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Abstract: In this paper a novel procedure is developed for evolutionary cross power spectra 

(ECPS) estimation of bivariate nonstationary stochastic processes. Specifically, the ECPS is 

determined by estimating the statistical moments of energy-like response quantities of lightly 

damped linear filters excited by nonstationary stochastic processes. In this context, a smoothing 

procedure is incorporated by using the Savitzky-Golay (S-G) moving average filter to obtain 

reliable ECPS based even from a limited number of available records. Further, a refinement of 

the approach is proposed relying on polynomial based functions of the system output. Several 

numerical examples, including nonstationary processes with known spectra, and historic 

accelerograms are used to assess the reliability and accuracy of the proposed procedure. 

Key Words: Nonstationary Stochastic Processes; Spectral Estimation: Earthquake Inputs 

1.  Introduction 

Many problems in several engineering fields involve multivariate stochastic processes with salient 

nonstationary features. Seismic ground motions and strong downburst winds, for instance, typically 

show a slow variation in spectral content with time [1]. In this regard, capturing these features becomes 

critical in correctly predicting the corresponding structural response [2, 3].  

   The time-frequency characteristics of these nonstationary random processes can be described in terms 

of evolutionary auto and cross power spectral density functions [4, 5]. In this regard, several approaches 

have been developed for appropriately analyzing and estimating the cross power spectra of a 

nonstationary process. A closed form evolutionary cross power spectra (ECPS) expression has been 

proposed in [6]. Nevertheless, it has been reported that deriving the closed-form ECPS from 

nonstationary processes can be cumbersome and lengthy. Further, the wavelets transform (WT) method 

has been proposed as an alternative tool for estimating the ECPS [7]. Notably, different kinds of wavelet 

functions can be employed. For instance, Morlet wavelets, Modified Little-Paley wavelets [7], and 

harmonic wavelets [8] have been used to estimate the ECPS of bivariate nonstationary processes. 

   In context with the preceding comments, a more physically motivated procedure is perhaps desirable. 

The procedure is based on a technique first presented in [4, 5, 9]. Specifically, an estimate of the ECPS 

of bivariate nonstationary random processes can be obtained by determining the first statistical moment 
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of appropriately introduced energy-like quantities of two lightly damped single-degree-of-freedom 

(SDOF) linear systems excited by a bivariate stochastic process [4, 5, 9]. In this regard, the SDOF 

systems act as bandpass filters, centered around their natural frequencies. Clearly, by appropriately 

varying the natural frequency of the SDOF systems, a complete description of the ECPS can be achieved. 

However, some difficulties may be encountered due to the oscillatory trend of the data, which causes 

the ECPS to be erratic. Note that these issues can be attributed to the limited number of records available, 

and to the fact that this approach requires the evaluation of the derivatives of the statistical moments of 

the energy-like quantities.  

   To address this problem, the original method in [5] is revised and extended, thus enhancing the 

accuracy of the estimated ECPS. Specifically, a novel approach is presented for appropriately smoothing 

the first statistical moment of appropriately introduced energy-like quantities, relying on the use of the 

so-called Savitzky-Golay (S-G) moving average filter [10]. This is done to obtain reliable spectra based 

even on a relatively small number of available records. Further, a refinement of the approach is 

investigated by capturing the expected values of these quantities, and their derivatives, utilizing proper 

polynomial models. Finally, several applications involving both simulated and historic earthquake data 

are used to assess the accuracy of the proposed approach. 

 

2.  Mathematical Background  

Consider two independent lightly damped linear SDOF systems (filters) governed by the equation [4, 5] 

 �̈� + 2𝜁𝜔0�̇� + 𝜔0
2𝑥 = 𝑋(𝑡) ,   (1) 

and 

 �̈� + 2𝜁𝜔0�̇� + 𝜔0
2𝑦 = 𝑌(𝑡) ,   (2) 

with 𝜁 ≪ 1, representing the damping ratio, and 𝜔0 representing the natural frequency of the system. 

Further, 𝑋(𝑡) and 𝑌(𝑡) are two broadband nonstationary stochastic processes, which represent the 

components of the bivariate process {𝑋(𝑡), 𝑌(𝑡)}. These processes admit an integral representation of 

the form 

 
𝑋(𝑡) = ∫ 𝐴𝑥(𝑡, 𝜔)𝑒−𝑖𝜔𝑡𝑑𝑍𝑥(𝜔)

∞

−∞

 ,  
 

  (3) 
 

and 

 
𝑌(𝑡) = ∫ 𝐴𝑦(𝑡, 𝜔)𝑒−𝑖𝜔𝑡𝑑𝑍𝑦(𝜔)

∞

−∞

 , 
 

  (4) 

where 𝐴𝑥(𝑡, 𝜔) and 𝐴𝑦(𝑡, 𝜔) are deterministic modulating functions. Further, 𝑍𝑥(𝜔) and 𝑍𝑦(𝜔) are two 

Gaussian processes with independent increments satisfying the relation 

 < 𝑑𝑍𝑥(𝜔)𝑑𝑍𝑦(𝜔) >= 𝑆𝑥𝑦(𝜔)𝑑𝜔 .   (5) 

   The cross-covariance function of the two random processes can be expressed as 

 
< 𝑋(𝑡)𝑌(𝑡) >= ∫ 𝐴𝑥(𝑡, 𝜔)𝐴𝑦(𝑡, 𝜔)𝑆𝑥𝑦(𝜔)𝑑𝜔

∞

−∞

= ∫ 𝑆𝑥𝑦(𝑡, 𝜔)𝑑𝜔
∞

−∞

 . 
 

  (6) 

   Note that the ECPS function 𝑆𝑥𝑦(𝑡, 𝜔) in Eq. (6) lends itself to a physical interpretation similar to that 

of the evolutionary power spectrum (EPS) function of a bivariate stationary processes.  

   Clearly, in the case of nonstationary processes, the cross power spectrum function is also time 

dependent. Further, the stationary cross power spectrum function 𝑆𝑋𝑌(𝜔) is, in general, a complex 

function with the property 
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 𝑆𝑥𝑦(−𝜔) = 𝑆𝑥𝑦
∗(𝜔) = 𝑆𝑦𝑥(𝜔) .   (7) 

   Therefore, it can be expressed as 

 𝑆𝑥𝑦(𝜔) = 𝐶𝑥𝑦(𝜔) − 𝑖𝑄𝑥𝑦(𝜔) ,   (8) 

where 𝐶𝑋𝑌(𝜔), referred to as the co-spectrum, is a real-valued even function of 𝜔, while 𝑄𝑋𝑌(𝜔), 

referred to as the quad-spectrum, is a real-valued odd function of 𝜔.  

   Further, denoting 𝑥 and 𝑦, as 𝑥1 and 𝑦1, respectively, and their derivatives as 𝑥2 and 𝑦2, respectively, 

it can be proved [5] that the expected value < 𝑥𝑗(𝑡)𝑦𝑘(𝑡) > is given as  

 
< 𝑥𝑗(𝑡)𝑦𝑘(𝑡) >=

𝜋

𝜔0
[
1 + (−1)𝑗+𝑘

2
𝜔0

𝑗+𝑘−3
𝐶𝑥𝑦(𝜔0)

− 𝑖𝑗−𝑘+1
1 − (−1)𝑗+𝑘

2
𝑄𝑥𝑦(𝜔0)]

∗ ∫ 𝐴𝑥(𝑡 − 𝜏, 𝜔0)𝐴𝑦
∗ (𝑡 − 𝜏, 𝜔0)𝑒−2𝜁𝜔0𝜏𝑑𝜏

𝑡

0

 . 

 

 

(9) 

   Next, introducing an “energy like” quantity [4, 5] 

 
�̅�𝑥𝑦(𝑡, 𝜔0) =

1

2
(𝜔0

2𝑥(𝑡)𝑦(𝑡) + �̇�(𝑡)�̇�(𝑡)) , 
   
(10) 

and taking into account Eq. (9), yields 

 
< �̅�𝑥𝑦(𝑡, 𝜔0) >= 𝜋𝑄𝑥𝑦(𝑡, 𝜔0) ∫ 𝐴𝑥(𝑡 − 𝜏, 𝜔0)𝐴𝑦

∗ (𝑡 − 𝜏, 𝜔0)𝑒−2𝜁𝜔0𝜏𝑑𝜏
𝑡

0

 . 
 

(11) 

   The above equation represents a convolution integral associated with the solution of the first order 

differential equation,  

 < �̇̅�𝑥𝑦(𝑡, 𝜔0) > +2𝜁𝜔0 < �̅�𝑥𝑦(𝑡, 𝜔0) >= 𝜋𝐴𝑥(𝑡, 𝜔0)𝐴𝑦
∗ (𝑡, 𝜔0)𝐶𝑥𝑦(𝜔0) 

                                           = 𝜋𝐶𝑥𝑦(𝑡, 𝜔0). 

(12) 

   Further, a similar procedure can be followed for the quad-spectrum. Specifically, defining the quantity 

 �̅�𝑥𝑦(𝑡, 𝜔0) =
𝜔0

2
(�̇�(𝑡)𝑦(𝑡) − 𝑥(𝑡)�̇�(𝑡)) , 

   
  (13) 

and taking into account Eq. (9), yields 

 
< �̅�𝑥𝑦(𝑡, 𝜔0) >= 𝜋𝑄𝑥𝑦(𝑡, 𝜔0) ∫ 𝐴𝑥(𝑡 − 𝜏, 𝜔0)𝐴𝑦

∗ (𝑡 − 𝜏, 𝜔0)𝑒−2𝜁𝜔0𝜏𝑑𝜏
𝑡

0

 . 
 

(14) 

   Therefore, the evolutionary quad-spectrum can be determined by solving the following first-order 

differential equation 

 < �̇̅�𝑥𝑦(𝑡, 𝜔0) > +2𝜁𝜔0 < �̅�𝑥𝑦(𝑡, 𝜔0) >= 𝜋𝐴𝑥(𝑡, 𝜔0)𝐴𝑦
∗ (𝑡, 𝜔0)𝑄𝑥𝑦(𝜔0) 

                                           = 𝜋𝑄𝑥𝑦(𝑡, 𝜔0). 

 
(15) 

   In this manner, both the evolutionary co-spectrum and the quad-spectrum can be estimated from Eq. 

(12) and (15), in which the functions < �̅�𝑥𝑦(𝑡, 𝜔0) > and < �̅�𝑥𝑦(𝑡, 𝜔0) >, and their derivatives, can be 

determined from the ensemble average of the outputs of the SDOF filters in Eq. (1) and (2), and by 

relying on Eq. (10) and (13). Finally, the corresponding ECPS can be obtained as 

 𝑆𝑥𝑦(𝑡, 𝜔0) = 𝐶𝑥𝑦(𝑡, 𝜔0) − 𝑖𝑄𝑥𝑦(𝑡, 𝜔0) . (16) 

   Note that Eq. (16) provides an estimate of the ECPS of the bivariate process centered at the frequency 

𝜔0, based on the observations of the response to this process of linear oscillators with natural frequency 

𝜔0. It is pointed out, however, that Eq. (12) and (15) require the estimation of both the mean data               
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< �̅�𝑥𝑦(𝑡, 𝜔0) > and < �̅�𝑥𝑦(𝑡, 𝜔0) > and the derivatives < �̇̅�𝑥𝑦(𝑡, 𝜔0) > and < �̇̅�𝑥𝑦(𝑡, 𝜔0) >, 

respectively.  

   Based on this procedure, reliable estimates can be obtained for the ECPS of nonstationary bivariate 

processes. However, due to the fact that often only a limited number of records are available, the time 

derivatives of the energy-like quantities < �̇̅�𝑥𝑦(𝑡, 𝜔0) > and < �̇̅�𝑥𝑦(𝑡, 𝜔0) >, may present a highly 

oscillatory trend. This may result, in certain cases, in an unsatisfactory estimate of the corresponding 

𝑆𝑥𝑦(𝑡, 𝜔0). 

 

3.  A Novel Procedure for ECPS Estimation 

Considering the aforementioned problems related to the accuracy of the procedure, an alternative 

technique can be adopted, based on a smoothing procedure employing the S-G filter [10]. This is a 

generalized moving average filter whose coefficients are determined by a non-weighted linear least-

squares regression of the data points involving a polynomial model of a specified degree (hereinafter 

assumed as two).  

   Notably, a main advantage of the S-G filter is that it can retain the shape of the data, thus capturing 

their trend with a low computational cost. 

   In this regard, for each value of the natural frequency of the systems 𝜔0, the S-G filter can be applied 

to pertinent numerical data of < �̅�𝑥𝑦(𝑡) > and < �̅�𝑥𝑦(𝑡) >, and the time derivative < �̇̅�𝑥𝑦(𝑡) > and             

< �̇̅�𝑥𝑦(𝑡) >, leading to less oscillatory approximate representations of the functions. An example of the 

application of this procedure is shown in Fig. 1(a), where the original numerical data < �̅�𝑥𝑦(𝑡) > (black 

line), vis-à-vis the smoothed data < 𝐸𝑥𝑦(𝑡) > by the S-G filter (red line), are reported. Further, 

analogous results in terms of the time derivative < �̇̅�𝑥𝑦(𝑡) > and < �̇�𝑥𝑦(𝑡) >, and the data < �̅�𝑥𝑦(𝑡) > 

and < 𝐷𝑥𝑦(𝑡) > are shown in Fig. 1 (b) and (c), respectively. Specifically, the data from Fig. 1 are 

produced from 500 bivariate nonstationary stochastic processes generated in conjunction with the 

Kanai-Tajimi ECPS. Note that a constant value of the linear damping coefficient (2𝜁𝜔0 = 0.2) is 

employed in Eq. (1), (2), (10) and Eq. (13), and the natural frequency value 𝜔0 = 5 𝑟𝑎𝑑/𝑠 is used.  

 

 
(a)                                                 (b)                                                 (c) 

Fig. 1. Original and smoothed data. (a) < �̅�𝑥𝑦(𝑡) >; (b) < �̇̅�𝑥𝑦(𝑡) >; and (c) < �̅�𝑥𝑦(𝑡) >. 

 

   It can be seen from Fig. 1 that < �̇�𝑥𝑦(𝑡) > becomes significantly smoother by using the S-G filter. 

However, although the above-described procedure improves the accuracy of the numerical evaluation 

of < �̇̅�𝑥𝑦(𝑡) >,  in some circumstances the corresponding ECPS estimated using Eq. (10), (13) and (16) 

may still present an oscillatory trend. 

   In this regard, an additional step can be introduced to obtain a more accurate representation of the 

ECPS from the available records. An appropriately chosen model of the mean energy-like quantities can 

be defined to fit the corresponding data, for each value of the natural frequency 𝜔0. Specifically, the 

model can be constructed by employing the polynomial functions in [11]. In this context, define two 

approximate functions �̃�𝑥𝑦(𝑡) and �̃�𝑥𝑦(𝑡) in the interval [0, 𝑡𝑓], where 𝑡𝑓 is the final time instant, with 

boundary conditions given as 
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and 
�̃�𝑥𝑦(0) = �̇̃�𝑥𝑦(0) = �̃�𝑥𝑦(0) = �̇̃�𝑥𝑦(0) = 0 , 

 

�̃�𝑥𝑦(𝑡𝑓) = 𝐸𝑥𝑦𝑓
;  �̇̃�𝑥𝑦(𝑡𝑓) = �̇�𝑥𝑦𝑓

;  �̃�𝑥𝑦(𝑡𝑓) = 𝐷𝑥𝑦𝑓
;  �̇̃�𝑥𝑦(𝑡𝑓) = �̇�𝑥𝑦𝑓

 , 

 

(17) 

where the initial conditions have been already assumed in dealing with the SDOF systems in Eq. (1) and 

(2). Further, (𝐸𝑓 , �̇�𝑓) and (𝐷𝑓 , �̇�𝑓)  are given by the original mean data < �̅�𝑥𝑦(𝑡𝑓) >, < �̅�𝑥𝑦(𝑡𝑓) > and 

the derivatives < �̇̅�𝑥𝑦(𝑡𝑓) > and < �̇̅�𝑥𝑦(𝑡𝑓) > by numerical simulations of the SDOF systems for each 

value of 𝜔0. 

   Next, an approximate model of �̃�𝑥𝑦(𝑡) and �̃�𝑥𝑦(𝑡) for each value of 𝜔0 can be expressed as a 

combination of shifted Legendre polynomials 𝑃𝑝(𝑡) of order 𝑝, and Hermite interpolating polynomials 

𝐻(𝑡). In particular, the shifted Legendre polynomial of order 𝑝 + 1 can be evaluated by the recursive 

formula 

 
𝑃𝑝+1(𝑡) =

2𝑝 + 1

𝑝 + 1
(

2𝑡 − 𝑡𝑓

𝑡𝑓
) 𝑃𝑝(𝑡) −

𝑝

𝑝 + 1
𝑃𝑝−1(𝑡), 𝑝 = 2, 3, … , 

 
(18) 

where 𝑃0(𝑡) = 1 and 𝑃1(𝑡) = (2𝑡 − 𝑡𝑓)/𝑡𝑓. Further, the Hermite interpolating polynomials 𝐻(𝑡) are 

defined as 

 

𝐻(𝑡) = ∑ 𝑎𝑘𝑡𝑘

3

𝑘=0

 , 
 

(19) 

where the coefficients 𝑎𝑘 can be determined by satisfying the conditions in Eq. (17). Specifically, denote 

𝐻1(𝑡) the Hermite interpolating polynomials of < 𝐸𝑥𝑦(𝑡) >. That is, 

 

and 
𝐻1(0) = �̇�1(0) = 0 ,  

 

𝐻1(𝑡𝑓) = 𝐸𝑥𝑦𝑓
;  �̇�1(𝑡𝑓) = �̇�𝑥𝑦𝑓

 , 

 

(20) 

and 𝐻2(𝑡) the Hermite interpolating of < 𝐷𝑥𝑦(𝑡) >, that is 

 

and 
𝐻2(0) = �̇�2(0) = 0 ,  

 

𝐻2(𝑡𝑓) = 𝐷𝑥𝑦𝑓
;  �̇�2(𝑡𝑓) = �̇�𝑥𝑦𝑓

 . 

 

(21) 

   In this manner, an approximate polynomial of < 𝐸𝑥𝑦(𝑡) > can be expressed as 

 

�̃�𝑥𝑦(𝑡) = ∑ 𝛼𝑝𝑡2(𝑡 − 𝑡𝑓)
2

𝑃𝑝(𝑡) + 𝐻1(𝑡)

𝑁−1

𝑝=0

 , 
 

(22) 

and an approximate model of < 𝐷𝑥𝑦(𝑡) > can be expressed as 

 

�̃�𝑥𝑦(𝑡) = ∑ 𝛽𝑝𝑡2(𝑡 − 𝑡𝑓)
2

𝑃𝑝(𝑡) + 𝐻2(𝑡)

𝑁−1

𝑝=0

 , 
 

(23) 

where 𝑁 is an appropriate number of shifted Legendre polynomials. Note that 𝛼𝑝 and 𝛽𝑝 are coefficients 

that can be evaluated via a nonlinear least-squares approach, minimizing the error between < 𝐸𝑥𝑦(𝑡) > 

and �̃�𝑥𝑦(𝑡), and between < 𝐷𝑥𝑦(𝑡) > and �̃�𝑥𝑦(𝑡).  

   On this base, a simple scheme for the estimation of the ECPS 𝑆𝑥𝑦(𝑡, 𝜔0) can be built. Specifically, the 

following procedure can be used for each value of 𝜔0 from [𝜔0,𝑚𝑖𝑛, 𝜔0,𝑚𝑎𝑥]. 
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I. Use Eq. (1) – (2) to estimate the response 𝑥(𝑡) and 𝑦(𝑡) and the derivative �̇�(𝑡) and �̇�(𝑡) of the 

linear lightly damped SDOF systems for each record of the nonstationary process {𝑋(𝑡), 𝑌(𝑡)}.  

II. Use Eq. (10) and (13) to determine the energy-like quantities for each record, and then estimate                       

< �̅�𝑥𝑦(𝑡) >, < �̅�𝑥𝑦(𝑡) > by ensemble average, and evaluate their derivatives < �̇̅�𝑥𝑦(𝑡) >,          

< �̇̅�𝑥𝑦(𝑡) >.  

III. Use the S-G filter to smooth < �̅�𝑥𝑦(𝑡) >, < �̇̅�𝑥𝑦(𝑡) >, and < �̅�𝑥𝑦(𝑡) >, < �̇̅�𝑥𝑦(𝑡) >, obtaining 

smoothed data < 𝐸𝑥𝑦(𝑡) >, < 𝐷𝑥𝑦(𝑡) >, < �̇�𝑥𝑦(𝑡) > and < �̇�𝑥𝑦(𝑡) >. 

IV. Determine the Hermite interpolating polynomials 𝐻(𝑡) in Eq. (19), considering the boundary 

conditions in Eq. (20) – (21). 

V. Choose a suitable number of 𝑁 shifted Legendre polynomials, for the approximating 

polynomials in Eq. (22) and (23), and find the coefficients 𝛼𝑝 and 𝛽𝑝 by applying a nonlinear 

least-squares procedure using the model in Eq. (22) and (23) to fit the smoothed data                        

< 𝐸𝑥𝑦(𝑡) > and < 𝐷𝑥𝑦(𝑡) >, and their derivatives < �̇�𝑥𝑦(𝑡) > and < �̇�𝑥𝑦(𝑡) >. 

VI. Use the coefficients 𝛼𝑝 and 𝛽𝑝 in the shifted Legendre polynomials and Hermite interpolating 

polynomial to generate the time dependent approximate functions �̃�𝑥𝑦(𝑡) and �̃�𝑥𝑦(𝑡), and their 

derivatives �̇̃�𝑥𝑦(𝑡) and �̇̃�𝑥𝑦(𝑡)  

VII. Compute the evolutionary co-spectrum 𝐶𝑥𝑦(𝑡, 𝜔0), as in Eq. (12). That is,               

 �̇̃�𝑥𝑦(𝑡, 𝜔0) + 2𝜁𝜔0�̃�𝑥𝑦(𝑡, 𝜔0) = 𝜋𝐶𝑥𝑦(𝑡, 𝜔0) , (24) 

              and evolutionary quad-spectrum 𝑄𝑥𝑦(𝑡, 𝜔0), as in Eq. (15). That is,  

 �̇̃�𝑥𝑦(𝑡, 𝜔0) + 2𝜁𝜔0�̃�𝑥𝑦(𝑡, 𝜔0) = 𝜋𝑄𝑥𝑦(𝑡, 𝜔0) . (25) 

VIII. Finally, derive the ECPS 𝑆𝑥𝑦(𝑡, 𝜔0) from 𝐶𝑥𝑦(𝑡, 𝜔0) and 𝑄𝑥𝑦(𝑡, 𝜔0), as in Eq. (16). That is 

 𝑆𝑥𝑦(𝑡, 𝜔0) = 𝐶𝑥𝑦(𝑡, 𝜔0) − 𝑖𝑄𝑥𝑦(𝑡, 𝜔0) . (26) 

4.  Numerical Applications 

To assess the reliability of the proposed procedure, in this section several applications are presented. In 

each case, 500 samples of the bivariate processes {𝑋(𝑡), 𝑌(𝑡)} have been synthetized from pertinent 

ECPS using the concept of spectral representation of stochastic processes. In this regard, the original 

mean data < �̅�𝑥𝑦(𝑡) > and < �̅�𝑥𝑦(𝑡) > are computed by an ensemble average employing Eq. (10) and 

(13), respectively. Then the quantities are smoothed by the S-G filter. Further, the approximate 

polynomials �̃�𝑥𝑦(𝑡) and �̃�𝑥𝑦(𝑡) are determined from Eq. (22) and (23), respectively. Note that in the 

ensuing numerical applications, a constant value of the linear damping coefficient (2𝜁𝜔0 = 0.2) is 

employed in the proposed procedure. Thus, the critical damping ratio is given as (𝜁 = 0.1/𝜔0), with 

𝜔0 varying in the range [𝜔0,𝑚𝑖𝑛, 𝜔0,𝑚𝑎𝑥], and the initial natural frequency 𝜔0,𝑚𝑖𝑛 = 1 𝑟𝑎𝑑/𝑠, the 

highest value of the damping ratio is 𝜁 = 0.1. The rationale behind this choice is related to the fact that, 

in this manner, the computed approximate functions �̃�𝑥𝑦(𝑡) and �̃�𝑥𝑦(𝑡) both present a similar trend, 

with a characteristic smooth decay as time elapses (see Fig. 1) for all the values of 𝜔0. This represents 

a beneficial feature that facilitates the procedure related to the application of Eq. (24), (25) and (26).  

4.1.   Correlated and Modulated Bivariate Processes with separable spectra 

In this section, the case of a correlated and modulated bivariate process with spectra of the Kanai-Tajimi 

and Clough-Penzien family is considered [1, 12]. First, the stationary bivariate process {𝐴(𝑡), 𝐵(𝑡)} is 

simulated by an AR algorithm [13, 14]. Then, the process {𝐴(𝑡), 𝐵(𝑡)} can then be correlated as follows 

 
{

�̅�(𝑡)

�̅�(𝑡)
} = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] {
𝐴(𝑡)
𝐵(𝑡)

} , 
 

(27) 
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where {�̅�(𝑡), �̅�(𝑡)} is the correlated stationary process. Then, correlated bivariate nonstationary process 

𝑋(𝑡) and 𝑌(𝑡) can be generated respectively by multiplying the modulating envelope functions 

 
{
𝑋(𝑡)
𝑌(𝑡)

} = {
𝑔1(𝑡)�̅�(𝑡)

𝑔2(𝑡)�̅�(𝑡)
} . 

 
(28) 

   In this manner, the analytical expressions of the evolutionary co-spectrum and quad-spectrum can be 

given as [4, 5] 

 𝐶𝑥𝑦(𝑡, 𝜔0) = 𝑔1(𝑡)𝑔2(𝑡)(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑆1(𝜔0) + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑆2(𝜔0) ) , (29) 

with 

 𝑄𝑥𝑦(𝑡, 𝜔0) = 0 , (30) 

where 𝑆1(𝜔0) is a two-sided power spectrum corresponding to the stationary process 𝐴(𝑡), 𝑆2(𝜔0) is a 

two-sided power spectrum corresponding to the stationary process 𝐵(𝑡), and 𝑔1(𝑡) and 𝑔2(𝑡) are 

modulating envelope functions. Then, Eq. (26) can be used to determine the ECPS 𝑆𝑥𝑦(𝑡, 𝜔0). In this 

example, both 𝑆1(𝜔0) and 𝑆2(𝜔0) are represented by the classical Kanai-Tajimi spectrum [1] 

 

𝑆1(𝜔0) = 𝑆01

1 + 4ζ𝑠
2 (

𝜔0
𝜔𝑔1

)
2

[(1 − (
𝜔0
𝜔𝑔1

)
2

)

2

+ (2ζ𝑠
𝜔0
𝜔𝑔1

)
2

]

 , 

 

 

(31) 

and 

 

𝑆2(𝜔0) = 𝑆02

1 + 4ζ𝑠
2 (

𝜔0
𝜔𝑔2

)
2

[(1 − (
𝜔0
𝜔𝑔2

)
2

)

2

+ (2ζ𝑠
𝜔0
𝜔𝑔2

)
2

]

 , 

 

 

(32) 

where 𝑆01 = 0.04 𝑐𝑚2𝑠−3𝑟𝑎𝑑−1, ζ𝑠 = 0.24, 𝜔𝑔1 = 10 𝑟𝑎𝑑/𝑠, 𝑆02 = 0.025 𝑐𝑚2𝑠−3𝑟𝑎𝑑−1, and 

𝜔𝑔2 = 20 𝑟𝑎𝑑/𝑠. Further, the modulating envelope functions of the Shinozuka-Sato type [15] are given 

as 

 
𝑔1(𝑡) =

𝑒−0.25𝑡 − 𝑒−0.5𝑡

0.25
 , 

 

(33) 

and 

 
𝑔2(𝑡) =

𝑒−0.4𝑡 − 𝑒−0.8𝑡

0.4
 . 

 

(34) 

   

   In the following, the estimated ECPS by the proposed procedure is compared to the target one in Eq. 

(29). Specifically, Fig. 2 shows the contour plot of the target and estimated spectrum, while in Fig. 3 

comparisons in both the frequency and time domain are reported. As it can be seen, a satisfactory 

agreement is achieved between the target ECPS and the proposed procedure-based ECPS. 
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Fig. 2. Contour plot of the Kanai-Tajimi ECPS. 

  
(a)                                                                             (b) 

Fig. 3. Kanai-Tajimi ECPS. (a) at different time instants; and (b) at different frequency values. 

 

4.2.  Correlated Nonstationary Processes with Non-separable Spectra 

Further, to assess the reliability of the procedure for different bivariate stochastic processes, a 

nonstationary process compatible with the non-separable ECPS is used. In this regard, 500 uncorrelated 

nonstationary samples {�̅�(𝑡), �̅�(𝑡)} are generated by the spectral representation methods [3, 16], and the 

non-separable spectra compatible with {�̅�(𝑡), �̅�(𝑡)} are given as [17-19] 

 
𝑆�̅�(𝑡, 𝜔0) = 𝑆1 (

𝜔0

5𝜋
)

2

𝑒−0.15𝑡𝑡2𝑒
−(

𝜔0
5𝜋

)
2

𝑡
 , 

 

(35) 

where 𝑆1 = 0.4 𝑐𝑚2𝑠−3, and 

 
𝑆�̅�(𝑡, 𝜔0) = 𝑆2 (

𝜔0

5𝜋
)

2

𝑒−0.15𝑡𝑡2𝑒
−(

𝜔0
5𝜋

)
2

𝑡
 , 

 

(36) 

where 𝑆2 = 0.8 𝑐𝑚2𝑠−3. Note that these two non-separable spectra comprise some of the main 

characteristics of the seismic vibrations, such as the decline of the dominant frequency over time.  

Further, the processes are correlated by the linear transformation in Eq. (27). In this regard, the proposed 

procedure is implemented to estimate the ECPS of the nonstationary processes. The estimated ECPS by 

the proposed procedure is compared to the target ECPS, which is given as  

 𝑆𝑥𝑦(𝑡, 𝜔0) = 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑆�̅�(𝑡, 𝜔0) + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑆�̅�(𝑡, 𝜔0) . (37) 

   In this regard, Fig. 4 and 5 show the target ECPS in Eq. (37) and its estimates based on the proposed 

procedure. As it can be seen from Fig. 4 and 5, again a satisfactory agreement is achieved between the 

proposed procedure-based EPS and the target one.  
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Fig. 4. Contour plot of the Non-separable ECPS. 

  
(a)                                                                           (b) 

Fig. 5. Non-separable ECPS (a) at different time instants; and (b) at different frequency values. 

 

4.3.  Application to Historic Earthquake Data 

In this section, earthquake events data are used to assess if the proposed procedure is reliable for real 

time histories. Consider the Kocaeli earthquake on 08/17/1999, exhibiting a moment magnitude of 7.6. 

This strong motion caused extensive damage in Turkey. In this regard, 30 records of 0° and 30 records 

of 90° Kocaeli earthquake ground motions are used to estimate the ECPS by the proposed procedure.  

   Further, the ECPS estimated by the proposed procedure is shown in Fig. 6 and 7. As it can be seen, 

the proposed procedure yields result that conform with the physical attributes of the earthquake. 

 
(a)                                                                          (b)  

Fig. 6. ECPS of the Kocaeli earthquake by the proposed procedure. (a) Contour plot; and (b) at 

different time instants. 

5.  Concluding Remarks 

In this paper the problem of estimating evolutionary cross power spectra (ECPS) of bivariate 

nonstationary stochastic processes, with emphasis on earthquake records, has been addressed. For this 

purpose, a technique has been developed based on the determination of the expected value of 

appropriately introduced energy-like quantities of lightly damped SDOF linear systems, which act as 

filters, subject to stochastic processes. Next, the so-called and thus Savitzky-Golay (S-G) smoothing 
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filter has been used to smooth these quantities and their derivatives to better capture the trend of the 

ECPS from even a limited number of records. Further, approximate polynomial models of these 

functions have been introduced for a more accurate estimation of the ECPS. In this manner, 

appropriately varying the natural frequency of the systems, the time-dependent spectral content of the 

bivariate nonstationary process is determined along the frequency dimension. Comparison of the results 

obtained using the proposed procedure with two examples, with known exact solutions, has confirmed 

the reliability and the accuracy of the technique. Further, records of the Kocaeli earthquake have been 

used to demonstrate the applicability of the proposed procedure for recorded seismic events. 
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