown in table 1 (HUT)
and table 3 (PB), while the comparison between the two methods is shown in table 2 (HUT) and
table 4 (PB).

The analysis of the HUT database (figure 4 and tables 1 and 2) reveals that, in the LF band, Q2

the information transfer from SAP to RR increases significantly moving from the supine to
the upright body position. This results, which holds both for the GC and the iGC, and for
pairwise and conditional measures, is expected as it reflects the well-known activation of the
baroreflex mechanism as a response to the postural stress whereby LF pressure oscillations are
more effectively transmitted to the heart rate [17,20]. In general, we find that, regardless of
the body position, including instantaneous causality increases the LF values of the information
transfer from SAP to RR and decreases the LF values of the information transfer from RESP to
RR. These results document the importance and appropriateness of considering instantaneous
causality in the analysis of cardiovascular interactions, where zero-lag effects are expected to
contribute significantly to the baroreflex mechanism [9,16], and of cardiorespiratory interactions,
where negligible information transfer is expected to occur from RESP to RR in the LF band [23]. In
the HF band, a significant increase of the GC SAP → RR and SAP → RR | RESP with the transition
from the supine to the upright position is observed only if we neglect instantaneous causality;
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Table 2. Statistical analysis for the first database; comparison GC versus iGC.

LF HF

supine p-value KendallW p-value KendallW

RESP→ RR <0.001 0.284 <0.001 0.934
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR <0.001 0.640 <0.001 0.871
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP <0.001 0.218 <0.001 0.640
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP <0.001 0.538 <0.001 0.640
LF HF

upright p-value KendallW p-value KendallW

RESP→ RR <0.001 0.444 <0.001 0.640
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR <0.001 0.871 <0.001 0.250
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.002 0.09 <0.001 0.401
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP <0.001 0.640 <0.001 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Statistical analysis for the second database; comparison spontaneous versus paced breathing.

LF HF

GC p-value KendallW p-value KendallW

RESP→ RR 0.520 0.003 1 0.025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR 0.027 0.224 0.687 0.003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.243 0.136 0.070 0.335
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP 0.070 0.136 0.260 0.136
LF HF

iGC p-value KendallW p-value KendallW

RESP→ RR 0.748 0.003 0.295 0.069
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR 0.573 0.003 0.904 0.025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.778 0.003 0.445 0.069
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP 0.159 0.025 0.520 0.003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this suggests that baroreflex activation resulting in a stronger transfer of information from SAP
to RR is actually active only in the LF band [8], while finding it in the HF band seems indicative
of inappropriate modelling of the instantaneous effects. On the other hand, RESP → RR | SAP
decreases significantly from rest to tilt in the HF band, which has been previously documented
and reflects a weakening of the non-baroreflex respiratory sinus arrhythmia mechanisms during
postural stress [24]. Finally, we find that the inclusion of instantaneous causality increases the
HF values for all the measures. This fact, that was previously observed for cardiorespiratory
interactions assessed during postural stress [9], can be explained if we consider the instantaneous
effects as fast (within-sample) contributions to the dynamics of the system.

The analysis of the PB database (figure 5 and tables 3 and 4) shows that LF values are small or
negligible for all measures. This confirms the lack of respiratory sinus arrhythmia effects in the
LF band seen before when RESP is the driver [23], and indicates that—contrary to the postural
stress - the paced breathing manoeuver does not elicit changes in the baroreflex involvement [24].
In the HF band, all measures are significantly higher when computed considering instantaneous
effects, confirming in the PB protocol the results obtained for the HUT protocol and the
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Table 4. Statistical analysis for the second database; comparison GC versus iGC

LF HF

spontaneous p-value KendallW p-value KendallW

RESP→ RR 0.006 0.136 <0.001 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR 0.004 0.468 <0.001 0.623
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.748 0.025 <0.001 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP 0.064 0.335 <0.001 0.8
LF HF

paced p-value KendallW p-value KendallW

RESP→ RR 0.01 0.136 <0.001 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR 0.243 0.003 <0.001 0.468
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESP→ RR | SAP 0.084 0.069 <0.001 0.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SAP→ RR | RESP 0.159 0.069 <0.001 0.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

importance to account for within-beat interactions in the analysis of faster cardiovascular and
cardiorespiratory effects [9,25]. Variations from spontaneous to paced breathing are small; these
findings agree with those reported previously using time-domain measures information transfer
[17,24], and confirm the general observation that paced breathing does not alter significantly the
cardiovascular autonomic regulation compared with spontaneous breathing [26]. Nevertheless,
the increase of the conditional GC RESP → RR—SAP in the HF band supports the hypothesis that
non-baroreflex (mostly central) mechanisms of respiratory sinus arrhythmia may be enhanced by
controlling the respiratory rhythm.

5. Conclusion
The construction of methodologies for the estimation of instantaneous causality is an important
problem as it is connected with the problem of assessing the total causality that a variable
exerts on a given target. In this paper, we have coped with this issue exploiting a new
framework for the estimation of causal influences in the spectral domain [12] and by including
instantaneous effects in the modelling approach pursued by this framework. Our approach
assumes undirected instantaneous interactions, eliminating the need to set the directionality
of instantaneous couplings through the exploitation of prior knowledge or the involvement of
cumbersome non-Gaussian modelling which characterized previous approaches [9,10]. This leads
us to propose a novel index of undirected instantaneous causality, whose spectrum is flat, that
generalizes the measure of instantaneous influence to multivariate systems. Consequently, we
introduced a measure of GC including instantaneous effects, the iGC, that is consistently equal
to the sum of the GC and the instantaneous causality in the time domain but, at the same time,
has a spectral version which may differ significantly from the standard spectral GC defined by
Geweke [3,13]). This highlights the importance of the proposed frequency decomposition, as
demonstrated by the results shown for the simulation and real data examples. Moreover, we
introduce a procedure to speed up the optimization of parameters w.r.t. the original proposal
in [12].

We applied the proposed formalism to two datasets of cardiovascular and respiratory time
series and compared the values obtained by the new total measure of causality with those
from the standard GC. In cardiovascular variability analysis, instantaneous interactions typically
occur as within-beat effects between the observed time series (e.g. the heart period, arterial
pressure and respiration) which likely result from common driving factors such as the neuro-
autonomic regulation. Therefore, it is important to account for instantaneous effects in the
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analysis of GC between cardiovascular time series, also in view of the fact that GC quantifies
the causal effect that the underlying mechanism (in this case, autonomic control) has on the
measured variables, rather than quantifying the mechanism itself [?]. In other words, data-
driven methods to infer statistical dependencies always come with this ambiguity of confusing
map and territory, and methods used to compute them with target properties of the system
under exam [?]. Our results show that the spectral iGC, differently from the standard GC,
peaked more clearly at the physiologically relevant frequencies when instantaneous effects were
significant. For the first dataset, investigating the effects of postural stress on cardiovascular
and cardiorespiratory interactions, we observed that the inclusion of instantaneous causality
allowed us to correctly identify expected effects on the baroreflex control of the heart rate and on
cardiorespiratory interactions. In particular, we observed that, when considering instantaneous
causality, the influence of SAP on the RR intervals increases at low frequencies and that the non-
baroreflex influence of the respiration on RR decreases in the high-frequency range. Moreover,
we observed that, while the standard GC would suggest a significant increase at all frequencies
of the baroreflex activation mechanism when switching from the supine to the upright body
position through head-up tilt, the iGC shows that the increase is only significant in the LF band.
The analysis of the second dataset, describing the effects of paced breathing on cardiovascular
interactions, showed that the iGC more clearly identifies the lack of respiratory sinus arrhythmia
effects in the LF band, represented by small or negligible value of the iGC and, at the same time,
it confirms an increase of the direct (non-baroreflex) effect of respiration on the RR in the HF band
when switching from spontaneous to paced breathing.

Future studies are envisaged to compare directly the patterns of time and frequency-domain
causality between cardiovascular and respiratory variability provided by the present framework
and previous works modelling directed instantaneous effects [9,10], as well as to explore
the potential of the GC measures proposed here in contexts where instantaneous effects are
known to impact significantly on causality analysis; the latter issue is typical in the study of
brain connectivity, e.g. in functional magnetic resonance imaging where the acquired signal
represents a smoothed hemodynamic response and is severely undersampled [27–29] and in
electroencephalography where the volume conduction effect is a main confounding source of
zero-lag correlations [30,31].
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Appendix A
Given the set of (p + 1) correlation matrices Γk, each of size N × N, we want to solve the system of
equations

∀ k = 0, . . . , p, ∀(i, j) ∈ 	k,

⎛
⎝ p∑

l=0

AlΓk−l − Γk

⎞
⎠

i,j

= 0 (A 1)

for the unknowns (Ak)i,j, where 	k = {(i, j) | (Ak)i,j �= 0} is the set of unconstrained auto-regressive
coefficients for each k. First, we introduce the matrices

A =
(

A0 A1 . . . Ap

)
,

Γ =
(
Γ0 Γ1 . . . Γp

)
,

Ψ =

⎛
⎜⎜⎜⎜⎝

Γ0 Γ1 . . . Γp

Γ T
1 Γ0 . . . Γp−1
...

...
. . .

...
Γ T

p Γ T
p−1 . . . Γ0

⎞
⎟⎟⎟⎟⎠ , (A 2)
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and then, if we make the matrix product explicit, we can rewrite (A 1) as

p∑
l=0

N∑
r=1

(Al)i,r(Γk−l)r,j − (Γk)i,j =
p∑

l=0

N∑
r=1

(A)i,(l+1)r(Ψ )(l+1)r,(k+1)j − (Γ )i,(k+1)j = 0, (A 3)

where the same restrictions on the indices (i, j) as (A 1) should be applied. We now want to replace
the column index (k + 1)j, but in order to do that we need to rewrite the constraints in a different
way. First, we fix the row index i and define the set

Ωi =
{

n ∈ N

∣∣∣ ∃ j, k : (i, j) ∈ 	k ∧ n = (k + 1)j
}

, (A 4)

then we can write

∀ i = 1, . . . , N, ∀ n ∈ Ωi,
(p+1)N∑

m=1

(A)i,m(Ψ )m,n − (Γ )i,n = 0, (A 5)

where the summations over l and r have been replaced by the summation over m = (l + 1)r. We

note that for m /∈ Ωi the corresponding term in the sum vanishes, so we can write
∑(p+1)N

m=1 →∑
m∈Ωi

. The fact that we are only considering m, n ∈ Ωi suggests that we may consider the new
matrices Âi, Γ̂i, Ψ̂i where the rows/columns corresponding to indices not in Ωi are removed and
rewrite the previous equation as

ÂiΨ̂i − Γ̂i = 0, (A 6)

which can be readily solved by matrix inversion Âi = Γ̂iΨ̂
−1
i . The elements in the row vector Âi

can then be remapped to corresponding non-zero values of (Ak)i,j. We can informally say that we
are solving the Yule–Walker equations row-by-row and that, for each row, we are removing all
the columns corresponding to couplings that should be forced to zero.

Appendix B
In this section, we show how to ensure a diagonal Σ ′ matrix for the disconnected model when
evaluating conditional GCs in a multivariate system. We denote the target variable index as τ .
First, we observe that each component of the matrix can written as

(Σ ′)ij =
⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ij

−
∑
a�=j

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)ja −

∑
a�=j

p∑
k=1

⎛
⎝Γk −

p∑
l=0

A′
lΓk−l

⎞
⎠

ia

(A′
k)ja.

(B 1)
The Yule–Walker-like terms can be set to zero using (2.9) if they correspond to an unconstrained
coupling coefficient and, at the same time, we can use the instantaneous matrix A0

′ to cancel the
last two terms in the equation. We note that, given the fact that Σ ′ is a symmetric matrix, we need
only to force half of the elements to zero. In particular, we set Σij = 0 for j > i, i �= τ and at the
same time Σiτ = 0 for i > τ . This choice ensures that all the off-diagonal elements are vanishing
and, at the same time, that the row index i is never equal to the target index τ . This allows us to
simplify the last term in (B 1) using (2.9), knowing that for i �= τ the coupling coefficients (Ak

′)ia
are unconstrained. The two equations for the components of Σ ′ can now be written as

∀ i �= τ , ∀ j > i, (Σ ′)ij =
⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ij

−
∑
a�=j

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)ja,

∀ i > τ , (Σ ′)iτ =
⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

iτ

−
∑
a�=τ

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)τa.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B 2)

The remaining terms can be cancelled if we correctly identify the instantaneous effects matrix
A0

′. Our choice, that in general is not the only possible one, can be described as follows: we
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consider a strictly upper triangular matrix and then we transpose the τ -th row. This ensures that
each component in the system can instantaneously affect each other while keeping the row of the
target variable empty. This choice can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ i ≥ j, (A′
0)ij = 0

∀ j > τ , (A′
0)τ j = 0

∀ i �= τ , ∀ j > i, (A′
0)ij = × ⇒

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ij

= 0

∀ i > τ , (A′
0)iτ = × ⇒

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

iτ

= 0,

(B 3)

where we denoted with × the unconstrained entries of the matrix. First, we note that the third
and fourth equation on the right side of (B 3) allows us to simplify the first term in both equations
in (B 2). Then, splitting the remaining summations like

∀ i �= τ , ∀ j > i, (Σ ′)ij = −
∑
a<j

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)ja −

∑
a>j

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)ja,

∀ i > τ , (Σ ′)iτ = −
∑
a<τ

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)τa −

∑
a>τ

⎛
⎝Γ0 −

p∑
l=0

A′
lΓ

T
l

⎞
⎠

ia

(A′
0)τa.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B 4)

we can use the first two equations in (B 3) to simplify the first term in the first equation and both
the terms in the second one and, at the same time, use the third equation in (B 3) to simplify the
remaining term. We have shown that our choice for A0

′ always guarantees a diagonal covariance
matrix Σ ′ when we only consider the lagged causality, i.e. the GC. If we want to evaluate the iGC
the additional constraints on A0

′ we simply add the additional constraints to the ones described
in (B 3). We note that the constraints on A0

′ that guarantee a diagonal Σ ′ do not depend on the
choice of the driver variable. This allows us to generalize the previous argument to the case of
many drivers and to evaluate multivariate GC and iGC.

References
1. Granger CW. 1969 Investigating causal relations by econometric models and cross-spectral

methods. Econometrica 37, 424–438. (doi:10.2307/1912791)
2. Porta A, Faes L. 2015 Wiener–Granger causality in network physiology with

applications to cardiovascular control and neuroscience. Proc. IEEE 104, 282–309.
(doi:10.1109/JPROC.2015.2476824)

3. Geweke J. 1982 Measurement of linear dependence and feedback between multiple time
series. J. Am. Stat. Assoc. 77, 304–313. (doi:10.1080/01621459.1982.10477803)

4. Ding M, Chen Y, Bressler S 2006 Granger causality: basic theory and application to neuroscience.
Handbook of Time Series Analysis. Wienheim: Wiley.

5. Cohen D, Tsuchiya N. 2018 The effect of common signals on power, coherence and Granger
causality: theoretical review, simulations, and empirical analysis of fruit fly LFPs data. Front.
Syst. Neurosci. 12, 30. (doi:10.3389/fnsys.2018.00030)

6. Cohen MA, Taylor JA. 2002 Short-term cardiovascular oscillations in man: measuring and
modelling the physiologies. J. Physiol. 542, 669–683. (doi:10.1113/jphysiol.2002.017483)

7. Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S. 1997 Spectral decomposition in
multichannel recordings based on multivariate parametric identification. IEEE Trans. Biomed.
Eng. 44, 1092–1101. (doi:10.1109/10.641336)

8. Javorka M, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, Faes L. 2017
Causal analysis of short-term cardiovascular variability: state-dependent contribution

http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1109/JPROC.2015.2476824
http://dx.doi.org/10.1080/01621459.1982.10477803
http://dx.doi.org/10.3389/fnsys.2018.00030
http://dx.doi.org/10.1113/jphysiol.2002.017483
http://dx.doi.org/10.1109/10.641336


849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

ARTICLE IN PRESS

17

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A20200263

............................................................

of feedback and feedforward mechanisms. Med. Biol. Eng. Comput. 55, 179–190.
(doi:10.1007/s11517-016-1492-y)

9. Faes L, Erla S, Porta A, Nollo G. 2013 A framework for assessing frequency domain causality
in physiological time series with instantaneous effects. Phil. Trans. R. Soc. A 371, 20110618.
(doi:10.1098/rsta.2011.0618)

10. Schiatti L, Nollo G, Rossato G, Faes L. 2015 Extended Granger causality: a new
tool to identify the structure of physiological networks. Physiol. Meas. 36, 827.
(doi:10.1088/0967-3334/36/4/827)

11. Kirchgässner G, Wolters J, Hassler U. 2013 Granger causality. In Introduction to Modern Time
Series Analysis, pp. 95–125. New York, NY: Springer.

12. Cohen D, Sasai S, Tsuchiya N, Oizumi M. 2020 A general spectral decomposition of
causal influences applied to integrated information. J. Neurosci. Methods 330, 108443.
(doi:10.1016/j.jneumeth.2019.108443)

13. Geweke JF. 1984 Measures of conditional linear dependence and feedback between time
series. J. Am. Stat. Assoc. 79, 907–915. (doi:10.1080/01621459.1984.10477110)

14. Barnett L, Seth AK. 2014 The MVGC multivariate Granger causality toolbox:
a new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68.
(doi:10.1016/j.jneumeth.2013.10.018)

15. Chicharro D. 2011 On the spectral formulation of Granger causality. Biol. Cybern 105, 331–347.
(doi:10.1007/s00422-011-0469-z)

16. Faes L, Marinazzo D, Montalto A, Nollo G. 2014 Lag-specific transfer entropy as a tool to
assess cardiovascular and cardiorespiratory information transfer. IEEE Trans. Biomed. Eng. 61,
2556–2568. (doi:10.1109/TBME.2014.2323131)

17. Faes L, Porta A, Nollo G. 2015 Information decomposition in bivariate systems: theory and
application to cardiorespiratory dynamics. Entropy 17, 277–303. (doi:10.3390/e17010277)

18. Javorka M et al. 2018 Towards understanding the complexity of cardiovascular
oscillations: insights from information theory. Comput. Biol. Med. 98, 48–57.
(doi:10.1016/j.compbiomed.2018.05.007)

19. Porta A, Bassani T, Bari V, Pinna GD, Maestri R, Guzzetti S. 2011 Accounting for respiration
is necessary to reliably infer Granger causality from cardiovascular variability series. IEEE
Trans. Biomed. Eng. 59, 832–841. (doi:10.1109/TBME.2011.2180379)

20. Faes L, Porta A, Nollo G, Javorka M. 2017 Information decomposition in multivariate
systems: definitions, implementation and application to cardiovascular networks. Entropy 19,
5. (doi:10.3390/e19010005)

21. Akaike H. 1974 A new look at the statistical model identification. IEEE Trans. Autom. Control
19, 716–723. (doi:10.1109/TAC.1974.1100705)

22. Berntson GG et al. 1997 Heart rate variability: origins, methods, and interpretive caveats.
Psychophysiology 34, 623–648. (doi:10.1111/j.1469-8986.1997.tb02140.x)

23. Saul JP, Berger RD, Albrecht P, Stein S, Chen MH, Cohen R. 1991 Transfer function analysis
of the circulation: unique insights into cardiovascular regulation. Am. J. Physiol. Heart Circ.
Physiol. 261, H1231–H1245. (doi:10.1152/ajpheart.1991.261.4.H1231)

24. Faes L, Nollo G, Porta A. 2011 Information domain approach to the investigation of cardio-
vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front. Physiol. 2, 80.
(doi:10.3389/fphys.2011.00080)

25. Faes L, Nollo G, Porta A. 2013 Compensated transfer entropy as a tool for reliably estimating
information transfer in physiological time series. Entropy 15, 198–219. (doi:10.3390/e15010198)

26. Pinna GD, Maestri R, La Rovere MT, Gobbi E, Fanfulla F. 2006 Effect of paced
breathing on ventilatory and cardiovascular variability parameters during short-term
investigations of autonomic function. Am. J. Physiol. Heart Circ. Physiol. 290, H424–H433.
(doi:10.1152/ajpheart.00438.2005)

27. Deshpande G, Sathian K, Hu X. 2010 Assessing and compensating for zero-lag correlation
effects in time-lagged Granger causality analysis of fMRI. IEEE Trans. Biomed. Eng. 57,
1446–1456. (doi:10.1109/TBME.2009.2037808)

28. Wu G, Liao W, Stramaglia S, Ding J, Chen H, Marinazzo D. 2013 A blind deconvolution
approach to recover effective connectivity brain networks from resting state fMRI data. Med.
Image Anal. 17, 365. (doi:10.1016/j.media.2013.01.003)

http://dx.doi.org/10.1007/s11517-016-1492-y
http://dx.doi.org/10.1098/rsta.2011.0618
http://dx.doi.org/10.1088/0967-3334/36/4/827
http://dx.doi.org/10.1016/j.jneumeth.2019.108443
http://dx.doi.org/10.1080/01621459.1984.10477110
http://dx.doi.org/10.1016/j.jneumeth.2013.10.018
http://dx.doi.org/10.1007/s00422-011-0469-z
http://dx.doi.org/10.1109/TBME.2014.2323131
http://dx.doi.org/10.3390/e17010277
http://dx.doi.org/10.1016/j.compbiomed.2018.05.007
http://dx.doi.org/10.1109/TBME.2011.2180379
http://dx.doi.org/10.3390/e19010005
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1111/j.1469-8986.1997.tb02140.x
http://dx.doi.org/10.1152/ajpheart.1991.261.4.H1231
http://dx.doi.org/10.3389/fphys.2011.00080
http://dx.doi.org/10.3390/e15010198
http://dx.doi.org/10.1152/ajpheart.00438.2005
http://dx.doi.org/10.1109/TBME.2009.2037808
http://dx.doi.org/10.1016/j.media.2013.01.003


902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

ARTICLE IN PRESS

18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A20200263

............................................................

29. Diez I et al. 2015 Information flow between resting-state networks. Brain Connectivity 5, 554.
(doi:10.1089/brain.2014.0337)

30. Van de Steen F, Faes L, Karahan E, Songsiri J, Valdes-Sosa PA, Marinazzo D. 2019 Critical
comments on EEG sensor space dynamical connectivity analysis. Brain Topogr. 32, 643–654.
(doi:10.1007/s10548-016-0538-7)

31. Kotiuchyi I, Pernice R, Popov A, Faes L, Kharytonov V. 2020 A framework to assess the
information dynamics of source EEG activity and its application to epileptic brain networks.
Brain Sci. 10, 657. (doi:10.3390/brainsci10090657)

http://dx.doi.org/10.1089/brain.2014.0337
http://dx.doi.org/10.1007/s10548-016-0538-7
http://dx.doi.org/10.3390/brainsci10090657

	Introduction
	Methods
	The framework of causal influences in stochastic dynamical systems
	Including instantaneous interactions in the frame of causal influences
	Quantifying instantaneous causality
	Granger causality including instantaneous effects (iGC)

	Evaluation on simulated vector autoregressive model
	Application to cardiovascular and cardiorespiratory interactions
	Conclusion
	References

