Supporting Information

Recovery of Lithium Carbonate from Dilute Li-Rich Brine via Homogenous and Heterogeneous Precipitation

Giuseppe Battaglia[†], Leon Berkemeyer[‡], Andrea Cipollina^{†,*}, José Luis Cortina[§], Marc Fernandez de Labastida[§], Julio Lopez Rodriguez[§], Daniel Winter^{‡,**}

[†]Dipartimento di Ingegneria, Università degli Studi di Palermo (UNIPA), viale delle Scienze Ed.6, Palermo, 90128, Italy.

^{*}Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, Freiburg, 79110, Germany.

[§]Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, Campus Diagonal-Besòs, Barcelona, 08930, Spain.

*Email: <u>andrea.cipollina@unipa.it</u>

**Email: <u>daniel.winter@ise.fraunhofer.de</u>

S.1 Fundamentals of Li₂CO₃(s) precipitation routes by Na₂CO₃ or NaOH/CO₂ addition

In the present work, the reactive crystallisation of $Li_2CO_3(s)$ from relatively Li-concentrated solutions was analysed studying two different separation routes: (i) addition of Na₂CO₃ solution and (ii) addition of NaOH solution and CO₂ insufflation.

In the first case, Li^+ and CO_3^{2-} ions react yielding the poorly soluble $Li_2CO_3(s)$, according to Eq. (S1).

$$2Li^{+}(aq) + CO_{3}^{2-}(aq) \to Li_{2}CO_{3}(s)$$
(S1)

 Li_2CO_3 precipitation using Na₂CO₃ has been widely investigated in the literate and various parameters affecting Li_2CO_3 recovery were studied: the reaction temperature, the solution pH, the initial Li^+ concentration, the presence of dissolved salts, the Na₂CO₃ addition flow rate and the stirring speed¹.

On the other hand, the NaOH solution and CO_2 insufflation precipitation route has been less studied in the literature. In the process, first, CO_2 has to dissolve in the Li⁺ solution, Eq. (S2). Then, the dissolved $CO_2(aq)$ reacts with OH⁻ ions to form bicarbonates (HCO₃⁻¹), Eq. (S3). Bicarbonates further react with OH⁻ ions leading to carbonates, Eq. (S4). Finally carbonates and lithium ions precipitate as Li₂CO₃, Eq. (S5). A continuous CO₂ insufflation, however, can decrease solution pH affecting the CO₂/HCO₃ equilibrium causing the re-dissolution of the precipitated Li₂CO₃ in the form of the soluble LiHCO₃, Eq. (S6).

$$CO_2(g) \to CO_2(aq)$$
 (S2)

$$CO_2(aq) + OH^-(aq) \rightarrow HCO_3^-(aq)$$
 (S3)

$$HCO_{3}^{-}(aq) + OH^{-}(aq) \to H_{2}O(l) + CO_{3}^{2-}(aq)$$
 (S4)

$$2Li^{+}(aq) + CO_{3}^{2-}(aq) \to Li_{2}CO_{3}(s)$$
(S5)

$$CO_2(aq) + Li_2CO_3(s) + H_2O(l) \rightarrow 2HCO_3^-(aq) + 2Li^+(aq)$$
 (S6)

The complex set of simultaneous reactions, taking place during the Li₂CO₃(s) precipitation process in a gas-liquid reaction system, makes the process more difficult to be analysed and controlled with respect to the classical use of Na₂CO₃ separation route². In the precipitation gas-liquid system, several parameters have to be carefully controlled, e.g. the reaction temperature, the solution pH, the CO₂(g) volume flow rate and the bubble size ³. The reaction temperature does not only influence the solubility of Li₂CO₃, but also the CO₂(g) dissolution velocity. Increasing temperature decreases Li₂CO₃ solubility that, in turn, induces a faster CO₂(g) consumption pushing the CO₂(g) dissolution due to the lower CO₂(g) bulk concentration in the solution. On the other hand, it has also to note that CO₂(g) solubility decreases. A critical parameter is the solution pH. As shown from Eq. (S6), the final pH affects the re-carbonation equilibrium of Li₂CO₃, thus the time point when CO₂ is stopped must be properly controlled to avoid excessive re-carbonation of Li₂CO₃, which causes excessive product loss. Bubbles' size is also an important parameters: small bubbles enhances CO₂(g) mass transport, thanks to large specific surface area, accelerating the process⁴.

S.1.1 Li₂CO₃(s) solubility in pure water system

In comparison to most salts, the solubility of $Li_2CO_3(s)$ decreases increasing temperature. The solubility constant (K_{sp}) at 20 °C is $5.3 \cdot 10^{-4}$ and $8.9 \cdot 10^{-5}$ at 90 °C according to the HSC data of Metso-Outotec. In the present work, an initial Li⁺ concentration of about 4000 ppm was employed in all experiments in accordance with expectation of the SEArcularMINE project chain. At such initial Li⁺ concentration, the maximum theoretical Li⁺ recovery can vary from 59 % at 50 °C to 69 % at 80 °C ⁵, when using reactants stoichiometric amounts. It should be noted that, at an initial Li⁺ concentration of 4000 ppm, only Li₂CO₃ could be studied as a viable route for Li⁺ recovery due to the high solubility of LiOH(s) in water, i.e. ~127,000 ppm at 20 °C ⁶ with respect to that of Li₂CO₃ (~13,000 ppm at 20 °C).

S.1.2 Influence of Inorganic Solution Components on Li₂CO₃(s) solubility

The presence of dissolved ions in Li⁺ solutions has been found to influence Li₂CO₃ solubility. Sun et al.¹ reported a Li₂CO₃ solubility decrease after the dissolution of NaCl and KCl salts (salt-out effects), while Li₂CO₃ solubility increased dissolving Na₂SO₄ salts (salt-in effect). Cheng et al ⁵ studied the Li₂CO₃(s) solubility in Na⁺, K⁺, Li⁺, Cl⁻ brines in a temperature range between 20 and 90 °C by the isothermal dissolution method. Li₂CO₃ was found to be more soluble in NaCl and KCl single added salt systems and even more soluble in mixtures of dissolved NaCl and KCl solutions. Wang et al.⁷ measured the solubility, the super solubility, and the metastable zone width of Li₂CO₃ in mixed LiCl-NaCl-KCl-Na₂SO₄ solutions in a temperature range from 20 to 80 °C employing the isothermal dissolution method and the turbidity technology. Results were in accordance with those reported by Sun et al.¹. Ma et al. ⁸ studied the crystallization of lithium carbonate in LiCl solutions containing other salts mimicking Chine's Salt Lakes ones. It was observed that lithium carbonate solubility decreased increasing composition of K⁺, Na⁺, Mg²⁺ and B₄O_{7²⁻} ions. At the same time, as salts concentration increased, Li₂CO₃(s) particle sizes and purity decreased. King et al.⁹ investigated the $Li_2CO_3(s)$ precipitation process also in the presence of divalent cations, i.e. Mg^{2+} and Ca^{2+} , in LiBr solutions. Even at low Mg²⁺ concentration, Li⁺ precipitation was found to be considerably hindered. Furthermore, the presence of divalent ions reduced Li₂CO₃(s) crystals growth and purity.

S.2 Supporting tables

Tables listing additional information about the experimental tests discussed in the manuscript.

Compound	Formula	Manufacturer	Purity
Lithium chloride	LiCl	Carl Roth	≥99 %
Sodium carbonate	Na ₂ CO ₃	VWR	99.7 %
Strontium chloride hexahydrate	SrCl ₂ *6H ₂ O	Carl Roth	≥99 %
Potassium chloride	KC1	Carl Roth	≥99 %
Sodium chloride	NaCl	Merck	≥99 %
Nitric acid	HNO ₃	Carl Roth	69 %
Rubidium chloride	RbC1	Carl Roth	≥99 %
Sodium hydroxide	NaOH	Carl Roth	≥99 %
Magnesium chloride	MgCl ₂	Carl Roth	≥98.5 %
Calcium chloride	CaCl ₂	Carl Roth	≥94 %
Ethanol	CH ₃ CH ₂ OH	Carl Roth	≥70 %
Carbon dioxide	CO ₂	Linde	99.9 %

Table S1 Chemical reagents characteristics employed for Li+ precipitation analysis.

CO ₃ ²⁻ / Li ⁺ Ratio	Li ⁺ concentration in the feed solution [ppm]	LiCl feed solution volume [mL]	2.0 M Na ₂ CO ₃ volume [mL]	Li ⁺ concentration in the total volume [ppm]
0.25	4330	115	9	4010
0.5	4780	105	18	4080
0.75	5280	95	28	4080
1	5820	86	36	4100
2	10100	50	72	4140

Table S2 Reacting quantities for Li₂CO₃ precipitation tests at different [CO₃²⁻]/[Li⁺].

Table S3 Calculated ionic strength for 0.70 M LiCl solutions, before Na₂CO₃ solution addition, with and without NaCl and KCl salts.

Investigated solutions	Ionic strength I [M]
0.70 M LiCl	0.70
0.70 M LiCl and 1.5 M KCl	2.20
0.70 M LiCl and 2.0 M NaCl	2.70
0.70 M LiCl and 1.5 M KCl + 2.0 M NaCl	4.20

Table S4 Divalent cations concentration in LiCl solutions with 2.0 M NaCl and 1.5 M KCl(before addition of Na_2CO_3 solution). In each solution, Li^+ concentration after carbonatedosing was ~4000 ppm.

Investigated solutions before Na ₂ CO ₃ addition	Ionic strength <i>I</i> [mol/L]
0.70 M LiCl, 1.5 M KCl, 2.0 M NaCl	4.20
0.70 M LiCl, 1.5 M KCl, 2.0 M NaCl + 0.17 M CaCl ₂	4.70
$0.70 \text{ M LiCl}, 1.5 \text{ M KCl}, 2.0 \text{ M NaCl} + 0.25 \text{ M MgCl}_2$	4.95
0.70 M LiCl, 1.5 M KCl, 2.0 M NaCl + 0.17 M SrCl ₂	4.70
$\begin{array}{l} 0.70 \text{ M LiCl}, 1.5 \text{ M KCl}, 2.0 \text{ M NaCl} + 0.17 \text{ M CaCl}_2 \\ + 0.25 \text{ M MgCl}_2 + 0.17 \text{ M SrCl}_2 \end{array}$	5.95

Table S5 Reacting solutions at different OH⁻/Li⁺ ratios.

OH ⁻ /Li ⁺ Ratio	LiCl volume [mL]	NaOH volume [mL]	Li ⁺ concentration after NaOH addition [ppm]
1	110	9.0	4290
1.5	110	13	4180
2	110	18	3900
4	110	47	4165

References

- Sun, Y.; Song, X.; Wang, J.; Luo, Y.; Yu, J. Unseeded Supersolubility of Lithium Carbonate: Experimental Measurement and Simulation with Mathematical Models. J. Cryst. Growth 2009, 311 (23–24), 4714–4719. https://doi.org/10.1016/j.jcrysgro.2009.09.013.
- (2) Tian, M.; Wang, Z.; Cao, J.; Guo, J.; Gong, X. Insight into Lithium Carbonate Crystallization in the Mild Reaction System LiCl-NH3·H2O-CO2 by Stabilizing the Solution with NH3·H2O. J. Cryst. Growth 2019, 520, 46–55. https://doi.org/10.1016/j.jcrysgro.2019.05.020.
- (3) Sun, Y.; Song, X.; Wang, J.; Yu, J. Preparation of Li 2CO 3 by Gas-Liquid Reactive Crystallization of LiOH and CO 2. *Cryst. Res. Technol.* **2012**, *47* (4), 437–442. https://doi.org/10.1002/crat.201100571.
- (4) Han, B.; Anwar UI Haq, R.; Louhi-Kultanen, M. Lithium Carbonate Precipitation by Homogeneous and Heterogeneous Reactive Crystallization. *Hydrometallurgy* 2020, 195, 105386. https://doi.org/10.1016/j.hydromet.2020.105386.
- (5) Cheng, W.; Li, Z.; Cheng, F. Solubility of Li2CO3 in Na-K-Li-Cl Brines from 20 to 90
 °c. J. Chem. Thermodyn. 2013, 67, 74–82. https://doi.org/10.1016/j.jct.2013.07.024.
- (6) Stephan, E. F.; Miller, P. D. Solubility of Lithium Hydroxide in Water and Vapor Pressure of Solutions above 220° F. J. Chem. Eng. Data 1962, 7 (4), 501–505. https://doi.org/10.1021/je60015a018.
- Wang, H.; Du, B.; Wang, M. Study of the Solubility, Supersolubility and Metastable Zone Width of Li2CO3 in the LiCl-NaCl-KCl-Na2SO4 System from 293.15 to 353.15K. *J. Chem. Eng. Data* 2018, *63* (5), 1429–1434. https://doi.org/10.1021/acs.jced.7b01012.
- (8) Ma, Y.; Zhang, Z.; Li, K.; Pang, D. Effects of K+, Na+, Mg2 and B4O72- Coexistence Impurities on Crystalline Characteristics of Lithium Carbonate. *IOP Conference Series: Materials Science and Engineering* 2019, 612, 022011. https://doi.org/10.1088/1757-899X/612/2/022011.
- (9) King, H. E.; Salisbury, A.; Huijsmans, J.; Dzade, N. Y.; Plümper, O. Influence of Inorganic Solution Components on Lithium Carbonate Crystal Growth. *Cryst. Growth Des.* 2019, 19 (12), 6994–7006. https://doi.org/10.1021/acs.cgd.9b00782.