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Abstract: Accurate precipitation estimation remains a challenge, though it is fundamental for most
hydrological analyses. In this regard, this study aims to achieve two objectives. Firstly, we evaluate
the performance of two precipitation products from the Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (GPM-IMERG) for Sicily, Italy, from 2016 to 2020 by a set of categorical
indicators and statistical indices. Analyses indicate the favorable performance of daily estimates,
while half-hourly estimates exhibited poorer performance, revealing larger discrepancies between
satellite and ground-based measurements at sub-hourly timescales. Secondly, we propose four multi-
source merged models within Artificial Neural Network (ANN) and Multivariant Linear Regression
(MLR) blending frameworks to seek potential improvement by exploiting different combinations
of Soil Moisture (SM) measurements from the Soil Moisture Active Passive (SMAP) mission and
atmospheric factor of Precipitable Water Vapor (PWV) estimations, from the Advanced Microwave
Scanning Radiometer-2 (AMSR2). Spatial distribution maps of some diagnostic indices used to
quantitatively evaluate the quality of models reveal the best performance of ANNs over the entire
domain. Assessing variable sensitivity reveals the importance of IMERG satellite precipitation and
PWV in non-linear models such as ANNs, which outperform the MLR modeling framework and
individual IMERG products.

Keywords: deep learning; satellite precipitation estimations; multi-source merging models; improving
precision

1. Introduction

The precise estimation of precipitation perhaps plays the most significant role in water-
related studies [1] and in many hydrologic modeling and forecasting applications. For many
years, the most reliable source of rainfall measurements has been represented by ground
rain gauge networks [2,3], which have the great advantage of high accuracy in monitoring
precipitation, even if measurements refer to a small area around the instrument. Rain gauge
networks, on the other hand, are usually poorly distributed in plateaus, mountains, deserts,
and other areas, and may not even be present in uninhabited areas, creating gaps in the
data [2,3].

Currently, satellite-retrieved and atmospheric reanalysis precipitation are increasingly
used in an attempt to bridge the spatiotemporal gaps of in-situ rain gauge networks, al-
though estimation errors still limit their practical applications [4]. Among these products,
the Integrated MultisatellitE Retrievals from Global Precipitation Measurement (GPM)
constellation (IMERG; [5]) is widely used. Many studies have been devoted to validating
and improving IMERG data with respect to ground-based data. Some of these studies
have evaluated IMERG data on a global scale (e.g., [6]), while others have focused on some
specific areas of the globe such as Europe [7–9], vast territories throughout Asia [10–15],
and America [16–19]. Their investigations suggest the promising use of IMERG to estimate
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spatiotemporal variability of rainfall across diverse rainfall patterns, climates, and geo-
graphical characteristics; nonetheless, they highlight the importance of regional calibration
to improve IMERG reliability. In a comprehensive global review, [20] identified the lack of
studies evaluating sub-daily scales for the latest version (V06) release of IMERG as an issue
that should be addressed more, particularly for Europe, for which satellite precipitation
products have been investigated less than those for Asian and American territories.

With reference to the Mediterranean basin, the area has been always subjected to high
uncertainty in rainfall estimations due to its unique topography and complex climate [21].
According to the literature, the discrepancy between satellite and ground measurements in
this area is higher in regions characterized by a complex morphology and influenced by
land–sea transitions, especially when the finer temporal resolutions are considered [22–24].
Additionally, the Mediterranean region is one of the most vulnerable areas of the globe to
the effects of climate change [25–27], which makes rainfall estimation from satellites difficult
since the climate today is exposed to more frequent and severe extreme events, particularly
at finer temporal resolutions (e.g., hourly and sub-hourly) [28], that the complexity becomes
more evident than those modeled in the past [25,28–33].

Precipitation estimation over sub-hourly time scales plays a critical role for many
sectors impacted by natural phenomena. Nevertheless, only a few studies have focused on
evaluating satellite products with rain-gauge measurements at fine scales [20]. However,
half-hourly rainfall estimates of IMERG are available to the public, and there are selected
studies evaluating hourly and sub-hourly IMERG data. Some of these studies include
an evaluation of IMERG V06 at an hourly scale over Canada [34], at 1, 6, and 24 h scales
by [35] over Brazil, and at 1 and 3 h scales by [36]. Although these studies highlight the
potential of IMERG at sub-hourly scales, they also suggest that there is still room for further
improvement in product accuracy at fine sub-daily scales for practical aims. Impacts of
temporal resolution on space-based precipitation estimates over Southern Italy are similarly
construed to a few. To give an example, [37] set a 10-day threshold for stable performances
of satellite estimates in terms of categorical indicators and statistical metrics, whereas [38]
discovered a reasonable performance in remote-sensing estimates above a 6 h temporal
resolution. Most recently, daily and 6 h data from IMERG V04, [22] suggested that the
performance of GPM satellite data is primarily driven by temporal aggregation rather
than orography.

Following these evaluations, many researchers have attempted to reduce the uncer-
tainties involved in Satellite Rainfall Estimates (SRE) using different methods such as the
mean correction factor method [39], quantile mapping [40], and the Bayesian approach [41].
However, these methods are often associated with various limitations and, for this reason,
are often replaced by more advanced methods [42,43]. In some cases, the blending of
ancillary variables to enhance precipitation estimates has been implemented to overcome
these limitations [44]. These merging techniques have proven to be effective in improving
the accuracy of precipitation estimates from satellites [45,46]. For instance, some authors
blended SRE along with the topography and physical characteristics of a region through
a linear parametric model [47], while others took advantage of atmospheric variables,
specifically Precipitable Water Vapor (PWV), which is suggested to be highly intercon-
nected to precipitation [48]. The authors of [4] improved rainfall estimates through a fusion
of weather radars, satellite estimates, soil moisture data, and terrain elevations within
two distinct model frameworks: Artificial Neural Network (ANN) and Geographically
Weighted Regression (GWR). The authors of [49] blended four multisource precipitation
estimates, including IMERG, CMORPH (CPC MORPHing technique), Climate Hazards
Group Infrared Precipitation with station data (CHIRPS), and the Precipitation Estima-
tion from Remotely Sensed Information using Artificial Neural Networks by Dynamic
Infrared–Rain Rate (PERSIANN-PDIR), with PWV and land surface temperature.

Various strategies for combining satellite-based and ancillary data have been widely
used to improve space-based estimates, including linear regression as the most common
method with desirable outcomes [50,51]. In addition to scientific techniques, Machine
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Learning (ML) techniques, such as ANNs, have been increasingly applied in rainfall studies
due to their ability to extract a non-linear relationship between independent and depen-
dent variables, without the need for predefined relationships; this has led to a significant
improvement compared to traditional blending methods [46,49,52–55]. A summary of
selected literature reviews in this field is reported in Table 1.

In this study, we develop a methodology to correct high-resolution satellite precipita-
tion estimations over the Mediterranean island of Sicily, Italy, through blending atmospheric
characteristics and land surface factors. The methodology is a two-phase process. During
the first phase, the latest version of individual IMERG (V06) precipitation estimations, at a
relatively high temporal resolution (i.e., half-hourly) and daily scale, is validated against
observed data provided by the rain gauge network of the Agrometeorological Information
Service of Sicily (Servizio Informativo Agrometeorologico Siciliano—SIAS) for the period
2016–2020. Upon gaining a deep insight into the satellite performance over the region,
the second phase concentrates on enhancing the accuracy of space-based precipitation
estimations through blending IMERG with ancillary data that describe interactions with
atmospheric content and land surface properties. In this regard, two techniques are applied,
namely, Multivariant Linear Regression (MLR) and ANN. Given that Surface Soil Moisture
(SSM) retrievals are strongly associated with rainfall depth [56,57], successful blending
approaches by [49,55] have inspired this study to include soil moisture in precipitation
estimation models as a potential ancillary variable.

We believe that the framework developed within the study may offer a promising
solution for generating more reliable inputs in hydrological studies, such as those aimed at
assessing flow regime alteration [58], particularly in complex terrain areas that are prone to
extreme events, such as the Mediterranean region. Moreover, its potential benefits could
be extended to the catchment and regional scales, contributing to improving studies on
hydrogeological risk assessment.

The manuscript is organized as follows. Section 2 describes the study area, dataset,
and merging methods. The results are presented and discussed in Section 3. Section 4
concludes the paper.

Table 1. Summary of selected literature for review.

Author Framework, Material,
and Approach

Study Area
Study Period Result(s)

Moazemi et al.,
2021 [34]

Evaluating different IMERG
precipitation products with
hourly resolution

Canada
2014–2018

1. PrecipitationCal (PrCal) outperformed
other precipitation products of IMERG.

2. Best seasonal performance in summer and
dry seasons.

3. Capability of IMERG to capture
spatiotemporal variation of rainfall.

Caracciolo et al.,
2018 [22]

Examining the performance of
IMERG-v06 SPEs over
Mediterranean islands of Italy

Italy
2015–2016

1. GPM SPEs performances were driven by
temporal aggregation more than
geographic context.

2. A stable performance was reached at
approximately 10 days.

Brocca et al.,
2013 [57]

SM2RAIN approach to space
precipitation estimates based
on soil moisture data
from ASCAT

South Europe
2008–2011

1. The method provided reasonable rainfall
estimates using both in situ and
satellite data.

2. Possibility of application to precipitation
estimations on global scales.
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Table 1. Cont.

Author Framework, Material,
and Approach

Study Area
Study Period Result(s)

Wehbe et al.,
2020 [4]

Two fusion approaches based
on ANN and GWR to merge
satellite precipitation
estimates, weather radars, and
soil moisture

UAE
2015–2018

1. Both GWR and ANN estimations
outperformed the original GPM and
radar estimates.

2. The weakest rainfall correction was
obtained by GWR during the summer.

3. The incorporation of SM led to improved
corrections by the ANN model compared
to GWR.

4. The methodology is extendable to other
arid and hyper-arid regions with poor
gauge networks.

Beykahmadi et al.,
2021 [48]

Improving the accuracy of
daily and 6-hourly SPEs of
IMERG through PWV and
land surface elevation

Iran
2015–2017

1. There was no specific linear or nonlinear
relation between SPEs and elevation.

2. Blending SPEs with atmospheric PWV
enhanced the rainfall estimates
significantly in terms of both categorical
and statistical metrics.

Nosratpour et al.,
2022 [49]

Fusion model based on the
integration of CMORPH,
PDIR, CHIRPS, IMERG, PWV,
and LST through MLR
and ANN

Iran
2017–2021

1. General enhancement in SPEs with respect
to evaluation indices compared to
estimations from original products, with
superiority of the ANN method.

2. Best results achieved with the model
developed by IMERG, PDIR, CMORPH,
and CHIRPS along with PWL and LST.

3. Superior seasonal performance of merged
models in dry seasons.

Zhao et al.,
2022 [59]

Integrate multi-source
precipitation products
(APHRODITE, ERA5,
CHIRPS) with environmental
factors (vegetation and soil
moisture) through a
ML model

China
1987–2017

1. Accuracy of precipitation estimates
increased compared to individual
satellite estimates.

2. The more ancillary factors interconnected
to precipitation merged, the more robust
the model became.

3. An ML framework for blending data
corresponded to the strongest results.

2. Materials and Methods
2.1. Study Area

Sicily is the largest island in the Mediterranean Sea and is located at the southern end
of Italy, between latitudes 36◦ N and 39◦ N and longitudes 12◦ E and 16◦ E (Figure 1). It is
separated from the Italian Peninsula by the Strait of Messina and bordered by the Ionian
Sea (eastward), the Tyrrhenian Sea (northward), and the Channel of Sicily (southward),
which separates Sicily from Africa (Figure 1). The island covers an area of approximately
25,700 km2, with orography ranging from 0 to 3320 m a.s.l. at the volcano Etna (Figure 1).
The climate there is typical of that in Mediterranean regions. Because of its geographic
position and morphology, Sicily is characterized by significant spatiotemporal variability
in precipitation; the mean annual precipitation ranges between approximately 360 mm in
the southeastern part of the island and approximately 1900 mm in the northeastern part of
the island [60], with summers (i.e., from June through August) typically dry, with little or
no rain, and the highest amount of rainfall occurring during the winter months [61,62].
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rainfall datasets. 

Figure 1. Digital Elevation Model (DEM) of Sicily and location of SIAS rain gauge stations.

Figure 1 shows the Digital Elevation Model (DEM) of Sicily and its location in the
Mediterranean Sea (see inset in Figure 1). DEM has a 20 × 20 m resolution and is provided
by the Italian National Geoportal (http://www.pcn.minambiente.it/mattm/en/; accessed
on 15 January 2023).

2.2. Datasets
2.2.1. Precipitation Data: Ground and Satellite Observations

In this study, ground-based and satellite precipitation measurements were used.
Ground-based data were provided by the SIAS, which manages a network of approx-
imately 100 tipping bucket rain gauges distributed over the entire island (Figure 1) that
collect data with a temporal resolution of 10 min and a rain resolution of 0.2 mm. For the
comparison with the IMERG data, the original data were aggregated at both half-hourly
and daily scales. For daily data, a wet day (or rainy day) was defined as a day in which a
minimum rainfall of 1 mm/day occurred. In addition, an inter-event time was fixed equal
to 1 h, which separated one rain event from the next [63,64].

Satellite data were obtained from IMERG, which is a unified algorithm that provides
multi-satellite precipitation products to the U.S. GPM team. The current version of the
dataset is the V06, with 0.1◦ spatial resolution (i.e., approximately 10 × 10 km at the
latitudes of Sicily) and 30 min temporal resolution (GPM_3IMERGHH) [44]. This was used
to obtain the dataset of the GPM Level 3 IMERG “Final” at the daily scale at the same
spatial resolution (GPM_3IMERGDF).

IMERG combines retrievals from Passive Microwave (PMW) and Microwave-calibrated
Infrared (IR) to produce a quasi-global (60◦ S–60◦ N) precipitation product based only on
satellite data. Raw data are processed and then gridded and merged with IR data to provide
global, homogeneous precipitation measurements [65]. IMERG has three types of products
based on latency and the processing method applied to observations: early (IMERG-E),
late (IMERG-L), and final (IMERG-F). While early and late products are available 3 and
12 h after the observations, respectively, the final version is released 3.5 months later. An
advantage of IMERG-F is the additional levels of data processing that are not considered in
the first two products. The gridded data are available from mid-March 2014 to the present.
The products used in this study were GPM_3IMERGHH-06 and GPM_3IMERGDF-06,
corresponding to half-hourly and daily temporal resolutions, respectively.

http://www.pcn.minambiente.it/mattm/en/
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For both the ground-based and satellite precipitation, data within the period of 2016
to 2020 were considered. Table 2 reports the main characteristics of the SIAS and IMERG
rainfall datasets.

Table 2. Overview of the high-resolution ground and satellite-based products used in this study.

Product Temporal
Resolution

Spatial
Resolution Coverage Version Latency Provider

SIAS 10 min Point data Regional
Sicily - -

Servizio Informativo
Agrometeorologico

Siciliano (http://www.sias.
regione.sicilia.it/; accessed

on 2 May 2022)

IMERGHH Half-hourly ~10 km Global 6 Final
(3.5 months)

NASA (https://gpm.nasa.
gov/data/directory;

accessed on 2 May 2022)

IMERGDF Daily ~10 km Global 6 Final
(3.5 months) NASA

AMSR2-PWL Daily 10 km Global 1 1 day

JAXA
(https://www.eorc.jaxa.

jp/AMSR/index_en.html;
accessed on 2 May 2022)

SMAP-L3E Daily 9 km Global 3 50 days NASA

2.2.2. Ancillary Data: Precipitable Water Vapor and Soil Moisture

In addition to precipitation data, some ancillary data coming from remote sensing
measurements, namely, the precipitable water vapor and the soil moisture, were considered
in this study.

The amount of vertically accumulated water vapor in the atmosphere is defined as
the amount of water per unit area. Here, the Precipitable Water vapor over Land product
(GCOM-W PWL Research Product—kg/m2) was retrieved at the daily scale and on a
spatial resolution of approximately 10 km from the Japan Aerospace Exploration Agency
(JAXA) portal of Advanced Microwave Scanning Radiometer-2 (AMSR2), which was
launched aboard the Global Change Observation Mission 1st-Water (GCOM-W1) satel-
lite. Data were acquired in HDF format for the period 2016–2020 via ftp service through
https://www.eorc.jaxa.jp/AMSR/index_en.html (accessed on 5 April 2023). AMSR2 pro-
vides data on global precipitation, ocean wind speed, water vapor, sea ice concentration,
brightness, temperature, and soil moisture with the purpose of analyzing variations in
water circulation [66]. Estimations of vertically integrated columns of water vapor over
land are conducted using polarization differences of 18 and 23 GHz channels, respectively.

Data on soil moisture remotely sensed were obtained from the SMAP satellite available
through the National Snow and Ice Data Center (NSIDC) (https://nsidc.org/data/spl3
smp_e/versions/3 accessed on 5 April 2023). Soil moisture estimates using SMAP’s passive
microwave radiometer have been proven to outperform other satellite soil moisture datasets
when compared to in-situ soil moisture data. Since 2015, the SMAP-L3E (Enhanced SMAP
data from Level 3 of processing) dataset has been available at the spatial resolution of
9 × 9 km on a daily scale for free. Although the spatial resolution of the product is roughly
close to 10 km, which is the common spatial resolution of all datasets, we implemented a
bilinear interpolation method to rescale and adjust the product’s spatial resolution. The SM
data in the topmost layer were evaluated and discarded if the soil temperature was below
273 ◦K (~0 ◦C). The investigated period was again from 2016 to 2020.

A summary of detailed information regarding the two ancillary datasets used in this
study is listed in Table 2.

http://www.sias.regione.sicilia.it/
http://www.sias.regione.sicilia.it/
https://gpm.nasa.gov/data/directory
https://gpm.nasa.gov/data/directory
https://www.eorc.jaxa.jp/AMSR/index_en.html
https://www.eorc.jaxa.jp/AMSR/index_en.html
https://www.eorc.jaxa.jp/AMSR/index_en.html
https://nsidc.org/data/spl3smp_e/versions/3
https://nsidc.org/data/spl3smp_e/versions/3
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2.3. Methodology

With the growing volume and complexity of data, traditional statistical methods are
often inadequate to handle very large datasets. Concerning this matter, data mining tech-
niques have proven to be an essential part of the data analysis process. By leveraging a
variety of methods, including machine learning and statistical modeling, data mining en-
ables analysts to identify relationships within large, different, and independent variables. In
the context of meteorology and climatology, data mining techniques have shown promising
results in enhancing the accuracy and reliability of precipitation estimates, as discussed in
the previous section. This technology is used for descriptive and predictive purposes, where
the last one is mainly the core of meteorology and atmospheric science. In this study, both
purposes have two distinct phases. Phase 1 evaluates and compares daily and half-hourly
rainfall estimates in terms of some statistical and categorical indices that are discussed in
Section 3.2. Thereafter, the effects of the variables originating from different sources, such
as atmosphere or land, on precipitation estimations are examined by two methods (i.e.,
MLR and ANN) in phase 2, which are briefly discussed in the following section.

Machine learning models require both training (calibration) and testing (validation)
procedures to ensure that they are accurate, reliable, and generalizable. While it is necessary
that the training data is representative of the entire dataset, there is currently no precise
mathematical guideline to determine the minimum size required for these subsets. Despite
this, the present study followed suggestions from the literature and randomly assigned
75% of the dataset for training and the remaining subset for assessment.

2.3.1. Multivariant Linear Regression Model

Linear regression is heavily used in atmospheric science to decrease the complexity
of relationships among variables and extract the level of their association. In this study,
two MLR models were proposed to improve rainfall estimates by merging rainfall remote
estimations with PWV and SM. Before applying the procedure to the data, each dataset
was standardized using its mean and standard deviation [67] to ensure that all variables
contributed at a common scale.

Following studies by [52,53,59], which used water vapor in the atmosphere and soil
moisture as ancillary variables, this study merged two models based on an MLR framework,
as defined below:

PMLR1 = c1ZIMERG + c2ZPWV + c3 (1)

PMLR2 = c1ZIMERG + c2ZPWV + c3ZSM + c4 (2)

where PMLRi denotes the value of precipitation estimated by the i-th linear integration
model (i = 1, 2), Z is the variable associated with its subscript, and ci are the coefficients
of the model variables. Equations (1) and (2) will be hereafter referred to as MLR1 and
MLR2, respectively. MLR1 aims to mathematically interconnect the amount of IMERG
precipitation estimates, ZIMERG, to the amount of water vapor in the atmosphere, ZPWV ,
which can potentially be converted into rain. MLR2 performs similarly to MLR1, including
the amount of water received by soil in terms of rain at the very first layer, ZSM, as well.
The coefficients for the proposed models were calculated using the Harmony Search (HS)
algorithm, which is a meta-heuristic and self-learning algorithm that has recently been
developed [63–67].

The HS algorithm is an optimization technique that combines existing harmonies to
generate new ones using three hyperparameters: Pitch Adjustment Rate (PAR), Harmony
Memory Considering Rate (HMCR), and BandWidth (BW). The initial population of har-
monies is followed by the generation of new harmonies by means of a random combination
of elements from the existing population. Harmonies that provide a higher level of fit-
ting replace the previous ones until a stopping criterion is met. Optimal hyperparameter
values have been recommended based on experiments, including BW = 0.1, PAR = 0.1,
HMCR = 0.7, and a maximum number of iterations equal to 1500. The HS algorithm has
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been implemented in MATLAB and further information can be found in [63–67]. Figure 2a
shows a flowchart of the HS algorithm used in this study.

Figure 2. (a) Harmony search algorithm flowchart; (b) Schematic diagram of neural network architec-
ture, input data, hidden layer, neurons, activation function, and output prediction.

2.3.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) have been developed as generalizations of mathe-
matical models of biological nervous systems [68] and today are used as useful alternatives
to traditional statistical modeling techniques in many scientific disciplines.

The architecture of an ANN typically consists of three main types of layers: an input
layer, which contains the independent variables, an output layer, which produces the
desired output or dependent variable, and one or more hidden layers, which contain
neurons that apply activation functions to compute complex relationships between the
input and output layers.

The input layer receives the raw input data, while the output layer produces the final
output or prediction. The hidden layers are instead responsible for transforming the input
data into a format that is better suited for predicting the desired output. Each neuron in
a hidden layer applies an activation function to the weighted sum of its inputs, which
introduces nonlinearity into the network and allows it to model complex relationships
between the input and output variables. Overall, the architecture of an ANN with its input,
output, and hidden layers, along with the activation functions used in the hidden layers,
play a crucial role in determining the network’s ability to learn from data and, therefore, its
performance. A schematic architecture of the neural network used in this work is illustrated
in Figure 2b.
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This study used a Multilayer Perceptron model with the backpropagation algorithm
network; a growing number of papers in the atmospheric literature have demonstrated
that MLP provides robust estimates within a fast, simple yet powerful algorithm [4,46,69]
that is particularly suitable for mimicking what happens in the atmosphere. Indeed, unlike
traditional statistical techniques, the MLP makes no prior assumptions concerning the
data distribution and can model highly non-linear functions. Therefore, it has become
an attractive alternative to numerical models, particularly in dynamic systems, including
those studied by atmospheric science [70].

The MLP used in this study is defined as follows:

l0 = Z (3)

li = f (Wi × li−1), i = 1,...,Nl − 1 (4)

Output(Z) = lNl = WNl × lNl−1 (5)

where l0 represents the input layer, li represents the i-th hidden layer, Wi is the weight
matrix of the i-th layer, and f is the transfer function of the Nl-layered neural network.
Output(Z) is the desired ANN output from the initial input layer, Z. As for the MLP case,
two integrated ANN models were defined to estimate rainfall as below:

PANNj = Output
(
Zj
)

j = 1, 2 (6)

Z1 = [ZPWV , ZIMERG] (7)

Z2 = [ZPWV , ZIMERG, ZSM] (8)

where PANN j represents the precipitation estimated from merging initial input layers j, as
defined in vectors (7) and (8).

An ANN was trained using the backpropagation algorithm or backward propagation
of errors, which is a generalized extension of the Least Mean Squared rule [71]. It works
by propagating the error from the output layer back through the network, adjusting the
weights of the connections between neurons in order to minimize the difference between
the predicted output and the target output. The objective function used to train the MLP is
defined as below:

SquareError = ∑N
i=1

(
Pobs(i)− PModel(i))2 (9)

where Pobs(i) and PModel(i) indicate the i-th observed and estimated precipitation, respec-
tively. Applying the backpropagation error algorithm to developed models, the number
of layers and neurons was computed by a trial-and-error procedure during the calibra-
tion process. Table 3 provides an overview of the details of the parameters and ANN
configuration network.

Table 3. Overview of selected configuration and parameter values for the proposed ANN models.

Network Attribute Value/Selection

No. of hidden layers 1
No. of hidden neurons 16
Epochs 150
Hidden and output layer activation functions Rectified Linear Unit (ReLU)
Optimizer ADAM
Training algorithm Backpropagation Error Algorithm
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2.3.3. Performance Analyses

The performances of 3IMERGHH and 3IMERGDF products were evaluated against
SIAS ground observations using a pixel-to-pixel comparison. To achieve this, ground
station data were interpolated using the Inverse Distance Weighting (IDW) technique to
create a raster with a spatial resolution of 10 km, which is the same as that for the IMERG
products. In addition to the individual IMERG products, the performances of the MLR and
ANN merged models were also evaluated.

Several diagnostic indices were used to quantitatively evaluate the quality of the mod-
els and products by quantifying the error within the satellite data and models using ground
observations as a reference. These indices included the Pearson Correlation Coefficient
(CC), which measures the linear correlation between two datasets, Relative Bias (RBias),
which indicates the systematic bias of datasets, Root Mean Square Error (RMSE), which
measures the average error magnitude weighting it towards larger errors, Nash-Sutcliffe
Efficiency (NSE), which is used to assess the predictive skill of hydrological models, and
Willmott Index (WIA), which is used to evaluate the accuracy of model estimations.

In addition to statistical metrics, categorical metrics including Probability Of Detection
(POD), Critical Success Index (CSI), and False Alarm Ratio (FAR) were used to analyze
the detection capability of the satellite products or simulated models [72] by setting the
cut-off value to the 5th percentile of the resampled SIAS rainfall empirical distribution
in each grid cell and considering rainfall events exceeding 1 mm per day. Using a con-
tingency table, POD deals with the question of what fraction of the observed events was
correctly estimated. FAR represents events identified by the simulation but not confirmed
by observations, while CSI describes the overall skill of the simulation relative to reference
observations [73]. Table 4 summarizes the statistical and categorical metrics used for the
evaluation of individual IMERG products and merged models, where Pobsi

is the observed
gauge data of order i, Pesti is the estimated data of order i, P is the average of dataset, Hits
are the days when both satellites and stations recorded the event as rainy, FalseAlarm are
the days when satellites recorded rain but the gauges did not, and Misses are the days when
satellites did not register rain but the gauges did.

Table 4. Summary of statistical/categorical indices used to evaluate the satellite precipitation products
and the performance of the MLR and ANN models. Bold values indicate a perfect agreement between
satellite (or modeled) data and reference data (i.e., SIAS data).

Index Unit Equation Range of Values

Correlation Coefficient (CC) - CC =
∑N

i=1 (pesti−pest)(pobs i−pobs)√
∑N

i=1(pest i−pest)
2
√

∑N
i=1(pobsi−pobs)

2
−1 to 1

Relative Bias
(RBias) - Rbias = ∑N

i=1(pest i−pobsi )
∑N

i pobsi

−inf to +inf
0

Root of the Mean Square Error
(RMSE) mm RMSE =

√
1
N

N
∑

i=1
(Pobsi − Pesti)2

−inf to +inf
0

Nash-Sutcliffe Efficiency
(NSE) mm NSE = 1− ∑N

i=1(Pobs i−Pest i)
2

∑N
i=1(Pobs i−Pobs)

2

−inf to 1
0.36 < Satisfactory < 0.75

Good > 0.75
Willmott Index

(WIA) - WIA = 1− ∑N
i=1(Pobs i−Pest i)

2

∑N
i=1(|Pobs i−Pobs|+|Pest i−Pobs|)2

0–1

Probability Of Detection
(POD) - POD = Hits

Hits+Misses 0–1

Critical Success Index (CSI) - CSI = Hits
Hits+Misses+FalseAlarm 0–1

False Alarm Ratio
(FAR) - FAR = FalseAlarm

Hits+FalseAlarm 0–1
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3. Results and Discussion
3.1. Evaluation across Temporal Scales

This section presents the assessment of individual IMERG products with ground refer-
ence data, reported in Table 5. Starting with half-hourly data, it is worth noting that this is
the first time that this IMERG product has been evaluated against ground-based data at this
relatively high temporal resolution over the largest island of the Mediterranean Sea. Over
the entire period here investigated (2016–2020), CC = 0.22 along with RMSE = 0.86 mm
was achieved, thus denoting a weak correlation between satellite products and observed
data. Moreover, negative values of RBias (−1.1) and NSE (−0.4) suggested an underes-
timation and unsatisfactory estimates for rainfall, respectively, at the half-hourly scale.
With reference to categorical indices, a POD with an average value of 0.66 depicted an
acceptable detection power of estimate on rainfall/non-rainfall events at such a resolution.
This was followed by an adequate value of CSI, equal to 0.64, which indicated that the
half-hourly data performed satisfactorily in distinguishing correct warned events out of
all warnings issued and unwarned events. Moreover, IMERG half-hourly data provided
many false rainfall events occurrences, as reported by FAR equal to 0.41. Whenever the
FAR and POD are both relatively high, it is safe to assume that over-warnings occurred [74].
It is noteworthy that the results at this time scale are in accordance with those of previous
studies on hourly IMERG precipitation estimates for Sicily [22].

Table 5. Summary of the spatially averaged evaluation metrics at half-hourly and daily time scales
for Sicily.

2016 HH * 2017 HH 2018 HH 2019 HH 2020 HH 2016–2020 HH Daily

CC 0.27 0.25 0.2 0.21 0.22 0.22 0.63
RBias −1.26 −1.02 −1.14 −1.92 −1.05 −1.1 1.92
RMSE [mm] 0.86 0.77 0.87 0.86 0.75 0.86 3.3
NSE −0.22 −0.34 −0.3 −0.11 −0.26 −0.4 0.38
POD 0.63 0.62 0.66 0.65 0.68 0.66 0.85
FAR 0.41 0.42 0.4 0.41 0.4 0.41 0.22
CSI 0.68 0.61 0.62 0.65 0.66 0.64 0.89

* HH refers to half-hourly estimates.

As expected, switching to daily data improved the performance in terms of both
statistical and categorical indices compared to those obtained with half-hourly data. For
instance, on average, CC equal to 0.63 indicated a stronger correlation with SIAS mea-
surements compared to half-hourly data. Considering RBias, daily estimations showed
a positive value, thus indicating an overestimation of ground-based data. As expected,
errors within satellite estimates were larger in terms of RMSE at the daily scale than at
the half-hourly scale, with values of 3.3 mm and 0.86 mm, respectively. This was mainly
because the daily scale retrieval averaged out some of the short-term variability (including
half-hourly estimates) and could be more robust to noise and errors, but it could also result
in the loss of important information or a cumulation of errors within sub-daily retrievals. In
contrast, the higher temporal resolution of the half-hourly scale captured more short-term
variability in rainfall, but this also made the estimates more sensitive to noise and errors in
the data, as well as to errors in the processing algorithms. On the other hand, NSE had a
notable improvement from negative values to 0.34, indicating preferable estimations and
better-matched ground measurements. Considering categorical indices, daily estimates
generally exhibited less error in detecting precipitation compared to half-hourly ones, with
decreasing FAR values and increasing values of POD and CSI. In this case, it is noteworthy
that the results agree with those previously found over the same region by [22]. As these
results have been previously proven by many authors [34,75–77] across the world and,
more specifically, by [22] for Sicily, such an analysis confirms that an aggregating time scale
has a significantly positive impact on satellite estimates.
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In conclusion, the poor sub-hourly metrics and still improvable daily performances
here obtained reveal the need for IMERG products to be corrected with ground observations
across regions with complex terrain or improved with other methods such as the blending
techniques discussed in Section 3.2.

3.2. Fusion Models Performance Analysis
3.2.1. Primary Results

This section presents the results obtained from applying two blending techniques. As
previously mentioned, the main goal of such techniques is to improve the performance
of IMERG precipitation estimates by optimally combining them with ancillary datasets
that represent atmospheric and land surface characteristics. Half-hourly IMERG data show
poor performance for the study area, as discussed in Section 3.1, and, therefore, there is a
critical need to improve precipitation estimates at sub-daily/hourly time scales; however,
the improvement techniques presented here were applied only to daily scale precipitation.
This is mainly because the spatial and temporal resolutions of the ancillary data used here
(SM and PWV) were lower than those of the IMERG data; in this case, the only temporal
scale that matches with all ancillary data is the daily one.

With reference to the application of the Harmony Search algorithm, the coefficients of
integrated multi-linear variant models (Equations (1) and (2)) were determined and are
represented in Table 6.

Table 6. Summary of the coefficients related to the calibration of MLR models.

Number of Parameters C1 C2 C3 C4

PMLR1 3 2.041 0.167 0.152 -
PMLR2 4 1.719 0.178 0.091 0.138

According to [78], the importance of the predictor variables depends on the weights of
the coefficients within a linear regression. In this case, as expected, IMERG had the heaviest
weight among all datasets, while PWV had a stronger impact than SM on the regression
procedure, unlike the results obtained by [79] for the Iberian Peninsula.

Figure 3 contains the spatial mean of the temporally averaged values for statistic and
categoric metrics for daily rainfall events for the period 2016–2020. To facilitate visual
comparison, all metrics were transformed into a scale that ranged between 0 and 1, with 1
representing the ideal value. Thus, a larger area on the spider plot indicates better model
performance. This was also applied to RBias, which was converted to normalized bias
(hereafter referred to as NBias) simply dividing by the total sample size.
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As the evaluation metrics reported in Figure 3 suggest, ANN2 outperformed other
models and the individual IMERG product. More generally, CC indicated a very high
degree of agreement with reference to precipitation when passing from individual IMERG
estimates to merged models, as shown in Figure 3. The values of NSE of the merged
models imply an overall modest improvement compared to individual satellite products.
Indeed, ranging from 0.55 to 0.64, NSE fell within the ideal range commonly defined for
a model [80] and showed satisfactory estimates of merged models. Comparing the two
methods of blending data, i.e., ANN and MLR, the use of ANNs led to a decrease in the
magnitude of errors, as demonstrated by the highest values of WIA (0.81) and 1-NBias
(0.77), indicating less overestimated data. MLR1 produced a marginal improvement in
the wetness index anomaly (WIA) to 0.70 compared to IMERG’s WIA of 0.66. Conversely,
MLR2′s total increase in WIA of 0.3 was even less than the improvement attained by MLR1.
This adverse performance of MLR2 compared to MLR1 may have been due to a nonlinear
relation between rainfall and ancillary variables that made the WIA unsuitable to describe
such a relationship. In addition, except for MLR1 and MLR2, a general slight improvement
was achieved in terms of POD and FAR when compared to IMERG estimates; higher values
were reached for ANN2 (i.e., 7% and 11%, respectively), which was recognized as the best
estimator among all. From one point of view, improvements in categorical indicators were
less considerable compared to improvements in statistical indices. This was a clear sign that
improvements due to the blending techniques used were mainly reflected in estimations of
rainfall intensity, volume, and overall trends rather than in the detection ability.

3.2.2. Spatial Analysis

To further evaluate the performance of the merged models for the study region,
Figures 4 and 5 show the spatial distribution of selected statistical and categorical metrics,
respectively, for Sicily for the period 2016–2020. Metrics were calculated using equations
previously defined in Section 2.3, considering daily values as estimated from IMERG
products and measured by the SIAS network.

With reference to Figures 4 and 5, the first row (panels a and b) shows the spatial
distribution of the CC and RMSE calculated using IMERG daily estimations and SIAS
reference data. To better highlight improvements due to the application of blending models
and their possible spatial patterns, rows 2 through 5 (including panels c to j) instead
show the percentage variation between the metrics obtained from the estimates of the
blending model and the IMERG product, here used as a term of comparison, for each
pixel. The difference was calculated using the following formula: [(Model Value − IMERG
Value)/IMERG Value] × 100.

Figure 4a,b depict the spatial distribution of the CC for IMERG, revealing that a vast
majority of pixels exhibited good agreement with SIAS measurements (e.g., orange to red
pixels), particularly in the central and southern regions. On the contrary, regions with
complex orography on the east and northeast sides and the coastlines on the north and east
sides of the island show less significant correlations. The spatial distribution of errors, as
demonstrated by the RMSE map in Figure 4b, follows a similar pattern, with an average
RMSE below 3.5 mm observed across the left-half side of the island, but increasing to
over 7 mm in the south-eastern corner. This distinct spatial pattern of error distribution
is aligned with patterns previously detected by [22,37]. Expectedly, CC and RMSE spatial
distribution maps by IMERG V06 for 2016–2020 were quite similar to those of version 03
by [22] in 2015–2016 for Sicily. The worst performances along the coastlines are likely due
to the weakness of the IMERG retrieval techniques in distinguishing the different radiative
characteristics of hydrometeors over the land and ocean [14,25].

The spatial maps of differences depicted in Figure 4 reveal that all the blending
models successfully improved precipitation estimations in terms of statistical metrics.
Specifically, the MLR models improved the CC, especially on the east side and in the
southern regions, despite some negative results indicated by dark grey pixels in Figure 4.
Greater improvements were reached with the ANN models. Specifically, the ANN2 model



Hydrology 2023, 10, 128 14 of 23

improved pixels with previously weak values of CC that were not improved by the MLR
models. The ANN models showed an increase in the level of agreement across the island,
characterized by a pattern that included a 5–25% improvement along the coastline. Over
25% of the increase in agreement was concentrated in the eastern corners of the island,
where the highest values of disagreement were observed. Conversely, there were either
zero or minimal changes in the central parts of the island, where the level of agreement
was already high. This improvement pattern was further accentuated by the use of the
model ANN2.
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Figure 4. Comparison of IMERG data and model estimates. Panels on the first row (a,b) show the
spatial distribution of CC and RMSE for IMERG individual products with reference to SIAS data,
while the subsequent panels (c–j) illustrate the relative deviations of each blending model’s estimates
from the IMERG data. The relative frequency function (percentage) of pixels falling within different
classes is displayed inside each panel.
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Figure 5. Same as Figure 4 but for categorical metrics (i.e., POD and FAR). Scale bars are modified
to the ranges where the POD and FAR fell, i.e., 0.5–1 and 0–0.5, respectively. Panels on the first row
(a,b) show the spatial distribution of POD and FAR for IMERG individual products with reference
to SIAS data, while the subsequent panels (c–j) illustrate the relative deviations of each blending
model’s estimates from the IMERG data. The relative frequency function (percentage) of pixels falling
within different classes is displayed inside each panel.

Regarding the RMSE, the relative frequency function indicated that the number of
pixels with worsened rainfall estimations decreased from MLRs to ANNs. Most pixels in
MLR1 exhibited negligible changes or remained unchanged, while the number of pixels with
reduced RMSE increased in MLR2, even though this was compensated by many worsened
estimations, especially in the west corner of the island, where the accuracy of remote
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sensing instruments was adversely affected by complex oceanic streams. Consequently, no
significant spatial improvements in RMSE were observed in MLR1 or MLR2. However, as
for the CC, ANNs not only followed a pattern of error reduction along the coastline of a
5–25% reduction in RMSE but also demonstrated a significant increase in the frequency of
pixels that were improved by over 50% on the frequency function, with a concentration of
pixels improved by over 25% on the right-half side of the island. Furthermore, in addition
to the aforementioned improvement pattern, there was a reduction of over 50% in the high
values of RMSE observed in a few individual pixels scattered throughout the island. Taken
together, these findings suggest that the ANN models, specifically ANN2, yielded notable
improvements in estimating precipitation patterns across the island, with an ability to
capture the complex spatial variability of precipitation.

The findings from the analysis of the two categorical indices, POD and FAR, are
presented in Figure 5a,b along with the deviation spatial maps of the proposed models
(Figure 5c–j). The maps of POD and FAR illustrate the ability of IMERG to effectively
distinguish daily rainfall events from non-rainfall events at various locations with a 95%
probability of detection above the threshold of 1 mm. Overall, IMERG showed promis-
ing detection ability, with values approaching perfection for both POD and FAR, which
is aligned with the spatiotemporally averaged values for IMERG reported in Figure 3
(POD = 0.85, FAR = 0.22). Nevertheless, some errors persisted, particularly in the three
corners of the island. The spatial maps of categorical indices are aligned with the results of
IMERG V03 by [22] and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis (TMPA) product by [37] for the region, as well as the spatial maps
of CC and RMSE. Most pixels remained unchanged or experienced less than 5% improve-
ment with all models, particularly MLRs. Conversely, ANN models, particularly ANN2,
effectively improved detection capability in the poorly detected regions on the east and
west corners, as demonstrated by the increase in dark pink pixels, while also substantially
reducing the number of worsened pixels. Overall, the ANN2 blending model was the most
effective approach for improving detection in pixels that were frequently associated with
inaccurate detections.

Examining in detail the major inconsistencies and errors between the gauge mea-
surements, IMERG daily products, and daily estimations corrected by applying blending
models, it is possible to notice worse performances over the eastern region, which is poorly
gauged (especially in the southeast corner) and characterized by high intensity and depth of
rainfall [28] and diverse mechanisms of precipitation (i.e., orographic rather than cyclonic)
that can be challenging to estimate accurately due to interactions with complex orography
causing large spatial variations [81–83].

A distinct spatial pattern of errors was observed repeatedly for Sicily when using
TMPA product by [37], as well as with different old versions of IMERG products by [22],
which was also identified in the present study using the latest version of an IMERG
individual product. Hopefully, this pattern of errors was efficiently detected and addressed
by the ANN models to obtain a more consistent spatial map of evaluation metrics. This
additionally demonstrates the ANN2 model’s capability of integrating the response of soil
moisture and precipitable water vapor of the atmosphere into the precipitation correction
process more effectively than the MLR process.

3.2.3. Seasonality Analysis

To further diagnose the models’ inter-comparison, Figure 6 illustrates the spatially
averaged monthly time series of rainfall records from SIAS, along with generated estimates
by IMERG, MLR, and ANN, for the period 2016–2020.

As shown in Figure 6, all rainfall products generally showed high agreement with
the recorded rainfall pattern of the region, with wet autumn and spring seasons and dry
summers. Considering NBias in Figure 3, a tendency towards overestimation was visible
within all series, particularly during the wet seasons, which was significantly reduced
by the ANN models. Generally, the blending models, particularly the ANNs, resulted
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in substantial increases in agreement with ground records compared to the individual
IMERG product.
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ANN models (solid and dashed blue lines) in panel (c).

From Figure 6, a strong agreement between MLR1 and SIAS records (CC = 0.83) at the
monthly scale can be observed. After incorporating the SM variable into MLR2, a relative
improvement compared to IMERG individual estimations was observed. However, it was
outweighed by an increase in RMSE and a decrease in NSE values from 12.6 to 17.8 mm
and from 0.61 to 0.56, respectively, when compared to MLR1. This indicated that either
SM was highly correlated with the PWV, leading to redundant information being included
in the model, or a simple linear model was not able to extract the relationships among
variables, which ANN models do efficiently.

ANN models provided a time series close to the reference data, as shown by the NSE
over 0.83 and CC over 0.91, with the magnitude of errors almost halved from 15.7 mm
in IMERG to 7.2 mm in the ANN2 model. After the analysis of the wet and dry seasons,
the merged models appeared to be more consistent with SIAS measurements during dry
months. Conversely, estimations showed more deviation from the reference data in wet
seasons, mostly with reference to winter peaks, when the average depth of rainfall exceeded
100 mm rainfall. Comparing ANN2 and ANN1 for some wet months (e.g., October and
December 2018, March and December 2019, and January and October 2020, to name a few),
it is possible to observe that the SM variable contributed to improving the accuracy of
precipitation estimates in wet months, as expected. On the other hand, in dry months, only
negligible improvements were observed. Among all blending models, once again, ANN2
appeared to be more aligned with the SIAS ground data and outperformed other models in
terms of seasonality agreement.

3.2.4. Sensitivity Analysis

When blending independent variables to improve rainfall estimates, it is important to
assess the sensitivity of the results to each input ancillary variable. One common approach
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is to perform a sensitivity analysis by systematically removing one variable at a time from a
model that includes all variables and quantifying the impact of that change on the accuracy
of the estimations. The sensitivity of a model to the removal of individual input variables
can be measured by computing the increase in the Mean Squared Error (MSE) of the model
after the variable is removed while keeping the other input variables constant. The larger
the increase in MSE, the more sensitive the model is to the removal of the variable, thus
indicating the importance of that variable for the model performance.

The variable importance methodology first introduced by [78] helps to recognize
influential variables and the relative contribution of each in improving the capability of
a model in reproducing precipitation. The first step in such an analysis is to fit a model
to a dataset using a chosen set of input variables. The baseline MSE of the model is then
calculated using the chosen set of input variables. For each input variable, the variable is
removed from the model, and the model is refitted to the data using the remaining variables.
The new MSE for the model with the variable removed is then calculated. The percentage
increase in MSE for each variable, hereafter named %IncMSE, was calculated by taking
the difference between the baseline MSE and the new MSE after removing the variable
and dividing the result by the baseline MSE. The input variables were then ranked based
on their %IncMSE values, with larger values indicating greater importance. The results
obtained by applying the variable importance test for the three explanatory variables (i.e.,
SM, PWV, and IMERG products) are presented in Figure 7.
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As expected, IMERG satellite precipitation was ranked as the most important estimator
variable, showing its strong impact in model estimations by producing the highest values
of %IncMSE, i.e., 91% and 98% for MLR and ANN, respectively. Moreover, PWV was
ranked as the next most significant variable by showing high %IncMSE, i.e., 14% and 19%
for MLR and ANN, respectively. This meant that when including the PWV variable in the
blending models, the mean square error between reference records and generated models
decreased by an average of 14–19%. Comparing the values of WIA in Figure 3 for IMERG
(0.69) to those of MLR1 (0.69) and ANN1 (0.77) suggested similar improvements in terms
of reducing the magnitude of errors. Moreover, as previously observed in Figure 3, SM
played a minor role in MLR by slightly improving the performance of the model. Here,
the removal of the SM variable also caused negligible changes, with the lowest value of
%IncMSE (i.e., 3%) observed in MLR2. This supports our previous observations that SM did
not contribute to a considerable improvement within the linear regression blending model.
Conversely, in a non-linear model such as ANN, the removal of the SM variable led to an
increase in error, with a %IncMSE equal to approximately 15% observed in ANN2. This



Hydrology 2023, 10, 128 19 of 23

finding is consistent with our previous observations from Figure 3, where the inclusion of
SM and PWV within the ANN model led to a decrease in WIA from 0.70 to 0.69. These
corroborate the findings reported in Section 3.2.1, which suggested that the ANN model
outperformed the MLR model in accurately reconstructing precipitation estimates through
the merging of IMERG products with PWV and SM variables.

4. Conclusions

Accurate and reliable precipitation data are a crucial input variable used in many
hydrologic and hydraulic modeling frameworks, particularly in the context of climate
change-induced sustainability and risk management policies. This study explored, for
the first time in Sicily, the performance of half-hourly rainfall estimates and daily IMERG
estimates in reproducing observed precipitation for the period 2016–2020. While the daily
IMERG estimates provided satisfactory results for the investigated region, the half-hourly
assessment revealed potential weaknesses, such as an inability to accurately distinguish
between rainfall and non-rainfall events or represent precise values for rainfall depth.

Four merging models were developed within a multivariant regression and a neural
network framework. To evaluate the improvement in detection power due to the applica-
tion of the merged models, different statistical (i.e., CC, NBias, and RMSE) and categorical
(i.e., POD, FAR, and CSI) indicators were used. The results show that exploiting SM and
PWV data for the assessment of daily precipitation leads to improvements in the estimation
of precipitation provided by IMERG products. Furthermore, the artificial neural networks
and multiple linear regression fusion techniques improved the accuracy compared to the
original IMERG product. Consistent with the findings reported by [4], who reported the fail-
ure of linear regression approaches in capturing the intricate and spatiotemporal nonlinear
relationships between precipitation and other land/atmospheric variables compared with
ANN approaches, this study showed significant improvements in precipitation estimation
when using neural network models to merge SM and PWV with IMERG data compared to
multivariant linear regression models. As the sensitivity analysis suggested, SM and PWV
contributed efficiently and almost equally to enhancing rainfall estimates within an ANN
framework. Despite the considerable improvement due to the blending models, a minority
of errors still existed, especially in the west and northwest regions where the rainfall depth
and intensity were both high.

In conclusion, the suggested ANN-based correction framework offers a promising
solution for generating more reliable inputs in hydrological studies, particularly in complex
terrain areas that are prone to extreme events such as the Mediterranean region. Its potential
benefits extend to various scales, including catchment-level assessments and macro- and
regional-level evaluations, which can contribute to water-related risk reduction efforts.
To further refine the physically based ANN representation, it might be worthwhile to
incorporate additional interconnected variables from the surface or atmosphere, such as
land surface temperature, humidity, and wind, in future research.

Author Contributions: Conceptualization, research methodology, data curation, analysis, code
scripting, original manuscript composition, reviewing and editing, and validation of data, N.B.;
conceptualization, research methodology, interpretation and analysis of data, reviewing and editing,
A.F.; conceptualization, research methodology, interpretation and analysis of data, reviewing and
editing, L.V.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The ground measurement dataset related to this article was provided
by the regional agency SIAS (Servizio Informativo Agrometeorologico Siciliano) through a formal
request (http://www.sias.regione.sicilia.it/ accessed on 5 April 2023). The publicly available satellite
datasets of IMERG, PWV, and SM can be found at the following respective locations: https://gpm.
nasa.gov/data/directory, https://www.eorc.jaxa.jp/AMSR/index_en.html, and https://nsidc.org/
data/spl3smp_e/versions/3 accessed on 5 April 2023.

http://www.sias.regione.sicilia.it/
https://gpm.nasa.gov/data/directory
https://gpm.nasa.gov/data/directory
https://www.eorc.jaxa.jp/AMSR/index_en.html
https://nsidc.org/data/spl3smp_e/versions/3
https://nsidc.org/data/spl3smp_e/versions/3


Hydrology 2023, 10, 128 20 of 23

Acknowledgments: We would like to express our gratitude for the opportunity to conduct this
research and for the resources provided by the University of Palermo.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kucera, P.A.; Ebert, E.E.; Turk, F.J.; Levizzani, V.; Kirschbaum, D.; Tapiador, F.J.; Loew, A.; Borsche, M. Precipitation from space:

Advancing Earth system science. Bull. Am. Meteorol. Soc. 2013, 94, 365–375. [CrossRef]
2. Luo, X.; Wu, W.; He, D.; Li, Y.; Ji, X. Hydrological simulation using TRMM and CHIRPS precipitation estimates in the lower

Lancang-Mekong river basin. Chin. Geogr. Sci. 2019, 29, 13–25. [CrossRef]
3. Tian, F.; Hou, S.; Yang, L.; Hu, H.; Hou, A. How does the evaluation of the GPM IMERG rainfall product depend on gauge density

and rainfall intensity? J. Hydrometeorol. 2018, 19, 339–349. [CrossRef]
4. Wehbe, Y.; Temimi, M.; Adler, R.F. Enhancing precipitation estimates through the fusion of weather radar, satellite retrievals, and

surface parameters. Remote Sens. 2020, 12, 1342. [CrossRef]
5. Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA global precipitation measurement (GPM)

integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. Version 2015, 4.
6. Smith, T.M.; Arkin, P.A.; Bates, J.J.; Huffman, G.J. Estimating bias of satellite-based precipitation estimates. J. Hydrometeorol. 2006,

7, 841–856. [CrossRef]
7. Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Kummerow, C.; Tapiador, F.J. Assessment of IMERG precipitation

estimates over Europe. Remote Sens. 2019, 11, 2470. [CrossRef]
8. Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J. Representation of precipitation characteristics and extremes in regional reanalyses

and satellite-and gauge-based estimates over western and central Europe. J. Hydrometeorol. 2019, 20, 1123–1145. [CrossRef]
9. Islam, M.A.; Yu, B.; Cartwright, N. Assessment and comparison of five satellite precipitation products in Australia. J. Hydrol.

2020, 590, 125474. [CrossRef]
10. Jiang, L.; Bauer-Gottwein, P. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for

300 catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [CrossRef]
11. Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over

Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [CrossRef]
12. Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D. A preliminary assessment of GPM-based multi-satellite

precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [CrossRef]
13. Mahmoud, M.T.; Hamouda, M.A.; Mohamed, M.M. Spatiotemporal evaluation of the GPM satellite precipitation products over

the United Arab Emirates. Atmos. Res. 2019, 219, 200–212. [CrossRef]
14. Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. Evaluation of IMERG and ERA5 precipitation products over the Mongolian

Plateau. Sci. Rep. 2022, 12, 21776. [CrossRef]
15. Tan, M.L.; Duan, Z. Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens. 2017, 9, 720. [CrossRef]
16. Zhang, J.; Lin, L.-F.; Bras, R.L. Evaluation of the quality of precipitation products: A case study using WRF and IMERG data over

the central United States. J. Hydrometeorol. 2018, 19, 2007–2020. [CrossRef]
17. Sungmin, O.; Kirstetter, P.E. Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous

US using MRMS data. Q. J. R. Meteorol. Soc. 2018, 144, 270–281.
18. Wen, Y.; Behrangi, A.; Lambrigtsen, B.; Kirstetter, P.-E. Evaluation and uncertainty estimation of the latest radar and satellite

snowfall products using SNOTEL measurements over mountainous regions in western United States. Remote Sens. 2016, 8, 904.
[CrossRef]

19. Gebregiorgis, A.S.; Kirstetter, P.E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To what extent
is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos.
2018, 123, 1694–1707. [CrossRef]

20. Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim,
A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754.
[CrossRef]

21. Rebora, N.; Molini, L.; Casella, E.; Comellas, A.; Fiori, E.; Pignone, F.; Siccardi, F.; Silvestro, F.; Tanelli, S.; Parodi, A. Extreme
rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeorol. 2013, 14, 906–922. [CrossRef]

22. Caracciolo, D.; Francipane, A.; Viola, F.; Noto, L.V.; Deidda, R. Performances of GPM satellite precipitation over the two major
Mediterranean islands. Atmos. Res. 2018, 213, 309–322. [CrossRef]

23. Hisam, E.; Mehr, A.D.; Alganci, U.; Seker, D.Z. Comprehensive evaluation of Satellite-Based and reanalysis precipitation products
over the Mediterranean region in Turkey. Adv. Space Res. 2022, 71, 3005–3021. [CrossRef]

24. Retalis, A.; Katsanos, D.; Michaelides, S.; Tymvios, F. Evaluation of high-resolution satellite precipitation data over the Mediter-
ranean Region. In Precipitation Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–175.

25. Noto, L.V.; Cipolla, G.; Francipane, A.; Pumo, D. Climate change in the mediterranean basin (part I): Induced alterations on
climate forcings and hydrological processes. Water Resour. Manag. 2023, 37, 2287–2305. [CrossRef]

https://doi.org/10.1175/BAMS-D-11-00171.1
https://doi.org/10.1007/s11769-019-1014-6
https://doi.org/10.1175/JHM-D-17-0161.1
https://doi.org/10.3390/rs12081342
https://doi.org/10.1175/JHM524.1
https://doi.org/10.3390/rs11212470
https://doi.org/10.1175/JHM-D-18-0200.1
https://doi.org/10.1016/j.jhydrol.2020.125474
https://doi.org/10.1016/j.jhydrol.2019.03.042
https://doi.org/10.1016/j.jhydrol.2015.12.008
https://doi.org/10.1016/j.jhydrol.2016.01.029
https://doi.org/10.1016/j.atmosres.2018.12.029
https://doi.org/10.1038/s41598-022-26047-8
https://doi.org/10.3390/rs9070720
https://doi.org/10.1175/JHM-D-18-0153.1
https://doi.org/10.3390/rs8110904
https://doi.org/10.1002/2017JD027606
https://doi.org/10.1016/j.rse.2021.112754
https://doi.org/10.1175/JHM-D-12-083.1
https://doi.org/10.1016/j.atmosres.2018.06.010
https://doi.org/10.1016/j.asr.2022.11.007
https://doi.org/10.1007/s11269-022-03400-0


Hydrology 2023, 10, 128 21 of 23

26. Orth, R.; Zscheischler, J.; Seneviratne, S.I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci.
Rep. 2016, 6, 28334. [CrossRef] [PubMed]

27. Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van
Diemen, R. IPCC, 2019: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019, in press. Available online:
https://spiral.imperial.ac.uk/handle/10044/1/76618 (accessed on 6 April 2023).

28. Treppiedi, D.; Cipolla, G.; Francipane, A.; Noto, L. Detecting precipitation trend using a multiscale approach based on quantile
regression over a Mediterranean area. Int. J. Climatol. 2021, 41, 5938–5955. [CrossRef]

29. Nanni, P.; Peres, D.J.; Musumeci, R.E.; Cancelliere, A. Worry about Climate Change and Urban Flooding Risk Preparedness in
Southern Italy: A Survey in the Simeto River Valley (Sicily, Italy). Resources 2021, 10, 25. [CrossRef]

30. Aronica, G.; Brigandí, G.; Morey, N. Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in
October 2009: The case of the Giampilieri catchment. Nat. Hazards Earth Syst. Sci. 2012, 12, 1295–1309. [CrossRef]

31. Arnone, E.; Pumo, D.; Viola, F.; Noto, L.; La Loggia, G. Rainfall statistics changes in Sicily. Hydrol. Earth Syst. Sci. 2013, 17,
2449–2458. [CrossRef]

32. Diodato, N. Climatic fluctuations in southern Italy since the 17th century: Reconstruction with precipitation records at Benevento.
Clim. Chang. 2007, 80, 411–431. [CrossRef]

33. Noto, L.; Cipolla, G.; Pumo, D.; Francipane, A. Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and
Uncertainties in Climate Change Modeling and Impact Analyses. Water Resour. Manag. 2023, 37, 2307–2323. [CrossRef]

34. Moazami, S.; Najafi, M. A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation
observations across Canada. J. Hydrol. 2021, 594, 125929. [CrossRef]

35. Freitas, E.D.S.; Coelho, V.H.R.; Xuan, Y.; de CD Melo, D.; Gadelha, A.N.; Santos, E.A.; Galvão, C.D.O.; Ramos Filho, G.M.; Barbosa,
L.R.; Huffman, G.J. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their
properties. J. Hydrol. 2020, 589, 125128. [CrossRef]

36. Manz, B.; Páez-Bimos, S.; Horna, N.; Buytaert, W.; Ochoa-Tocachi, B.; Lavado-Casimiro, W.; Willems, B. Comparative ground
validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes. J. Hydrometeorol. 2017, 18, 2469–2489.
[CrossRef]

37. Lo Conti, F.; Hsu, K.-L.; Noto, L.V.; Sorooshian, S. Evaluation and comparison of satellite precipitation estimates with reference to
a local area in the Mediterranean Sea. Atmos. Res. 2014, 138, 189–204. [CrossRef]

38. Chiaravalloti, F.; Brocca, L.; Procopio, A.; Massari, C.; Gabriele, S. Assessment of GPM and SM2RAIN-ASCAT rainfall products
over complex terrain in southern Italy. Atmos. Res. 2018, 206, 64–74. [CrossRef]

39. Shah, R.D.; Mishra, V. Development of an experimental near-real-time drought monitor for India. J. Hydrometeorol. 2015, 16,
327–345. [CrossRef]

40. Ringard, J.; Seyler, F.; Linguet, L. A quantile mapping bias correction method based on hydroclimatic classification of the Guiana
shield. Sensors 2017, 17, 1413. [CrossRef]

41. Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B. Real-time bias reduction for satellite-based precipitation estimates. J. Hydrometeorol.
2010, 11, 1275–1285. [CrossRef]

42. Ajaaj, A.A.; Mishra, A.; Khan, A.A. Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stoch.
Environ. Res. Risk Assess. 2016, 30, 1659–1675. [CrossRef]

43. Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for
hydrologic impact studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [CrossRef]

44. Chappell, A.; Renzullo, L.J.; Raupach, T.H.; Haylock, M. Evaluating geostatistical methods of blending satellite and gauge data to
estimate near real-time daily rainfall for Australia. J. Hydrol. 2013, 493, 105–114. [CrossRef]

45. Xu, L.; Chen, N.; Moradkhani, H.; Zhang, X.; Hu, C. Improving global monthly and daily precipitation estimation by fusing
gauge observations, remote sensing, and reanalysis data sets. Water Resour. Res. 2020, 56, e2019WR026444. [CrossRef]

46. Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ma, Q.; Zhao, Y.; Ge, Y. Merging multiple satellite-based precipitation products and gauge
observations using a novel double machine learning approach. J. Hydrol. 2021, 594, 125969. [CrossRef]

47. Yin, Z.-Y.; Zhang, X.; Liu, X.; Colella, M.; Chen, X. An assessment of the biases of satellite rainfall estimates over the Tibetan
Plateau and correction methods based on topographic analysis. J. Hydrometeorol. 2008, 9, 301–326. [CrossRef]

48. Beyk Ahmadi, N.; Rahimzadegan, M. Improving the accuracy of global precipitation measurement integrated multi-satellite
retrievals (GPM IMERG) using atmosphere precipitable water and altitude in climatic regions of Iran. Int. J. Remote Sens. 2021, 42,
2759–2781. [CrossRef]

49. Nosratpour, R.; Rahimzadegan, M.; Beikahmadi, N. Introducing a merged precipitation satellite model using satellite precipitation
products, land surface temperature, and precipitable water vapor. Geocarto Int. 2022, 37, 11782–11812. [CrossRef]

50. Sharifi, E.; Saghafian, B.; Steinacker, R. Downscaling satellite precipitation estimates with multiple linear regression, artificial
neural networks, and spline interpolation techniques. J. Geophys. Res. Atmos. 2019, 124, 789–805. [CrossRef]

51. Alexakis, D.; Tsanis, I. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM
precipitation products using MODIS data. Environ. Earth Sci. 2016, 75, 1077. [CrossRef]

https://doi.org/10.1038/srep28334
https://www.ncbi.nlm.nih.gov/pubmed/27323864
https://spiral.imperial.ac.uk/handle/10044/1/76618
https://doi.org/10.1002/joc.7161
https://doi.org/10.3390/resources10030025
https://doi.org/10.5194/nhess-12-1295-2012
https://doi.org/10.5194/hess-17-2449-2013
https://doi.org/10.1007/s10584-006-9119-1
https://doi.org/10.1007/s11269-023-03444-w
https://doi.org/10.1016/j.jhydrol.2020.125929
https://doi.org/10.1016/j.jhydrol.2020.125128
https://doi.org/10.1175/JHM-D-16-0277.1
https://doi.org/10.1016/j.atmosres.2013.11.011
https://doi.org/10.1016/j.atmosres.2018.02.019
https://doi.org/10.1175/JHM-D-14-0041.1
https://doi.org/10.3390/s17061413
https://doi.org/10.1175/2010JHM1246.1
https://doi.org/10.1007/s00477-015-1155-9
https://doi.org/10.1002/wrcr.20331
https://doi.org/10.1016/j.jhydrol.2013.04.024
https://doi.org/10.1029/2019WR026444
https://doi.org/10.1016/j.jhydrol.2021.125969
https://doi.org/10.1175/2007JHM903.1
https://doi.org/10.1080/01431161.2020.1857878
https://doi.org/10.1080/10106049.2022.2060324
https://doi.org/10.1029/2018JD028795
https://doi.org/10.1007/s12665-016-5883-z


Hydrology 2023, 10, 128 22 of 23

52. Kayri, M.; Kayri, I.; Gencoglu, M.T. The performance comparison of Multiple Linear Regression, Random Forest and Artificial
Neural Network by using photovoltaic and atmospheric data. In Proceedings of the 2017 14th International Conference on
Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2017; pp. 1–4.

53. Nandakumar, S.; Valarmathi, R.; Juliet, P.S.; Brindha, G. Artificial Neural Network for Rainfall Analysis Using Deep Learning
Techniques. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; p. 042022.

54. Folino, G.; Guarascio, M.; Chiaravalloti, F.; Gabriele, S. A Deep Learning based architecture for rainfall estimation integrating
heterogeneous data sources. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest,
Hungary, 14–19 July 2019; pp. 1–8.

55. Noto, L.; Beikahmadi, N.; Pumo, D.; Francipane, A. An Artificial Intelligence–Based Blending of Satellite products across
Mediterranean Island of Sicily, Italy using GPM-IMERG V06 Final Run. In Proceedings of the Copernicus Meetings, Bonn,
Germany, 5–9 September 2022.

56. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as
a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141.
[CrossRef]

57. Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W. A new method for rainfall estimation through soil moisture observations.
Geophys. Res. Lett. 2013, 40, 853–858. [CrossRef]

58. Pumo, D.; Francipane, A.; Cannarozzo, M.; Antinoro, C.; Noto, L.V. Monthly hydrological indicators to assess possible alterations
on rivers’ flow regime. Water Resour. Manag. 2018, 32, 3687–3706. [CrossRef]

59. Zhao, Y.; Xu, K.; Dong, N.; Wang, H. Optimally integrating multi-source products for improving long series precipitation precision
by using machine learning methods. J. Hydrol. 2022, 609, 127707. [CrossRef]

60. Di Piazza, A.; Lo Conti, F.; Noto, L.V.; Viola, F.; La Loggia, G. Comparative analysis of different techniques for spatial interpolation
of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf.
2011, 13, 396–408. [CrossRef]

61. Francipane, A.; Cipolla, G.; Maltese, A.; La Loggia, G.; Noto, L. Using very high resolution (VHR) imagery within a GEOBIA
framework for gully mapping: An application to the Calhoun Critical Zone Observatory. J. Hydroinform. 2020, 22, 219–234.
[CrossRef]

62. Forestieri, A.; Lo Conti, F.; Blenkinsop, S.; Cannarozzo, M.; Fowler, H.J.; Noto, L.V. Regional frequency analysis of extreme rainfall
in Sicily (Italy). Int. J. Climatol. 2018, 38, e698–e716. [CrossRef]

63. Yang, X.-S. Harmony search as a metaheuristic algorithm. In Music-Inspired Harmony Search Algorithm; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 1–14.

64. Chen, J.; Pan, Q.-K.; Li, J.-Q. Harmony search algorithm with dynamic control parameters. Appl. Math. Comput. 2012, 219, 592–604.
[CrossRef]

65. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.
[CrossRef]

66. Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl.
Math. Comput. 2007, 188, 1567–1579. [CrossRef]

67. Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Del Ser, J.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey on applications of
the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818–1831. [CrossRef]

68. Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1995.
69. Chen, H.; Chandrasekar, V.; Cifelli, R.; Xie, P. A machine learning system for precipitation estimation using satellite and ground

radar network observations. IEEE Trans. Geosci. Remote Sens. 2019, 58, 982–994. [CrossRef]
70. Zhang, Q.-J.; Gupta, K.C.; Devabhaktuni, V.K. Artificial neural networks for RF and microwave design-from theory to practice.

IEEE Trans. Microw. Theory Tech. 2003, 51, 1339–1350. [CrossRef]
71. Du, K.-L.; Swamy, M.N. Neural Networks and Statistical Learning; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013.
72. Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under

different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [CrossRef]
73. Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100.
74. Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [CrossRef]
75. Khodadoust Siuki, S.; Saghafian, B.; Moazami, S. Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG

satellite precipitation products. Int. J. Remote Sens. 2017, 38, 558–571. [CrossRef]
76. Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG precipitation products with the point rain gauge records

over Sichuan, China. Atmos. Res. 2020, 246, 105101. [CrossRef]
77. Xu, S.; Shen, Y.; Niu, Z. Evaluation of the IMERG version 05B precipitation product and comparison with IMERG version 04A

over mainland China at hourly and daily scales. Adv. Space Res. 2019, 63, 2387–2398. [CrossRef]
78. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
79. Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N.; Quintana-Seguí, P.; Barella-Ortiz, A. A nonparametric statistical technique

for combining global precipitation datasets: Development and hydrological evaluation over the Iberian Peninsula. Hydrol. Earth
Syst. Sci. 2018, 22, 1371–1389. [CrossRef]

https://doi.org/10.1002/2014JD021489
https://doi.org/10.1002/grl.50173
https://doi.org/10.1007/s11269-018-2013-6
https://doi.org/10.1016/j.jhydrol.2022.127707
https://doi.org/10.1016/j.jag.2011.01.005
https://doi.org/10.2166/hydro.2019.083
https://doi.org/10.1002/joc.5400
https://doi.org/10.1016/j.amc.2012.06.048
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1016/j.amc.2006.11.033
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.1109/TGRS.2019.2942280
https://doi.org/10.1109/TMTT.2003.809179
https://doi.org/10.3390/rs8020135
https://doi.org/10.1175/1520-0434(1990)005&lt;0570:TCSIAA&gt;2.0.CO;2
https://doi.org/10.1080/01431161.2016.1268735
https://doi.org/10.1016/j.atmosres.2020.105101
https://doi.org/10.1016/j.asr.2019.01.014
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.5194/hess-22-1371-2018


Hydrology 2023, 10, 128 23 of 23

80. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

81. Rojas, Y.; Minder, J.R.; Campbell, L.S.; Massmann, A.; Garreaud, R. Assessment of GPM IMERG satellite precipitation estimation
and its dependence on microphysical rain regimes over the mountains of south-central Chile. Atmos. Res. 2021, 253, 105454.
[CrossRef]

82. Adhikari, A.; Behrangi, A. Assessment of satellite precipitation products in relation with orographic enhancement over the
western United States. Earth Space Sci. 2022, 9, e2021EA001906. [CrossRef]

83. Roe, G.H. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/j.atmosres.2021.105454
https://doi.org/10.1029/2021EA001906
https://doi.org/10.1146/annurev.earth.33.092203.122541

	Introduction 
	Materials and Methods 
	Study Area 
	Datasets 
	Precipitation Data: Ground and Satellite Observations 
	Ancillary Data: Precipitable Water Vapor and Soil Moisture 

	Methodology 
	Multivariant Linear Regression Model 
	Artificial Neural Networks 
	Performance Analyses 


	Results and Discussion 
	Evaluation across Temporal Scales 
	Fusion Models Performance Analysis 
	Primary Results 
	Spatial Analysis 
	Seasonality Analysis 
	Sensitivity Analysis 


	Conclusions 
	References

